รายการอ้างอิง

- ASTM E561-94, Standard Practice for R-Curve Determination. ASTM Standard 3.01. <u>American Society for Testing and Materials</u>, 1996.
- ASTM E647, Standard test method of measurement of fatigue crack growth rates. ASTM Standard 3.01. <u>American Society for Testing and Materials</u>, 1996.
- 3. F. Alten, JR. Grandt. Fundamentals of structural integrity : John Wiley & Sons, 2004.
- 4. T. L. Anderson. Fracture mechanics: fundamentals and application. Second Edition , 1995
- W. F. Deans and C. E. Richards. A simple and sensitive method of monitoring crack and load in compact fracture mechanics specimens using strain gages. <u>Journal of Testing</u> <u>and Evaluation</u> 7, 3, (1979): 147-154.
- K. -H. Schwalbe and Dieter Hellmann. Application of the electrical potential method to crack length measurements using Johnson's formula. <u>Journal of Testing and</u> <u>Evaluation</u> 9, 3, (May 1981): 218-221.
- D. W. J. Pulle. Crack length measurement : Analysis of the electropotential method using a finite element method. <u>Journal of strain analysis</u> 21, 3, (1986) : 127-134.
- W. K. Wilson. On the electrical potential analysis of a cracked fracture mechanics test specimen using the finite element method. <u>Engineering fracture mechanics</u> 18, (1983) : 349-358.
- G. H. Aronson and R. O. Ritchie. Optimization of the electrical potential technique for crack growth monitoring in compact test piece using finite element analysis. <u>Journal of</u> <u>Testing and Evaluation</u> 7, 4, (1979) : 208-215.
- R. O. Ritchie and K. J. Bathe. On the calibration of the electrical potential technique for monitoring crack growth using finite element methods. <u>International Journal of</u> <u>Fracture 15, 1, (1979): 47-55.</u>
- K. -H Schwalbe, W. Setz. R Curve and Fracture Toughness of thin sheet materials. Journal of Testing and Evaluation 9, 4, (1981).
- C. G. Chipperfield. Detection and Toughness characterisation of ductile crack initiation in 316 stainless steels. <u>International Journal of Fracture</u> 12, 6, (December 1976) : 873-886.

- R. Brazil, G. W. Simmons and R. P. Wei. Fatigue Crack Growth in 2¹/₄ Cr-1Mo Steel Exposed to Hydrogen containing gases. <u>Journal of Engineering Materials and</u> <u>Technology</u> 101, (July 1979) : 199-204.
- R. P. Wei and R. L. Brazill. An Assessment of A-C and D-C potential systems for monitoring fatigue crack growth. <u>American Society for Testing and Materials</u>, (1981) : 103-119.
- 15. Wen-Hwa Chen, Jen-Shiung Chen, Huei-Lu Fang. A theoretical procedure for detection of simulated cracks in a pipe by the direct current-potential drop technique. <u>Nuclear</u> <u>Engineering and design</u> 216, (2002) : 203-211.
- R. H. Vanstone and T. L. Richardson. Potential-drop monitoringof cracks in surface-flawed specimens. <u>American Society for Testing and Materials</u>, (1985) : 148-166.
- M. Enmark, G. Lucas and G. R. Odette. An electric potential drop technique for characterizing part-through surface cracks. <u>Journal of nuclear materials</u> 191-194, (1992): 1038-1041.
- R. Ghajarieh, M. Saka, T. Sugawara, H. Abe, I. Komura and H. Sakamoto. NDE of multiple cracks on the surface of materials by means of the potential drop technique. <u>NDT & E</u> <u>International.</u> (1994) : 143-150.
- J. Liu and P. Bowen. DC potential drop calibration in matrix-cladded Ti MMC specimens with a corner notch. <u>International Journal of Fatigue</u> 25, (2003): 671-676.
- 20. L. Gandossi, S. A. Summers, N. G. Taylor, R. C. Hurst, B. J. Hulm and J. D. Parker. The potential drop method for monitoring crack growth in real components subjected to combined fatigue and creep conditions: application of FE techniques for deriving calibration curves. <u>International Journal of Pressure Vessels and Piping</u> 78, (2001) : 881-891.
- David Halliday, Robert Resnick, Jearl Walker. <u>Fundamentals of physics</u>. Fifth Edition : John Wiley & Sons, 1997.
- 22. ภาควิชาฟิสิกส์ จุฬาลงกรณ์มหาวิทยาลัย. <u>ฟิสิกส์ 2</u>. พิมพ์ครั้งที่ 10 กรุงเทพมหานคร : สำนักพิมพ์จุฬาลงกรณ์มหาวิทยาลัย, 2541.
- ก่องกัญจน์ ภัทรากาญจน์, ธนกาญจน์ ภัทรากาญจน์. <u>ฟิสิกส์มหาวิทยาลัย 2</u> กรุงเทพมหานคร : สำนักพิมพ์สถาบันเทคโนโลยีพระจอมเกล้าพระนครเหนือ, 2530.
- 24. Metal Handbook, Mechanical testing 8. American Society for metals. 1985

