REFERENCES

- Anderson, J., and Bell, M. Travel Time Estimation in Urban Road Networks, <u>Proceeding</u> of the IEEE Intelligent Transport System Conference, pp.924-929, U.S.A, 1997.
- Bertini, R.L., and El-Geneidy, A.M. Toward Validation of Freeway Loop Detector

 Speed Measurements Using Transit Probe Data, <u>Proceeding of the 7th</u>

 <u>International IEEE Intelligent Transport System Conference</u>, pp. 779-784, 2004.
- Brunner, D., Cross, G., McGhee, C., Levis, J. and Whitney, D. Toward Increased Use of Simulation in Transportation, <u>Proceeding of the 30th Winter Simulation</u>

 <u>Conference</u>, pp. 1169 1176, U.S.A., 1998.
- Chen, M., and Chien., S. Determining the Number of Probe Vehicles for Freeway

 Travel Time Estimation Using Microscopic Simulation, <u>Transportation Research</u>

 <u>Record</u>, Vol. 1719, pp. 61-68, 2000.
- Chen, M., and Chien, S. Dynamic Freeway Travel Time Prediction Using Probe Vehicle
 Data: Link-Based Vs. Path-Based, <u>Transportation Research Record</u>, Vol. 1768,
 pp. 157-161, 2001.
- Cheu, R.L., Lee, D.H., and Xie, C. An Arterial Speed Estimation Model Fusing Data from Stationary and Mobile Sensors, <u>Proceeding of the IEEE Intelligent Transport System Conference</u>, pp. 573-578, U.S.A, 2001.
- Cheu, R. L., Xie C., and Lee, D. H. Probe Vehicle Population and Sample Size For Arterial Speed Estimation, <u>Journal of Computer-Aided Civil and Infrastructure</u> Engineering, pp. 53-60, 2002.
- Cohen, S., Bosseboeuf, J.L., and Schwab, N. Probe Vehicle Sample Sizes for Travel

 Time Estimation on Equipped Motorways, <u>Proceeding of the 11th International Road Transport Information and Control Conference</u>, pp. 172-176, U.K, 2002.
- Chu, L., Liu, H.X., and Recker, W. Development of the Capability-Enhanced Paramics Simulation Environment, <u>Transport Research Board Annual Meeting</u>, 2003.
- Druitt, S. <u>An Introduction to Paramics</u>. (online). Available from: http://www.paramics-online.com [June 2005].

- Druitt, S. <u>Traffic Models for Real People</u>. (online). Available from: http://www.sias.com/sias/s-paramics/articles/article1/article1.html [June 2005].
- Federal Highway Administration and Cambridge Systematics, Inc. and Texas

 Transportation Institute, <u>Traffic Congestion and Reliability Trends and Advanced</u>

 <u>Strategies for Congestion Mitigation</u>. (online). Available from:

 http://www.ops.fhwa.dot.gov/congestion report/index.htm [December 2005].
- Ferman, M.A., Blumenfeld, D.E., and Dai, X. A Simple Analytical Model of a Probe-Based Traffic Information System, <u>Proceeding of the IEEE Intelligent Transport</u> System Conference, Vol. 1, pp. 263-268, 2003.
- Inokuchi, H., Kawakami S., and Ogino, H. <u>Development of A Real-Time Traffic</u>
 Simulation Model Using Traffic Survey Data, 2003.
- Ishizaka, T., Fukuda, A., and Narupiti, S. Evaluation of Probe Vehicle System Using Micro Simulation Model and Cost Analysis, <u>Journal of the Eastern Asia Society</u> for Transportation Studies, Vol. 6, pp. 2502 2514, 2005.
- Kolbi, R., McDonald, M., Fisher, G. and Brackstone, M. Probe Vehicle: A Comparison of Motorway Performance Measure with Other Motorway Flow Detection Analysis, <u>Proceeding of the 11th International Road Transport Information and Control Conference</u>, pp. 182 -186, U.K, 2002.
- Koppelman, F.S., Schofer, J.L., Bhandari, Sethi, N. V., and Ivan, J.N. <u>Calibration of Probe and Fixed Detector Algorithm Parameters with Simulated Data</u>. (online). Available from: http://ais.its.program.anl.gov/advance/reports/REPORTS. HTML/trf151/trfid151.html [January 2006].
- Lee, D. H., Chandrasekar, P., and Cheu, R.L. Customized Simulation Modeling Using
 Paramics Application Programmer Interface, <u>Proceeding of the IEEE Intelligent</u>
 <u>Transport System Conference</u>, pp. 842-847, U.S.A, 2001.
- Li, Y., and McDonald, M. Link Travel Time Estimation Using Single GPS Equipped

 Probe Vehicle, <u>Proceeding of the 5th International IEEE Intelligent Transport</u>

 <u>System Conference</u>, pp. 932-937, Singapore, 2002.

