บทที่ 3

ทฤษฎี สมการ และการวิเคราะห์

ในกรณีที่มีการติดตั้งมู่ถี่เพิ่มเติมกับระบบกระจกนั้น ดุณสมบัติโดยรวมของระบบกระจก จะมีลักษณะที่ซับซ้อนขึ้นเพราะจะขึ้นกับค่าคุณสมบัติทาง optic ของกระจก ค่าคุณสมบัติทาง optic ของมู่ถี่ และผลของการสะท้อนระหว่างชั้นกระจกกับมู่ถี่ โดยในการประเมินสมรรถนะนั้นจำเป็นที่ จะด้องพิจารณาถึงผลต่าง ๆ เหล่านี้ เพื่อที่จะนำไปสู่การประเมินก่าคุณสมบัติทาง optic ของระบบ โดยรวม เช่น ค่าการส่งผ่านของระบบ ค่าการสะท้อนของระบบ และค่าการดูดกลืนรังสีในแต่ละชั้น ได้ นอกจากนั้นแล้วการติดตั้งมู่ลี่ก็จะมีผลโดยตรงต่อค่าสัมประสิทธิ์การส่งผ่านความร้อนรวม (overall heat transfer coefficient, U-value) โดยการติดตั้งมู่ลี่จะทำให้การพาความร้อน และการ ถ่ายเทความร้อนในส่วนของการแผ่รังสีกลื่นยาวจากผิวกระจกค้านในมีค่าที่เปลี่ยนแปลงไป และค่า การถ่ายเทความร้อนในส่วนต่าง ๆ เหล่านี้ยังมีกวามสัมพันธ์กับค่า inward-flowing fractions อีกด้วย ดังนั้นในการศึกษา และวิเคราะห์สมรรถนะของกระจกติดมู่ลี่นั้นจึงจำเป็นที่จะด้องพิจารณาสิ่งต่าง ๆ เหล่านี้ทั้งหมด เพื่อที่จะนำไปสู่การประเมินสมรรถนะเชิงความร้อนของระบบกระจกที่มีการ ดิดตั้งมู่ลี่ได้อย่างเหมาะสม

สำหรับการประเมินค่าความสบายเชิงความร้อนของผู้อยู่อาศัยที่อยู่ในบริเวณกระงกนั้นงาก การศึกษาที่ผ่านมา [5,7-9] ได้แสดงให้เห็นว่าความไม่สบายเชิงความร้อนของผู้อยู่อาศัยที่อยู่ใกล้ ระบบกระงกนั้นประกอบไปด้วยสองส่วนคือ ส่วนของการแผ่รังสีคลื่นสั้นอันเป็นผลมางากรังสึ แสงอาทิตย์ที่ส่งผ่านระบบกระงกเข้ามาโดยตรง และส่วนของการแผ่รังสีคลื่นยาวอันเป็นผลมางาก อุณหภูมิที่ผิว (surface temperature) ของกระงก ดังนั้นเมื่อนำหลักการดังกล่าวมาใช้กับระบบ กระงกที่มีการติดตั้งมู่ถี่ ความไม่สบายเชิงความร้อนก็สามารถแบ่งออกได้เป็นสองส่วนเช่นกันคือ ความไม่สบายเชิงความร้อนในส่วนของรังสีแสงอาทิตย์ที่ผ่านระบบกระงกติดมู่ลี่มากระทบผู้อยู่ อาศัย และความไม่สบายเชิงความร้อนจากการแผ่รังสีกลิ่นยาวจากอุณหภูมิผิวของมู่ลี่มาสู่ผู้อยู่อาศัย

โดยในการประเมินถึงผลกระทบเนื่องจากรังสีคลื่นสั้นนั้นสามารถพิจารณาหาค่าได้จาก การส่งผ่านของความร้อนที่ได้จากวิธีการของ Klems [10-15] และในการประเมินถึงผลของการแผ่ รังสีคลื่นยาวนั้นจำเป็นด้องทราบถึงอุณหภูมิผิวของมู่ลี่ แต่จากงานวิจัยที่ผ่านมายังไม่มีการพัฒนา วิธีการหาค่าอุณหภูมิของมู่ลี่เลย ดังนั้นในการศึกษานี้จึงได้พัฒนาวิธีการเพื่อใช้ในการประเมินค่า อุณหภูมิผิวของมู่ลี่ โดยรายละเอียดต่าง ๆ จะอยู่ในหัวข้อย่อยที่ 3.4 วิธีการคำนวณก่าอุณหภูมิของ มู่ลี่ เนื่องจากความรู้พื้นฐานต่าง ๆ ที่ใช้เป็นแนวทางในการศึกษามีค่อนข้างมาก ดังนั้นจึงได้ แบ่งความรู้ทั้งหมดออกเป็นหัวข้อย่อยต่าง ๆ เพื่อความสะดวกในการพิจารณาดังนี้คือ

วิธีการคำนวณค่าการถ่ายเทความร้อนผ่านระบบกระจกติดมู่ลี่ วิธีการคำนวณค่าคุณสมบัติทาง optic ของกระจก วิธีการคำนวณค่าคุณสมบัติทาง optic ของมู่ลี่ วิธีการคำนวณค่าอุณหภูมิของมู่ลี่ วิธีการคำนวณค่าสภาวะความสบายเชิงความร้อน

3.1 วิธีการกำนวณก่าการถ่ายเทความร้อนผ่านหน้าต่างกระจกติดมู่ลี่

เมื่อ

ความร้อนที่ส่งผ่านระบบกระจกเข้ามาในตัวอาการนั้นจะประกอบไปด้วย 2 ส่วนด้วยกัน กือ

- ส่วนของการน้ำ และพาความร้อน (thermal energy) ในส่วนของการน้ำและพาความร้อนนี้จะเกิดขึ้นได้เมื่อมีความแตกต่างของอุณหภูมิของ อากาศภายนอก และอากาศภายใน
- ส่วนของการส่งผ่านความร้อนจากแสงอาทิตย์ (solar energy) ในส่วนนี้จะเกิดจากรังสีแสงอาทิตย์ที่มาตกกระทบทั้งกรณีของรังสีตรง และรังสีกระจาย

โดยสมการพื้นฐานที่ใช้ในการคำนวณหาค่าปริมาณความร้อนที่เข้าสู่อาคารเนื่องจากระบบกระจก จะสามารถหาได้จาก

$$q = U \cdot (T_{out} - T_{in}) + (SHGC) \cdot I_{total}$$
(3.1)

q	คือ ค่าปริมาณความร้อนที่ส่งผ่านระบบกระจก, W/m²
U	คือ ค่าสัมประสิทธิ์การส่งผ่านความร้อนรวม, W/m².°C
Tout	คือ ค่าอุณหภูมิอากาศภายนอก, °C
T _{in}	คือ ค่าอุณหภูมิอากาศภายใน , °C
SHGC	คือ ค่า Solar Heat Gain Coefficient
I _{total}	คือ ค่า total irradiation ที่ตกกระทบระบบกระจก, W/m²

โดยในการแผ่รังสีจากดวงอาทิตย์มายังผิวโลกนั้น รังสีจากดวงอาทิตย์ส่วนหนึ่งจะเกิดการ ชนกับอนุภาก และฝุ่นผงต่าง ๆ ในชั้นบรรยากาศ และทำให้เกิดการกระเจิงของรังสีส่วนนี้ในทุก ๆ ทิศทาง และจากนั้นจึงส่งผ่านมาสู่พื้นผิวของโลกในรูปของรังสีกระจาย ดังนั้นปริมาณรังสีทั้งหมด ที่ผิวโลกนั้นจะประกอบไปรังสีสองส่วนนั่นคือ รังสีแสงอาทิตย์แบบตรง (direct radiation) และ รังสีแสงอาทิตย์แบบกระจาย (diffuse radiation) คังสมการที่ 3.2

$$I_{\text{total}} = I_{\text{dir}} \cdot \cos \theta + I_{\text{diff}}$$
(3.2)

เมื่อ I_{dir} คือ ค่ารังสีแสงอาทิตย์แบบตรง, W/m² I_{diff} คือ ค่ารังสีแสงอาทิตย์แบบกระจาย, W/m² θ คือ มุมตกกระทบของรังสี, degree

ดังนั้นสมการที่ 3.1 อาจเขียนใหม่ได้เป็น

$$q = U \cdot (t_{out} - t_{in}) + (SHGC_d) \cdot I_{dir} \cdot \cos \theta + (SHGC_D) \cdot I_{diff}$$
(3.3)

เมื่อ SHGC_d คือ ก่า SHGC ในส่วนของรังสีแสงอาทิตย์แบบตรง SHGC_D คือ ก่า SHGC ในส่วนของรังสีแสงอาทิตย์แบบกระจาย

3.1.1 การคำนวณหาค่า SHGC ของรังสีแสงอาทิตย์แบบตรงของกระจกติดมู่ลื่

เมื่อมีรังสีแสงอาทิตย์เข้ามาตกกระทบกับระบบหน้าต่างกระจกที่มีการติดมู่ถึ จะมีรังสี แสงอาทิตย์บางส่วนที่ตกกระทบและส่งผ่านความร้อนผ่านหน้าต่างเข้ามาในโดยตรง และบางส่วน ที่จะถูกดูดกลืนเก็บไว้ในเนื้อของหน้าต่างกระจก และที่ตัวมู่ถี่ และพลังงานความร้อนที่ถูกดูดกลืน ไว้นี่เองจะทำให้ตัวกระจก และมู่ถิ่นั้นมีอุณหภูมิที่สูงขึ้น โดยเมื่อตัวกระจก และมู่ถิ่มีอุณหภูมิที่สูง กว่าอุณหภูมิของอากาศในห้อง และอุณหภูมิของอากาศภายนอกก็จะทำให้เกิดถ่ายเทความร้อน ออกมาโดยการนำความร้อน พากวามร้อน และการแผ่รังสีกลื่นยาว เข้ามาทั้งในอาการ และออกจาก อาการ โดยปริมาณความร้อนดังกล่าวจะเรียกว่า inward-flowing fraction และ outward-flowing fraction ตามลำคับ ดังนั้นค่าความร้อนที่เข้าสู่อาการจะต้องรวมรังสีที่ส่งผ่านโดยตรง และความร้อน ที่ใหลเข้าสู่อาการ ดังสมการที่ 3.4

SHGC_d
$$(\theta, \phi) = T^{fH}(\theta, \phi) + \sum_{i=i}^{M} N_i A_i^f(\theta, \phi)$$
 (3.4)

เมื่อ SHGC_d คือ ค่า Solar Heat Gain Coefficient ของกระจกติดมู่ถื

T^{fH} คือ directional-hemispherical transmittance

- A_i^f คือ directional front absorptance ของ layer i
- N_i คือ ค่า inward-flowing fraction ของแต่ละชั้น
- θ คือ มุมตกกระทบของรังสี
- M คือ จำนวนของชั้นของระบบกระจก

รูปที่ 3.1 แสดงนิยามของมุมตกกระทบ และมุม azimuth

จากสมการที่ 3.4 จะเห็นได้ว่าตัวแปรที่ต้องใช้ในการคำนวณก่า SHGC นั้นจะประกอบไปด้วยตัว แปร 2 ชนิด คือ

1. ตัวแปรทาง optic

ซึ่งได้แก่ค่า T^H และ A¦ และสามารถหาค่าได้จากวิธี Matrix Layer Calculation ที่เสนอ โดย Klems [10-13] โดยที่ค่าคุณสมบัติทาง optic นี้จะมีค่าคงที่ไม่แปรตามตัวแปรทางความ ร้อน เช่น อุณหภูมิของ layer

ตัวแปรทางความร้อน

ซึ่งได้แก่ค่า N_i ของ layer ต่าง ๆ นั่นเอง ค่าตัวแปรเหล่านี้จะขึ้นอยู่กับการพาความร้อน (อุณหภูมิอากาศ และความเร็วลม) และการแผ่รังสีคลื่นยาว (อุณหภูมิของชั้นกระจก และมู่ลี่)

3.1.1.1 การหาค่าคุณสมบัติทาง optic ของระบบกระจกติดมู่ลื่

ในกรณีที่มีรังสีแสงอาทิตย์ตกกระทบระบบกระจกติดมู่ถี่ที่มุมตกกระทบอันหนึ่งนั้น รังสี แสงอาทิตย์ที่เข้ามาในอาการนั้นจะเข้ามาในทิศทางที่หลากหลาย อันเป็นผลมาจากการลักษณะของ มู่ลี่เองที่มีลักษณะเป็นใบซ้อน ๆ กัน และการสะท้อนระหว่างใบมู่ลี่ก็ยังเป็นผลให้ทิศทางของรังสีที่ ออกนั้นมีก่าที่เปลี่ยนไปอีกด้วยดังแสดงในรูปที่ 3.2

รูปที่ 3.2 แสดงทิศทางของรังสีที่ส่งผ่านมู่ลี่ [31]

ซึ่งจากรูปที่ 3.2 จะเห็นได้ว่าในการอธิบายค่าคุณสมบัติทาง optic ของระบบกระจกที่มีการติดตั้งมู่ลี่ อย่างละเอียดนั้น จำเป็นที่จะต้องอธิบายโดยผ่านการระบุทิศทางเข้า และทิศทางออกของรังสี ทั้งหมด และค่าคุณสมบัติที่ใช้ในการอธิบายนี้จะถูกเรียกว่าเป็นฟังก์ชันการกระจายตัวแบบ สองทิศทาง (Bidirectional distribution function)

แต่อย่างไรก็ตามในการประเมินค่าความร้อนที่เข้าสู่อาคารนั้นอาจจะไม่จำเป็นที่จะต้อง บอกลงไปในรายละเอียดว่ามีรังสีเข้ามาในอาคารที่ตำแหน่งต่าง ๆ เป็นปริมาณเท่าใดบ้าง แต่อาจจะ บอกเป็นค่าโดยรวมโดยเฉลี่ยก็เพียงพอ ดังนั้นจึงได้มีการนิยามค่าคุณสมบัติขึ้นมาอีกหนึ่งที่เรียกว่า directional-hemispherical properties ซึ่งเป็นค่าคุณสมบัติที่ได้รวมรังสีขาออกเข้าด้วยกัน และใน การระบุทิศทางนั้นก็จะเป็นการระบุที่ทิศทางขาเข้าเท่านั้น รูปที่ 3.3 และ 3.4 แสดงนิยามของ คุณสมบัติทั้งสองชนิด

รูปที่ 3.3 แสคงนิยามของค่าคุณสมบัติแบบ bi-directional properties [31]

รูปที่ 3.4 แสดงนิยามของค่าคุณสมบัติแบบ directional-hemispherical properties [31]

ในสมการที่ 3.4 นั้นค่าคุณสมบัติทาง optic ที่ใช้ในการคำนวณค่า SHGC นั้นเป็นค่า คุณสมบัติชนิด directional-hemispherical properties ที่ได้จากการอินทิเกรทรังสีที่เข้ามาในอาคาร เรียบร้อยแล้ว และจะมีค่าที่แปรตามทิศทางตกกระทบของรังสีเท่านั้น และค่าคุณสมบัติ directionalhemispherical properties เหล่านี้จะมีความสัมพันธ์กับค่าคุณสมบัติแบบสองทิศทาง (bi-directional properties) ดังแสดงในสมการที่ 3.5 และ 3.6

$$T^{fH} = u^{T} \cdot \Lambda \cdot T^{f}_{M\{1,M\}}$$
(3.5)

$$R^{fH} = u^{T} \cdot \Lambda \cdot R^{f}_{M\{I,M\}}$$
(3.6)

โดยที่

$$\mathbf{u}^{\mathsf{T}} = \{ \mathbf{l} \quad \mathbf{l} \quad \dots \quad \mathbf{l} \}$$
(3.7)

ແລະ

$$\Lambda_{i} = \begin{cases} \Delta \Omega_{i}^{1} \cos \left(\theta_{i}^{1}\right) & 0 & \dots & 0 \\ 0 & \Delta \Omega_{i}^{2} \cos \left(\theta_{i}^{2}\right) & \dots & 0 \\ \dots & \dots & \dots & 0 \\ 0 & 0 & \dots & \Delta \Omega_{i}^{N} \cos \left(\theta_{i}^{N}\right) \end{cases}$$
(3.8)

เมื่อ

T^{fH} คือ directional-hemispherical front transmittance

R^{fH} คือ directional-hemispherical front reflectance

T_{M {I M} กือ bi-directional front transmittance

Rf fo bi-directional front reflectance

- u^T คือ auxiliary row vector
- Λ คือ propagation matrix
- $\Delta \Omega$ คือ มุม solid angle