- 25. Robert D. Cook, David S. Malkus, Michael E. Plesha. <u>Concepts and application of finite</u> <u>element analysis</u>. John Wiley & Sons, 1989.
- ปราโมทย์ เดชะอำไพ. <u>ไฟในต์เอลิเมนต์ในงานวิศวกรรม</u>. พิมพ์ครั้งที่ 2 กรุงเทพมหานคร : สำนักพิมพ์จุฬาลงกรณ์มหาวิทยาลัย, 2542.
- 27. Toshihisa Nishioka, Hiroyuki Tokudome, Masahiro Kinoshita. Dynamic fracture-path prediction in impact fracture phenomena using moving finite element method based on Delaunay automatic mesh generation. <u>International Journal of Solids and Structures</u> 38, (2001): 5273-5301.
- 28. D. P. Rooke and D. J. Cartwright. Conpendium of Stress intensity factors.H.M.S.O, 1976.
- The Society of Materials Science. <u>Stress intensity factors handbook</u>. First Edition :Pergamon Press, December 1986.
- 30. API Recommend practice 579. Fitness-for-service. First edition : January 2000.
- 31. ปราโมทย์ เดชะอำไพ, สุทธิศักดิ์ พงศ์ธนาพาณิช. <u>ไฟไนต์เอลิเมนต์อย่างง่าย</u>. พิมพ์ครั้งที่ 1 กรุงเทพมหานคร : สำนักพิมพ์จุฬาลงกรณ์มหาวิทยาลัย, 2548.

ภาคผนวก

.

ภาคผนว<mark>ก ก</mark>

ความต่างศักย์อ้างอิง

ความต่างศักย์อ้างอิง (คำนวณจากสมการที่ (3.21)) แบ่งได้สองกรณี คือ ความต่างศักย์ตาม แนวแกน y และความต่างศักย์ตามแนวแกน x โดยแต่ละตารางประกอบด้วยความต่างศักย์ที่ ระยะห่างระหว่างจุดวัดความต่างศักย์ใด ๆ ตามแนวแกนที่ป้อนกระแสไฟฟ้า บนชิ้นทดสอบที่ไม่มี รอยร้าว โดยตารางที่ ก.1 แสดงก่าความต่างศักย์ตามแนวแกน y เมื่อป้อนกระแสไฟฟ้าแกน y ตาราง ที่ ก.2 แสดงก่าความต่างศักย์ตามแนวแกน x เมื่อป้อนกระแสไฟฟ้าแกน x

ความต่างศักย์อ้างอิงจะถูกใช้เป็นผลเฉลยแม่นตรงในกรณีชิ้นทคสอบไม่มีรอยร้าวในบทที่ 3 และใช้เป็นความต่างศักย์อ้างอิง (V,) เพื่อหารค่าความต่างศักย์ (Normalize) ที่ได้จากวิธีไฟไนต์เอ ลิเมนต์ กรณีชิ้นทคสอบมีรอยร้าว เพื่อสร้างเส้นโค้งสอบเทียบ (Calibration curve)

ระยะห่างระหว่างจุดวัดกวามต่างศักย์ (mm)	ความต่างศักข์ Exact solutions (μV)
10	21 978
20	43 956
30	65 934
40	87 912
50	100.800
60	131 868
70	153.846
80	175.824
	175.024

ตารางที่ ก.1 ความต่างศักย์ระหว่างจุดวัดสองจุดบนแกน y เมื่อป้อนกระแสไฟฟ้าแกน y

ตารางที่ ก.2 ความต่างศักย์ระหว่างจุดวัดสองจุดบนแกน x เมื่อป้อนกระแสไฟฟ้าแกน x

ระยะห่างระหว่างจุดวัดกวามต่างศักย์ (mm)	ความต่างศักข์ Exact solutions (μV)
10	5.495
20	10.989

ภาคผนวก ข

ลักษณะไฟล์นำเข้าและไฟล์ผลลัพธ์ของโปรแกรมไฟไนต์เอลิเมนต์

เนื้อหาส่วนนี้แสดงรายละเอียดของไฟล์สำหรับโปรแกรมไฟไนต์เอลิเมนต์ ประกอบด้วย รายละเอียดไฟล์สองไฟล์ คือ ไฟล์นำเข้าและไฟล์ผลลัพธ์

ข.1 ลักษณะของไฟล์นำเข้า

เนื่องจากขั้นตอนการสร้าง โมเคลชิ้นทคสอบและการสร้างเอลิเมนต์นั้นใช้ โปรแกรม สำเร็จรูป Easy FEM [31] ซึ่งให้ก่าตำแหน่งพิกัคที่จุดต่อ (Nodal Coordinates) ,โหลคภาระ (Load) และเงื่อนไขขอบเขต (Boundary conditions) ซึ่งอยู่ในรูปแบบไฟล์นามสกุล .dat คังรูปที่ ข.1

FILEID=FEMESH SCRIPT COMMAND DATA_FILE_VERSION= TITLE= SUBTITLE= DATE= DATA DIR= PROG DIR= OUTPUT FILE= SOL= PROBLEM ID= SOLVER ID= **REMESH HMIN=** REMESH HMAX= ERROR MIN= ERROR MAX= ERROR_CUTOFF= ERROR_INDICATOR_VARS_ID=

