การคัคแปลงโครงสร้างทางเคมีของสารต้านมะเร็ง อัลคาลอยค์เอคเตนาสซิคิน จากเพรียงหัวหอมไทย Ecteinascidia thurstoni

นางสาวเพลินทิพย์ ภูทองกิ่ง

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรคุษฎีบัณฑิต สาขาวิชาเภสัชเคมีและผลิตภัณฑ์ธรรมชาติ คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยากัย ปีการศึกษา 2548 ISBN 974-14-2340-3 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

CHEMICAL STRUCTURE MODIFICATION OF ANTICANCER ECTEINASCIDIN ALKALOIDS FROM THE THAI TUNICATE ECTEINASCIDIA THURSTONI

Miss Ploenthip Puthongking

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Pharmaceutical Chemistry and Natural Products Faculty of Pharmaceutical Sciences Chulalongkorn University Academic Year 2005 ISBN 974-14-2340-3

481696

CHEMICAL STRUCTURE MODIFICATION OF
ANTICANCER ECTEINASCIDIN ALKALOIDS FROM
THE THAI TUNICATE ECTEINASCIDIA THURSTONI
Miss Ploenthip Puthongking
Pharmaceutical Chemistry and Natural Products
Assistant Professor Chamnan Patarapanich, Ph.D.
Khanit Suwanborirux, Ph.D.

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctor's Degree

Pompen Pramyo Cu. Dean of Faculty of Pharmaceutical Sciences

(Associate Professor Pompen Pramyothin, Ph.D.)

THESIS COMMITTEE

Mite Padymen & Chairman

(Assistant Professor Mitr Pathipvanich, Ph.D.)

Clanna 72_____ Thesis Advisor

(Assistant Professor Chamnan Patarapanich, Ph.D.)

(Khanit Suwanborirux, Ph.D.)

Nacki Saito Member

(Professor Naoki Saito, Ph.D.)

Sanillond Ren Member

(Associate Professor Sunibhond Pummangura, Ph.D.)

S. Ammogpol. Member

(Associate Professor Surattana Amnuoypol, Ph.D.)

เพลินทิพย์ ภูทองกิ่ง: การคัดแปลงโครงสร้างทางเคมีของสารต้านมะเร็ง อัลคาลอยด์เอคเต นาสซิดินจากเพรียงหัวหอมไทย *Ecteinascidia thurstoni* (CHEMICAL STRUCTURE MODIFICATION OF ANTICANCER ECTEINASCIDIN ALKALOIDS FROM THE THAI TUNICATE *ECTEINASCIDIA THURSTONI*) อ. ที่ปรึกษา: ผศ.คร. ชำนาญ ภัตรพานิช, อ. ที่ปรึกษาร่วม: คร. คณิต สุวรรณบริรักษ์. 169 หน้า. ISBN 974-14-2340-3

เอกเตนาสซิดิน 743 (Et 743: I) เป็นสารกลุ่มทริสเตตราไฮโครไอโซควินโนลนอัลกาลอยด์ที่เคย แยกได้จากเพรียงหัวหอม Ecteinascidia turbinata เป็นสารที่มีประสิทธิภาพสูงในการด้านมะเร็ง และใน ปัจจุบันกำลังศึกษาสารด้านมะเร็งชนิดนี้ทางกลินิกขั้นที่ II/III ต่อมาได้มีการแยกสาร Et 770 (2) และ Et 786 (4) ในปริมาณสูงจากเพรียงหัวหอมไทย E. thurstoni ที่ผ่านกระบวนการแช่สกัดด้วยสารละลาย KCN จึงได้ ทำการสังเคราะห์อนุพันธ์ ของเอคเตนาสซิดินที่แยกได้ทั้งสิ้น 21 ชนิด ได้แก่ อนุพันธ์ diacetate ของสาร Et 743, Et 770 และ Et 786 (18-20) โดยเป็นการแทนที่หมู่ฟังก์ชั่น phenolic hydroxyl ที่ดำแหน่ง C-18 และ C-6' ของ A-subunit และ C-subunit ตามลำดับ และ อนุพันธ์ monoacyl ของสาร Et 770 (21-37) โดยเป็นการ แทนที่หมู่ฟังก์ชั่น phenolic hydroxyl ที่ดำแหน่ง C-6' ของ C-subunit โดยใช้ acid anhydrides, acid chlorides หรือ acids ร่วมกับ N.N-dicyclohexylcarbodiimide (DCC) ในทางตรงกันข้ามเมื่อสาร Et 770 ทำปฏิกิริยากับ indole-3-carboxylic acid ร่วมกับ DCC จะได้อนุพันธ์ amide **39** ซึ่งเป็นการแทนที่ที่ตำแหน่ง N-2' ของ Csubunit