โดยที่ก่า T^f_{M {1.M}} ซึ่งเป็นก่าการส่งผ่านรังสีด้านหน้าของระบบจะสามารถหาก่าได้จากวิธี Matrix layer Calculation ที่เสนอโดย Klems [10-12] ดังสมการที่ 3.9 ถึง 3.12

$$T_{M,\{1,M\}}^{f} = T_{M}^{f} \cdot \left(I - \Lambda \cdot R_{M-1,\{1,M-1\}}^{b} \cdot \Lambda \cdot R_{M}^{f} \right)^{-1} \cdot \Lambda \cdot T_{M-1,\{1,M-1\}}^{f}$$
(3.9)

$$R_{M,\{1,M\}}^{f} = R_{M-1,\{1,M-1\}}^{f} + \begin{bmatrix} T_{M-1,\{1,M-1\}}^{b} \cdot \left(1 - \Lambda \cdot R_{M}^{f} \cdot \Lambda \cdot R_{M-1,\{1,M-1\}}^{b}\right)^{-1} \\ \cdot \Lambda \cdot R_{M}^{f} \cdot \Lambda \cdot T_{M-1,\{1,M-1\}}^{f} \end{bmatrix}$$
(3.10)

$$T_{M,\{1,M\}}^{b} = T_{M-1,\{1,M-1\}}^{b} \cdot \left(1 - \Lambda \cdot R_{M}^{T} \cdot \Lambda \cdot R_{M-1,\{1,M-1\}}^{b} \right)^{-1} \cdot \Lambda \cdot T_{M}^{b}$$
(3.11)

$$R_{M,\{1,M\}}^{b} = R_{M}^{b} + \begin{bmatrix} T_{M}^{f} \cdot \left(I - \Lambda \cdot R_{M-1,\{1,M-1\}}^{b} \cdot \Lambda \cdot R_{M}^{f} \right)^{-1} \\ \cdot \Lambda \cdot R_{M-1,\{1,M-1\}}^{b} \cdot \Lambda \cdot T_{M}^{b} \end{bmatrix}$$
(3.12)

เมื่อ

 $T^{f}_{M\{I,M\}}$ คือ bi-directional front transmittance matrix ของระบบ M ชั้น $T^{b}_{M\{I,M\}}$ คือ bi-directional back transmittance matrix ของระบบ M ชั้น $R^{f}_{M\{I,M\}}$ คือ bi-directional front reflectance matrix ของระบบ M ชั้น

R^b_{M {1,M}} คือ bi-directional back reflectance matrix ของระบบ M ชั้น

- T_i^f กือ bi-directional front transmittance matrix ของ layer i
- Ti^b คือ bi-directional back transmittance matrix ของ layer i
- Rf คือ bi-directional front reflectance matrix ของ layer i
- R^b_i คือ bi-directional back reflectance matrix ของ layer i

และค่าคุณสมบัติการคูคกลื่นรังสีของแต่ละชั้นที่อยู่ในระบบกระจก M ชั้นได้จาก

$$\begin{aligned} \mathbf{A}_{i;M}^{f} &= \left[\mathbf{A}_{i}^{f} \cdot \left(\mathbf{I} - \Lambda \cdot \mathbf{R}_{i-1,\{1,i-1\}}^{b} \cdot \Lambda \cdot \mathbf{R}_{(M-i+1),\{1,M\}}^{f} \right)^{-1} \cdot \Lambda \cdot \mathbf{T}_{i-1,\{1,i-1\}}^{f} \right] \\ &+ \left[\mathbf{A}_{i}^{b} \cdot \left(\mathbf{I} - \Lambda \cdot \mathbf{R}_{(M-i),\{i+1,M\}}^{f} \cdot \Lambda \cdot \mathbf{R}_{i,\{1,i\}}^{b} \right)^{-1} \cdot \Lambda \cdot \mathbf{R}_{(M-i),\{i+1,M\}}^{f} \cdot \Lambda \cdot \mathbf{T}_{i,\{1,i\}}^{f} \right] \end{aligned}$$

$$\begin{aligned} \mathbf{A}_{EM}^{b} &= \left[\mathbf{A}_{i}^{b} \cdot \left(\mathbf{I} - \Lambda \cdot \mathbf{R}_{(M-i),\{i-1,M\}}^{f} \cdot \Lambda \cdot \mathbf{R}_{i,\{1,i\}}^{b} \right)^{-1} \cdot \Lambda \cdot \mathbf{T}_{M-i,\{i+1,M\}}^{b} \right] \\ &+ \left[\mathbf{A}_{i}^{f} \cdot \left(\mathbf{I} - \Lambda \cdot \mathbf{R}_{i-1,\{1,i-1\}}^{b} \cdot \Lambda \cdot \mathbf{R}_{(M-i+1),\{i,M\}}^{f} \right)^{-1} \right] \end{aligned}$$

$$\begin{aligned} (3.13) \\ \end{aligned}$$

เมื่อ A^f_{i:M} คือ directional front absorptance ของกระจกใด ๆ ในระบบกระจก M ชั้น A^b_{i:M} คือ directional back absorptance ของกระจกใด ๆ ในระบบกระจก M ชั้น A^f_{i:M} คือ directional front absorptance matrix ของ layer i

Ai คือ directional back absorptance matrix ของ layer i

3.1.1.2 การหาค่า inward-flowing fraction ของระบบกระจกติดมูลี่

การหาค่า inward-flowing fraction ของแต่ละชั้นกระจกและมู่ลี่นั้น ถ้าพิจารณาให้มู่ลี่นั้น เป็นเสมือน effective layer อันหนึ่งที่มาประกอบเข้ากับระบบกระจก และพิจารณาลักษณะการพา ความร้อน และการแผ่รังสีคลื่นยาวที่เหมาะสมจะทำให้ในการหาค่า inward-flowing fraction ของ กระจกติดมู่ลี่นั้นสามารถที่จะหาค่าได้จากความสัมพันธ์ในลักษณะเดียวกันกับการหาในกรณีที่เป็น ระบบกระจกล้วน ๆ ได้ และสามารถหาค่าได้จากความสัมพันธ์

$$N_{i} = \frac{\sum_{k=1}^{i} R_{k}}{R_{tot}}$$
(3.15)

เมื่อ R_k คือ ค่าความค้านทานความร้อนรวมที่แต่ละผิวกระจก, m²/W R_{tot} คือ ค่าความค้านทานความร้อนรวมทั้งหมดของระบบกระจก, m²/W 3.1.2 การคำนวณหาค่า SHGC ของรังสึกระจายแสงอาทิตย์ของกระจกติดมู่ลี่

เนื่องจากระบบกระจกที่มีการติดตั้งมู่ลี่นั้นมีลักษณะการส่งผ่านรังสีที่ไม่สมมาตรในช่วง มุม ตกกระทบเหนือแนวระดับ และในช่วงมุมตกกระทบต่ำกว่าแนวระดับ ดังแสดงในรูปที่ 3.5

รูปที่ 3.5 แสคงรังสีที่ตกกระทบในแต่ละมุมตกกระทบ

ดังนั้นในการหาค่า SHGC ของรังสึกระจายจึงจะด้องแบ่งการหาค่า diffuse SHGC ออกเป็น 2 ส่วน นั่นคือ ส่วนบนที่เป็นการกระเจิงของรังสีจากท้องฟ้า (หรือส่วนครึ่งบน, upper) และ ส่วนล่างที่เป็นการสะท้อนของรังสีจากพื้นดิน (หรือส่วนครึ่งล่าง, lower) จากนั้นจึงค่อยรวมทั้ง 2 ส่วนเข้าด้วยกัน โดยการรวมค่า diffuse SHGC สามารถหาค่าได้จากสมการ

$$SHGC_{D} = \frac{SHGC_{DS} + \xi \cdot SHGC_{DG}}{1 + \xi}$$
(3.16)

โดยที่

$$\xi = \frac{2 \cdot \rho \cdot \mathbf{I}_{\text{total}}}{\mathbf{I}_{\text{diff}}}$$
(3.17)

เมื่อ SHGC_D คือ diffuse SHGC SHGC_{DS} คือ sky-diffuse SHGC SHGC_{DG} คือ ground-diffuse SHGC

- ξ คือ พารามิเตอร์ที่ขึ้นอยู่กับสภาวะของท้องฟ้า และพื้นคิน
- ρ กี่อ effective ground reflectance
- I_{total} คือ total global solar intensity, W/m^2
- I_{diff} คือ diffuse solar radiation, W/m^2

โดยที่ก่า SHGC_{DS} และ SHGC_{DG} นั้นสามารถหาก่าได้จากการอินทิเกรทก่า SHGC ที่ได้ จากวิธี matrix layer calculation ในช่วง 0° < θ < 90°, 0° < φ < 180° และในช่วง 0° < θ < 90°, 180° < φ < 360° ตามลำดับ โดยการอินทิเกรททำได้โดยใช้ก่า weighting function ดังสมการที่ 3.22 และ 3.23

$$SHGC_{DG} = \sum_{j=1}^{n} \sum_{i=1}^{m} w(\theta_i, \phi_j) \cdot SHGC(\theta_i, \phi_j) \qquad \qquad \text{idd} 180^\circ < \phi < 360^\circ \qquad (3.19)$$

เมื่อ m คือ จำนวนมุมตกกระทบที่พิจารณาในช่วง 0° < θ < 90° n คือ จำนวนมุม azimuth ที่พิจารณา

โดยค่า weighting function มีค่าดังแสดงในตารางที่ 3.1 สำหรับรายละเอียดในการ คำนวณหาค่า weighting function สามารถดูได้จากภาคผนวก ค

θ	ф	Angular weighting, $w(\theta_i, \phi_i)$
0	0,30,60,,360	0.00028
15	0,30,60,,360	0.02156
30	0,30,60,,360	0.03736
45	0,30,60,,360	0.04314
60	0,30,60,,360	0.03736
75	0,30,60,,360	0.02156
90	0,30,60,,360	0.00028

a					
ตารางท	3.1	ิดา	angular	weighting	function
			8	00	

สำหรับค่าการสะท้อนแสงอาทิตย์ของพื้นแต่ละชนิคก็จะมีค่าที่แตกต่างกันโดยสามารถหาค่าได้จาก ดารางที่ 3.2

				0.5 1/1001		
พื้นผิว	มุมดกกระทบ					
	20	30	40	50	60	70
คอนกรีตใหม่	0.31	0.31	0.32	0.32	0.33	0.34
คอนกรีตเก่า	0.22	0.22	0.22	0.23	0.23	0.25
หญ้า	0.21	0.22	0.23	0.25	0.28	0.31
หิน	0.20	0.20	0.20	0.20	0.20	0.20
ทางลูกรัง	0.14	0.14	0.14	0.14	0.14	0.14
ยางมะตอย	0.09	0.09	0.10	0.10	0.11	0.12

ตารางที่ 3.2 แสดงค่า effective ground reflectance, p ของพื้นผิวชนิดต่าง ๆ [4]

3.1.3 การหาค่าสัมประสิทธิ์การส่งผ่านความร้อนรวมของระบบกระจกติดมู่ลี่

ค่าสัมประสิทธิ์การส่งผ่านความร้อนรวม, U จะเป็นค่าสัมประสิทธิ์ที่แทนเฉพาะส่วนของ ความร้อนที่เข้าสู่อาคารเนื่องจากความแตกต่างของค่าอุณหภูมิภายนอก และภายใน โดยการ กำหนดให้รังสีแสงอาทิตย์ที่มาตกกระทบระบบกระจกนั้นมีค่าเท่ากับศูนย์ ส่วนวิธีการคำนวณค่า U นั้นจะเป็นการคำนวณไปพร้อม ๆ กันกับการหาค่าอุณหภูมิของมู่ลี่ ที่พิจารณาการพาความร้อน และ การแผ่รังสีคลื่นยาวในแต่ละส่วนของกระจก/มู่ลี่ ซึ่งการคำนวณคังกล่าวจะทำให้ได้ก่าความ ด้านทานความร้อนรวมของระบบกระจกติดมู่ลี่(R₁₀₁) และสามารถหาค่าการส่งผ่านความร้อนรวม ของระบบกระจก/มู่ลี่ ได้จากความสัมพันธ์

$$U = \frac{1}{R_{tot}}$$
(3.20)

โดยรายละเอียดของการพาความร้อน และการแผ่รังสีความร้อนทั้งหมดที่เกิดขึ้นนั้นจะแสดงใน รายละเอียดในหัวข้อย่อย 3.4 วิธีการคำนวณก่าอุณหภูมิของมู่ลี่

3.2 วิธีการคำนวณค่าคุณสมบัติทาง optic ของหน้าต่างกระจก

3.2.1 กระจกชนิดไม่เคลื่อบ (uncoated glass)

สำหรับกระจกชนิคไม่เคลือบนั้น กระจกจะมีลักษณะที่เป็นเนื้อเดียวกัน (homogenous) และจะมีค่าคุณสมบัติทาง optic ของกระจกที่ผิวด้านหน้า และผิวด้านหลังที่เท่ากัน โดยในการหาค่า คุณสมบัติต่าง ๆ เหล่านี้จะสามารถหาค่าได้จากขั้นตอนที่เสนอโดย Furler [28] โดยทั่วไปทางผู้ผลิตมักจะให้ค่า transmittance และ ค่า reflectance ของกระจกที่มุมศูนย์ องศาที่ได้จากการทดลองของผู้ผลิต โดยจากค่า transmittance และ reflectance ที่มุมตกกระทบศูนย์ องศาเหล่านี้สามารถนำมาประยุกต์ใช้เพื่อหาค่าคุณสมบัติพื้นฐานต่าง ๆ ของกระจกเช่น ค่าการหัก เหของแสง, refraction coefficient, extinction coefficient และค่า absorption coefficient เป็นต้น และสามารถนำไปใช้ในการหาค่าคุณสมบัติทาง optic ที่มุมตกกระทบอื่นได้

โดยที่ค่าคุณสมบัติพื้นฐานต่าง ๆ เหล่านี้จะขึ้นอยู่กับค่า reflectivity และค่า reflectivity ที่ มุมตกกระทบศูนย์องศาจะมีความสัมพันธ์กับค่า transmittance และ reflectance ที่มุมศูนย์องศา คัง แสดงสมการที่ 3.21 และ 3.22 [28]

$$\rho_{\lambda}(0) = \frac{\beta - \sqrt{\beta^2 - 4(2 - R_{\lambda}(0)) \cdot R_{\lambda}(0)}}{2(2 - R_{\lambda}(0))}$$
(3.21)

โดย

$$\beta = T_{\lambda}(0)^{2} - R_{\lambda}(0)^{2} + 2R_{\lambda}(0) + 1$$
(3.22)

เมื่อ

- - $T_{\lambda}(0)$ คือ ค่า transmittance ที่มุมตกกระทบศูนย์องศา และความยาวคลื่น λ
 - R_λ(0) คือ ค่า reflectance ที่มุมตกกระทบศูนย์องศา และความยาวคลื่น λ

และจากค่า reflectivity ที่มุมตกกระทบศูนย์องศาจะทำให้สามารถหาค่าคุณสมบัติพื้นฐานต่าง ๆ ได้ ดังนี้

ค่า refractive index

$$n_{\lambda} = \frac{1 + \sqrt{\rho_{\lambda}(0)}}{1 - \sqrt{\rho_{\lambda}(0)}}$$
(3.23)

ก่า extinction coefficient

$$k_{\lambda} = -\frac{\lambda}{4\pi d} \ln \left(\frac{R_{\lambda}(0) - \rho_{\lambda}(0)}{\rho_{\lambda}(0)T_{\lambda}(0)} \right)$$
(3.24)

เมื่อ λ คือ ความยาวคลื่น, nm

d คือ ความหนาของกระจก, mm

ค่า absorption coefficient

$$\alpha_{\lambda} = \frac{4\pi k_{\lambda}}{\lambda} \tag{3.25}$$

ในการหาก่ากุณสมบัติที่มุมตกกระทบอื่นก็สามารถหาก่าได้จากก่าต่าง ๆ เหล่านี้ โดยในกรณีที่ มุมตกกระทบอื่นที่ไม่ใช่ศูนย์องศาจะเกิดการหักเหของแสงตาม Snell's law

$$\zeta = \sin^{-1} \left(\frac{\sin \theta}{n_{\lambda}} \right)$$
(3.26)

เมื่อ

ζ

θ

คือ มุมตกกระทบ, degree

คือ มุมหักเหของแสง, degree

และที่มุมตกกระทบนี้จะทำให้เกิดการสะท้อนที่ผิว reflectivity ที่เปลี่ยนไปด้วย โดยสามารถหาค่า ได้จากความสัมพันธ์

$$\rho_{\lambda}(\theta) = \frac{1}{2} \left(\left(\frac{n_{\lambda} \cos \theta - \cos \zeta}{n_{\lambda} \cos \theta + \cos \zeta} \right)^{2} + \left(\frac{n_{\lambda} \cos \zeta - \cos \theta}{n_{\lambda} \cos \zeta + \cos \theta} \right)^{2} \right)$$
(3.27)