ERROR_INDICATOR_TYPE_ID=

AUTO_DISPLAY=

BANDWIDTH=

TEMPORAL_DISCRETIZATION=

SHOW_ITERS=

NUMBER_OF_STEP=

TIME_STEP=

ITER_NUMS=

SAVE_ITERS=

OUT_ITERS=

NODE_NUMS=

ELEMENT_NUMS=

NODAL_LOADS=

ELEMENTAL_LOADS=

SIDAL_LOADS=

MAX_PROPERTY_NUMS=

PROPERTY_NUMS=

END=

BEGIN BULK

NODE	NODI	E(BW)		
1	2			
2	1			
3	3			
4	4			
NODE	Х	Y	H [N	ODE=4]
1	-0.0125	0.05	0.0	
2	-0.0125	-0.05	0.0	
3	0.0125	-0.05	0.0	
4	0.0125	0.05	0.0	
ELEM	Ι	J	К	PROP [TRIANGLE=2]
1	1	3	4	1
2	1	2	3	1

NODE	L-ID	Т	Qs						
4	1	0.0	0.0						
1	1	0.0	0.0						
ELEM	L-ID	Q	QS	Ti	Н				
ELEM	N1	N2	L-ID	Qs1	Qs2	2	Til	Ti2	Н
2	2	3	1	80000.0	80	000.0	0.0	0.0	0.0
PROPID	TYPE	DENSI	TY	CONDUCTI	VITY	SPEC	HEAT	THICK	
1	1013	0.0		36400000.0		0.0		0.005	
END BULI	K								

รูปที่ ข.1 ไฟล์นำเข้านามสกุล .dat ของโปรแกรมไฟไนต์เอลิเมนต์สำหรับปัญหาศักย์ไฟฟ้า ซึ่งได้จากโปรแกรม Easy FEM [31]

ส่วนที่ 1 เป็นส่วนหัวของไฟล์ ประกอบไฟด้วยข้อมูลที่จำเป็นในการวิเคราะห์ปัญหาด้วย ระเบียบวิธีทางไฟไนต์เอลิเมนต์ ส่วนที่จำเป็นสำหรับการอ่านก่าของโปรแกรมไฟไนต์เอลิเมนต์ สำหรับปัญหาการกระจายศักย์ไฟฟ้านั้นประกอบไปด้วย

NODE_NUMS	บอกจำนวนจุดต่อ
ELEM_NUMS	บอกจำนวนเอลิเมนต์
NODAL_LOADS	บอกจำนวนภาระ โหลดบนจุดต่อ
SIDAL_LOADS	บอกจำนวนภาระ โหลคบนขอบเอลิเมนต์

ส่วนที่ 2 เป็นส่วนข้อมูลที่กำหนคหมายเลขของจุดต่อและตำแหน่งพิกัดของจุดต่อ

ตัวอย่างเช่น :	NODE	Х	Y
	1	-0.0125	0.05
	2	-0.0125	-0.05
	3	0.0125	-0.05
	4	0.0125	0.05

ส่วนที่ 3 เป็นส่วนข้อมูลที่กำหนดหมายเลขของเอลิเมนต์ ซึ่งประกอบไฟด้วยหมายเลขของ จุดต่อที่รวมกันเป็นเอลิเมนต์นั้น ๆ

ตัวอย่างเช่น :	ELEM	Ι	J	K
	1	1	3	4

2 1 2 3

ส่วนที่ 4 เป็นส่วนที่บอกว่าจุดต่อใดบ้างที่ได้รับโหลดภาระ ซึ่งประกอบไปด้วยหมายเลขจุด ต่อ, หมายเลขระบุประเภทของโหลดภาระ ถ้าเป็นหมายเลข 1 คือ โหลดภาระศักย์ไฟฟ้า (V) ที่จุด ต่อนั้น ถ้าเป็นหมายเลข 2 คือ โหลดภาระความหนาแน่นกระแสไฟฟ้า (J) และค่าโหลดภาระที่จุด ต่อ

ตัวอย่างเช่น :	NODE	L-ID	Т	Qs
	4	1	0.0	0.0
	1	1	0.0	0.0

ส่วนที่ 5 เป็นส่วนที่บอกว่าเอลิเมนต์ใดบ้างที่ได้รับโหลดภาระด้านขอบบ้าง ซึ่งประกอบ ไปด้วยหมายเลขเอลิเมนต์, หมายเลขจุดต่อของขอบที่ได้รับโหลดภาระ, หมายเลขระบุประเภท ภาระจุดต่อ หมายเลข 1 คือ ภาระโหลดความหนาแน่นกระแสไฟฟ้า (J) และค่าโหลดภาระต่างๆ บนขอบเอลิเมนต์

ตัวอย่างเช่น :	ELEM	N1	N2	L-ID	Qsl	Qs2	
	2	2	3	1	8000	0. 800)00.