ได้นำอนุพันธ์ที่เตรียมได้ทั้งหมดมาทดสอบฤทธิความเป็นพิษต่อเซลล์มะเร็ง 3 ชนิดได้แก่ HCTI16 (เซลล์มะเร็งลำไส้) QG56 (เซลล์มะเร็งปอด) และ DU145 (เซลล์มะเร็งต่อมลูกหมาก) พบว่า หมู่ฟังกชัน cyano และ hydroxyl ที่ตำแหน่งคาร์บอนที่ 21 มีความจำเป็นต่อฤทธิความเป็นพิษต่อเซลล์ นอกจากนการออก ซไดส์หมู่ซัลไฟด์มีผลทำให้ฤทธิความเป็นพิษต่อเซลล์ลดลงอย่างมาก อนุพันธ์ ester ของ benzoyl ส่วนใหญ่มี ฤทธิความเป็นพิษต่อเซลล์น้อยกว่าสารตั้งต้น (2) ในขณะที่อนุพันธ์ ester ของ 4"-nitrobenzoyl (22) และ 4"methoxybenzoyl (28) แสดงฤทธิความเป็นพิษต่อเซลล์ใกล้เคียงกับสารตั้งต้น (2) เช่นเดียวกับอนุพันธ์ ester ที่มีอะตอมในโตรเจนอยู่ในวงแหวน (30-31 และ 34-37) และพบว่าอนุพันธ์ amide ของ indole-3-carbonyl (39) เป็นอนุพันธ์ชนิดเดียวที่แสดงฤทธิความเป็นพิษต่อเซลล์ได้ดีกว่าสารตั้งต้น (2)

เมื่อศึกษาวิธีการ N-demethylation ของโมเลกุลจำลอง ซึ่งประกอบด้วยวงแหวน ABC ที่คล้ายคลง กับ A-subunit ของสารเอคเตนาสซิดิน โดยใช้สาร cerium (IV) ammonium nitrate (CAN) พบสภาวะที่ เหมาะสมคือ สารตั้งต้นทำปฏิกิริยากับ CAN จำนวน 5 เท่าในสารละลายของ acetonitrile อย่างไรก็ตามพบว่า มีขอจำกัดคือ ต่องเปลี่ยนหมู่ cyanoamine เป็นหมู่ amide carbonyl และปกป้องหมู่ฟังกชัน phenolic hydroxyl ก่อนจึงจะทำให้การสังเคราะห์ตามวิธีดังกล่าวได้ผล

ลายมือชื่ออาจารย์ที่ปรึกษาร่วม...

สาขาวิชา เภสัชเคมีและผลิตภัณฑ์ธรรมชาติ ปีการศึกษา 2548

4576965833: MAJOR PHARMACEUTICAL CHEMISTRY AND NATURAL PRODUCTS

KEYWORD: ECTEINASCIDIN 770 / ACYL DERIVATIVES / CYTOTOXICITY / ABC RING SYSTEM

PLOENTHIP PUTHONGKING: CHEMICAL STRUCTURE MODIFICATION OF ANTICANCER ECTEINASCIDIN ALKALOIDS FROM THE THAI TUNICATE *ECTEINASCIDIA THURSTONI*: THESIS ADVISOR: ASST. PROF. CHAMNAN PATARAPANICH, Ph.D., THESIS CO-ADVISOR: KHANIT SUWANBORIRUX, Ph.D., 169 pp. ISBN 974-14-2340-3

Ecteinascidin 743 (Et 743; 1), a member of the tristetrahydroisoquinoline alkaloids previously isolated from the tunicate, *Ecteinascidia turbinata*, is a potent anticancer agent and is currently undergoing in phase II/III clinical trials. Et 770 (2) and Et 786 (4), two anticancer agents from the Thai tunicate, *E. thurstoni*, were efficiently isolated with the KCN pretreated process. Three diacetate esters of Ets 743, 770, and 786 (18-20) were prepared and the acetylation was reacted to the phenolic hydroxyls at C-18 and C-6' of the ecteinascidins. Seventeen acyl esters were prepared on the phenolic hydroxyl at C-6' of Et 770 with the corresponding acid anhydrides or acid chlorides or acids in the presence of *N*,*N*-dicyclohexylcarbodiimide (DCC) as the coupling reagent to yield the monoacyl derivatives (21-37). In contrast, the reaction of indole-3-carboxylic acid with Et 770 in the presence of DCC provided the amide derivative 39, which was substituted at N-2' of the *C*-subunit.

The synthesized derivatives were evaluated for cytotoxicity against HCT116 (human colon carcinoma), QG56 (human lung carcinoma), and DU145 (human prostate carcinoma) and exhibited excellent cytotoxic activities at nanomolar concentration. The cytotoxic data supported that the cyano or the hydroxy groups at C-21 position are essential for the cytotoxic activity. Moreover, oxidation of the sulfide bridge of ecteinascidins resulted in dramatically diminished activity. Most benzoyl ester derivatives exhibited dramatically decreased cytotoxicity while 4"-nitrobenzoyl (22) and 4"-methoxybenzoyl (28) ester derivatives as well as the *N*-containing heterocyclic ester derivatives (30-31 and 34-37) possessed cytotoxicity similar to the precursor (2). Interestingly, only the indole-3-carbonyl amide derivative (39) exhibited higher cytotoxicity than the parent compound (2).

The selective *N*-demethylation with cerium (IV) ammonium nitrate (CAN) was worked on the structural models containing the ABC ring system, which included the *A*-subunit of Ets. The optimal condition was achieved in 5 equimolars of CAN in the presence of aqeous-acetonitrile. However, this investigation revealed that the protection at the phenolic hydroxyl and the transformation of cyanoamine to amide carbonyl group are the key steps for the oxidative *N*-demethylation using CAN for those model compounds.