และจะสามารถหาค่า transmittivity ได้จาก

$$\tau_{\lambda}(\theta) = 1 - \rho_{\lambda}(\theta) \tag{3.28}$$

จากนั้นจะทำให้สามารถหาค่าการส่งผ่าน (transmittance) และค่าการสะท้อน (reflectance) ที่มุมตก กระทบใด ๆ ที่รวมผลของการสะท้อนในเนื้อกระจกแล้วได้จากสมการที่ 3.29 และ3.30

$$T_{\lambda}(\theta) = \frac{\tau_{\lambda}(\theta)^{2} e^{(-\alpha_{\lambda} \cdot d/\cos \zeta)}}{1 - \rho_{\lambda}(\theta)^{2} e^{(-2\alpha_{\lambda} \cdot d/\cos \zeta)}}$$
(3.29)

$$R_{\lambda}(\theta) = \rho_{\lambda}(\theta) \cdot \left(1 + T_{\lambda}(\theta) \cdot e^{-\alpha_{\lambda} \cdot d / \cos \zeta} \right)$$
(3.30)

เมื่อ T_λ คือ ค่าการส่งผ่านรังสีของกระจกที่มุมตกกระทบ θ และความยาวคลื่น λ

- \mathbf{R}_{λ} คือ ค่าการสะท้อนรังสีของกระจกที่มุมตกกระทบ θ และความยาวคลื่น λ
- τ, คือ ค่าสัมประสิทธิ์การส่งผ่าน (transmissivity) มุมตกกระทบ θ
- ρ_λ คือ ค่าสัมประสิทธิ์การสะท้อน (reflectivity) มุมตกกระทบ θ

3.2.2 กระจกชนิดเคลือบ (coated glass)

สำหรับกระจกชนิดเคลือบค่าคุณสมบัติทาง optic เหล่านี้จะมีค่าที่ซับซ้อนมากขึ้นอันเป็น ผลมาจากการสะท้อนที่เกิดขึ้นในชั้นเคลือบ และในปัจจุบันยังไม่มีแบบจำลองทางคณิตศาสตร์ที่ สามารถคำนวณค่าคุณสมบัติต่าง ๆ เหล่านี้ได้โดยตรง อย่างไรก็ตามในการศึกษานี้จะพิจารณาตาม แบบจำลองทางคณิตศาสตร์ที่ได้จากการวิเคราะห์เชิงถดถอย (regression analysis) ที่ได้เสนอโดย Finlayson และคณะ [1] โดยสามารถแบ่งออกเป็น 2 กรณีด้วยกัน คือ

1. กรณีที่ค่า transmittance มีค่ามากกว่า 0.645, T(0) > 0.645 จะสามารถหาค่าได้จาก

$$T(\theta) = T(0) \times \overline{\tau}_{clr}(\theta)$$
(3.31)

$$\mathbf{R}(\theta) = \mathbf{R}(0) \times \left(1 - \overline{\rho}_{clr}(\theta)\right) + \overline{\rho}_{clr}(\theta)$$
(3.32)

2. กรณีที่ก่า transmittance มีก่าน้อยกว่าหรือเท่ากับ 0.645, T(0) ≤ 0.645 จะสามารถหาก่าได้จาก

$$T(\theta) = T(0) \times \overline{\tau}_{bnz}(\theta)$$
(3.33)

$$R(\theta) = R(0) \times (1 - \overline{\rho}_{bnz}(\theta)) + \overline{\rho}_{bnz}(\theta)$$
(3.34)

เมื่อ

$$\overline{\tau}_{x}(\theta) = \overline{\tau}_{0} + \overline{\tau}_{1}\cos(\theta) + \overline{\tau}_{2}\cos^{2}(\theta) + \overline{\tau}_{3}\cos^{3}(\theta) + \overline{\tau}_{4}\cos^{4}(\theta)$$
(3.35)

$$\overline{\rho}_{x}(\theta) = \overline{\rho}_{0} + \overline{\rho}_{1}\cos(\theta) + \overline{\rho}_{2}\cos^{2}(\theta) + \overline{\rho}_{3}\cos^{3}(\theta) + \overline{\rho}_{4}\cos^{4}(\theta) - \overline{\tau}(\theta)$$
(3.36)

และ x เป็นตัวห้อยที่เป็น clr หรือ bnz

โดยค่าสัมประสิทธิ์ต่าง ๆ นั้นจะมีก่าคังแสคงในตารางที่ 3.3

ตารางที่ 3.3 แสดงค่าสัมประสิทธิ์ที่ใช้ในการหาคุณสมบัติของกระจกชนิดเคลือบ [1]

	0	1	2	3	4
$\overline{\tau}_{clr}$	-0.0015	3.355	-3.840	1.460	0.0288
$\overline{\rho}_{clr}$	0.999	-0.563	2.043	-2.532	1.054
$\overline{\tau}_{bnz}$	-0.002	2.813	-2.341	-0.05725	0.599
$\overline{\rho}_{bnz}$	0.997	-1.868	6.513	-7.862	3.225

3.3 วิธีการคำนวณค่าคุณสมบัติทาง optic ของมู่ลี่

3.3.1 การกำนวณก่าคุณสมบัติทาง optic กลื่นสั้นของมู่ลี่

ในปัจจุบันแบบจำลองทางคณิตศาสตร์ของค่าคุณสมบัติในส่วนนี้ของมู่ลี่นั้นได้มีการ นำเสนอในหลาย ๆ รูปแบบจากงานวิจัยที่ผ่านมาในอดีต [3,25] โดยแต่ละแบบจำลองนั้นก็มี หลักการการวิเคราะห์เหมือน ๆ กันคือ พิจารณาจากลักษณะทางเรขาคณิตของมู่ลี่เป็นหลัก และค่า คุณสมบัติที่ได้นั้นจะขึ้นอยู่กับลักษณะทางเรขาคณิตของมู่ลี่(ความกว้างของใบ ระยะห่างระหว่าง ใบ) และค่าการสะท้อนรังสีที่ผิวมู่ลี่ แต่อย่างไรก็ตามจากการศึกษาเชิงเปรียบเทียบโดย Chantrasrisalai และคณะ [26] ได้แสดงให้เห็นว่าแบบจำลองด่าง ๆ เหล่านั้นสามารถทำนายค่า คุณสมบัติได้ทั้งสอดคล้องกันในส่วนของการแผ่รังสีโดยตรงที่ผ่านระหว่างช่องห่างของมู่ลี่ (directdirect transmittance) และจะทำนายค่าคุณสมบัติทาง optic ได้แตกต่างกันในกรณีของการส่งผ่านที่ ผ่านการสะท้อนจากใบมู่ลี่มาแล้ว (diffuse-direct transmittance) นอกจากนั้นเมื่อตัวแปรบางส่วน เปลี่ยนก่าไป เช่น กวามหนาของใบมู่ลี่ ค่าการสะท้อนของมู่ลี่ เป็นด้น ความแตกต่างของแต่ละ แบบจำลองก็มีผลมากขึ้นด้วย และยังไม่มีการยอมรับในปัจจุบันว่าแบบจำลองไหนเหมาะสมที่จะ ใช้เพื่อทำนายค่าคุณสมบัติต่าง ๆ เหล่านี้ เพื่อใช้ในการประเมินความร้อน และทำนายการใช้ พลังงานของอาการ

ดังนั้นในการศึกษานี้จึงจะใช้ข้อมูลที่ได้จากการทดลองโดย Klems [24] เป็นหลัก โดยจะ พิจารณาจากการวิเคราะห์เชิงถดถอยกับข้อมูลการทดลองของ Klems โดยจะแยกพิจารณาทีละตัว แปร กล่าวคือ จะทำการแปรค่ามุมตกกระทบ โดยคงค่าที่มุม azimuth ต่าง ๆ กัน เพื่อหาการ เปลี่ยนแปลงของค่าคุณสมบัติต่าง ๆ ที่แปรตามมุมตกกระทบ จากนั้นจึงแปรค่ามุม azimuth โดยคง ค่า มุมตกกระทบ เพื่อให้ได้การเปลี่ยนแปลงรวมทั้งหมด โดยจากการพล็อตค่าคุณสมบัติทาง optic ต่าง ๆ เหล่านี้เทียบกับมุมตกกระทบ และมุม azimuth ของรังสี (รายละเอียดจะแสดงใน ภากผนวก ข) จะเห็นได้ว่าค่าคุณสมบัติทาง optic คลื่นสั้นของมู่ลี่ที่แปรตามมุมตกกระทบ สามารถ แทนได้ด้วยสมการแบบสมการพหุนามอันดับที่ 4 และค่าคุณสมบัติทาง optic คลื่นสั้นของมู่ลี่ที่แปร ตามมุม azimuth สามารถแทนได้ด้วยสมการแบบสมการพหุนามอันดับที่ 2 นั่นคือ

$$T^{fH} = f_1(\theta) \cdot f_2(\phi)$$
(3.37)

$$T^{fH} = (c_0 + c_1\theta + c_2\theta^2 + c_3\theta^3 + c_4\theta^4) \cdot (d_0 + d_1\phi + d_2\phi^2)$$
(3.38)

และเมื่อดูณกระจายเทอมในสมการที่ 3.38 จะได้ความสัมพันธ์ดังนี้ คือ

ค่าการส่งผ่านรังสึ

$$T^{fH} = a_0 + a_1\phi + a_2\phi^2 + a_3\theta + a_4\theta\phi + a_5\theta\phi^2 + a_6\theta^2 + a_7\theta^2\phi + a_8\theta^2\phi^2 + a_9\theta^3 + a_{10}\theta^3\phi + a_{11}\theta^3\phi^2 + a_{12}\theta^4 + a_{13}\theta^4\phi + a_{14}\theta^4\phi^2$$
(3.39)

และในทำนองเคียวกันจะได้ค่าการสะท้อนรังสี คือ

$$R^{fH} = b_0 + b_1\phi + b_2\phi^2 + b_3\theta + b_4\theta\phi + b_5\theta\phi^2 + b_6\theta^2 + b_7\theta^2\phi + b_8\theta^2\phi^2 + b_9\theta^3 + b_{10}\theta^3\phi + b_{11}\theta^3\phi^2 + b_{12}\theta^4 + b_{13}\theta^4\phi + b_{14}\theta^4\phi^2$$
(3.40)

เมื่อ a_i, b_i คือค่าคงที่ซึ่งได้จากการคูณกันในเทอมต่าง ๆ

ค่าการดูคกลื่นรังสี

$$A^{fH} = 1 - T^{fH} - R^{fH}$$
(3.41)

โดยที่ค่าสัมประสิทธิ์ต่าง ๆ นั้นจะมีค่าคังแสคงในตารางที่ 3.4

ตารางที่ 3.4 แสคงสัมประสิทธิ์ที่ใช้ในการหาก่ากุณสมบัติทาง optic ของมู่ลี่

สับประสิทธิ์	0° < ¢	< 180 °	180° < ¢ < 360°	
6147 13 4 6 1 M D	a _n	b _n	a _n	b _n
0	0.4269	0.3378	0.5018	0.3204
1	0.4985×10^{-3}	-0.5813×10^{-3}	-0.2708×10^{-3}	+ 0.4653 ×10 ⁻⁴
2	-0.6354×10^{-5}	$+0.4785 \times 10^{-5}$	-	-
3	-0.3448×10^{-2}	- 0.2355 × 10 ⁻¹	-0.8508×10^{-1}	-0.2046×10^{-1}
4	-0.5145×10^{-3}	$+0.3656 \times 10^{-3}$	$+0.3379 \times 10^{-3}$	+ 0.2266 × 10 ⁻⁴
5	+ 0.3998 × 10 ⁻⁵	-0.1594 ×10 ⁻⁵	-	-
6	$+0.4439 \times 10^{-3}$	+ 0.1583 × 10 ⁻²	$+0.2358 \times 10^{-2}$	+ 0.1379 × 10 ⁻²
7	$+ 0.1243 \times 10^{-5}$	-0.2113×10^{-4}	-0.3848×10^{-5}	-0.5151×10^{-6}
8	-0.2436×10^{-7}	$+ 0.9037 \times 10^{-7}$	-	-
9	-0.1005×10^{-4}	-0.3421×10^{-4}	-0.1546×10^{-4}	-0.3060×10^{-4}
10	+ 0.1179 × 10 ⁻⁶	+ 0.4942 × 10 ⁻⁶	-0.7402×10^{-7}	$+ 0.2974 \times 10^{-8}$
11	-0.4911×10^{-9}	-0.2404×10^{-8}	-	-
12	$+0.5484 \times 10^{-7}$	$+0.2268 \times 10^{-6}$	-0.1185×10^{-7}	$+ 0.2078 \times 10^{-6}$
13	-0.7500×10^{-9}	-0.3376×10^{-8}	$+0.8473 \times 10^{-9}$	$+0.6115 \times 10^{-11}$
14	$+0.2925 \times 10^{-11}$	$+0.1772 \times 10^{-10}$	-	-

3.3.2 การคำนวณค่าคุณสมบัติทาง optic คลื่นยาวของมู่ลี่

เนื่องจากมู่ลี่นั้นมีลักษณะเป็นใบวางซ้อนกันเป็นชั้น ๆ และการแผ่รังสึกลื่นยาวถึงแม้ว่าจะ มีความถี่ต่ำก็สามารถส่งผ่านได้โดยผ่านช่องระหว่างใบเหล่านี้ ซึ่งแตกต่างกับกรณีของกระจกที่เป็น เนื้อกระจก และการแผ่รังสึกลื่นยาวไม่สามารถที่จะส่งผ่านได้ นอกจากนั้นก่าคุณสมบัติกลื่นยาว ของมู่ลี่ยังคงแปรตามก่าการสะท้อนที่ผิวมู่ลี่ และมุมเอียงของมู่ลี่อีกด้วย

ดังนั้นเพื่อเป็นการกำนวณหาก่ากุณสมบัติการแลกเปลี่ยนความร้อนต่าง ๆ เหล่านี้ เพื่อให้ เป็นระนาบเสมือนประกอบเข้าไปกับระบบกระจก จึงได้ทำการจำลองให้มู่ลี่นั้นประกอบไปด้วย พื้นผิวปิดหลาย ๆ ผิว ที่วางซ้อน ๆ กันอยู่ โดยแต่ละพื้นผิวปิดจะประกอบไปด้วยมู่ลี่สองใบ และ พื้นผิวที่แทนอากาศด้านหน้า และด้านหลัง โดยจะพิจารณาภายใต้สมมติฐานดังนี้ คือ

- ทุก ๆ พื้นผิวปิดนั้น มีลักษณะการแลกเปลี่ยนความร้อนที่เหมือนกัน ดังนั้น การพิจารณาพื้นผิว ปิดหนึ่งหน่วยสามารถที่จะใช้เป็นตัวแทนของมู่ลี่รวมทั้งหมดได้
- ในแต่ละพื้นผิวปิดนั้น พื้นที่ผิวต่าง ๆ นั้นที่ประกอบกันเป็นพื้นผิวปิด มีค่าคุณสมบัติการ สะท้อน การเปล่งรังสีคลื่นยาว และค่าอุณหภูมิที่คงที่ตลอดพื้นผิว
- มู่ลี่มีความยาวมากกว่าความกว้างมู่ลื่มาก และเกิดการแลกเปลี่ยนรังสีในแบบ 2 มิติ
- แต่ละพื้นผิวในพื้นผิวปิคมีลักษณะเป็นแบบ flat plate

จากสมมติฐานที่กำหนดขึ้น และทำวิเคราะห์แบบผิวปิดโดยให้พื้นผิวปิดหนึ่งหน่วยประกอบไปด้วย พื้นผิว 6 ผิว [27] ดังแสดงในรูปที่ 3.6

รูปที่ 3.6 แสดงการจำลองพื้นผิวปิด 1 หน่วย เป็นตัวแทนของมู่ลี่รวมทั้งหมด โดยแต่ละพื้นผิวปิด ประกอบไปด้วยพื้นผิว 6 ผิว โคยมีพื้นที่ผิวต่าง ๆ คังนี้ คือ

พื้นผิวที่ 1 คือ พื้นที่ ab พื้นผิวที่ 2 คือ พื้นที่ bc พื้นผิวที่ 3 คือ พื้นที่ de พื้นผิวที่ 4 คือ พื้นที่ ef พื้นผิวที่ 5 คือ พื้นที่ ad พื้นผิวที่ 6 คือ พื้นที่ cf

ในการวิเคราะห์นั้นพลังงานความร้อนที่พื้นผิวใด ๆ นั้นจะมีค่าเท่ากับการแลกเปลี่ยนความ ร้อนกับพื้นผิวอื่น ๆ ภายในพื้นผิวปิคดังสมการ

้ก่า radiosity (หรือรังสีรวมที่ออกจากพื้นผิว) ของใบมู่ลี่จะมีก่าเท่ากับ

$$J_{i} = \varepsilon_{i} \sigma \theta_{1}^{4} + (1 - \varepsilon_{i})G_{i}$$
(3.43)

ส่วนค่า view factors นั้นสามารถหาค่าใด้โดยวิธี Hottel's crossed string method

$$F_{ij} = \frac{\sum XS_{ij} - \sum US_{ij}}{2L_i}$$
(3.44)

เมื่อ $\sum XS_{ij}$ คือ ผลรวมของ crossed string ระหว่างผิว i และ j $\sum US_{ij}$ คือ ผลรวมของ uncrossed string ระหว่างผิว i และ j L_i คือ ความยาวของพื้นผิว i