ส่วนที่ 6 เป็นส่วนข้อมูลคุณสมบัติของวัสคุ ซึ่งส่วนที่จำเป็นในการอ่านค่าของโปรแกรม ไฟในต์เอลิเมนต์สำหรับปัญหาการกระจายศักย์ไฟฟ้า คือ

CONDUCTIVITY	บอกค่าสภาพการนำไฟฟ้า
THICK	บอกค่าความหนาของโมเคลชิ้นทคสอบ

ข.2 ลักษณะของไฟล์ผลลัพธ์

ผลเฉลยศักย์ไฟฟ้าจะถูกพิมพ์ลงในไฟล์ชื่อที่กำหนดไว้ ซึ่งจะมีด้วยกัน 2 ไฟล์ คือ ไฟล์ ผลลัพธ์ที่ระบุก่าศักย์ไฟฟ้าที่จุดต่อและไฟล์สำหรับแสดงผลกราฟฟิกที่ระบุทั้งก่าจำนวนจุดต่อ, จำนวนเอลิเมนต์, ดำแหน่งพิกัดจุดต่อ, ก่าศักย์ไฟฟ้าที่จุดต่อ, หมายเลขจุดต่อที่รวมกันเป็นเอลิเมนต์

<u>ไฟล์ผลลัพธ์</u>

NODAL VOLTAGE SOLUTIONS

NODE	VOLTAGE
1	.000000E+00
2	.219780E-03
3	.219780E-03
4	.000000E+00

<u>ไฟล์แสดงผลกราฟฟิก</u>

NPOIN	NELEM	NVAR	
4	2	1	

NODAL COORDINATES & SOLUTIONS

1	-0.0125	0.05	.000000E+00
2	-0.0125	-0.05	.219780E-03
3	0.0125	-0.05	.219780E-03
4	0.0125	0.05	.000000E+00

ELEMENT NODAL CONNECTIONS

2	1	2	3	
 				_

ภาคผนวก ค

โปรแกรมคอมพิวเตอร์

ภาคผนวกนี้ประกอบไปด้วยโปรแกรมคอมพิวเตอร์ ภาษาฟอร์แทรน 2 โปรแกรม คือ โปรแกรมไฟในต์เอลิเมนต์สำหรับปัญหาศักย์ไฟฟ้า และโปรแกรมการประมาณค่าภายในสำหรับเอ ลิเมนต์สามหลี่ยม 3 จุดต่อ โดยแต่ละโปรแกรมมีรูปแบบไฟล์นำเข้าดังภาคผนวก ข

ค.1 โปรแกรมไฟในต์เอลิเมนต์สำหรับปัญหาศักย์ไฟฟ้า

เงื่อนไขการใช้งานโปรแกรมไฟไนต์เอลิเมนต์เอลิเมนต์สำหรับปัญหาศักย์ไฟฟ้า

- (1) ปัญหาสภาวะคงตัว (Steady state) แบบ 2 มิติ
- (2) วัสคุมีคุณสมบัติทางไฟฟ้าเหมือนกันทุกทิศทาง (Isotropic materials)
- (3) เอลิเมนต์แบบสามเหลี่ยม 3 จุดต่อ
- (4) ฟลักซ์กระแสไฟฟ้าหรือความหนาแน่นกระแสไฟฟ้า ป้อนเฉพาะที่ผิวค้านข้างของเอลิ เมนต์
- (5) รูปแบบไฟล์นำเข้า ดังภาคผนวก ข.1

С	program compute potential voltage for MT specimen
С	
С	
С	analysis program for two-dimensional steady-state current
С	flux without internal current flux generation
С	
С	
С	MXPOI = maximum number of nodes in the model
С	MXELE = maximum number of elements in the model
С	MXHBW = maximum number of half-bandwidth
С	

```
PARAMETER (MXPOI=2416, MXELE=4564, MXHBW=5000)
С
     IMPLICIT REAL*8(A-H,O-Z)
     DIMENSION COORD(MXPOI,2), TEMP(MXPOI)
     DIMENSION SYSK(MXPOI,MXHBW), SYSQ(MXPOI)
     CHARACTER*20 NAME1, NAME2, NAME3
     CHARACTER*50 TEXT
С
     INTEGER INTMAT(MXELE,3), IBC(MXPOI), LTYPE(MXELE)
С
 6000 WRITE(6,6010)
 6010 FORMAT(/,'ENTER THE INPUT FILE NAME:')
     READ(5,'(A)', ERR=6000) NAME1
     OPEN(UNIT=7, FILE=NAME1, STATUS='OLD', ERR=6000)
C-----
С
С
     read title of computation:
С
C.....read input data:
С
      READ(7,*)
                TEXT !FIELD=FEMESH SCRIPT COMMAND
      READ(7,*)
                TEXT !DATA_FILE_VERSION=1
      READ(7,*)
                TEXT !TITLE=
      READ(7,*)
                TEXT !SUBTITLE=
      READ(7,*)
                TEXT !DATE=
      READ(7,*)
                TEXT !DATA_DIR
      READ(7,*)
                TEXT !PROG DIR
                TEXT !OUTPUT FILE
      READ(7,*)
                TEXT !SOL=
      READ(7,*)
                TEXT !PROBLEM ID
      READ(7,*)
      READ(7,*)
                TEXT !SOLVER ID
      READ(7,*)
                TEXT !REMESH HMIN
```