Field of Study Pharmaceutical Chemistry and Natural Products Academic Year 2005

Student's signature. Plan Bettong. Advisor's signature. Co-advisor's signature. Khant Sunde "

ACKNOWLEDGEMENTS

I would like to express my appreciation to my thesis advisors, Assistant Professor Chamnan Patarapanich and Dr. Khanit Suwanborirux and my Japanese teachers, Professor Naoki Saito and Professor Akinori Kubo, of Meiji Pharmaceutical University, than whom no-one could have been more helpful and courteous, for their valuable advice, continual guidance, kindness, and understanding throughout this research study.

I would like to thank the Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences for providing a 300 MHz NMR spectrometer and other scientific equipments, Ms. T. Kozeki and S. Kubota of the Analytical Center of Meiji Pharmaceutical University, for recording 500 MHz NMR and mass spectra, and Dr. N. Shimma, Chugai Pharmaceutical Company Research Center, Japan for cytotoxic assay.

I would like to thank Mr. Sombat Poovachiranon (Phuket Marine Biological Center) for supporting the collection of the Thai tunicate.

Financial supports for this work were provided by a Grant (BRT R646004) from the Biodiversity Research and Training Program (BRT), National Science and Technology Development Agency (NSTDA), Thailand, and a Grant-in-Aid for Scientific Research (B) (No. 1437025) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The Bioactive Marine Ntural Product Chemistry Research Unit (BMNCU) is supported by a Grant for Centers of Excellence, Chulalongkorn University. Japan Society for the Promotion of Sciences (JSPS) and the National Research Cooperation of Thailand (NRCT) supported the collaboration between Thai and Japanese researchers. The partial supports by Onda Foundation. Meiji Pharmaceutical University, Japan, the Graduate School of Chulalongkorn University and Khon Kaen University were acknowledged.

I would like to thank all staff of the Department of Pharmaceutical Chemistry for their supporting during my study.

My sincere appreciation is conveyed to Associate Professor Surattana Amnuoypol. Miss Emi Saito and all my friends at Chulalongkorn University. Khon Kaen University and Meiji Pharmaceutical University who have shared happy time together.

Finally, I would like to express my special and deepest appreciation to my family, for their love, understanding and encouragement.

CONTENTS

THAI ABSTRACTiv	/
ENGLISH ABSTRACT.	V
ACKNOWLEDGEMENTSv	i
CONTENTS vi	i
LIST OF FIGURES	X
LIST OF SCHEMES xi:	X
LIST OF TABLES xx	i
ABBREVIATIONS xxii	i
CHAPTER	
I INTRODUCTION	1
II LITERATURE REVIEW	7
1. Characteristics of tunicates	7
2. The tetrahydroisoquinoline antitumor agents	8
3. Isolation and biosynthesis of ecteinascidin alkaloids	9
4. Structure determination of Et 743	4
5. Synthetic studies of ecteinascidin 1	6
6. Biological activity of ecteinascidins	22
7. <i>N</i> -demethylation the ABC ring model compounds	1
III EXPERIMENTAL	9
1. Animal material 3	9
2. General experimental procedures	9
2.1. Thin-layer chromatography (TLC)	39
2.2. Column Chromatography 3	9
2.2.1. Flash column chromatography	9
2.2.2. Gel filtration chromatography 4	0

CHA	PTER

PTER		l	'age
	3.	Physical constants and spectroscopy	40
		3.1. Proton and carbon nuclear magnetic resonane	
		(¹ H- and ¹³ C-NMR) spectroscopy	40
		3.2. Mass spectroscopy	40
		3.3. Infrared (IR) spectroscopy	41
		3.4. Optical rotation	41
	4.	Chemical reagents	41
	5.	Solvents	42
	6.	Extraction and isolation of ecteinascidins from the	
		Thai tunicate. Ecteinascidia thurstoni	42
	7.	Structural modification of ecteinascidins	45
		7.1. Transformation of ecteinascidins	45
		7.1.1. Transformation of Et 770 to Et 743	45
		7.1.2. Transformation of Et 770 to Et 786	45
		7.1.3. Transformation of Et 786 to Et 759B	46
		7.2. Preparation of ecteinascidins analogs	46
		7.3. Selective N-demethylation on ABC ring	
		system with CAN	63
	8.	Biological assay	66
IV	RES	ULTS AND DISCUSSION	67
	1.	Extraction and isolation of the ecteinascidins from the	
		Thai tunicate, Ecteinascidia thurstoni	67
	2.	Structural modification	70
		2.1. Transformations of Et 770 to Et 743	
		and Et 786 to Et 759B	70
		2.2. Preparation of ecteinascidin analogs	72

2.2.1. Preparation of acetate ester analogs	72
2.2.2. Preparation of aromatic ester analogs	78
3. Cytotoxic activity of ecteinascidin analogs	95
4. Selective <i>N</i> -demethylation on ABC ring system with CAN	98
V CONCLUSION	107
REFERENCES	109
APPENDICES	117
VITA	169