โดยที่จากแบบจำลองผิวปิดนี้จะแสดงถึงการแลกเปลี่ยนความร้อนที่ถ่ายเทกันในพื้นผิวปิด นั่นเอง โดยที่พื้นผิว ad และ cf นั้นจะแทนบริเวณช่องเปิดด้านหน้า และด้านหลังมู่ลี่ที่รังสีสามารถ ส่งผ่านได้ และสำหรับค่าคุณสมบัติการแผ่รังสีคลื่นยาวสามารถพิจารณาได้จากการสมมติให้มีรังสี มาตกกระทบที่พื้นผิวปิดนั่นเอง และระยะต่าง ๆ เพื่อใช้ในการหาค่า view factor นั้นแสดงใน ตารางที่ 3.5

34

ส่วนของความยาว	ความสัมพันธ์
ab	w – ps
ac	W
ad	ps
ae	$\sqrt{\mathrm{ps}^2 + (\mathrm{de})^2 - 2 \cdot \mathrm{ps} \cdot (\mathrm{de}) \cdot \mathrm{sin}(\phi)}$
af	$\sqrt{\mathrm{ps}^2 + \mathrm{w}^2 - 2 \cdot \mathrm{ps} \cdot \mathrm{w} \cdot \mathrm{sin}(\phi)}$
bc	ps
bd	$\sqrt{\mathrm{ps}^2 + (\mathrm{ab})^2 + 2 \cdot \mathrm{ps} \cdot (\mathrm{ab}) \cdot \mathrm{sin}(\phi)}$
be	$\sqrt{\mathrm{ps}^2 + (\mathrm{2ps} - \mathrm{w})^2 - 2 \cdot \mathrm{ps} \cdot (\mathrm{2ps} - \mathrm{w}) \cdot \sin \phi }$
bf	$\sqrt{\mathrm{ps}^2 + (\mathrm{bc})^2 - 2 \cdot \mathrm{ps} \cdot (\mathrm{bc}) \cdot \mathrm{sin}(\phi)}$
cd	$\sqrt{\mathrm{ps}^2 + \mathrm{w}^2 + 2 \cdot \mathrm{ps} \cdot \mathrm{w} \cdot \mathrm{sin}(\mathrm{\phi})}$
се	$\sqrt{\mathrm{ps}^2 + (\mathrm{ef})^2 + 2 \cdot \mathrm{ps} \cdot (\mathrm{ef}) \cdot \mathrm{sin}(\phi)}$
cf	ps
de	ps
df	w
ef	w – ps

ตารางที่ 3.5 แสดงก่ากวามยาวต่าง ๆ ในพื้นผิวปิด

3.3.2.1 การคำนวณหาค่าการเปล่งรังสีคลื่นยาวด้านหน้า และด้านหลัง

สามารถหาค่าได้จากนิยามว่าเป็นปริมาณรังสีที่ออกจากพื้นผิวปิดต่อการเปล่งรังสีของตัว ใบมู่ถี่ ดังนั้นจะได้ค่าการเปล่งรังสึคลื่นยาวด้านหน้า

$$\varepsilon_{\rm f} = \frac{G_5}{\sigma T^4} \tag{3.45}$$

และค่าการเปล่งรังสึกลื่นยาวด้านหลัง

$$\varepsilon_{b} = \frac{G_{b}}{\sigma T^{4}}$$
(3.46)

3.3.2.2 การคำนวณหาค่าการส่งผ่านรังสี สะท้อนรังสี และการดูดกลืนรังสีคลื่นยาว ด้านหน้า

139173001

สามารถพิจารณาได้จากการสมมุติให้มีรังสีเข้าที่ด้านหน้าของพื้นผิวปิด จากนั้นสามารถหา ค่าการส่งผ่านได้จาก อัตราส่วนของรังสีที่ส่งผ่านต่อรังสีที่ใส่ให้กับพื้นผิวปิด นั่นคือ

$$\Gamma^{\rm f} = \frac{G_6}{G_{\rm front}} \tag{3.47}$$

และค่าการสะท้อนรังสึคลื่นขาวได้จาก อัตราส่วนของรังสึที่สะท้อนออกต่อรังสึที่ป้อนให้กับพื้นผิว นั่นคือ

$$R^{f} = \frac{G_{5}}{G_{front}}$$
(3.48)

ค่าการดูคกลืนรังสีคลื่นยาวด้านหน้าสามารถหาค่าได้จากก่าการดูคกลืนรังสีของพื้นผิวที่ 1, 2, 3 และ 4 ต่อรังสีที่เข้ามาในพื้นผิวปิด ดังสมการ

$$A^{f} = \frac{\varepsilon_{top} \left(A_{1} G_{1} + A_{2} G_{2}\right) + \varepsilon_{bottom} \left(A_{3} G_{3} + A_{4} G_{4}\right)}{A_{front} G_{front}}$$
(3.49)

หรือถ้ากล่าวอีกนัยหนึ่ง การดูดกลืนรังสีก็จะเท่ากับรังสีที่เข้ามาตกกระทบพื้นผิวปิคลบด้วยรังสีที่ ออกที่ผิว 5 และ 6 นั่นคือ

$$A^{f}A_{front} G_{front} = A_{front} G_{front} - A_{5}G_{5} - A_{6}G_{6}$$
(3.50)

หรือ

$$A^{f} = 1 - \frac{(G_{5} + G_{6})}{G_{front}}$$
(3.51)

3.3.2.3 การคำนวณหาค่าการส่งผ่านรังสี สะท้อนรังสี และดูดกลืนรังสีคลื่นยาวด้านหลัง

สามารถหาค่าได้ในทำนองเดียวกัน ดังนั้นค่าการส่งผ่านรังสีคลื่นยาวด้านหลังจะหาค่าได้ จากความสัมพันธ์

$$T^{b} = \frac{G_{5}}{G_{back}}$$
(3.52)

ค่าการสะท้อนรังสีคลื่นยาวค้านหลัง

$$R^{b} = \frac{G_{6}}{G_{back}}$$
(3.53)

ี่ ก่าการดูดกลืนรังสึกลื่นขาวด้านหลังสามารถหาค่าได้ในทำนองเดียวกันกับก่าการดูดกลืนรังสี ด้านหน้า โดยจะมีความสัมพันธ์ดังสมการที่ 3.54 และ 3.55

$$A^{b} = \frac{\varepsilon_{top} \left(A_{1} G_{1} + A_{2} G_{2} \right) + \varepsilon_{bottom} \left(A_{3} G_{3} + A_{4} G_{4} \right)}{A_{6} G_{back}}$$
(3.54)

$$A^{b} = 1 - \frac{(G_{5} + G_{6})}{G_{back}}$$
(3.55)

โดยค่าคุณสมบัติที่ได้จากสมการที่ 3.54 และ 3.55 จะต้องมีค่าที่เท่ากันเสมอ และผลรวมของค่า คุณสมบัติทาง optic คลื่นยาวนี้ต้องมีค่าเท่ากับหนึ่งเสมอ เงื่อนไขที่ค่าคุณสมบัติที่จะต้องเท่ากัน และผลรวมของค่าคุณสมบัติจะต้องเท่ากับหนึ่งนี้ สามารถนำมาใช้เพื่อตรวจสอบความถูกต้องของ โปรแกรมคอมพิวเตอร์ได้อีกด้วย

3.4 วิธีการคำนวณค่าอุณหภูมิของมู่ลี่

การคำนวณหาค่าอุณหภูมิของมู่ลี่จะสามารถวิเคราะห์ได้โดยหลักของการสมดุลของ พลังงานที่เกิดขึ้นใน 1 มิติตามวิธีที่ได้ถูกพัฒนาขึ้นโดย Finlayson [1] แต่อย่างไรก็ตามวิธีของ Finlayson นั้นสามารถที่จะประยุกต์ใช้ได้โดยตรงกับกระจกหลายชั้นเท่านั้น แต่สำหรับระบบ กระจกติดมู่ลี่ วิธีการนี้จะไม่สามารถที่จะทำนายได้โดยตรง แต่จะด้องทำการปรับปรุงและเพิ่มเติม ในหลาย ๆ ส่วน เพื่อให้คลอบคลุมถึงกรณีที่มีการติดตั้งมู่ลี่เป็นอุปกรณ์บังเงาภายใน

ดังนั้นในการวิเคราะห์นี้จึงจะทำการประยุกต์ใช้ในหลักการเดียวกัน แต่จะทำการปรับปรุง ให้สามารถทำนายในกรณีของกระจกติดมู่ลี่ได้ด้วย โดยจะพิจารณาเหมือนกับว่ามู่ลี่เป็นเสมือน effective layer อันหนึ่ง ที่ประกอบเข้าไปกับระบบกระจกอยู่ภายในอาคาร จากนั้นจึงพิจารณา การพาความร้อนโดยธรรมชาติ ระหว่างกระจกชั้นในกับมู่ลี่ การพาความร้อนโดยธรรมชาติจากมู่ลี่ เข้าสู่อาคาร และการแผ่รังสึกลื่นยาวที่ส่งผ่านระหว่างกระจกและมู่ลี่ จากนั้นจึงพิจารณาสมคุล พลังงานของระบบกระจกโดยรวม เพื่อที่จะนำไปสู่การประเมินค่าการกระจายตัวของอุณหภูมิของ แต่ละผิวกระจก ค่าอุณหภูมิของมู่ลี่ และค่าสัมประสิทธิ์การส่งผ่านความร้อนรวมของกระจกที่มีการ ดิดมู่ลี่ไว้เป็นอุปกรณ์บังเงาภายใน

โดยในการหาค่าอุณหภูมิ และค่าการกระจายตัวของของอุณหภูมิของแต่ละชั้นนั้น จะเริ่ม จากการแบ่งให้ในแต่ละชั้นของกระจกและมู่ลี่นั้นประกอบไปด้วยจุดต่อ 3 จุด นั่นคือที่จุดกึ่งกลาง กระจก และที่ผิวแต่ละด้านของกระจกดังแสดงในรูปที่ 3.7

รูปที่ 3.7 แสดงการกระจายตัวของอุณหภูมิของกระจก และมู่ลี่

และจะพิจารณาภายใต้สมมติฐานตังนี้ คือ

- 1. สภาวะอากาศมีค่าคงที่ (constant environmental conditions)
- 2. การถ่ายเทพลังงานนั้นอยู่ภายใต้สภาวะคงตัว (steady state)

จากภายใต้สภาวะคงตัวนี้ จะทำให้ได้สมคุลความร้อนสุทธิที่ถ่ายเทผ่านแต่ละชั้นกระจก และมู่ลี่นั้น จะต้องมีก่าเท่ากับศูนย์นั่นคือ

$$Q_{i} = \frac{(\theta_{i} - \theta_{i-1})}{R_{i}} + \frac{(\theta_{i} - \theta_{i+1})}{R_{i+1}} - Q_{abs,i} = 0$$
(3.56)

เมื่อ Q_i คือ net heat flux, W/m^2

- θ_i คือ อุณหภูมิของกลางชั้นกระจกที่ชั้นที่ i,
- R_i คือ ค่าความต้านทานความร้อนที่ผิวกระจก, m² K/W
- $\mathbf{Q}_{\mathsf{abs},i}$ คือ ปริมาณของรังสีที่ถูกคูคกลืนไว้ในแต่ละชั้นกระจก, W/m 2

โคยที่ปริมาณของรังสีที่ถูกดูคกลืนไว้ในแต่ละชั้นสามารถหาค่าได้จากความสัมพันธ์

$$Q_{abs,i} = A_i^{fH} I_{dir}$$
(3.57)

เมื่อ A_i^H คือ ค่าการคูคกลืนรังสีของแต่ละชั้นที่มุมตกกระทบ 45 และมุม azimuth 90 องศา I_{dir} คือ ค่ารังสีแสงอาทิตย์แบบตรงที่ตกกระทบระบบกระจกในแนวตั้งฉาก, W/m² ค่าการดูดกลืนรังสีในแต่ละชั้นนั้นสามารถหาค่าได้จากก่าคุณสมบัติการดูดกลืนรังสีจากวิธี Matrix layer calculation

งากนั้นถ้าพิจารณาในส่วนของการสมคุลของการแผ่รังสีที่เกิดขึ้นในระบบกระจกแต่ละชั้น จะได้ว่ารังสีที่ออกมาจากผิวกระจกแต่ละด้านนั้นจะประกอบไปด้วย 3 ส่วนด้วยกัน นั่นคือ ส่วนที่ แผ่รังสีออกมาเนื่องจากอุณหภูมิของตัวกระจกเอง ส่วนของการสะท้อนของรังสีที่ด้านหน้า และ ส่วนจากการส่งผ่านเนื้อกระจกจากรังสีที่มาตกกระทบทางด้านหลัง โดยสามารถหาได้ในแต่ละ กรณีคือ กรณีของกระจกด้านหน้าชั้นนอกจะสามารถหาได้จาก

 $Q_{s1}^{r} = \sigma \varepsilon_{s1} \theta_{s1}^{4} + R_{1,1}^{f} Q_{sky}^{r} + T_{1,1} Q_{s3}^{r}$ (3.58)

σ คือ ค่ำ Stefan-Bolzman constant, W/m²

ε_{s1} คือ ค่าการเปล่งรังสีของกระจก

R^f กือ ค่าการสะท้อนรังสีคลื่นยาว

T^f_{s2} คือ ค่าการส่งผ่านรังสีคลื่นยาว

 Q_{sky}^r คือ รังสีภายนอก, W/m^2

Q'_{s3} คือ รังสีรวมของผิวที่ 3, W/m²

แต่อย่างไรก็ตามในการแผ่รังสีของกระจกนั้นจะเป็นการแผ่รังสีคลื่นยาวที่เกิดจากอุณหภูมิ ของกระจกเอง ซึ่งมีค่าที่ต่ำกว่าอุณหภูมิการแผ่รังสีของควงอาทิตย์มาก โดยถ้าพิจารณาจาก Wein displacement law [32]

$$\lambda_{\max} T = 2897.6 \ \mu m \cdot K$$
 (3.59)

และจา**ก**

 $\lambda f = c \tag{3.60}$

หรือ

$$f = \frac{c}{\lambda}$$
(3.61)

เมื่อ T คือ ค่าอุณหภูมิการแผ่รังสีของพื้นผิวใด ๆ, κ λ คือ ก่ากวามยาวกลื่น, μm f คือ ก่ากวามถี่ของการแผ่รังสี, 1/s c คือ ค่าความเร็วของแสง, m/s

จากสมการที่ 3.59 และ 3.61 จะเห็นได้ว่าการแผ่รังสีของพื้นผิวใด ๆ นั้น ยิ่งอุณหภูมิของ พื้นผิวมีค่าสูง ค่าความยาวคลื่นก็จะมีค่าน้อย และจากค่าความยาวคลื่นที่น้อย ก็หมายถึงการแผ่รังสี นั้นมีความถี่ที่สูง ตัวอย่างเช่น ในกรณีของควงอาทิตย์ที่มีการแผ่รังสีที่อุณหภูมิสูงมาก รังสีที่ออกมา จึงมีความยาวคลื่นที่สั้น และมีความถี่สูง (มีความสามารถในการส่งผ่านสูง และมักเรียกว่าเป็นการ แผ่รังสีคลื่นสั้น) นั่นเอง ในทางกลับกันในกรณีของกระจกที่มีการดูดกลืนรังสีไว้ แล้วแผ่รังสี ออกมาที่อุณหภูมิที่ค่อนข้างค่ำ (ประมาณ 300 กว่า K) รังสีที่ออกมาจึงมีความยาวคลื่นที่มาก และมี ความถี่ต่ำ (มักเรียกว่าเป็นการแผ่รังสีคลื่นยาว)

เนื่องจากเหตุผลนี่เองจึงเป็นผลให้การแผ่รังสืออกจากกระจกนั้นเป็นการแผ่รังสีคลื่นยาว และมีความสามารถในการส่งผ่านต่ำด้วย จึงไม่สามารถส่งผ่านกระจกอีกบานที่ประกอบกันเป็น ระบบกระจกได้ นั่นคือ กระจกที่ช่วงความยาวคลื่นสูง ๆ (infrared) จะประพฤติตัวเป็นเหมือนวัตถุ ทึบ (opaque) และจะเป็นผลให้ค่าการส่งผ่านในสมการที่ 3.58 นั้นมีค่าเท่ากับศูนย์สำหรับกระจก

อย่างไรก็ตามการแผ่รังสึกลื่นยาวนี้สามารถส่งผ่านมู่ลี่ได้ เนื่องจากมู่ลี่นั้นมีลักษณะที่เป็น ใบซ้อน ๆ กัน รังสึกลื่นยาวจึงสามารถที่จะส่งผ่านได้โดยส่งผ่านระหว่างช่องของใบมู่ลี่นั่นเอง ดังนั้นที่ผิวมู่ลี่ความร้อนที่ออกมานั้นจะมีกรบทั้งสามส่วน

และสำหรับกรณีระบบกระจกทั้งหมด n ชั้น และมู่ลี่คิดตั้งภายในจะได้รังสีที่ผิวตามสมการ 3.62 และ 3.63

$$Q_{s_{2n-1}}^{r} = \varepsilon_{s_{2n-1}} \sigma \theta_{s_{2n-1}}^{4} + R_{s_{2n-1}}^{f} Q_{s_{2n-2}}^{r} + T_{s_{2n}}^{b} Q_{room}^{r}$$
(3.62)