	READ(7,*)	TEXT !REMESH_HMAX
	READ(7,*)	TEXT !ERROR_MIN
	READ(7,*)	TEXT !ERROR_MAX
	READ(7,*)	TEXT !ERROR_CUTOFF
	READ(7,*)	TEXT !ERROR_INDICATOR_VARS_ID
	READ(7,*)	TEXT !ERROR_INDICATOR_TYPE_ID
	READ(7,*)	TEXT !AUTO DISPLAY
	READ(7,*)	TEXT !BANDWIDTH
	READ(7,*)	TEXT !TEMPORAL_DISCRETIZATION
	READ(7,*)	TEXT !SHOW_ITERS
	READ(7,*)	TEXT !NUMBER_OF_STEP
	READ(7,*)	TEXT !TIME_STEP
	READ(7,*)	TEXT !ITER_NUMS
	READ(7,*)	TEXT !SAVE_ITERS
	READ(7,*)	TEXT !OUT_ITERS
С		
С		
	READ(7,600	1) NPOIN !NODE_NUMS
6001	FORMAT(10)X,I8)
	IF(NPOIN.G	T.MXPOI) WRITE(6,6002) NPOIN
6002	FORMAT(/,	INCREASE THE PARAMETER MXPOI TO ', 15)
	IF(NPOIN.G	T.MXPOI) STOP
С		
С		
	READ(7,600	3) NELEM !ELEMENT_NUMS
6003	FORMAT(13	3X,18)
	IF(NELEM.C	GT.MXELE) WRITE(6,6004) NELEM
6004	FORMAT(/,	'INCREASE THE PARAMETER MXELE TO ', I5)
	IF(NELEM.C	GT.MXELE) STOP
С		
С		
С	NL = NUM	BER OF POINT LOAD (VOLTAGE LOAD)

```
С
      NSL = NUMBER OF ELEMENT LOAD (CURRENT FLUX LOAD)
С
С
      READ(7,6005) NL !NODAL LOADS
 6005 FORMAT(12X,I8)
С
      READ(7,*) TEXT !ELEMENT_LOADS
С
      READ(7,6007) NSL !SIDAL_LOADS
 6007 FORMAT(12X,I8)
С
      READ(7,*) TEXT !MAX_PROPERTY NUMS
      READ(7,*) TEXT !PROPERTY NUMS
      READ(7,*) TEXT !END=CMD
      READ(7,*) TEXT !BEGIN BULK
      READ(7,*) TEXT !NODE NODE(BW)
С
      DO 6020 I=1, NPOIN
      READ(7,*) TEXT
 6020 CONTINUE
С
      READ(7,*) TEXT !NODE X Y H
С
      DO 6030 IP=1, NPOIN
      READ(7,*) I, COORD(I,1), COORD(I,2)
      IF(I.NE.IP) WRITE(6,6008)
 6008 FORMAT(/, 'NODE NO.', I8, 'IN DATA FILE IS MISSING')
      IF(I.NE.IP) STOP
 6030 CONTINUE
С
      READ(7,*) TEXT !ELEM I J K PROP
С
```

89

```
DO 6040 IE=1, NELEM
      READ(7,*) I, INTMAT(I,1), INTMAT(I,2), INTMAT(I,3)
      IF(I.NE.IE) WRITE(6,6009)
6009 FORMAT(/, 'ELEM NO.', I8, 'IN DATA FILE IS MISSING')
      IF(I.NE.IE) STOP
6040 CONTINUE
С
С
      IBC(IP) = 1; SPECIFIED TEMPERATURE AT THIS POINT
С
      IBC(IP) = 0; NOT SPECIFIED TEMPERATURE AT THIS POINT
С
      READ(7,*) TEXT !NODE L-ID T QS
С
      DO 6050 IP=1, NPOIN
      IBC(IP) = 0
      TEMP(IP) = 0.
 6050 CONTINUE
С
      DO 6060 I=1, NL
      READ(7,*) IP, LID, TEMP(IP)
      IBC(IP) = 1
 6060 CONTINUE
С
      READ(7,*) TEXT !UNUSED LINE
      READ(7,*) TEXT !ELEM N1 N2 L-ID QS1 QS2
С
С
      LTYPE(IE) = 1 ; SPECIFIED HEAT-FLUX AT THIS ELEMENT
С
      LTYPE(IE) = 0 ; NOT SPECIFIED HEAT-FLUX AT THIS ELEMENT
С
      DO 6070 IE=1, NELEM
      LTYPE(IE) = 0
 6070 CONTINUE
С
```

```
DO 6080 I=1, NSL
     READ(7,*) IE, N1, N2, LID, QS
     LTYPE(IE) = 1
     IF(LTYPE(IE).EQ.1) LT1=1
6080 CONTINUE
С
     READ(7,*) TEXT !PROP TYPE DENSITY CONDUCTIVITY
    *
                     !SPEC_HEAT THICK
С
     READ(7,*) PROP, TYP, DENSITY, TK, Q, THICK
С
     READ(7,*) TEXT !END BULK
С
C-----
С
     WRITE(6,160)
 160 FORMAT(/,' THE F.E. MODEL INCLUDES THE FOLLOWING',
    *
             ' CURRENT TRANSFER MODE(S):',
    *
             /,' -- ELECTRIC CONDUCTIVITY
                                                   ')
     IF(LT1.EQ.1) WRITE(6,170)
 170 FORMAT( ' -- SPECIFIED SURFACE CURRENT FLUX ')
С
     NEQ = NPOIN
      DO 300 I=1,NEQ
      SYSQ(I) = 0.
 300 CONTINUE
С
С
      compute half-bandwidth:
С
      NHBW = 0
      DO 400 IE=1,NELEM
      MIN = 100000
```