LIST OF FIGURES

Figu	re	age
1.	Structure of the natural ecteinascidins	2
2.	Representative examples of the α -carbinolamine-containing and the	
	α-cyanoamine containing antitumor agents	3
3.	Chemical structures of ABC model ring system	6
4.	Structures of some other representative tetrahydroisoquinoline	
	antitumor antibiotics	9
5.	The picture of <i>Ecteinascidia turbinata</i> from the Caribbean tunicate	10
6.	The picture of Ecteinascidia thurstoni collected from Phuket island,	
	Thailand	10
7.	The proposed biosynthetic precursors of saframycin A	11
8.	The partial fragmentation in FABMS of Et 743	14
9.	The partial long-range proton-carbon correlations in the HMBC spectra	
	of Et 743	15
10.	Stereoscopic X-ray crystallographic structure of 21-O-methyl-	
	$N^{1/2}$ -formyl Et 729 and Et 734 $N^{1/2}$ -oxides	15
11.	A model of the Et-DNA adduct produced by a computer modeling	
	study (The DNA sequence is d(TTGGGAA), with the middle	
	G as the target base for the alkylation reaction of Et)	27
12.	Partial model of Et-743 bound to the 12-mer oligonucleotide	28
13.	Structure of Ets 743, 729, 736 and 722	32
14.	Structure of Et 743, safracin A and the ABC ring model of ecteinascidins	36
15.	Partial ¹ H and ¹³ C-NMR assigment data of the A-and C-subunits of	
	Et 770 (2) and Et 770 18, 6'-diacetyl [18]	76
16.	3D-structure of eceinascidin molecule	79

17.	The proposed FABMS fragmentat pattern of	
	Ecteinascidin 770 6'-()-4"-nitrobenzoate (22)	85
18.	Partial 13 C-NMR assignment data in the C-subunit of	
	Ecteinascidin 770 6'-()-4"-nitrobenzoate (22)	88
19.	Partial correlations observed in the NOESY spectrum of	
	Ecteinascidin 770 6'-O-4"-nitrobenzoate (22) in the A-subunit	89
20.	300 MHz ¹ H-NMR spectra of 2'-N-3"-Indolecarbonyl ecteinascidin 770	93
21.	Structural of the acylation of eceinascidins	96
22.	¹ H-NMR spectra data of 40, 40a, and 40b	102
23.	The 300 MHz ¹ H-NMR spectrum (in CDCl ₃) of Et 770 (2)	117
24.	The 125 MHz ¹³ C-NMR, DEPT-135 spectra (in CDCl ₃) of Et 770 (2)	117
25.	The 300 MHz ¹ H-NMR spectrum (in CDCl ₃) of Et 786 (4)	118
26.	The 300 MHz ¹ H-NMR spectrum (in CDCl ₃) of Et 759B (3)	118
27.	The 300 MHz ¹ H-NMR spectrum (in CDCl ₃) of Et 743 (1)	119
28.	The FAB-mass spectrum of Et 743 (1)	119
29.	The IR spectrum 18.6'-diacetylecteinascidin 770 (18)	120
30.	The FAB-mass spectrum of 18.6'-diacetyl-ecteinascidin 770 (18)	12()
31.	The 300 MHz ¹ H-NMR spectrum (in CDCl ₃) of 18.6'-diacetyl-	
	ecteinascidin 770 (18)	121
32.	The 125 MHz ¹³ C-NMR spectrum (in CDCl ₃) of 18,6'-diacetyl-	
	ecteinascidin 770 (18)	121
33.	The 125 MHz ¹³ C-NMR and DEPT-135 spectra (in CDCl ₃) of	
	18.6'-diacetylecteinascidin 770 (18)	122
34.	The IR spectrum 18,6'-diacetylecteinascidin 786 (19)	122
35.	The FAB-mass spectrum of 18.6'-diacetyl-ecteinascidin 786 (19)	123

36.	The 300 MHz ¹ H-NMR spectrum (in CDCl ₃) of 18.6'-diacetyl-	
	ecteinascidin 786 (19)	123
37.	The IR spectrum 18,6'-diacetylecteinascidin 743 (20)	124
38.	The FAB-mass spectrum of 18.6'-diacetyl-ecteinascidin 743 (20)	124
39.	The 300 MHz ¹ H-NMR spectrum (in CDCl ₃) of 18.6'-diacetyl-	
	ecteinascidin 743 (20)	125
40.	The IR spectrum of Ecteinascidin 770 6'-O-benzoate (21)	125
41.	The FAB-mass spectrum of Ecteinascidin 770 6'-O-benzoate (21)	126
42.	The 300 MHz ¹ H-NMR spectrum (in CDCl ₃) of Ecteinascidin 770	
	6'-()-benzoate (21)	126
43.	The IR spectrum of Ecteinascidin 770 6'-()-4"-nitrobenzoate (22)	127
44.	The FAB-mass spectrum of Ecteinascidin 770 6'-0-4"-nitrobenzoate (22).	127
45.	The 500 MHz ¹ H-NMR spectrum (in CDCl ₃) of Ecteinascidin 770	
	6'-()-4"-nitrobenzoate (22)	128
46.	The 500 MHz NOESY spectrum (in CDCl3) of Ecteinascidin 770	
	6'-()-4"-nitrobenzoate (22)	128
47.	The 125 MHz ¹³ C-NMR spectrum (in CDCl ₃) of Ecteinascidin 770	
	6'- <i>O</i> -4"-nitrobenzoate (22)	129
48.	The 500 MHz ¹³ C-NMR and DEPTspectra (in CDCl ₃) of	
	Ecteinascidin 770 6'-()-4"-nitrobenzoate (22)	129
49.	The 500 MHz HMQC spectrum (in CDCl ₃) of Ecteinascidin 770	
	6'- <i>O</i> -4"-nitrobenzoate (22)	130
50.	The 500 MHz HMBC spectrum (in CDCl ₃) of Ecteinascidin 770	
	6'- <i>O</i> -4"-nitrobenzoate (22)	130
51.	The 500 MHz HMBC spectrum (in CDCl ₃) of Ecteinascidin 770 6'-()-4"-	
	nitrobenzoate (22) (expanded from δ_{H} 1.8-4.7 ppm and δ_{C} 115-173 ppm)	131