ແລະ

$$Q_{s_{2n}}^{r} = \varepsilon_{s_{2n}} \sigma \theta_{s_{2n}}^{4} + R_{s_{2n}}^{b} Q_{room}^{r} + T_{s_{2n-1}}^{f} Q_{s_{2n-2}}^{r}$$
(3.63)

โดยกระจกที่อยู่ระหว่างชั้น และเป็นผิวด้านหน้าสามารถหาก่าได้จาก

$$Q_{s2i-1}^{r} = \varepsilon_{s2i-1} \sigma \theta_{s2i-1}^{4} + R_{si-1}^{f} Q_{si-1}^{r}$$
(3.64)

กระจกที่อยู่ระหว่างชั้น และเป็นผิวด้านหลัง

$$Q_{s2i}^{r} = \varepsilon_{s2i}\sigma\theta_{s2i}^{4} + R_{s2i}^{f}Q_{si+1}^{r}$$
(3.65)

และสำหรับกรณีกระจกติดมู่ถี่ n ชั้นใด ๆ จะสามารถที่จะเขียนให้อยู่ในรูปของเมทริกซ์ฟอร์ม (matrix form) ได้เป็น

$$\begin{bmatrix} 1 & 0 & T_{1,1} & \dots & \dots & 0 & 0 & 0 \\ 0 & 1 & -R_{s2}^{b} & \dots & \dots & 0 & 0 & 0 \\ 0 & -R_{s3}^{f} & 1 & \dots & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & 0 & 1 & -R_{s2n-2}^{b} & 0 \\ 0 & 0 & 0 & 0 & 0 & -R_{s2n-1}^{f} & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -T_{s2n-1} & 0 & 1 \end{bmatrix} \begin{bmatrix} Q_{s1}^{r} \\ Q_{s2}^{r} \\ Q_{s3}^{r} \\ \dots \\ Q_{s2n-2}^{r} \\ Q_{s2n-1}^{r} \\ Q_{s2n}^{r} \end{bmatrix} = \begin{bmatrix} \epsilon_{s1}\sigma\theta_{s1}^{4} + R_{s1}^{f}Q_{sky}^{r} \\ \epsilon_{s2}\sigma\theta_{s2}^{4} \\ \epsilon_{s3}\sigma\theta_{s3}^{4} \\ \dots \\ \dots \\ \epsilon_{s2n-2}\sigma\theta_{s2n-2}^{4} \\ \epsilon_{s2n-1}\sigma\theta_{s2n-1}^{4} + T_{s6}Q_{room}^{r} \\ \epsilon_{s2n}\sigma\theta_{s2n}^{4} + R_{s2n}^{b}Q_{room}^{r} \end{bmatrix}$$

$$(3.66)$$

หรือ

$$\left[\mathbf{M}_{i,j}\right]\left[\mathbf{Q}_{si}^{r}\right] = \left\{\mathbf{S}_{j}\right\}$$
(3.67)

เมื่อ M_{i,j} คือ infrared transfer matrix Q^r_{si} คือ radiative flux S_j คือ radiative source vector

โดยที่เมทริกซ์ M_{i.j} จะเป็นส่วนที่รวมค่าคุณสมบัติทาง optic แบบคลื่นยาวไว้จึงมักเรียกกัน ว่าเป็นเมทริกซ์การส่งผ่านในช่วงคลื่นยาว (infrared transfer matrix) ในขณะที่เวกเตอร์ S_j เป็น เสมือนแหล่งความร้อนของกระจกจึงเรียกว่า เวกเตอร์แหล่งความร้อน (radiative source vector)

ดังนั้นจะสามารถหาค่า radiative flux ได้จาก

$$\left\{ Q_{i}^{r} \right\} = \left[M_{i,j} \right]^{-1} \left\{ S_{j} \right\}$$
 (3.68)

จากสมการ 3.66 จะเห็นว่าเราจำเป็นที่จะต้องทราบก่าการกระจายตัวของอุณหภูมิด้วยโดยสามารถ หาได้จากการสมมติว่าการกระจายตัวของอุณหภูมินั้นมีการเปลี่ยนแปลงแบบเส้นตรงนั่นคือจะได้ ผลต่าง

$$delta = \frac{\theta_{out} - \theta_{in}}{n+1}$$
(3.69)

เมื่อ n คือ จำนวนชั้นของกระจก

ดังนั้นจะได้อุณหภูมิกลางกระงกของชั้นใด ๆ คือ

$$\theta_{i} = \theta_{out} - delta$$
 ; $i = 1, 2, 3, ..., n$ (3.70)

แต่เนื่องจากในการหา source strength vector นั้นจำเป็นต้องทราบก่าอุณหภูมิผิวกระจก ดังนั้นจึง สมมติให้อุณหภูมิที่ผิวมีก่าเท่ากับได้อุณหภูมิกลางกระจก

$$\theta_{s2i-1} = \theta_i \tag{3.71}$$

$$\theta_{s2i} = \theta_i \tag{3.72}$$

และจากอุณหภูมิผิวกระจกที่ได้จากการสมมตินี้จะทำให้สามารถหาค่า source strength vector และ ค่า Q^rsi</sub> ได้จากสมการที่ 3.68

3.4.1 การคำนวณค่าความต้านทานความร้อนรวม

ภายใต้สภาวะสมดุลพลังงานที่ถูกดูดกลื่นผิวกระจกใด ๆ จะต้องมีค่าเท่ากับการถ่ายเทความ ร้อนสู่สิ่งแวคล้อม (environment) โดยในการถ่ายเทความร้อนออกนี้จะประกอบไปด้วยการถ่ายเท ความร้อนใน 3 โหมดหลัก คือ การแผ่รังสีคลื่นยาว การพาความร้อน และการนำความร้อน

3.4.1.1 การหาค่าสัมประสิทธิ์การพาความร้อนออกเนื่องจากการแผ่รังสีคลื่นยาว

การพาความร้อนในส่วนนี้สามารถพิจารณาได้จาก

$$Q_{\text{net}}^{r} = h_{r} \left(\theta_{1} - \theta_{0} \right)$$
(3.73)

และจะได้ค่าสัมประสิทธิ์การแผ่รังสี คือ

$$h_r = \frac{Q_{net}^r}{(\theta_1 - \theta_0)}$$
(3.74)

เมื่อ Q^r_{net} คือ ค่าการถ่ายเทความร้อนสุทธิในรูปของการแผ่รังสี, W/m²

 h_r คือ ค่าสัมประสิทธิ์การแผ่รังสี, $W/(m^2 \cdot ^\circ C)$

ดังนั้นถ้าพิจารณาที่ผิวกระจกชั้นนอกจะได้

$$h_{r,out} = \frac{Q_{sky}^{r} - Q_{s1}^{r}}{\theta_{sky} - \theta_{s1}}$$
(3.75)

ที่ผิวกระจกชั้นด้านในกับอากาศภายใน

$$h_{r,in} = \frac{Q_{2N}^{r} - Q_{rooin}^{r}}{\theta_{s2N} - \theta_{rooin}}$$
(3.76)

ที่ระหว่างชั้นกระจกใด ๆ

$$h_{r,gap,i} = \frac{Q_{2i}^{r} - Q_{2i+1}^{r}}{\theta_{s2i} - \theta_{2i+1}}$$
(3.77)

ระหว่างผิวกระจกด้านในกับมู่ถื่

$$h_{r,exchange} = \frac{Q_{2n-2}^{r} - Q_{2n-1}^{r}}{\theta_{s2n-2} - \theta_{2n-1}}$$
(3.78)

3.4.1.2 การหาค่าสัมประสิทธิ์การพาความร้อน

การพาความร้อนจากระบบกระจกหลายชั้นจะสามารถพิจารณาแยกตามลักษณะทาง กายภาพแบ่งออกได้เป็น 4 กรณี คือ

- 1. สัมประสิทธิ์การพาความร้อนที่ผิวกระจกค้านนอก
- 2. สัมประสิทธิ์การพาความร้อนระหว่างช่องกระจก
- 3. สัมประสิทธิ์การพาความร้อนระหว่างผิวกระจกค้านในกับมู่ลี่
- 4. สัมประสิทธิ์การพาความร้อนจากมู่ลี่เข้าสู่อาคาร

3.4.1.2.1 สัมประสิทธิ์การพาความร้อนที่ผิวกระจกด้านนอก

จากการศึกษาที่ผ่านมาในอดีตพบว่าการพาความร้อนออกที่ผิวด้านนอกจะขึ้นอยู่กับ ความเร็วลมของอากาศภายนอก และทิศทางของอาการเป็นหลัก โดยสามารถหาได้จาก ความสัมพันธ์ที่เสนอโดย Finlayson [1]

ที่ด้านของอาการที่อยู่ต้นลม (windward side of the building)

$$h_0 = 8.07 \cdot V^{0.605}$$
 $\tilde{s} \sim 1 V > 2 m/s$ (3.79)

$$h_0 = 12.27$$
 $\hat{n} V < 2 m/s$ (3.80)

ที่ด้านของอาการที่อยู่ใต้ลม (leeward side of the building)

$$h_0 = 18.64 (0.3 + 0.05 V)^{0.605}$$
(3.81)

3.4.1.2.2 สัมประสิทธิ์การพาความร้อนระหว่างช่องกระจก

สามารถที่จะหาค่าได้จากความสัมพันธ์ที่ได้จากการทคลองนั้นคือ

$$h_{c,gap} = \frac{k \cdot Nu}{\omega}$$
(3.82)

เมื่อ k คือ ค่า thermal conductivity ของก๊าซระหว่างชั้นกระจก, W/m·K ω คือ ความกว้างของช่องกระจก, mm Nu คือ Nusselt number

โดยที่ Nusselt number นั้นจะมีความสัมพันธ์กับก่า Rayleigh number คังสมการ [1]

$$Nu = \left[1 + \left(0.0303 \operatorname{Ra}^{0.402}\right)^{11}\right]^{0.091}$$
(3.83)

โดยที่

$$Ra = Gr \cdot Pr \tag{3.84}$$

เมื่อ Ra

Ra คือ Rayliegh number Gr คือ Grashof number

Pr คือ Prandtl number

ແລະ

$$Gr = \frac{g\beta\rho^2\omega^3\Delta\theta}{\mu^2}$$
(3.85)

เมื่อ ∆0 คือ ผลต่างของอุณหภูมิกระงก, K

g คือ ค่าแรงโน้มถ่วงของโลก, m/s²

β คือ สัมประสิทธิ์การขยายตัวของอากาศ, 1/K

ρ คือ ค่าความหนาแน่นของก๊าซ, kg/m³

μ คือ ค่าความหนืดของก๊าซ, kg/m·s

โคยที่คุณสมบัติของก๊าซสามารถที่จะหาค่าที่อุณหภูมิเฉลี่ยของชั้นกระจกทั้งสอง และสามารถหาค่า ได้จากความสัมพันธ์

$$P(\theta) = P_{273} + \frac{dP}{d\theta_{ave}} \times \theta_{ave}$$
(3.86)

โดยที่

 $\theta_{ave} = 0.5 \times \left(\theta_{left} + \theta_{right} \right)$ (3.87)

โดยที่ก่ากุณสมบัติของอากาศต่าง ๆ ที่อุณหภูมิ 273 K และก่าการเปลี่ยนแปลงของคุณสมบัติของ ก๊าซเทียบกับอุณหภูมิจะมีก่าดังแสดงในตารางที่ 3.6

ตารางที่ 3.6 แสคงก่ากุณสมบัติของอากาศที่อุณหภูมิ 273 K และก่าการเปลี่ยนแปลงของกุณสมบัติ ของก๊าซเทียบกับอุณหภูมิ [1]

ค่าคุณสมบัติของอากาศ	ค่าคุณสมบัติที่อุณหภูมิ 273 K	ค่าการเปลี่ยนแปลงคุณสมบัติ ต่าง ๆ เทียบกับอุณหภูมิ
ค่าความหนาแน่น	1.290	-0.0044
ค่าความหนืด	1.73e-5	10.0e-8
ค่าการนำความร้อนของอากาศ	0.0241	7.6e-5
ค่า Prandtl number	0.720	0.00180

3.4.1.2.3 ค่าสัมประสิทธิ์การพาความร้อนระหว่างผิวกระจกด้านในกับมู่ลี่

การพาความร้อนในส่วนนี้นั้นจะมีความยุ่งยากซับซ้อนค่อนข้างมาก เนื่องจากลักษณะทาง กายภาพของมู่ลี่เอง ที่ทำให้มีเงื่อนไขขอบเขตที่ซับซ้อน และไม่สามารถที่จะหาค่าผลเฉลยแม่นตรง ได้ โดยจากการศึกษาที่ผ่านมานั้นได้พยายามศึกษาทั้งโดยจากการทดลอง [18,20,22] และจาก กรรมวิธีเชิงตัวเลข [17,19,23] โดยจากการการศึกษาต่าง ๆ ได้แสดงให้เห็นถึงตัวแปรหลัก ๆ ที่มีผล ต่อ การพาความร้อนในส่วนนี้ ซึ่งจะประกอบไปด้วย

- 1. ระยะของการติดตั้ง
- 2. มุมเอียงของมู่ถี่
- ระดับของความร้อนที่ถูกดูดกลืนไว้ที่ตัวมู่ลี่
- 4. ค่าอุณหภูมิของผิวกระจกค้านใน

- 5. ค่าการเปล่งรังสีคลื่นยาวของผิวกระจก
- ค่าการเปล่งรังสีคลื่นยาวของมู่ลื่

โดย Collins [21] ได้ทำการวิเคราะห์เชิงถดถอยหาก่าการแลกเปลี่ยนความร้อนในส่วนนี้ กับก่าตัวแปรต่าง ๆ ที่สำคัญ และทำให้ได้ความสัมพันธ์ดังนี้

$$\begin{split} q_{conv} &= -77.761 + 1.309 \cdot b + 2.178 \cdot T_{g} + 16.17 \cdot \varepsilon_{b} + 5.083 \cdot \varepsilon_{g} - 0.339 \cdot q_{b} \\ &- 17.337 \cdot \cos \varphi - 0.034 \cdot b^{2} + 0.012 \cdot b \cdot T_{g} - 0.393 \cdot b \cdot \varepsilon_{b} + 0.009 \cdot b \cdot q_{b} \\ &+ 0.810 \cdot b \cdot \cos \varphi + 0.014 \cdot T_{g}^{2} - 0.182 \cdot T_{g} \cdot \varepsilon_{b} - 0.212 \cdot T_{g} \cdot \varepsilon_{g} + 0.002 \cdot T_{g} \cdot q_{b} \\ &- 0.254 \cdot T_{g} \cos \varphi + 0.056 \cdot \varepsilon_{b} \cdot q_{b} - 0.160 \cdot q_{b} \cos \varphi \\ q_{r,transmit} &= 29.822 - 0.434 \cdot b - 1.811 \cdot T_{g} - 15.422 \cdot \varepsilon_{b} - 96.784 \cdot \varepsilon_{g} - 0.032 \cdot q_{b} \\ &- 13.485 \cdot \cos \varphi + 0.012 \cdot b \cdot T_{g} + 0.228 \cdot b \cdot \varepsilon_{g} + 0.002 \cdot b \cdot q_{b} + 0.019 \cdot T_{g}^{2} \\ &+ 0.563 \cdot T_{g} \cdot \varepsilon_{b} + 4.183 \cdot \varepsilon_{g} + 0.001 \cdot T_{g} \cdot q_{b} + 0.654 \cdot T_{g} \cdot \cos \varphi + 8.689 \cdot \varepsilon_{b}^{2} \end{split}$$
(3.89)

จากค่าการพาความร้อน โคยธรรมชาติเฉลี่ยจะทำให้หาก่าสัมประสิทธิ์การพาความร้อน ระหว่างผิวกระจกกับมู่ลี่ได้จากความสัมพันธ์

$$h_{c,chan} = \frac{q_{conv}}{\theta_s - \theta_a}$$
(3.90)

เมื่อ

- θ_s คือ อุณหภูมิผิวค้านในกระจก, K
- θ₃ คือ อุณหภูมิอากาศภายใน, κ

้ ก่าสัมประสิทธิ์การแผ่รังสีที่ส่งผ่านจากระหว่างกระจกเข้ามาสู่อากาศภายในห้อง

$$h_{r,transmit} = \frac{q_{r,transmit}}{\theta_s - \theta_a}$$
(3.91)

3.4.1.2.4 ค่าสัมประสิทธิ์การพาความร้อนจากมู่ลี่เข้าสู่อาคาร

สามารถจำลองได้เป็นการไหลผ่านแผ่นเรียบ และสามารถหาค่าได้จากแบบจำลองของ กระจกผิวในจากความสัมพันธ์ [1]

$$hc_{room} = 1.77 \left(\left| \theta_{s2n} - \theta_{room} \right| \right)^{0.25}$$
(3.92)