- Linnartz, J.P.M.G., and Westerman, M. Monitoring a Metropolitan Freeway System
 Using Probe Vehicles and Random Access Radio Channel, <u>Proceeding of the Vehicular Technology Conference</u>, Vol.1, pp. 410-414, Stockholm, 1994.
- Lin, H.E. The Application of Microsimulation in the Development of Dynamic Travel-Time Prediction Model, <u>Proceeding of the 26th Australian Institutes of Transport</u> Research Conference, Australia, 2004.
- Millar, G. <u>The Application of Paramics Microscopic Simulation in Solving Real</u>

 <u>Transportation Problems</u>. (online). Available from: http://www.paramics-online.com/public_docs/reports/3Asia.pdf [June 2005].
- McKay, B. Transport Modellers Meet a Simulated Real World, <u>Proceeding of the Transportation International Conference</u>, Australia, 2000.
- Maekawa, M. ITS (Intelligent Transportation System) Solutions, <u>NEC Journal of Advanced Technique</u>, pp. 194-199, 2004.
- Nanthawichit, C., Nakatsuji, T., and Suzuki, H. Dynamic Estimation of Traffic States on a Freeway Using Probe Vehicle Data, <u>Journal of Infrastructure Planning and Management</u>, JSCE, pp. 43-53, 2003.
- Nanthawichit, C. and Nakatsuji, T., and Suzuki, H. Application of Probe Vehicle Data for Real-Time Traffic State Estimation and Short-Term Travel Time Prediction on a Freeway, <u>Transportation Research Record</u>, pp. 47-59, 2004.
- Okamoto, H. Recent Developments in Japanese Traffic Information Supply System

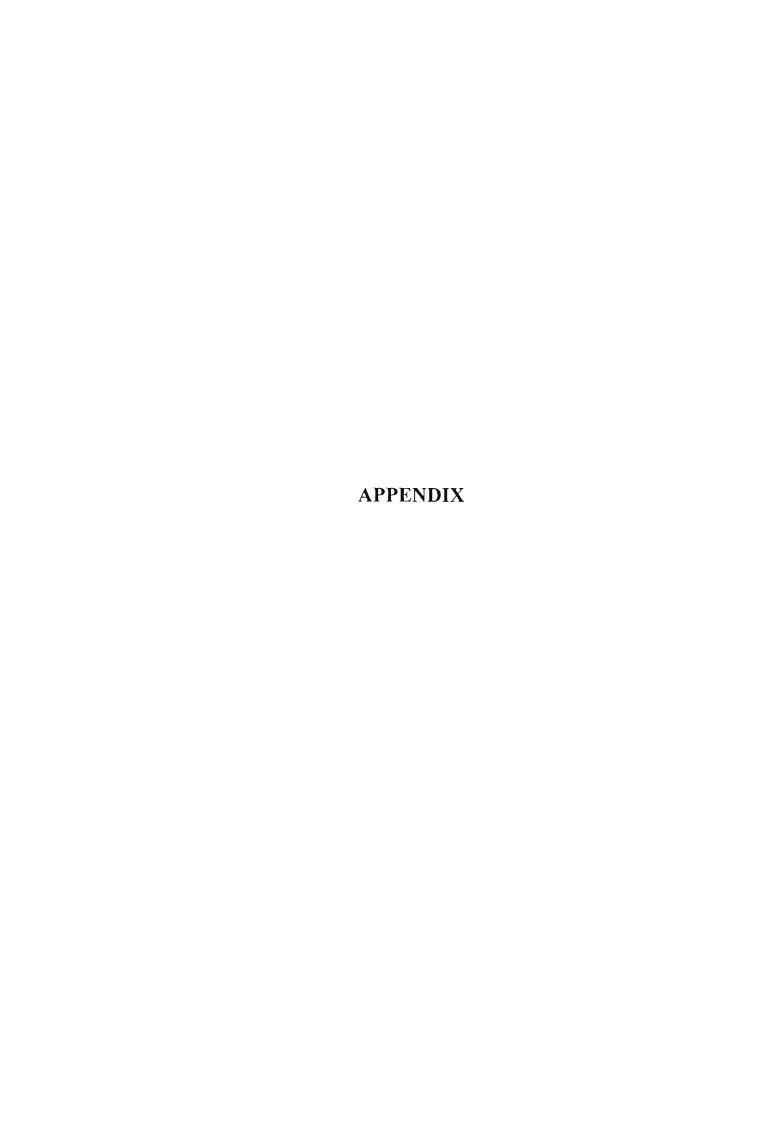
 <u>Proceeding of the IEEE IEE Vehicle Navigation & Information Systems</u>

 <u>Conference</u>, pp. 204-207, Ottawa, 1993.
- Pursula, M. Simulation of Traffic Systems, an Overview, <u>Journal of Geographic</u> Information and Decision Analysis, Vol. 3, No.1, pp. 1-9, 1999.
- Quadstone Ltd. Modeller Reference Manual V5.0. Edinburg, 2003.
- Sen, A., Thakuriah, P.V., Zhu, X.Q., and Karr, A. Frequency of Probe Reports and Variance of Travel Time Estimates, <u>Journal of Transportation Engineering</u>, Vol. 123, No. 4, pp. 290-297, 1997.