MAX = 0

DO 410 IN=1,3

II = INTMAT(IE,IN)

IF(II.GT.MAX) MAX = II

IF(II.LT.MIN) MIN = II

410 CONTINUE

NDIF = MAX - MIN + 1

IF(NDIF.GT.NHBW) NHBW = NDIF

400 CONTINUE

С

IF(NHBW.GT.MXHBW) WRITE(6,420) NHBW

420 FORMAT(/,'INCREASE THE PARAMETER MXHBW TO ',15) IF(NHBW.GT.MXHBW) STOP

С

DO 430 I=1,NEQ

DO 430 J=1,NHBW

SYSK(I,J) = 0.

430 CONTINUE

WRITE(6,435) NPOIN, NELEM

435 FORMAT(/,'*** THE FINITE ELEMENT MODEL CONSISTS OF', 15,

```
'NODES AND', I5,'ELEMENTS ***')
```

С

*

- C establish all element matrics associated with the
- C specified current transfer modes and assemble them for
- C system matrices in the form needed for minimum memory
- C requirement:

С

WRITE(6,440)

440 FORMAT(/,' *** ESTABLISHING ELEMENT MATRICS AND',

- * 'ASSEMBLING ELEMENT EQUATIONS ***') CALL TRI(NELEM, INTMAT, COORD, TK,
- * OS THICK I TYDE SYSK SY
 - QS, THICK, LTYPE, SYSK, SYSQ,

```
С
      WRITE(6,450)
  450 FORMAT(/,' *** APPLYING BOUNDARY CONDITIONS OF NODAL',
                'VOLTAGES ***'
      CALL APPLYBC( NHBW, NPOIN, IBC, TEMP, SYSK, SYSQ,
                     MXPOI, MXHBW
                                                         )
С
      WRITE(6,460)
  460 FORMAT(/,' *** SOLVING A SET OF SIMULTANEOUS EQUATIONS',
     *
                'FOR VOLTAGE SOLUTIONS ***'
       WRITE(6,465) NEQ, NHBW
  465 FORMAT(5X,'(TOTAL OF', I5,
     *
                   ' EQUATIONS WITH HALF-BANDWIDTH OF', I4,')')
       CALL SOLVE(NEQ, NHBW, SYSK, SYSQ, MXPOI, MXHBW)
С
С
       output file for nodal voltage solutions:
С
  470 WRITE(6,480)
  480 FORMAT(/,'ENTER FILE NAME FOR VOLTAGE'
                'SOLUTIONS:'
                                               )
       READ(5,'(A)', ERR=470) NAME2
       OPEN(UNIT=8, FILE=NAME2, STATUS='NEW', ERR=470)
       WRITE(8,490) NPOIN
  490 FORMAT(' NODAL VOLTAGE SOLUTIONS [', 15,']:',
     * //, 2X, 'NODE', 3X, 'VOLTAGE', /
                                                   )
       DO 500 IP=1,NPOIN
       WRITE(8,510) IP, SYSQ(IP)
  510 FORMAT(I6, E14.6)
  500 CONTINUE
С
С
       output file for graphic display and interpolation program
```

MXPOI, MXELE, MXHBW

93

)

)

)

С

550 WRITE(6,560)

560	FORMAT(/,'ENTER FILE NAME FOR GRAPHIC DISPLAY:')
	READ(5,'(A)', ERR=550) NAME3
	OPEN(UNIT=9, FILE=NAME3, STATUS='NEW', ERR=550)
	NVAR = 1

- 600 WRITE(9,610) NPOIN, NELEM, NVAR
- 610 FORMAT(' NPOIN, NELEM, NVAR',/,318) WRITE(9,620) NPOIN
- 620 FORMAT('NODAL COORDINATES & SOLUTIONS [',15,']:') DO 630 I=1,NPOIN WRITE(9,640) I, (COORD(I,J), J=1,2), SYSQ(I)
- 640 FORMAT(I8,3E14.6)
- 630 CONTINUE WRITE(9,650) NELEM
- 650 FORMAT('ELEMENT NODAL CONNECTIONS [', 15, ']:') DO 660 IE=1,NELEM WRITE(9,670) IE, (INTMAT(IE,J), J=1,3)
- 670 FORMAT(4I8)
- 660 CONTINUE
- С

С

С

С

STOP END

- C-----

SUBROUTINE APPLYBC(NHBW, NPOIN, IBC, TEMP, SYSK, SYSQ,

MXPOI, MXHBW

-)

- С apply voltage boundary conditions with condiiton codes
- С of:

*

С 0 = free to change (to be computed)

100 CONTINUE

С

SYSK(IEQ,1) = 1.