Figur	e	Page
52.	The 500 MHz HMBC spectrum (in CDCl ₃) of Ecteinascidin 770 6"-()-4"-	
	nitrobenzoate (22) (expanded from δ_{H} 4.9-8.5 ppm and δ_{C} 105-172 ppm)	131
53.	The FAB-mass spectrum of Ecteinascidin 770 6'- <i>O</i> -3"-nitrobenzoate (23).	132
54.	The 500 MHz ¹ H-NMR spectrum (in CDCl ₃) of	
	Ecteinascidin 770 6'-0-3"-nitrobenzoate (23)	132
55.	The FAB-mass spectrum of Ecteinascidin 770 6'-O-2"-nitrobenzoate (24).	133
56.	The 500 MHz ¹ H-NMR spectrum (in CDCl ₃) of Ecteinascidin 770	
	6'-(<i>)</i> -2"-nitrobenzoate (24)	133
57.	The IR spectrum of Ecteinascidin 770 6'-()-4"-bromobenzoate (25)	134
58.	The FAB-mass spectrum of Ecteinascidin 770 6'- <i>O</i> -4"-bromobenzoate(25).	134
59.	The 500 MHz ¹ H-NMR spectrum (in CDCl ₃) of	
	Ecteinascidin 770 6'-()-4"-bromobenzoate (25)	135
60.	The 125 MHz ¹³ C-NMR spectrum (in CDCl ₃) of Ecteinascidin 770	
	6'- <i>O</i> -4"-bromobenzoate (25)	135
61.	The IR spectrum of Ecteinascidin 770 6'-O-3"-bromobenzoate (26)	136
62.	The FAB-mass spectrum of Ecteinascidin 770 6'-O-3"-bromobenzoate (26)	136
63.	The 500 MHz ⁻¹ H-NMR spectrum (in CDCl ₃) of Ecteinascidin 770	
	6'-()-3"-bromobenzoate (26)	137
64.	The IR spectrum of Ecteinascidin 770 6'-O-2"-bromobenzoate (26)	137
65.	The FAB-mass spectrum of Ecteinascidin 770 6'-O-2"-bromobenzoate(27).	138
66.	The 500 MHz ¹ H-NMR spectrum (in CDCl ₃) of Ecteinascidin 770	
	6'- <i>O</i> -2"-bromobenzoate (27)	138
67.	The IR spectrum of Ecteinascidin 770 6'-()-4"-methoxybenzoate (27)	139
68.	The FAB-mass spectrum of Ecteinascidin 770 6'-()-4"-	
	methoxybenzoate (27)	139

Figu	ire	Page
69.	The 500 MHz ¹ H-NMR spectrum (in CDCl ₃) of Ecteinascidin 770	
	6'- <i>O</i> -4"-methoxybenzoate (28)	140
70.	The IR spectrum of Ecteinascidin 770 6'-O-2"-methoxybenzoate (29)	140
71.	The FAB-mass spectrum of Ecteinascidin 770 6'-O-2"-	
	methoxybenzoate (29)	141
72.	The 500 MHz ¹ H-NMR spectrum (in CDCl ₃) of Ecteinascidin 770	
	6'- <i>O</i> -2"-methoxybenzoate (29)	141
73.	The 125 MHz ¹³ C-NMR spectrum (in CDCl ₃) of Ecteinascidin 770	
	6'-(<i>)</i> -2"-methoxybenzoate (29)	142
74.	The IR spectrum of Ecteinascidin 770 6'-O-nicotinate (30)	142
75.	The FAB-mass spectrum of Ecteinascidin 770 6'-O-nicotinate (30)	143
76.	The 500 MHz ¹ H-NMR spectrum (in CDCl ₃) of Ecteinascidin 770	
	6'-()-nicotinate (30)	143
77.	The 125 MHz ¹³ C-NMR spectrum (in CDCl ₃) of Ecteinascidin 770	
	6'-()-nicotinate (30)	144
78.	The 500 MHz ¹³ C-NMR and DEPTspectra (in CDCl ₃) of	
	Ecteinascidin 770 6'-()-nicotinate (30)	144
79.	The IR spectrum of Ecteinascidin 770 6'-()-isonicotinate (31)	145
80.	The FAB-mass spectrum of Ecteinascidin 770 6'-()-isonicotinate (31)	145
81.	The 500 MHz ¹ H-NMR spectrum (in CDCl ₃) of Ecteinascidin 770	
	6'- <i>O</i> -isonicotinate (31)	146
82.	The 125 MHz ¹³ C-NMR spectrum (in CDCl ₃) of Ecteinascidin 770	
	6'-()-isonicotinate (31)	146
83.	The IR spectrum of Ecteinascidin 770 6'-()-1"-naphthoate (32)	147
84.	The FAB-mass spectrum of Ecteinascidin 770 6'-()-1"-naphthoate (32)	147