- Thomas, K., and Dia, H. Incident Detection on Arterials Using Neural Network Data

 Fusion of Simulated Probe Vehicle and Loop Detector Data, <u>Proceeding of the</u>

 26th Australian Institutes of Transport Research Conference, 2004.
- Taylor, M.A.P., Bonsall, P.W., and Young, W. <u>In Understanding Traffic Systems: Data</u>, <u>Analysis and Presentation</u>, 2ed edition, Ashgate Publishing Ltd, pp. 197-206, 2000.
- Taylor, M.A.P., Woolley, J.E., and Zito, R. Immersion Reality: Combining


 Microsimulation Modeling and Probe Vehicles Traffic Studies, <u>Proceeding of the 5th International IEEE Intelligent Transport System Conference</u>, pp. 610-615, Singapore, 2002.
- Toppen, A., and Wunderlich, K. <u>Travel Time Data Collection for Measurement of Advanced Traveller Information System Accuracy</u>. (online). Available from: http://www.itsdocs.fhwa.dot.gov//JPODOCS/REPTS_TE//13867.html
 [November 2005].
- Turner, S.M., and Holdener, D.J. Probe Vehicle Sample Sizes For Real-Time
 Information: The Houston Experience, <u>Proceeding of the Vehicle Navigation and Information Systems Conference</u>, pp. 3-10, U.S.A, 1995.
- Turner, S. M. Advanced Techniques for Travel Time Data Collection,

 <u>Proceeding of the Vehicle Navigation and Information Systems Conference</u>,

 pp. 40-47, U.S.A, 1995.
- Turner, S. M., Eisle, W.L., Benz, R. J. and Holdener, D. J. <u>Travel Time Data Collection</u> Handbook, Texas Transportation Institute, Texas, 1998.
- Van Grol, H.J.M., Danech-Pajouh, M., Manfredi, S., and Whittaker, J. DACCORD: On-Line Travel Time Prediction, <u>Proceeding of the World Conference on Transport</u> <u>Research Society (WCTRS)</u>, Vol. 2, pp. 455-467, 1999.
- Zito, R., D'este, G., and Taylor, M.A.P. Global Positioning Systems in the Time Domain:

 How Useful A Tool For Intelligent Vehicle-Highway Systems?, <u>Transportation</u>

 Research Part C: Emerging Technologies, Vol. 3, Issue 4, pp. 193-209, 1995.

The "demand" file specified in Paramics V5 associated with Figure 3.4

Table 1 Demand file for traffic volume 4000veh/h (All traffic volumes are in veh/h)

	To 1	To 2	To 3	To 4	To 5	To 6	To 7	To 8	To 9	To 10	To 11	To 12	Total
From 1	0	199	36	21	22	23	22	21	35	18	29	0	426
From 2	200	0	21	21	35	26	35	34	36	34	29	9	480
From 3	9	12	0	9	12	12	9	168	10	3	12	12	268
From 4	8	8	8	0	12	10	10	15	172	12	16	11	282
From 5	12	13	12	14	0	6	7	16	12	201	12	8	313
From 6	11	12	16	12	13	0	8	12	11	9	199	7	310
From 7	12	18	18	15	14	14	0	11	7	14	0	210	333
From 8	18	17	222	21	23	9	9	0	13	9	4	8	353
From 9	9	12	16	210	24	7	21	5_	0	0	5	7	316
From 10	8	8	4	19	180	17	18	12	12	0	6	6	290
From 11	12	12	14	13	14	190	16	7	8	12	0	3	301
From 12	12	23	13	22	16	15	189	13	12	5	8	0	328
												Total	4000

Table 2 Demand file for traffic volume 6000veh/h (All traffic volumes are in veh/h)