SYSQ(IEQ) = TEMP(IEQ)

С

500 CONTINUE

400 CONTINUE

SYSQ(IL) = SYSQ(IL) - SYSK(IEQ,ICOL)*TEMP(IEQ) SYSK(IEQ,ICOL) = 0.

IL = IEQ + ICOL - 1

IF(IL.GT.NPOIN) GO TO 500

DO 400 ICOL=2,NHBW

С

300 CONTINUE

200 CONTINUE

SYSK(IROW,ICOL) = 0.

SYSQ(IROW) = SYSQ(IROW) - SYSK(IROW,ICOL)*TEMP(IEQ)

IF(ICOL.GT.NHBW) GO TO 300

ICOL = N + 1

IROW = IEQ - N

DO 200 N=1,IEQ-1

IF(IEQ.EQ.1) GO TO 300

С

DO 100 IEQ=1,NPOIN IF(IBC(IEQ).EQ.0) GO TO 100

С

INTEGER IBC(MXPOI)

С

IMPLICIT REAL*8 (A-H,O-Z) DIMENSION SYSK(MXPOI,MXHBW), SYSQ(MXPOI), TEMP(MXPOI)

С

С

1 = fixed as specified

С RETURN **END** С C--_____ С SUBROUTINE ASSEMBLE(IE, INTMAT, AKE, QE, SYSK, SYSQ, * MXPOI, MXELE, MXHBW) С С assemble element equations into system equations С IMPLICIT REAL*8 (A-H,O-Z) DIMENSION AKE(3,3), QE(3) DIMENSION SYSK(MXPOI,MXHBW), SYSQ(MXPOI) С INTEGER INTMAT(MXELE,3) С NNODE = 3NDF = 1С DO 100 NR=1,NNODE NODR = INTMAT(IE,NR) DO 100 MR=1,NDF С С denote: NSR = row position in the system eqs. С NER = row position in the element eqs. С NSR = (NODR-1)*NDF + MRNER = (NR - 1)*NDF + MRSYSQ(NSR) = SYSQ(NSR) + QE(NER)С DO 200 NC=1,NNODE

```
NODC = INTMAT(IE,NC)
      DO 200 MC=1,NDF
С
С
      denote: NSC = column position in the system eqs.
С
            (after rotation - ready for banded solver)
С
             NEC = column position in the element eqs.
С
      NSC = (NODC-1)*NDF + MC - NSR + 1
      NEC = (NC - 1)*NDF + MC
      IF(NSC.GT.0)
    & SYSK(NSR,NSC) = SYSK(NSR,NSC) + AKE(NER,NEC)
 200
      CONTINUE
С
 100
      CONTINUE
С
      RETURN
      END
С
C-----
С
      SUBROUTINE SOLVE(NROW, NHBW, GSTIF, XL, MXPOI, MXHBW)
С
С
      solve a set of simultaneous equations using gauss
С
       elimination. This solver routine can be described
С
      by using an example of a set of four simultaneous
С
       equations (after applying boundary conditions) as
С
       shown below:
С
С
      [A11 A12 A13 0 ] [X1]
                                            [F1]
С
      [
                          ] [ ]
                                            [ ]
С
      [A12 A22 A23 A24 ] [X2]
                                            [F2]
С
      [
                          ] [ ] =
                                            [ ]
```

[F3] С [A13 A23 A33 A34] [X3] С][] [[] С A24 A34 A44] [X4] [0 [F4] С С where the variable XL is the load vector on RHS of the С eqations. The global stiffness matrix above is stored С in the variable GSTIF in the format shown below: С (here NROW = 4 and NHBW = 3) С [A11 A12 A13] С [] С [A22 A23 A24] С [GSTIF] ſ 1 = С [A33 A34 0] С [] С [A44 0 0] С С and the output solutions will be restored in the С variable XL. С IMPLICIT REAL*8(A-H,O-Z) С DIMENSION GSTIF(MXPOI,MXHBW), XL(MXPOI) С NR = NROWNC = NHBWС С diagonalization the matrix: С DO 10 I=1,NR PIVOT1=GSTIF(I,1) IF(ABS(PIVOT1).LT.9.E-10) THEN WRITE(6,1025) I, PIVOT1

1025 FORMAT(' EQ. NO.', I5, ' HAS NEARLY ZERO PIVOT OF', E14.6,

- * ' ** STOP **', //,
- * '*** CHECK NODE AND ELEMENT NUMBERING IN F.E. MODEL ***')
 STOP

ENDIF

С

XL(I)=XL(I)/PIVOT1

DO 20 J=1,NC

20 GSTIF(I,J)=GSTIF(I,J)/PIVOT1

MM=0

DO 30 II=I+1,NR

MM=MM+1

IF(MM+1.GT.NC) GOTO 30

PIVOT2=GSTIF(I,MM+1)*PIVOT1

XL(II)=XL(II)-XL(I)*PIVOT2

DO 40 JJ=1,NC

JJJ=JJ+MM

IF(JJJ.LE.NC)

& GSTIF(II,JJ)=GSTIF(II,JJ)-GSTIF(I,JJJ)*PIVOT2

- 40 CONTINUE
- 30 CONTINUE
- 10 CONTINUE

С

- C back substitution:
- С

```
DO 70 I=NR-1,1,-1
```

[]=]