85.	The 500 MHz ¹ H-NMR spectrum (in CDCl ₃) of Ecteinascidin 770
	6'-()-1"-naphthoate (32)
86.	The IR spectrum of Ecteinascidin 770 6'-O-2"-naphthoate (33)
87.	The FAB-mass spectrum of Ecteinascidin 770 6'-O-2"-naphthoate (33)
88.	The 500 MHz ¹ H-NMR spectrum (in CDCl ₃) of Ecteinascidin 770
	6'- <i>O</i> -2"-naphthoate (33)
89.	The 125 MHz ¹³ C-NMR spectrum (in CDCl ₃) of Ecteinascidin 770
	6'-(<i>)</i> -2"-naphthoate (33)
90.	The 500 MHz ¹³ C-NMR and DEPT spectra (in CDCl ₃) of
	Ecteinascidin 770 6'-O-2"-naphthoate (33)
91.	The IR spectrum of Ecteinascidin 770 6'-O-2"-quinolinecarboxylate (28)
92.	The FAB-mass spectrum of Ecteinascidin 770 6'-()-2"-quinoline-
	carboxylate (34)
93.	The 500 MHz ¹ H-NMR spectrum (in CDCl ₃) of Ecteinascidin 770
	6'- <i>O</i> -2"-quinolinecarboxylate (34)
94.	The IR spectrum of Ecteinascidin 770 6'-O-4"-quinolinecarboxylate (35)
95.	The FAB-mass spectrum of Ecteinascidin 770 6'-O-4"-quinoline-
	carboxylate (35)
96.	The 500 MHz ¹ H-NMR spectrum (in CDCl ₃) Ecteinascidin 770
	6'- <i>O</i> -4"-quinolinecarboxylate (35)
97.	The 125 MHz ¹³ C-NMR spectrum (in CDCl ₃) of Ecteinascidin 770
	6'- <i>O</i> -4"-quinolinecarboxylate (35)
98.	The 500 MHz ¹³ C-NMR and DEPT spectra (in CDCl ₃) of
	Ecteinascidin 770 6'-O-4"-quinolinecarboxylate (35)
99.	The IR spectrum of Ecteinascidin 770 6'-O-1"- isoquinoline-
	carboxylate (36)

Fi	Ωu	re	

Figur	re	Page
100.	The FAB-mass spectrum of Ecteinascidin 770 6'-O-1"- isoquinoline-	
	carboxylate (36)	155
101.	The 500 MHz ¹ H-NMR spectrum (in CDCl ₃) of Ecteinascidin 770	
	6'- <i>O</i> -1"- isoquinolinecarboxylate (36)	156
102.	The 125 MHz ¹³ C-NMR spectrum (in CDCl ₃) of Ecteinascidin 770	
	6'- <i>O</i> -1"- isoquinolinecarboxylate (36)	156
103.	The IR spectrum of Ecteinascidin 770 6'-O-3"- isoquinolinecarboxylate (37) 157
104.	The FAB-mass spectrum of Ecteinascidin 770 6'-()-3"- isoquinoline-	
	carboxylate (37)	157
105.	The 500 MHz ¹ H-NMR spectrum (in CDCl ₃) of Ecteinascidin 770	
	6'-O-3"- isoquinolinecarboxylate (37)	158
106.	The 125 MHz ¹³ C-NMR spectrum (in CDCl ₃) of Ecteinascidin 770	
	6'- <i>O</i> -3"- isoquinolinecarboxylate (37)	158
107.	The IR spectrum of 2'- <i>N</i> -3"-indolecarboxylecteinascidin 770 (39)	159
108.	The FAB-mass spectrum of 2'-N-3"-indolecarboxylecteinascidin 770 (39)	159
109.	The 500 MHz ¹ H-NMR spectrum (in CDCl ₃) of 2'-N-3"-indolecarbonyl	
	ecteinascidin 770 (39)	160
110.	The 500 MHz ¹ H- ¹ H COSY spectrum (in CDCl ₃) of 2'-N'-3"-indolecar-	
	bonyl ecteinascidin 770 (39) (expanded from δ_{11} 1.9 to 4.7 ppm)	160
111.	The 125 MHz ¹³ C-NMR spectrum (in CDCl ₃) of 2'- <i>N</i> -3"-indolecarboxyl-	
	ecteinascidin 770 (39)	161
112.	The 500 MHz ¹³ C-NMR and DEPT spectra (in CDCl ₃) of 2'-N-3"-indole-	
	carboxylecteinascidin 770 (39)	161
113.	The 300 MHz ¹ H-NMR spectrum (in CDCl ₃) of 1,2,3,4,5,6-Hexahydro	
	-7,9,10-trimethoxy-3,8,11-trimethyl-4-oxo-1,5-imino-3-benzazocin (40)	162