จากค่าสัมประสิทธิ์การพาความร้อนออกของแต่ละส่วนจะทำให้สามารถที่จะหาค่าความ ด้านทานความร้อนรวมในแต่ละส่วนได้ โดยสำหรับพื้นผิวกระจกด้านนอก

$$R_{1} = \frac{1}{h_{c,out} + h_{r,out}} + \frac{0.5d_{1}}{k_{1}}$$
(3.93)

สำหรับพื้นผิวมู่ถื่

$$R_{N+1} = \frac{1}{h_{c,in} + h_{r,in}} + \frac{0.5d_N}{k_N}$$
(3.94)

สำหรับระหว่างชั้นกระจก/มู่ถึ่

$$R_{i+1} = \frac{1}{h_{c,gap,i} + h_{r,gap,i}} + \left(\frac{0.5d_i}{k_i} + \frac{0.5d_{i+1}}{k_{i+1}}\right)$$
(3.95)

3.4.2 การคำนวณค่าการถ่ายเทความร้อนสุทธิผ่านแต่ละชั้นกระจก

จากก่าอุณหภูมิและก่ากวามด้านทานกวามร้อนที่กำนวณได้จากอุณหภูมิที่สมมติขึ้นจะทำ ให้สามารถหาก่าการถ่ายเทกวามร้อนสุทธิผ่านแต่ละชั้นได้จาก

$$\Delta_{i} = \frac{\left(\theta_{i} - \theta_{i-1}\right)}{R_{i}} + \frac{\left(\theta_{i} - \theta_{i+1}\right)}{R_{i+1}} - Q_{abs,i}$$
(3.96)

โดยก่า ∆, ที่ได้จะมีก่าที่ไม่เท่ากับศูนย์ และเราจะใช้ก่า ∆, ตัวนี้ในการหาก่าการกระจายตัวของ อุณหภูมิตัวใหม่

3.4.3 การคำนวณหาค่าอุณหภูมิที่ผิว

จากค่าอุณหภูมิที่กึ่งกลางกระจกจะทำให้เราสามารถที่จะหาค่าอุณหภูมิที่ผิวกระจกได้จาก หลักของสมคุลพลังงาน โคยถ้าพิจารณาที่ผิวกระจกด้านนอกจะได้ว่าที่สภาวะคงตัวการนำความ ร้อนผ่านเนื้อกระจกจะด้องมีก่าเท่ากับการพาความร้อนออกจากผิวกระจกนั่นคือ

$$\frac{\theta_1 - \theta_{s1}}{R_{k1}} = \frac{\theta_{s1} - \theta_{amb}}{R_{h1}}$$
(3.97)

จัดรูปสมการเสียใหม่จะได้

$$Rh_1\theta_1 - Rh_1\theta_{s1} = R_{k1}\theta_{s1} - R_{k1}\theta_{amb}$$
(3.98)

$$R_{k1}\theta_{s1} + R_{h1}\theta_{s1} = R_{h1}\theta_{1} + R_{k1}\theta_{amb}$$
(3.99)

หารตลอดด้วย R_{k1}R_{h1} จะได้

$$\frac{R_{k1}\theta_{s1} + R_{h1}\theta_{s1}}{R_{k1}R_{h1}} = \frac{R_{h1}\theta_1 + R_{k1}\theta_{amb}}{R_{k1}R_{h1}}$$
(3.100)

หรือ

$$\left(\frac{1}{R_{h1}} + \frac{1}{R_{k1}}\right)\theta_{s1} = \left(\frac{\theta_1}{R_{k1}} + \frac{\theta_{amb}}{R_{h1}}\right)$$
(3.101)

ดังนั้นจะสามารถหาก่าอุณหภูมิที่ผิวใหม่ได้เป็น

$$\theta_{s1} = \frac{\left(\frac{\theta_1}{R_{k1}} + \frac{\theta_{amb}}{R_{h1}}\right)}{\left(\frac{1}{R_{h1}} + \frac{1}{R_{k1}}\right)}$$
(3.102)

และพิจารณาในทำนองเดียวกันกับกรณีผิวมู่ลี่ค้านในจะได้

$$\theta_{s2N} = \frac{\left(\frac{\theta_{N}}{R_{kN+1}} + \frac{\theta_{room}}{R_{hN+1}}\right)}{\left(\frac{1}{R_{hN+1}} + \frac{1}{R_{kN+1}}\right)}$$
(3.103)

และอุณหภูมิผิวที่อยู่ระหว่างชั้นสามารถพิจารณาหาก่าได้จากสมคุลพลังงานเช่นเดียวกัน โดยถ้า พิจารณาที่ผิวด้านในของกระจกชั้นนอกจะได้

$$\theta_{s2} = \frac{\left(\frac{\theta_{1}}{R_{k1}} + \frac{\theta_{s3}}{R_{h2}}\right)}{\left(\frac{1}{R_{h2}} + \frac{1}{R_{k1}}\right)}$$
(3.104)

และที่ผิวกระจก

$$\theta_{s3} = \frac{\left(\frac{\theta_2}{R_{k2}} + \frac{\theta_{s2}}{R_{h2}}\right)}{\left(\frac{1}{R_{h2}} + \frac{1}{R_{k2}}\right)}$$
(3.105)

หรือสามารถเขียนให้อยู่ในรูปของ index notation ได้เป็น

$$\theta_{s2i} = \frac{\left(\frac{\theta_i}{R_{ki}} + \frac{\theta_{s2i+1}}{R_{hi+1}}\right)}{\left(\frac{1}{R_{hi+1}} + \frac{1}{R_{ki}}\right)}$$
(3.106)

$$\theta_{s2i+1} = \frac{\left(\frac{\theta_{i+1}}{R_{ki+1}} + \frac{\theta_{s2i-1}}{R_{hi+1}}\right)}{\left(\frac{\theta_{s2i-1}}{R_{hi+1}}\right)}$$

$$\mathbf{P}_{s2i+1} = \frac{\left(\frac{1}{R_{ki+1}} + \frac{s2i-1}{R_{hi+1}}\right)}{\left(\frac{1}{R_{hi+1}} + \frac{1}{R_{ki+1}}\right)}$$
(3.107)

จะเห็นได้ว่าสมการ 3.106 และ 3.107 นั้นจะมีลักษณะที่เกี่ยวพัน (couple) กันอยู่ และ จำเป็นที่จะต้องหาก่าไปพร้อม ๆ กัน ดังนั้นในการกำนวณจึงจะเริ่มค้นการกำนวณจากการสมมติ ก่า θ_{s2i} และ θ_{s2i+1} ก่อน โดยจะสมมติให้มีก่าที่เท่ากับอุณหภูมิกึ่งกลางกระจก นั่นคือ $\theta_{s2i} = \theta_i$ และ $\theta_{s2i+1} = \theta_{i+1}$ จากนั้นจึงก่อยกำนวณก่าอุณหภูมิทั้งสองใหม่จนมีก่าที่ลู่เข้า โดยในการกำนวณ นั้นจะถือว่าลู่เข้าเมื่อผลต่างสูงสุดของอุณหภูมิทั้งสองนั้นมีก่าไม่เกิน 0.01

3.4.4 การหาค่าการกระจายตัวของอุณหภูมิใหม่จากค่าความร้อนคงเหลือ

้ค่าอุณหภูมิกึ่งกลางกระงกตัวใหม่สามารถหาค่าได้งากความสัมพันธ์

$$\theta_{k} = \theta_{k}^{0} + \delta \theta_{k} \tag{3.108}$$

เมื่อ θ_k คือ ค่าอุณหภูมิตัวใหม่ของชั้นกระจกที่ k

θ⁰_k คือ ค่าอุณหภูมิของการคำนวณครั้งก่อนของชั้นกระจกที่ k

δθ คือ ค่าผลต่างอุณหภูมิรวม

และก่า $\delta \theta_k$ จะมีความสัมพันธ์กับก่ากงเหลือของความร้อน (heat flux residual, Δ_i) คังนี้ คือ

$$\delta\theta_{1} = \frac{\partial\theta_{1}}{\partial\Delta_{1}} \cdot \Delta_{1} + \frac{\partial\theta_{1}}{\partial\Delta_{2}} \cdot \Delta_{2} + \dots + \frac{\partial\theta_{1}}{\partial\Delta_{N}} \cdot \Delta_{N}$$

$$\delta\theta_{2} = \frac{\partial\theta_{2}}{\partial\Delta_{1}} \cdot \Delta_{1} + \frac{\partial\theta_{2}}{\partial\Delta_{2}} \cdot \Delta_{2} + \dots + \frac{\partial\theta_{2}}{\partial\Delta_{N}} \cdot \Delta_{N}$$

$$\dots \qquad (3.109)$$

$$\delta\theta_{N} = \frac{\partial\theta_{N}}{\partial\Delta_{1}} \cdot \Delta_{1} + \frac{\partial\theta_{N}}{\partial\Delta_{2}} \cdot \Delta_{2} + \dots + \frac{\partial\theta_{N}}{\partial\Delta_{N}} \cdot \Delta_{N}$$

จะเห็นได้ว่าในการหาค่า 80_k นั้นจำเป็นต้องทราบค่า ∆_j และค่าอนุพันธ์ ต่าง ๆ เสียก่อน โดยที่ค่า ∆_j สามารถที่จะคำนวณได้โดยตรงจากสมการ 3.96 แต่สำหรับพจน์อนุพันธ์ ถ้าพิจารณาที่ สมการเดียวกัน จะเห็นได้ว่าหาค่าได้ไม่ง่ายนัก เนื่องมาจากว่าในหนึ่งสมการมีค่าอุณหภูมิที่ เกี่ยวเนื่องกัน อยู่หลายตัวด้วยกัน

ແລະ

้อย่างไรก็ตาม ถ้าพิจารณาจากการเปลี่ยนแปลงของก่ากวามร้อนกงเหลือแทนจะได้ว่า

$$\Delta_{1} = \frac{\partial \Delta_{1}}{\partial \theta_{1}} \cdot \delta \theta_{1} + \frac{\partial \Delta_{1}}{\partial \theta_{2}} \cdot \delta \theta_{2} + \dots + \frac{\partial \Delta_{1}}{\partial \theta_{N}} \cdot \delta \theta_{N}$$

$$\Delta_{2} = \frac{\partial \Delta_{2}}{\partial \theta_{1}} \cdot \delta \theta_{1} + \frac{\partial \Delta_{2}}{\partial \theta_{2}} \cdot \delta \theta_{2} + \dots + \frac{\partial \Delta_{2}}{\partial \theta_{N}} \cdot \delta \theta_{N}$$

$$\dots \qquad (3.110)$$

$$\dots \qquad (3.110)$$

หรือสามารถเขียนในรูปของเมทริกซ์ได้เป็น

$$\begin{bmatrix} \frac{\partial \Delta_{1}}{\partial \theta_{1}} & \frac{\partial \Delta_{1}}{\partial \theta_{2}} & \cdots & \frac{\partial \Delta_{1}}{\partial \theta_{N}} \\ \frac{\partial \Delta_{2}}{\partial \theta_{1}} & \frac{\partial \Delta_{2}}{\partial \theta_{2}} & \cdots & \frac{\partial \Delta_{2}}{\partial \theta_{N}} \\ \frac{\partial \Delta_{N}}{\partial \theta_{1}} & \frac{\partial \Delta_{N}}{\partial \theta_{2}} & \cdots & \frac{\partial \Delta_{N}}{\partial \theta_{N}} \end{bmatrix} \begin{bmatrix} \delta \theta_{1} \\ \delta \theta_{2} \\ \delta \theta_{3} \\ \cdots \\ \vdots \\ \delta \theta_{N} \end{bmatrix} = \begin{bmatrix} \Delta_{1} \\ \Delta_{2} \\ \Delta_{3} \\ \cdots \\ \vdots \\ \delta \theta_{N} \end{bmatrix}$$
(3.111)

ดังนั้นจะทำให้สามารถหาก่า 80_k ใด ๆ ได้จาก

$$\begin{cases} \delta \theta_{1} \\ \delta \theta_{2} \\ \delta \theta_{3} \\ \vdots \\ \vdots \\ \delta \theta_{N} \end{cases} = \begin{bmatrix} \frac{\partial \Delta_{1}}{\partial \theta_{1}} & \frac{\partial \Delta_{1}}{\partial \theta_{2}} & \cdots & \frac{\partial \Delta_{1}}{\partial \theta_{N}} \\ \frac{\partial \Delta_{2}}{\partial \theta_{1}} & \frac{\partial \Delta_{2}}{\partial \theta_{2}} & \cdots & \frac{\partial \Delta_{2}}{\partial \theta_{N}} \\ \vdots \\ \frac{\partial \Delta_{N}}{\partial \theta_{1}} & \frac{\partial \Delta_{N}}{\partial \theta_{2}} & \cdots & \frac{\partial \Delta_{N}}{\partial \theta_{N}} \end{bmatrix}^{-1} \begin{bmatrix} \Delta_{1} \\ \Delta_{2} \\ \Delta_{3} \\ \vdots \\ \vdots \\ \vdots \\ \Delta_{N} \end{bmatrix}$$
(3.112)

หรือ

$$\delta \Theta_{k} = \left[\partial \Delta_{k} / \partial \Theta_{j} \right]^{-1} \times \Delta_{j}$$
(3.113)

ถ้าพิจารณาจากสมการ 3.96 จะเห็นได้ว่าจากก่าการกระจายตัวของอุณหภูมิที่ได้สมมติใน ตอนแรกนั้นจะให้ก่า Δ_j มีก่าที่ติดลบเสมอ เนื่องจากว่าอุณหภูมิที่สมมติในตอนแรกนั้นไม่ได้ รวมถึงผลของการดูดกลืนรังสีที่มีอยู่ในแต่ละชั้นกระจก ดังนั้นก่าอุณหภูมิใหม่ที่กำนวณได้นั้น จะต้องมีก่าเพิ่มขึ้นเพื่อที่จะทำให้ก่า Δ_j นั้นมีก่าเป็นศูนย์ แต่เนื่องจากว่าก่า Δ_j ที่ได้จะเป็นลบ จึง เป็นผลให้ก่า δθ_k มีก่าลบไปด้วย ดังนั้นจึงต้องแปลงสมการเสียใหม่เพื่อให้ได้ก่า δθ_k มีก่าที่เพิ่มขึ้น นั่นคือ

$$\delta \theta_{\mathbf{k}} = -\left[\partial \Delta_{\mathbf{k}} / \partial \theta_{\mathbf{j}}\right]^{-1} \times \Delta_{\mathbf{j}}$$
(3.114)

จากสมการ 3.110 ถึง สมการ 3.114 จะเห็นได้ว่าเราสามารถหาก่าการเปลี่ยนแปลงของอุณหภูมิได้ โดยพิจารณาจากก่าอนุพันธ์ของ ∂∆;/∂0; แทน ซึ่งสามารถหาก่าได้ง่ายกว่า

โดยค่าอนุพันธ์ ∂∆_i/∂θ_j สามารถหาค่าได้จากการหาอนุพันธ์ของสมการ 3.96 เทียบกับ อุณหภูมิกึ่งกลางของแต่ละชั้นกระจก/มู่ลี่ โดยจะมีความสัมพันธ์ต่าง ๆ ดังนี้

