
C H A P T E R  III

L IT ER A T U R E R E V IE W S

In this chapter, I classify the serveyed papers into two categories of organisms—Prokaryotic 
and Eukaryotic organisms. Fickett et al. [1] published an excellent overview of the pro­
moter recognition algorithms. Besides giving a great introduction and overview of the 
biological process, they compared various programs on a standardized eukaryote data 
set. From the result, they concluded that the problem of eukaryotic promoter recognition 
was complex and far from being solved.

3.1 Prom oter R ecogn ition  in Prokaryotes

The first in silico promoter studies concentrated on prokaryotic promoters, which have 
less complex structures than their eukaryotic counterparts.

Mahadevan and Ghosh [2] invented a three modules for predicting the consensus 
boxes. In the first module, two neural networks learned the -10 and the -30 bp conserved 
regions. The second module aligned the sequence, relying on the spacer length. The third 
module which had one neural network, learned how to predict the aligned sequences.

Pedersen [3, 4] used the Hidden Markov Model [3] and the neural network [4] to find 
some distinct features of promoters.

Ma et al. [5] combined expectation maximization (EM) algorithms with NN. The 
EM algorithm was used for locating the -35 and -10 binding sites. Then, features in 
each training promoter were choosen according to their information content and fed to
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an ANN for promoter recognition.
Takashi Matsuda [6] predicted the promoter using data mining method, which was 

a graph-based induction method. The accuracy of their methods is about 84.91% based 
on their test data.

Matsuyama and Kawamura [7] proposed Independent Component Analysis (ICA) 
algorithm that included a position-dependent conversion based on symbol frequencies.

Huang and Wang [8] proposed a hybrid learning system to calculate the distribution 
of oligo-neucleotides statistics as position weight matrices and fed as inputs to the sup­
port vector machine (SVM) for discriminate promoters and non-promoters. Their result 
is better than other prokaryotic promoter prediction methods with 97.2% accuracy.

3.2 Prom oter R ecognition  in Eukaryotes

One of the first statistical studies of RNA Polymerase II promoter regions in eukaryotes 
was performed by Bucher [9], who analyzed functional promoter sites from different 
eukaryotes and built statistical weight matrices for each individual element, such as the 
TATA box, Inr site, CAAT box and the GC box. The weight matrices were based on 
counts of a specific nucleotide at a fixed position.

PromoterScan [10] recognizes primate promoters by means of (1) the TATA PWM 
from Bucher [9], and (2) the density of specific transcription factor binding sites.

Hutchinson [11] proposed an algorithm which employed a simple frequency analysis 
of differential hexamers (sequence with 6 nucleotides). The true positive accuracy of the 
testing is sets over 62%.

Audic and Claverie [12] used two Markov transition matrices of promoter, a non­
promoter, and an objective Baye’s theorem function to determine whether a non-characterized 
DNA sequence was a promoter or a non-promoter. The results showed nearly 50% true
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positive for the testing set. This was due to the Markov transition matrix of a promoter 
set that it did not seem to learn the features of promoter well.

PromFind [13] is not based on any collection of putative transcription factor binding 
sites but rather on the differences in nucleotide hexamer frequencies between promoters, 
protein coding regions, and noncoding regions downstream of the first coding exon.

TSSG and TSSW [14] both applies the same underlying algorithm, which uses a linear 
discriminant function combining (1) a TATA box score, (2) triplet preferences around 
the TSS, (3) haxamer preferences relative to the TSS, and (4) potential transcription 
factor binding sites.

NNPP2.1 [15] is constructed from time-delay neural networks to recognize Drosophila 
melanogaster promoters. It is based on the recognition of two specific signals within 
the promoter regions ะ the TATA-box and the initiator (Inr), as well as their mutual 
distance. This system uses three time-delay ANNs, one for recognition of the TATA-box, 
one for Inr, and one that combines the outputs of the two and accounts for the spatial 
distance between these signals.

Promoterlnspector [16], one of the most well-known content-based promoter predic­
tion tools which gives attention to analyzing genetic context instead of context location. 
The main idea is to extract common sequence features from training sequences and gen­
erates a set of context features called IUPAC word dictionaries. The Promoterlnspector 
introduces not only a promoter region as the training set but also three non-promoter se­
quences, namely exon, intron and 3’UTR. The greatest advantage of Promoterlnspector 
seem to be that of dramatically reducing false positives.

McPromoter [17] integrates physical proterties of DNA, such as DNA bendability 
or GC content into probabilistic promoter recognition system. In the new model, a 
promoter is represented as a sequence of consecutive segments represented by joint like­
lihoods for DNA sequence and profiles of physical properties. Sequence likelihoods are
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modelled with interpolated Markov chains and physical properties with Gaussian distri­
butions.

Promoter 2.0 [18] combines several neural networks. Each neural network model 
used perceptron algorithms. There are four networks responded to TATA-box, cap site, 
CCAAT-box and GC box. To optimize these neural networks, genetic algorithms are 
used to randomly choose and change an indiviual weight. Promoter 2.0 reported 63% 
true positives for its test data.

Dragon Promoter Finder 1.2 (DPF) [19] is an integrate promoter prediction model 
that predicts promoters of vertebrates. The DPF consists of a nonlinear promoter recog­
nition model, sensors for recognizing specific functional regions of DNA, signal processing 
and artificial neural networks. The data window contents pass through three sensors i.e., 
promoter, exon and intron. A non-linear signal processing model further analyzes the 
sensors’ outputs and feeds them into to a neural network. The DPF 1.3 extends the 
capability for recognizing a GC-rich or GC-poor DNA sequence.

Daniel and Karl [20] used Genetic Programming (GP) to build a classifier for rec­
ognizing promoter regions in the primary sequence data of eukaryotes. The basic idea 
is to be able to look at the model that is built and to identify specific motifs and their 
locations.

PromPredictor [21] recognizes promoter regions in the human genome. PromPre- 
dictor extracts compositional features and CpG islands information from genomic se­
quence, feeding these features as inputs for a hybrid neural network system (HNN) and 
then applies the HNN for subsequent prediction. It combines a novel promoter recogni­
tion model, coding theory, feature selection and dimensionality reduction with machine 
learning algorithm. Evaluation on Human chromosome 22 was 66% in sensitivity and 
48% in specificity.

Prometheus [22] uses non-linear time series descriptors along with nonlinear machine-
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learning algorithms, support vector machine (SVM), are used to discriminate between 
promoter and non-promoter regions. It specifically deals with the application of non­
linear dynamics and statistical thermodynamics descriptors, such as Lyapunov compo­
nent and Tsallis entropy along with non-linear machine-learning algorithms. Prometheus 
is found to perform significantly better than some other promoter finding programs.
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