Figure

Figur	re	Page
114.	The 300 MHz ¹ H-NMR spectrum (in CDCl ₃) of 1,2,3,4,5,6-Hexahydro	
	-7,9,10-trimethoxy-3,8-dimethyl-4-oxo-1,5-imino-3-benzazocin (40a)	162
115.	The 300 MHz ¹ H-NMR spectrum (in CDCl ₃) 1,2,3,4,5,6-Hexahydro-	
	7.9,10-trimethoxy-3,8-dimethyl-4-oxo-1,5-imino-11-carbonyl-	
	3-benzazocin (40b)	163
116.	The 300 MHz ¹ H-NMR spectrum (in CDCl ₃) of 1,2,3,4,5,6-Hexahydro-	
	9-methoxy-3.8-dimethyl-4-oxo-1,5-imino-3-benzazocin (41a)	163
117.	The 300 MHz ¹ H-NMR spectrum (in CDCl ₃) of 1,2,3,4,5,6-	
	Hexahydro-9-methoxy-8,11-dimethyl-3-{4-methoxy-1-phenylmetyl}	
	-4-0x0-1.5-imino-3-benzazocin (42)	164
118.	The 300 MHz ¹ H-NMR spectrum (in CDCl ₃) of 1,2,3,4,5,6-Hexahydro-	
	9-methoxy-8-methyl-3-{4-methoxy-1-phenylmetyl}-4-oxo-1.5-	
	imino-3-benzazocin (42a)	164
119.	The 300 MHz ¹ H-NMR spectrum (in CDCl ₃) of 1,2,3,4,5,6-	
	Hexahydro-9-methoxy-8-methyl-3-{4-methoxy-1-phenylmetyl}	
	-4-oxo-1.5-imino-11-carbonyl-3-benzazocin (42b)	165
120.	The 300 MHz ¹ H-NMR spectrum (in CDCl ₃) of 1.2.3.4.5.6-	
	Hexahydro-9-methoxy3,-8-dimethyl-7,10-quinone-4-oxo-1,5-	
	imino-3-benzazocin (43a)	165
121.	The 300 MHz ¹ H-NMR spectrum (in CDCl ₃) of 1,2,3,4,5,6-	
	hexahydro-10-hydroxy-9-methoxy-3,8,11-trimethyl-4-oxo-1,5	
	-imino-3-benzazocin (44)	166
122.	The 300 MHz ¹ H-NMR spectrum (in CDCl ₃) of Bis-1.2.3.4.5.6-	
	hexahydro-10-hydroxy-9-methoxy-3,8,11-trimethyl-4-oxo-1,5-	
	imino-3-benzazocin (44b)	166

Figur	re	Page
123.	The FAB-mass spectrum of Bis-1.2,3,4,5,6-hexahydro-10-hydroxy-9	
	-methoxy-3,8,11-trimethyl-4-oxo-1,5-imino-3-benzazocin (44b)	167
124.	The 300 MHz ¹ H-NMR spectrum (in CDCl ₃) of 1,2,3,4,5,6-	
	Hexahydro-10-acetate-9-methoxy-3,8,11-trimethyl-4-oxo-1,5-	
	imino-3-benzazocin (45)	167
125.	The 300 MHz ¹ H-NMR spectrum (in CDCl ₃) of 1,2,3,4,5.6-	
	Hexahydro-10-acetate-9-methoxy-3.8-dimethyl-4-oxo-1.5	
	-imino-3-benzazocin (45a)	168
126.	The 300 MHz ¹ H-NMR spectrum (in CDCl ₃) of 1.2.3.4,5.6-	
	Hexahydro-10-acetate-9-methoxy-3.8-dimethyl-4-oxo-1.5-imino-	
	11-carbonyl-3-benzazocin (45b)	168

LIST OF SCHEMES

Sche	eme	Page
1.	Proposed biosynthetic pathway of saframycin A	12
2.	Proposed biosynthetic pathway of ecteinascidins	13
3.	Corey's total synthesis of Et 743	17
4.	Corey's synthesis of Phthalascidin-650	18
5.	Preparation of Phthalascidin analogs	18
6.	Cuevas' s semi-synthetic route of Et 743	20
7.	Cuevas' s synthetic route of Phthalascidin-650	20
8.	Fukuyama's total synthetic route of Et 743	21
9.	To proposed mechanism reaction of an iminium intermediate with	
	the guanine 2-amino group	27
10.	Synthetic pathway of Et 729	34
11.	The oxdative N-demethylation of amines using the ruthenium-	
	catalyzed reaction with a) tert-butyl hydroperoxide.	
	b) hydrogen peroxide	35
12.	The oxdative N-demethylation of amines methyl chloroformate	
	and hydrazine	35
13.	Kubo's synthesis of the ABC ring model of ecteinascidins	37
14.	Synthetic rout of the useful intermediate 129	38
15.	Practical synthesis of the ABC ring models of ecteinascidins	38
16.	Extraction of Ecteinascidia thurstoni collected in October 2002	
	and January 2003	43
17.	Isolation of ecteinascidin compounds from the tunicate collected in	
	October 2002 and January 2003	44
18.	The extraction and isolation methods of Et 770 and Et 786 from	
	Ecteinascidia thurstoni	. 69