ในกรณีของกระจก 1 ชั้นจะมีค่าเพียง 1 ตัวคือ

$$\frac{\partial \Delta_{1}}{\partial \theta_{1}} = \frac{1}{R_{1}} + \frac{1}{R_{1}^{2} (hr_{1} + hc_{1})^{2}} \left(\frac{\partial hc_{1} (\theta_{1} - \theta_{0})}{\partial \theta_{1}} + \frac{\partial Q_{s1}^{r}}{\partial \theta_{1}} - \frac{\partial Q_{0}^{r}}{\partial \theta_{1}} - h_{1} \right)$$

$$+ \frac{1}{R_{2}} + \frac{1}{R_{2}^{2} (hr_{2} + hc_{2})^{2}} \left(\frac{\partial hc_{2} (\theta_{1} - \theta_{2})}{\partial \theta_{1}} + \frac{\partial Q_{s2}^{r}}{\partial \theta_{1}} - \frac{\partial Q_{2}^{r}}{\partial \theta_{1}} - h_{2} \right)$$

$$(3.115)$$

ในกรณีของกระจก 2 ชั้นจะมี 4 ตัวคือ

$$\begin{aligned} \frac{\partial \Delta_{1}}{\partial \theta_{1}} &= \frac{1}{R_{1}} + \frac{1}{R_{1}^{2} (hr_{1} + hc_{1})^{2}} \left(\frac{\partial hc_{1} (\theta_{1} - \theta_{0})}{\partial \theta_{1}} + \frac{\partial Q_{s_{1}}^{r}}{\partial \theta_{1}} - \frac{\partial Q_{0}^{r}}{\partial \theta_{1}} - h_{1} \right) \\ &+ \frac{1}{R_{2}} + \frac{1}{R_{2}^{2} (hr_{2} + hc_{2})^{2}} \left(\frac{\partial hc_{2} (\theta_{1} - \theta_{2})}{\partial \theta_{1}} + \frac{\partial Q_{s_{2}}^{r}}{\partial \theta_{1}} - \frac{\partial Q_{s_{3}}^{r}}{\partial \theta_{1}} - hr_{gap} \right) \end{aligned}$$
(3.116)
$$\frac{\partial \Delta_{1}}{\partial \theta_{2}} &= \frac{1}{R_{2}} + \frac{1}{R_{2}^{2} (hr_{2} + hc_{2})^{2}} \left(\frac{\partial hc_{2} (\theta_{1} - \theta_{2})}{\partial \theta_{1}} + \frac{\partial Q_{s_{2}}^{r}}{\partial \theta_{1}} - \frac{\partial Q_{s_{3}}^{r}}{\partial \theta_{1}} + hr_{gap} \right)$$
(3.117)
$$\frac{\partial \Delta_{2}}{\partial \theta_{1}} &= \frac{1}{R_{2}} + \frac{1}{R_{2}^{2} (hr_{2} + hc_{2})^{2}} \left(\frac{\partial hc_{2} (\theta_{2} - \theta_{1})}{\partial \theta_{1}} + \frac{\partial Q_{s_{3}}^{r}}{\partial \theta_{1}} - \frac{\partial Q_{s_{3}}^{r}}{\partial \theta_{1}} + hr_{gap} \right)$$
(3.118)
$$+ \frac{1}{R_{3}^{2} (hr_{3} + hc_{3})^{2}} \left(\frac{\partial hc_{3} (\theta_{2} - \theta_{3})}{\partial \theta_{1}} + \frac{\partial Q_{s_{4}}^{r}}{\partial \theta_{1}} - \frac{\partial Q_{s_{3}}^{r}}{\partial \theta_{1}} - \frac{\partial Q_{s_{2}}^{r}}{\partial \theta_{1}} - hr_{gap} \right)$$
(3.119)
$$+ \frac{1}{R_{3}^{2} (hr_{3} + hc_{3})^{2}} \left(\frac{\partial hc_{3} (\theta_{2} - \theta_{3})}{\partial \theta_{2}} + \frac{\partial Q_{s_{4}}^{r}}{\partial \theta_{2}} - \frac{\partial Q_{s_{3}}^{r}}{\partial \theta_{2}} - hr_{3} \right)$$
(3.119)

ดังนั้นสำหรับกรณี n ชั้นจะมีก่าอนุพันธ์เหล่านี้ทั้งหมด n ดูณ n ก่า และสามารถเขียนให้อยู่ในรูป ของ index notation ได้เป็น

$$\frac{\partial \Delta_{i}}{\partial \theta_{j}} = \frac{1}{R_{i}} + \frac{1}{R_{i}^{2} \left(hr_{i} + hc_{i}\right)^{2}} \left(\frac{\partial hc_{i} \left(\theta_{i} - \theta_{0}\right)}{\partial \theta_{j}} + \frac{\partial Q_{si}^{r}}{\partial \theta_{j}} - \frac{\partial Q_{0}^{r}}{\partial \theta_{j}} - h_{i}\right) + \frac{1}{R_{i+1}^{2}} + \frac{1}{R_{i+1}^{2} \left(hr_{i+1} + hc_{i+1}\right)^{2}} \left(\frac{\partial hc_{i+1} \left(\theta_{i1} - \theta_{i+1}\right)}{\partial \theta_{j}} + \frac{\partial Q_{s2i}^{r}}{\partial \theta_{j}} - \frac{\partial Q_{0}^{r}}{\partial \theta_{j}} - hr_{gap,i}\right)$$
(3.120)

จากค่าสัมประสิทธิ์การส่งผ่านความร้อนในแต่ละโหมด การเปลี่ยนแปลงค่าอุณหภูมิต่าง ๆ และการทำซ้ำงนคำตอบลู่เข้าจะทำให้ได้ค่าการกระงายตัวของอุณหภูมิในทุก ๆ พื้นผิวได้

3.5 การหาค่าความสบายเชิงความร้อน

การปรับสภาวะอากาศนั้นมีจุดประสงค์หลักก็คือ เพื่อที่จะสร้างสภาวะอากาศภายในที่ เหมาะสมกับความต้องการ และการใช้งานในบริเวณนั้น ๆ โดยในการปรับอากาศในอาคาร สำนักงานนั้นจะมีจุดประสงค์หลักก็เพื่อที่จะทำให้ผู้อยู่อาศัยในอาคารเกิดความสบายทั้งในแง่ของ ความสบายเชิงความร้อน (thermal comfort) และความสะอาคของอากาศ โดยสภาวะที่สบายนั้น มักจะพิจารณาว่าเป็นสภาวะความร้อนที่เกิดจากร่างกายมนุษย์นั้นถูกอากาศภายในห้องพาออกไป ในปริมาณที่เท่ากัน (เกิดสมดุลทางความร้อน)

ถึงแม้ว่าภายใต้สภาวะอากาศทั่ว ๆ ไปนั้นร่างกายของมนุษย์จะสามารถที่จะปรับสภาวะให้ เกิดสมดุลทางความร้อนได้ภายใต้สภาวะอากาศที่เปลี่ยนแปลงไป โดยใช้กลไกที่ช่วยในการระบาย ความร้อนในหลาย ๆ รูปแบบด้วยกัน ยกตัวอย่างเช่น ภายใต้สภาวะอากาศที่ร้อนจัด ร่างกายจะทำ ให้เกิดความสมดุลทางความร้อน โดยการเพิ่มอัตราการระบายความร้อนทางลมหายใจ หรือเหงื่อ เป็นด้น แต่อย่างไรก็ตามภายใต้สภาวะสมดุลทางความร้อนนั้นร่างกายกลับรู้สึกไม่สบายอันเป็นผล มาจากความชื้นปริมาณมากเมื่อเหงื่อออก และทำให้เหนียวตัว ดังนั้นจะเห็นได้ว่าสภาวะที่เกิด สมดุลทางความร้อนเพียงอย่างเดียวจะบ่งบอกถึงความสบายของคนไม่ได้ หากต้องพิจารณาดูอีก ด้วยว่าค่าอุณหภูมิ และปริมาณความชื้นที่ผิวหนังควรจะมีก่าที่เหมาะสมอยู่ถ่า ๆ หนึ่ง และอาจจะมี ค่าที่แปรเปลี่ยนได้ในช่วงที่ไม่กว้างมากนัก [29] ดังนั้นเพื่อเป็นการสร้างสภาวะให้เหมาะสม และ อยู่ในช่วงที่จะทำให้ผู้อยู่อาศัยเกิดความสบายเชิงความร้อน ระบบปรับอากาศจึงเข้ามามีบทบาท สำคัญในการที่จะทำให้สภาวะอากาศนั้นมีก่าที่เหมาะสม

ดังนั้นเพื่อเป็นการศึกษาถึงสภาวะ และอิทธิพลของตัวแปรต่าง ๆ Fanger [29] จึงได้ ทำการศึกษาวิจัยเพื่อที่จะหาสภาวะอากาศที่จะทำให้คนรู้สึกสบาย โดย Fanger ได้ตั้งสมมติฐาน ขึ้นมาก่อนว่าที่สภาวะสมดุลความร้อนผู้อยู่อาศัยจะมีความสบายเชิงความร้อน จากนั้นจึงได้ ประยุกต์ใช้หลักสมดุลพลังงานและ ค่าการพาความร้อนในรูปแบบต่าง ๆ ที่ได้จากการทดลองนำมา ทำการสหสัมพันธ์ (correlation) กับพารามิเตอร์ที่เกี่ยวข้องกับร่างกายของผู้อยู่อาศัยภายในอาการที่ มีการปรับสภาวะอากาศ โดยได้พิจารณาในกรณีที่ผู้อยู่อาศัยนั้นอยู่ภายอยู่อาศัยในห้องภายใต้เวลา ระยะหนึ่งแล้ว (ภายใต้สภาวะคงตัว) ดังนั้นจะเป็นผลให้ได้สมการสมคุลความร้อน (heat balance equation) ดังสมการ

$$\begin{split} \mathsf{M}-0.35\cdot(\mathsf{I}.92\mathsf{t}_{s}-25.3-\mathsf{Pa})-\mathsf{E}_{sw} & -0.0173\cdot\mathsf{M}\cdot(5.87-\mathsf{Pa})-0.0014\cdot\mathsf{M}\cdot(34-\mathsf{t}_{a}) \\ &=\frac{\mathsf{t}_{s}-\mathsf{t}_{cl}}{0.155\cdot\mathsf{I}_{cl}} & (3.121) \\ &=3.96\times10^{-8}\cdot\mathsf{f}_{cl}\cdot\left[(\mathsf{t}_{cl}+273)^{4}-(\mathsf{t}_{unt}+273)^{4}\right]+\mathsf{f}_{cl}\mathsf{h}_{c}(\mathsf{t}_{cl}-\mathsf{t}_{a}) \\ &\texttt{iso} & \mathsf{M} & \mathsf{n}^{\mathsf{fo}} \mathsf{d} \; \mathsf{d} \; \mathsf{e} \; \mathsf{d} \; \mathsf{e} \; \mathsf{d} \; \mathsf{e} \; \mathsf{d} \;$$

เนื่องจากค่า t_s และ E_{sw} นี้มีค่าที่แตกต่างกันไปในแต่ละบุคคล และแปรเปลี่ยนไปตาม กิจกรรมของผู้อยู่อาศัย Fanger จึงได้ทำการทคลองเพื่อหาค่า t_s และ E_{sw} นี้ โคยพิจารณาภายใต้ สภาวะสมคุลความร้อน และค่าทั้งสองนั้นจะแปรตามค่ากิจกรรม และมีลักษณะดังแสดงในรูปที่ 3.8

รูปที่ 3.8 แสดงก่าอุณหภูมิที่ผิวหนัง และปริมาณกวามชื้นเทียบกับก่ากิจกรรมของผู้อยู่อาศัย [33]

จากรูปจะเห็นได้ว่าค่าอุณหภูมิที่ผิวหนังและค่าปริมาณความชื้นที่ผิวหนังที่สภาวะสมคุลนี้ หลัก ๆ จะแปรตามกิจกรรมของผู้อยู่อาศัย อย่างไรก็ตามยังคงเห็นอีกว่าก่าความสัมพันธ์ที่ได้นั้นมี ลักษณะที่ก่อนข้างจะกระจาย อันเป็นผลเนื่องจากการตอบสนองทางร่างกายของแต่ละบุคคลนั้น แตกต่างกัน (คนบางคนอาจจะมีเหงื่อออกมากกว่าอีกคน และปริมาณเหงื่อที่ออกก็ยังคงส่งผลต่อค่า อุณหภูมิที่ผิวหนัง) และเนื่องจากร่างกายของผู้อยู่อาศัยนั้นจะสบายในช่วงแคบ ๆ ดังนั้น สามารถ อาจจะกำหนด และเขียนในเชิงคณิตศาสตร์ได้ว่า

$$a < t_s < b$$
 (3.122)

 $c < E_{sw} < d \tag{3.123}$

- เมื่อ a ถือ ก่าอุณหภูมิที่ผิวหนังค่ำสุคที่ผู้อยู่อาศัยยังรู้สึกสบาย
 - b คือ ค่าอุณหภูมิที่ผิวหนังสูงสุคที่ผู้อยู่อาศัยยังรู้สึกสบาย
 - คือ ค่าความชื้นที่ผิวหนังต่ำสุดที่ผู้อยู่อาศัยยังรู้สึกสบาย
 - d คือ ค่าความชื้นที่ผิวหนังสูงสุดที่ผู้อยู่อาศัยยังรู้สึกสบาย

ดังนั้นเพื่อเป็นการแน่ใจว่าก่าอุณหภูมิ และก่ากวามชื้นที่ผิวหนัง จะอยู่ในช่วงที่เหมาะสม และทำให้เกิดกวามสบาย ดังนั้นถ้าพิจารณาให้ก่าสูงสุด และก่าต่ำสุดในกราฟเป็นของเขตบน และ ขอบเขตล่าง จะเป็นผลให้สามารถหาก่าอุณหภูมิผิวหนังเฉลี่ย และก่ากวามชื้นที่ผิวหนังเฉลี่ยได้เป็น

$$\bar{t}_s = 35.7 - 0.0275 \cdot M$$
 (3.124)

$$\overline{E}_{sw} = 0.42 \cdot (M - 58.15)$$
 (3.125)

สมการ 3.124 และ 3.125 นี้ ถือเป็นสภาวะเพิ่มเติมกับสมการสมคุลพลังงาน เพื่อสร้างสมการสบาย (comfort equation) แทนค่าทั้งสองสมการนี้ ลงในสมการ 3.121 จะได้

$$M - 3.05 \cdot (5.73 - 0.007 \cdot M - P_{a}) - 0.42 \cdot (M - 58.15) - 0.0173 \cdot M \cdot (5.87 - P_{a}) - 0.0014 \cdot M \cdot (34 - t_{a})$$

$$= \frac{35.7 - 0.0275 \cdot M - t_{cl}}{0.155 \cdot t_{cl}}$$

$$= 3.96 \times 10^{-8} \cdot f_{cl} \cdot \left[(t_{cl} + 273)^{4} - (t_{mrt} + 273)^{4} \right] + f_{cl}h_{c}(t_{cl} - t_{a})$$
(3.126)

จากสมการที่ 3.126 จะเห็นได้ว่าสมการนั้นประกอบไปด้วย 2 สมการ นั่นคือ M- 3.05 · (5.73 - 0.007 · M - P_a) - 0.42 · (M - 58.15) - 0.0173 · M · (5.87 - P_a) - 0.0014 · M · (34 - t_a) = $\frac{35.7 - 0.0275 · M - t_{cl}}{0.155 · L_{cl}}$

(3.127)

โดยสมการที่ 3.127 นี้จะแทนส่วนการแลกเปลี่ยนความร้อนระหว่างร่างกายของผู้อยู่อาศัยกับเสื้อผ้า ที่สวมใส่ และอีกส่วนของสมการที่แทนการแลกเปลี่ยนความร้อนระหว่างเสื้อผ้ากับสิ่งแวคล้อม นั่นคือ

$$\frac{35.7 - 0.0275 \cdot M - t_{cl}}{0.155 \cdot I_{cl}} = 3.96 \times 10^{-8} \cdot f_{cl} \cdot \left[(t_{cl} + 273)^4 - (t_{mit} + 273)^4 \right] + f_{cl}h_c (t_{cl} - t_a)$$
(3.128)

โดยถ้าทำการเขียนสมการ 3.127 ใหม่เพื่อหาก่าอุณหภูมิของเสื้อผ้าจะได้ ก่าอุณหภูมิของเสื้อผ้าเป็น

$$t_{cl} = 35.7 - 0.0275 \cdot M - 0.155 \cdot I_{cl} \cdot \begin{bmatrix} M - 3.05 \cdot (5.73 - 0.007 \cdot M - P_a) \\ -0.42 \cdot (M - 58.15) - 0.0173 \cdot M \cdot (5.867 - P_a) \\ -0.0014 \cdot M \cdot (34 - t_a) \end{bmatrix} (3.129)$$

อย่างไรก็ตามค่าอุณหภูมิของเสื้อผ้าที่คำนวณได้จากสมการนี้จะเป็นจริงเมื่ออุณหภูมิการแผ่ รังสีเฉลี่ยมีค่าเท่ากับอุณหภูมิอากาศเท่านั้น เพราะสมการนี้ไม่ได้รวมถึงอิทธิพลของอุณหภูมิการแผ่ รังสีเฉลี่ยซึ่งโดยปรกติแล้วจะมีค่าที่แตกต่างจากอุณหภูมิอากาศ โดยค่าอุณหภูมิของเสื้อผ้าที่รวม อิทธิพลในส่วนของอุณหภูมิการแผ่รังสีเฉลี่ยจะได้จากสมการ 3.128 นั่นคือ

$$t_{cl} = 35.7 - 0.0275 \cdot met - 0.155 \cdot I_{cl} \left[3.96 \times 10^{-8} f_{cl} ((T_{cl} - 273)^4 - (T_{mrt} + 273)^4) \right]$$
(3.130)

แต่ในสมการที่ 3.130 นี้ค่าอุณหภูมิของเสื้อผ้ากลับไม่สามารถหาค่าได้โดยตรงเพราะสมการที่ได้ เป็นแบบไม่ชัดแจ้ง (implicit equation) ดังนั้นในการคำนวณก่าอุณหภูมิของเสื้อผ้านั้นจะหาค่าได้ โดยการทำซ้ำที่สมการ 3.130 นี้จนก่าลู่เข้า โดยที่ก่าอุณหภูมิเริ่มด้นเพื่อหาก่าอุณหภูมิของเสื้อผ้านี้ จะสามารถหาก่าอุณหภูมิเสื้อผ้าในกรณีไม่มีการแผ่รังสีจากสมการ 3.129

ถ้าพิจารณาจากสมการสบาย (สมการ 3.126) จะทำให้ทราบได้ว่าในการสร้างสภาวะให้เกิด ความสบายนั้นจะขึ้นอยู่กับตัวแปร 6 ตัวด้วยกัน คือ