	To 1	To 2	To 3	To 4	To 5	To 6	To 7	To 8	To 9	To 10	To 11	To 12	Total
From 1	0	322	45	54	66	48	65	54	54	43	44	34	829
From 2	342	0	26	42	51	44	44	35	34	40	42	32	732
From 3	16	33	0	33	24	22	15	125	34	48	26	16	391
From 4	29	22	45	0	44	25	37	4	132	34	42	20	435
From 5	34	16	42	26	0	32	19	32	32	121	51	20	425
From 6	32	15	23	32	16	0	29	41	32	51	166	30	467
From 7	31	19	21	45	43	21	0	19	23	42	22	122	409
From 8	29	18	166	25	45	42	28	0	6	40	21	34	454
From 9	25	23	23	204	32	5	13	35	0	45	32	18	455
From 10	24	21	23	23	200	23	6	51	40	0	31	35	477
From 11	22	16	38	21	24	211	41	45	32	44	0	24	519
From 12	23	34	31	42	24	45	120	23	37	15	14	0	408
												Total	6000

Table 3 Demand file for traffic volume 8000veh/h
(All traffic volumes are in veh/h)

	To 1	To 2	To 3	To 4	To 5	To 6	To 7	To 8	To 9	To 10	To 11	To 12	Total
From 1	0	484	55	78	32	40	45	28	30	50	47	43	932
From 2	422	0	23	33	40	34	39	35	54	56	38	50	824
From 3	32	43	0	56	28	28	28	146	40	50	52	25	528
From 4	45	34	45	0	44	48	48	38	240	30	50	46	669
From 5	44	44	40	63	0	63	24	28	24	160	32	40	562
From 6	40	43	33	52	52	0	49	50	29	34	188	65	636
From 7	50	47	43	50	54	45	0	47	25	22	65	187	635
From 8	22	77	140	40	44	34	43	0	35	47	35	40	557
From 9	25	32	45	256	47	32	48	51	0	34	51	44	665
From 10	23	32	25	71	289	20	45	32	34	0	40	39	650
From 11	24	34	35	30	75	246	72	28	42	43	0	34	663
From 12	50	41	43	40	32	44	210	40	50	84	45	0	679
												Total	8000

Table 4 Demand file for traffic volume 10000veh/h (All traffic volumes are in veh/h)

	To 1	To 2	To 3	To 4	To 5	To 6	To 7	To 8	To 9	To 10	To 11	To 12	Total
From 1	0	589	62	70	55	72	73	35	65	82	65	65	1233
From 2	510	0	77	51	81	84	65	50	66	65	89	66	1204
From 3	43	52	0	56	68	45	45	200	49	50	59	50	717
From 4	45	43	51	0	72	48	55	47	250	59	48	46	764
From 5	43	54	43	66	0	65	63	56	48	296	56	58	848
From 6	45	66	56	42	55	0	49	70	57	46	270	65	821
From 7	56	59	45	50	54	65	0	32	48	57	65	245	776
From 8	45	50	160	44	56	63	45	0	49	50	44	50	656
From 9	49	42	69	180	47	65	48	51	0	58	65	54	728
From 10	58	42	40	54	190	45	54	64	62	0	5 9	48	716
From 11	53	56	47	52	75	156	72	55	42	65	0	49	722
From 12	60	51	51	51	59	59	220	52	50	73	88	0	814
										Ĺ		Total	10000

Table 5 Demand file for traffic volume 12000veh/h (All traffic volumes are in veh/h)

	To 1	To 2	To 3	To 4	To 5	To 6	To 7	To 8	To 9	To 10	To 11	To 12	Total
From 1	0	704	94	64	69	89	100	35	94	89	105	87	1530
From 2	699	0	99	89	89	63	88	56	98	84	91	99	1555
From 3	77	23	0	86	33	78	66	216	44	82	80	41	826
From 4	68	90	91_	0	96	14	86	35	270	65	145	68	1027
From 5	71	86	68	60	0	84	71	35	87	301	25	72	960
From 6	87	82	50	37	52	0	84	88	16	22	255	80	853
From 7	72	67	33	57	99	69	0	99	45	78	81	192	891
From 8	68	46	180	88	80	28	92	0	41	88	50	50	810
From 9	45	80	80	189	85	95	84	69	0	23	43	49	841
From 10	23	78	85	77	222	80	51	23	0	0	59	77	775
From 11	23	62	66	30	23	282	146	72	102	87	0	78	971
From 12	81	50	74	67	68	104	236	36	67	58	120	0	962
												Total	12000

BIOGRAPHY

Masria binti Mustafa was born in Negeri Sembilan, Malaysia on October 26, 1981. She was graduated from University of Science Malaysia in 2004 with Bachelor Degree in Civil Engineering. She has received the AUN/SEED-Net JICA Scholarship which enables her to start her Master Degree in Civil Engineering (Transportation Engineering) at Chulalongkorn University, Thailand in the same year. Upon graduation, Masria plans to further her PhD in Transportation Engineering related field before returning to work in Malaysia.