Scheme Page		
19.	Transformation routes of Et 770 to Et 743, and Et 786 to Et 759B	70
20.	The proposed mechanism of hydroxylation reaction via an	
	iminium ion intermediate	71
21.	The mechanism of the S-oxidation of Et 770	72
22.	Preparative scheme of diacetate ester analogs of the ecteinascidins	73
23.	The proposed reaction mechanism of esterification reaction	74
24.	The proposed mechanism of acylation of isoquinolinoyl derivatives	
	via DCC coupling reagent	83
25.	Preparation of isoquinolinoyl derivatives via anhydride reagent	. 84
26.	The reaction of Et 770 and indole-3-carboxylic acid bearing	
	acid chloride, acid anhydride and the acid with DCC	91
27.	The Polonovsky reaction of 99	. 98
28.	The oxidative <i>N</i> -demethylation of 40 with CAN	. 99
29.	The oxidative <i>N</i> -demethylation of 41 with CAN	100
30.	The oxidative <i>N</i> -demethylation of 42, 46 and 47 with CAN	101
31.	The oxidative N-demethylation of 43 containing the quinone moiety	
	with CAN	102
32.	The oxidative <i>N</i> -demethylation of 48 and 49 , containing the	
	cyanoamine group with CAN	103
33.	The oxidative <i>N</i> -demethylation of 44 with CAN	104
34.	The acetylation reaction and the oxidative N -demethylation of 50	
	with CAN	105
35.	The acetylation reaction and the oxidative N-demethylation of 44	
	with CAN	106

XX

LIST OF TABLES

Table	P	age
1.	Chemical structures of ecteinascidin derivatives prepared in this study	5
2.	The in vitro activity of Et 743 against several tumor cell lines	22
3.	The <i>in vitro</i> antitumor activity of Et 743	23
4.	The in vitro activity of Et 743 against Human tumor Xenografted	
	in Nude Mice ^a	23
5.	Structure and antiproliferative of phathalascidin-related compounds	24
6.	Antiproliferative activity against mutant P388 of Et 743 and Pt 60	25
7.	The mode of action of Et 743 ^{<i>a</i>}	25
8.	The <i>in vitro</i> biochemistry profile of Et 743"	26
9.	The activity of Et 722 against several tumor cell lines	32
10.	The activity of Ets 729, 743, and 745 against P 388 leukemia	33
11.	Isolation data of Et 770 and Et 786 of each tunicate collection	68
12.	¹ H and ¹³ C-NMR spectra data of Et 770 [2] and	
	Et 770 18,6'-diacetyl [18] recorded in CDCl ₃	77
13.	Some of the most potent bishydroquinone derivatives of saframycin A	
	and their antiproliferative activity	78
14.	Summarized yields, High-resolution FABMS data	
	and methods for prepared monoacyl derivatives of Et 770	81
15.	¹ H-and ¹³ C-NMR spectra data of the acyl moiety of	
	the aroyl substituted Et 770 derivatives (21-37)	86
16.	Partial ¹ H and ¹³ C-NMR spectra data of core structure of Et 770 [2]	
	and Ecteinascidin 7706'- O-4"-nitrobenzoate [22] recorded in CDCl3	9()
17.	Partial ¹ H and ¹³ C-NMR spectra data of core structure of Et 770 [2] and	
	2'-N-3"-Indolecarboxyl ecteinascidin 770 [32] recorded in CDCl ₃	94

.

Table		
18.	Cytotoxicity of ecteinascidin 770 acylated compounds to various	
	cancer cell lines $(IC_{50} \text{ nM})^a$	97
19.	The different conditions of oxidative <i>N</i> -demethylation of 40 with CAN	100
20.	The different conditions of oxidative <i>N</i> -demethylation of 41 with CAN	100

ABBREVIATIONS

%	=	percent
μg	=	microgram
μl	=	microliter
μΜ	=	micromolar
$\left[\alpha\right]_{D}^{25}$	=	specific rotation at 25 °C and sodium D line (589 nm)
Å	=	angstrom
°C	=	degree Celsius
^I H-NMR	=	proton nuclear magnetic resonance
¹³ C-NMR	=	carbon-13-nuclear magnetic resonance
2D NMR	=	two dimensional nuclear magnetic resonance
A357	=	malignant melanoma cell line
B16	=	melanoma cell line
br s	=	broad singlet
С	=	concentration
cm	=	centrimeter
cald	=	calculated
d	=	doublet (for NMR spectra)
dd	=	doublet of doublets (for NMR spectra)
dt	=	doublet of triplets (for NMR spectra)
DEPT	=	Distortionless Enhancement by Polarization Transfer
DU145	=	human prostrate cancer cell line
cq.	=	equation or equivalent
ESI	=	Electrospray Ionization
с,	=	gram
h	=	hour
HCT116	=	human colon cancer cell line
¹ H- ¹ H COSY	=	¹ H- ¹ H correlation sprectroscopy
HMBC	=	Heteronuclear Multiple Bond Correlation
HMQC	=	Heteronuclear Multiple Quantum Coherence
HT29	=	colon cancer cell line
Hz	=	hertz

IC ₅₀	=	50% inhibition concentration
IR	=	infrared spectrometry
J	_	coupling constant (for NMR spectra)
Kg	=	kilogram
L, 1	=	liter
L1210	=	leukemia cell line
m	=	multiplet (for NMR spectra)
mg	1	milligram
min	Ξ	minute
ml	=	milliliter
m/z	=	mass to charge
Μ	Ξ	molar
M	=	molecular ion
MEL-28	=	melanoma cell line
MHz	1	megahertz
nM	=	nanomolar
NMR	-	Nuclear Magnetic Resonance
NOE	11	Nuclear Overhauser Effect
ppm	i.	part(s) per million
P388	=	murine leukemia cell
PC-3	=	prostrate carcinomar
q	=	quartet
QC56	=	human carcinomar cell line
rt	=	room temperature
S	=	singlet (for NMR spectra)

triplet (for NMR spectra)

weight

=

t

w, wt

xxiv