- 1. ค่าอุณหภูมิอากาศ
- 2. ค่าความชื้น
- 3. ค่าความเร็วลม
- 4. ลักษณะของกิจกรรมของผู้อยู่อาศัย
- ถักษณะของเสื้อผ้าที่สวมใส่
- 6. ค่าอุณหภูมิการแผ่รังสีเฉลี่ย (Mean radiant temperature, MRT)

้โดยค่าตัวแปรต่าง ๆ นี้สามารถพิจารณาออกได้เป็น 2 กลุ่มหลักคือ

- กลุ่มตัวแปรที่เกี่ยวกับผู้อยู่อาศัยเอง ได้แก่ ลักษณะของกิจกรรม และลักษณะของ เสื้อผ้าที่สวมใส่
- กลุ่มตัวแปรที่เกี่ยวกับสภาวะแวคล้อม ได้แก่ ค่าอุณหภูมิอากาศ ค่าความชื้น ค่า ความเร็วลม และค่าอุณหภูมิการแผ่รังสีเฉลี่ย

ดังนั้นในการประเมินค่าความสบายเชิงความร้อนนั้น ก่อนอื่นจึงจำเป็นที่จะต้องประเมินค่า ลักษณะของกิจกรรม และลักษณะของเสื้อผ้าที่สวมใส่ เสียก่อน จากนั้นระบบปรับอากาศจึงจะมี ส่วนในการปรับเปลี่ยนค่าตัวแปรที่เกี่ยวข้องกับสภาวะแวคล้อมให้เหมาะสม และเกิดความสบาย โดยระบบปรับอากาศที่ใช้กันทั่วไปนั้น (conventional air conditioning) จะสามารถควบคุมค่า อุณหภูมิอากาศ ค่าความชื้น และค่าความเร็วลมได้ ในขณะที่ระบบปรับอากาศแบบ radiant cooling จะใช้การควบคุมอุณหภูมิการแผ่รังสีเป็นกลไกหลักในการสร้างความสบายเชิงความร้อนให้กับผู้อยู่ อาศัย

อย่างไรก็ตามที่สภาวะอากาศที่เหมาะสมนั้นอาจเกิดจากก่าของตัวแปรต่าง ๆ เหล่านี้ที่ แตกต่างกัน เช่นที่สภาวะที่มีความสบายเชิงความร้อนแล้ว การเพิ่มอุณหภูมิของอากาศให้ร้อนขึ้น และเพิ่มความเร็วลมให้สูงขึ้น ก็สามารถทำให้เกิดสภาวะที่มีความสบายเชิงความร้อนเหมือนกันได้ เป็นต้น ดังนั้นเพื่อเป็นการรวมอิทธิพลต่าง ๆ เข้าด้วยกัน Fanger จึงได้พัฒนาดัชนีขึ้นมาตัวหนึ่ง เพื่อที่จะทำนายให้ได้ว่าภายใต้สภาวะอากาศที่สร้างขึ้นนั้น(ที่มีก่าตัวแปรที่หลากหลายนั้น) มีสภาวะ สมดุลความร้อนเกิดขึ้นหรือไม่ โดยดัชนีนั้นคือ ก่า PMV (Predicted Mean Vote) และ Fanger ได้ แบ่งสเกลก่า PMV นี้ออกเป็น 7 ก่า นั่นคือ

+3	คือ	ร้อน	(Hot)
+2	คือ	อบอุ่น	(Warm)
+1	คือ	อุ่นเล็กน้อย	(Slightly warm)
0	คือ	ปกติ	(Neutral)
-1	คือ	เย็นเล็กน้อย	(Slightly cool)
-2	คือ	เย็น	(Cool)
-3	คือ	หนาว	(Cold)

โดยที่ ก่า 0 คือจุดที่มีความสมคุลทางความร้อน และก่า PMV นี้มีความสัมพันธ์กับตัวแปรต่าง ๆ ดังนี้

$$PMV = (0.3033 e^{-0.036 \text{ inet}} + 0.028) \cdot \begin{bmatrix} \text{met} - 3.05 \cdot (5.733 - 0.00699 \cdot \text{met} - P_a) \\ - 0.42 \cdot (\text{met} - 58.15) \\ - 0.0173 \cdot \text{met} \cdot (5.867 - P_a) \\ - 0.0014 \cdot \text{met} \cdot (34 - T_a) \\ - 3.96 \times 10^{-8} f_{cl} \cdot ((T_{cl} + 273)^4 - (T_{inrt} + 273)^4) \\ - f_{cl} \cdot h_c (T_{cl} - T_a) \end{bmatrix} (3.131)$$

โดยที่ค่า partial pressure ของไอน้ำ สามารถหาได้จากความสัมพันธ์ทางเทอร์ โมไดนามิกส์

คือ

$$P_a = RH \cdot P_{sat @T_a}$$
(3.132)

โดย

$$P_{\text{sat}} \oplus T_{a} = e^{\left(18.4854 - \frac{5169.5248}{T_{a} + 273.15}\right)}$$
(3.133)

เมื่อ

RH

P_{sat @T} คือ ความคันไอน้ำอิ่มตัวที่อุณหภูมิ , kPa คือ ความชื้นสัมพัทธ์ภายในห้อง, %

และค่าสัมประสิทธิ์การพาความร้อนสามารถหาได้จาก

$$h_{c} = \begin{cases} 2.38(T_{cl} - T_{a})^{0.25} & ; 2.38(T_{cl} - T_{a})^{0.25} > 12.1\sqrt{V} \\ \\ 12.1\sqrt{V} & ; 2.38(T_{cl} - T_{a})^{0.25} < 12.1\sqrt{V} \end{cases}$$
(3.134)

เมื่อ คือ ค่าความเร็วของอากาศภายใน, m/s v

ค่า clothing area factor, สามารถหาได้จาก

$$f_{cl} = \begin{cases} 1.0 + 0.2I_{cl} & ;I_{cl} < 0.5 \text{clo} \\ \\ 1.05 + 0.1I_{cl} & ;I_{cl} \ge 0.5 \text{clo} \end{cases}$$
(3.135)

อย่างไรก็ตามที่สภาวะซึ่งเกิดสมคุลทางความร้อนนี้ (PMV=0) คนบางคนอาจรู้สึกไม่สบาย ได้ อันเป็นผลมาจากสภาวะเพิ่มเติม(สมการ 3.124 และ 3.125) ที่ได้เพิ่มเติมให้กับสมการสมดุล พลังงานนั้น ได้พิจารณาเป็นค่าเฉลี่ย ซึ่งหมายความว่าสมการ PMV จะบอกสภาวะสบายได้เฉพาะ คนโดยเฉลี่ยเท่านั้นไม่สามารถครอบคลุมให้ครบทุก ๆ คนได้ คังนั้น Fanger จึงได้ขยายช่วงสบาย ให้อยู่ระหว่าง -0.5 ถึง +0.5 เพื่อครอบคลุมถึงคนโดยทั่ว ๆ ไปด้วย และได้พัฒนาดัชนีอีกหนึ่งตัว เพื่อทำนายว่าภายใต้สภาวะที่สร้างขึ้นจะมีคนจำนวนคนเท่าใดที่รู้สึกไม่สบายโดยดัชนีนั้น คือ Predicted Percentage of Dissatisfied (PPD) และมีความสัมพันธ์กับค่า PMV ดังสมการ

$$PPD = 100 - 95 \cdot e^{-(0.03353 \cdot PMV^{4} + 0.2179 \cdot PMV^{2})}$$
(3.136)

3.5.1 การหาค่าอุณหภูมิการแผ่รังสีเฉลี่ย (Mean radiant temperature)

อุณหภูมิการแผ่รังสีเฉลี่ย (Mean Radiant Temperature, MRT) เป็นตัวแปรที่สำคัญตัวแปร หนึ่งในการประเมินก่าความสบายเชิงความร้อนของผู้อยู่อาศัย ซึ่งจะแทนการแลกเปลี่ยนความร้อน ระหว่างกรอบของอาการแต่ละค้านกับร่างกายของผู้อยู่อาศัย โดยนิยามแล้วนั้นก่าอุณหภูมิการแผ่ รังสีเฉลี่ย คืออุณหภูมิเฉลี่ยของผนังที่ทำให้เกิดการถ่ายเทความร้อนโดยการแผ่รังสีเท่ากับผนังจริง (ที่มีก่าอุณหภูมิที่แตกต่างกันไป) ดังแสดงในรูปที่ 3.9

รูปที่ 3.9 แสคงนิยามของค่าอุณหภูมิการแผ่รังสีเฉลี่ย [33]

โดยค่าอุณหภูมิการแผ่รังสีเฉลี่ยนี้สามารถแบ่งออกเป็น 2 กรณี คือ

 กรณีที่ไม่มีรังสีแสงอาทิตข์ตกกระทบกรอบอาคาร (Unirradiant Mean radiant Temperature, T_{umr})

โดยที่ก่าอุณหภูมิการแผ่รังสีนี้จะเกิดขึ้นในกรณีของห้องที่ไม่มีส่วนใดส่วนหนึ่งของห้องที่ มีรังสีแสงอาทิตย์มาตกกระทบ ซึ่งอุณหภูมิ T_{แทน} นี้จะทำให้เกิดการแผ่รังสีคลื่นยาวแต่เพียง อย่างเดียว

กรณีที่มีรังสีแสงอาทิตย์ตกกระทบกรอบอาคาร

ในกรณีนี้จะเกิดจากการที่รังสีแสงอาทิตย์ตกกระทบหน้าต่างกระจก และส่งผ่านรังสีเข้ามา และตกกระทบที่ผิวของผู้อยู่อาศัยโดยตรง โดยการตกกระทบของรังสีที่กระจกนี้จะทำให้ เกิดผลต่อการแผ่รังสี 2 ส่วนคือ รังสีส่วนหนึ่งจะถูกดูดกลืนไว้ในเนื้อกระจกและทำให้การแผ่ รังสีกลื่นยาวที่มากขึ้น และรังสีที่ส่งผ่านเข้ามาตกกระทบผู้อยู่อาศัยโดยตรงอีกส่วนหนึ่ง ดังนั้น ค่าอุณหภูมินี้อาจเรียกได้เป็น ค่าอุณหภูมิการแผ่รังสีเฉลี่ยเนื่องจากอุณหภูมิการแผ่รังสี และการ แผ่รังสีกลื่นยาวโดยตรง (Mean Radiant Temperature due to surface temperature and solar radiation, T_{smrt})

3.5.1.1 การหาค่าอุณหภูมิ unirradiated mean radiant temperature, Tumm

จะเป็นค่าอุณหภูมิที่ได้จากการคำนวณก่าอุณหภูมิที่ผิวต่าง ๆ เทียบกับตำแหน่งของผู้อยู่ อาศัยในอาการ ตามความสัมพันธ์

$$\sigma (T_{unnt} + 273)^4 = B_1 \cdot F_{P-1} + B_2 \cdot F_{P-2} + \dots + B_n \cdot F_{P-n}$$
(3.137)

เมื่อ

T_{umrt} คือ ค่า unirradiated mean radiant temperature, °C B_i คือ ค่า radiosity ของแต่ละพื้นผิว, W/m² F_{P-n} คือ ค่า angle factor ระหว่างผู้อยู่อาศัยกับพื้นผิวที่ n

โดยก่า angle factor ต่าง ๆ นั้น สามารถหาได้จากรูปที่ 3.10 และ 3.11

รูปที่ 3.10 แสดงค่าเฉลี่ยของ angle factor ระหว่างคนนั่งกับผนังตั้งฉาก

รูปที่ 3.11 แสดงก่าเฉลี่ยของ angle factor ระหว่างกนนั่งกับเพคานและพื้น

แต่เนื่องจากวัสคุส่วนใหญ่ที่ใช้เป็นกรอบอาคารนั้นจะมีก่าการดูคกลืนที่ก่อนข้างสูงทำให้ สามารถตัดก่าการสะท้อนได้ และถ้าพิจารณาให้ผนังภายในห้องเป็นพื้นผิวดำก่าของ T_{แทน} จะ สามารถหาได้จาก

$$T_{umrt} = \left[(T_1 + 273)^4 \cdot F_{P-1} + (T_2 + 273)^4 \cdot F_{P-2} + \dots + (T_n + 273)^4 \cdot F_{P-n} \right]^{0.25} - 273 \quad (3.138)$$

3.5.1.2 การหาค่าอุณหภูมิ mean radiant temperature due to surface temperature and solar radiation, T_{sint}

ค่าอุณหภูมิการแผ่รังสีในส่วนนี้สามารถหาค่าจากสมการที่เสนอโดย Fanger โดยจะมี ความสัมพันธ์กับรังสีที่ตกกระทบ ดังสมการ

$$T_{\text{smrt}} = \left[T_{\text{umrt}}^{4} + f_{p} \cdot \alpha_{p} \cdot \frac{q}{(\varepsilon_{p} \cdot \sigma)} \right]^{0.25}$$
(3.139)

โดยที่

$$q = I_{dir} \times T^{fH}(\theta, \phi) + I_{diff} \times T_{hem}$$
(3.140)

เมื่อ	α _p	คือ ค่าสัมประสิทธิ์การคูคกลื่นรังสีของร่างกายคน (ค่ามาตรฐานเท่ากับ
		0.6)
	ε _P	คือ ก่าการเปล่งรังสีของร่างกายคน (ก่ามาตรฐานเท่ากับ 0.97)
	f _P	คือ ก่า Projected area factor ซึ่งเป็นอัตราส่วนระหว่างพื้นที่ภาพฉายผิว
		คนต่อพื้นที่รับแสง และจะขึ้นอยู่กับตำแหน่งระหว่างคนและทิศทางของ
		รังสี
	q	กือ ก่ารังสีแสงอาทิตย์ที่ผ่านหน้าต่างกระจกเข้ามา และตกกระทบผิวหนัง
		ิกน, W/m²
	I _{dir}	ถือ ก่ารังสีตรงแสงอาทิตย์ที่ตกกระทบผนังตั้งฉาก, W/m²
	Idiff	คือ ค่ารังสึกระจายแสงอาทิตย์ที่ตกกระทบผนังตั้งฉาก, W/m²
	$T^{fH}(\theta,\phi)$	คือ ก่าการส่งผ่านรังสีของหน้าต่างกระจกที่ขึ้นกับมุมตกกระทบ
	T _{hem}	คือ ก่าการส่งผ่านรังสึกรึ่งวงกลม

แต่เนื่องจากรังสีแสงอาทิตย์ที่มาตกกระทบนั้นจะมีค่าที่สูงมาก และจะก่อให้เกิดค่าอุณหภูมิ การแผ่รังสีเฉลี่ย (T_{smt}) ที่สูงตามไปด้วย โดยถ้านำค่าอุณหภูมิการแผ่รังสีเฉลี่ยที่ได้โดยวิธีนี้ไปใช้ ในการคำนวณค่า PMV โดยตรงนั้นจะทำให้ก่าที่ PMV ที่ได้มีก่าเกินสเกลที่กำหนดไว้ ดังนั้นในการ หาก่าความสบายเชิงความร้อนในส่วนนี้จึงมักพิจารณาจากการเปลี่ยนแปลงของก่า PMV แทนโดย รายละเอียดต่าง ๆ นั้นจะอยู่ในหัวข้อถัดไป

3.5.2 การหาค่า PMV ในกรณีที่มีผลของการแผ่รังสีแสงอาทิตย์ผ่านหน้าต่างกระจก

การคำนวณค่า PMV ที่เปลี่ยนไปเนื่องจากการส่งผ่านรังสีแสงอาทิตย์ จะสามารถหาได้จาก วิธีที่เสนอโคย Lyon [5]

$$\frac{\mathrm{d}PMV}{\mathrm{d}q} = \frac{\partial PMV}{\partial T_{\mathrm{mrt}}} \cdot \frac{\partial T_{\mathrm{mrt}}}{\partial (\alpha_{\mathrm{p}} f_{\mathrm{p}} q)} \cdot \frac{\partial (\alpha_{\mathrm{p}} f_{\mathrm{p}} q)}{\partial q}$$
(3.141)

เมื่อ α_ρ คือ ก่าการดูดกลืนรังสีที่ผิวของผู้อยู่อาศัย

fp คือ ค่า projected area factor

q คือ ก่ารังสีจากควงอาทิตย์ที่ตกกระทบหน้าต่างกระจก และผ่านเข้ามากระทบผิว

ดังนั้นจะสามารถหาก่า PMV ในกรณีที่มีแสงอาทิตย์ที่ส่งผ่านได้จากสมการ

$$PMV(total) = PMV + \frac{dPMV}{dq} \cdot q$$
(3.142)

เมื่อ PMV(total) คือ Total PMV PMV คือ ค่า PMV ในกรณีที่ไม่มีการแผ่รังสี (no solar)

จากก่า PMV(total) จะทำให้สามารถหาก่า PPD(total) ได้จากสมการ 3.136 และก่า PPDเนื่องจาก รังสีแสงอาทิตย์อย่างเดียวนั้นจะสามารถหาก่าได้จาก

$$PPD(solar) = PPD(total) - PPD(surface)$$
(3.143)