DO 80 J=I+1,NR

II = II + 1

IF(II.LE.NHBW) XL(I)=XL(I)-GSTIF(I,II)*XL(J)

- 80 CONTINUE
- 70 CONTINUE

С RETURN END С С-----С SUBROUTINE TRI(NELEM, INTMAT, COORD, TK, QS, * THICK, LTYPE, SYSK, SYSQ, MXPOI, * MXELE, MXHBW) С С establish element matrices according to the specified current С transfers modes and assemble them for system eqations С IMPLICIT REAL*8 (A-H,O-Z) DIMENSION COORD(MXPOI,2), SYSK(MXPOI,MXHBW), SYSQ(MXPOI) DIMENSION AKC(3,3), QSS(3) DIMENSION AKE(3,3), QE(3), B(2,3), BT(3,2) С INTEGER INTMAT(MXELE,3), LTYPE(MXPOI) С С loop over the number of elements: С DO 5000 IE=1,NELEM С С find element local coordinates: С II = INTMAT(IE,1) JJ = INTMAT(IE,2) KK = INTMAT(IE,3) С XG1 = COORD(II,1)XG2 = COORD(JJ,1)

- XG3 = COORD(KK,1)
- YG1 = COORD(II,2)
- YG2 = COORD(JJ,2)
- YG3 = COORD(KK,2)

AREA = 0.5*(XG2*(YG3-YG1) + XG1*(YG2-YG3) + XG3*(YG1-YG2))

IF(AREA.LE.0.) WRITE(6,5) IE

5 FORMAT(/,' !!! ERROR !!! ELEMENT NO.', I5,

- * 'HAS NEGATIVE OR ZERO AREA', /,
- * '--- CHECK F.E. MODEL FOR NODAL COORINATES',
- * 'AND ELEMENT NODAL CONNECTIONS ---')

IF(AREA.LE.0.) STOP

С

B1 = YG2 - YG3B2 = YG3 - YG1B3 = YG1 - YG2C1 = XG3 - XG2C2 = XG1 - XG3C3 = XG2 - XG1

С

DO	0	I=1,	2
DO 1	10	J=1,	3
B(I,J) =	0.	

10 CONTINUE

С

$$B(1,1) = B1$$

$$B(1,2) = B2$$

$$B(1,3) = B3$$

$$B(2,1) = C1$$

$$B(2,2) = C2$$

$$B(2,3) = C3$$

С

DO 20 I=1,2

```
DO 30 J=1,3
```

B(I,J) = B(I,J)/(2.*AREA)

BT(J,I) = B(I,J)

30 CONTINUE

С

C zero all coefficients of the final element matrices:

С

```
DO 50 I=1,3
QE(I) = 0.
DO 50 J=1,3
AKE(I,J) = 0.
```

50 CONTINUE

С

C element conductivity matrix:

С

DO 100 I =1,3
DO 100 J=1,3
$AKC(\mathbf{I},\mathbf{J}) = 0.$
DO 110 K =1,2
AKC(I,J) = AKC(I,J) + BT(I,K)*B(K,J)

110 CONTINUE

```
AKC(I,J) = TK*AREA*THICK*AKC(I,J)
```

- 100 CONTINUE
 - DO 120 I=1,3 DO 120 J=1,3

AKE(I,J) = AKE(I,J) + AKC(I,J)

С

- C element current vector due to specified surface current flux:
- С

EL = 0.

IF(LTYPE(IE).NE.1) GO TO 500

IF(YG1.EQ.YG3)	EL	= ABS(XG1-XG3)
IF(YG1.EQ.YG2)	EL	= ABS(XG1-XG2)
IF(YG2.EQ.YG3)	EL	= ABS(XG2-XG3)

С

IF(XG1.EQ.XG3) EL = ABS(YG1-YG3)IF(XG1.EQ.XG2) EL = ABS(YG1-YG2)IF(XG2.EQ.XG3) EL = ABS(YG2-YG3)

С

FAC = QS*THICK*EL/2.

DO 410 I=1,3

QSS(I) = FAC

410 CONTINUE

IF(YG1.EQ.YG3)	QSS(2)=0.
IF(YG1.EQ.YG2)	QSS(3) = 0.
IF(YG2.EQ.YG3)	QSS(1) = 0.

С

 $IF(XG1.EQ.XG3) \quad QSS(2) = 0.$ $IF(XG1.EQ.XG2) \quad QSS(3) = 0.$ $IF(XG2.EQ.XG3) \quad QSS(1) = 0.$

С

```
DO 420 I=1,3
```

```
QE(I) = QE(I) + QSS(I)
```

420 CONTINUE

500 CONTINUE

С

```
C assemble these element matrices to form system eqations:
C C CALL ASSEMBLE( IE, INTMAT, AKE, QE, SYSK, SYSQ,
* MXPOI, MXELE, MXHBW )
```

С

5000 CONTINUE

RETURN END

ค.2 โปรแกรมประมาณค่าภายในสำหรับเอลิเมนต์สามเหลี่ยม 3 จุดต่อ

โปรแกรมการประมาณค่าภายในสำหรับเอลิเมนต์สามเหลี่ยม 3 จุคต่อ จะมีขั้นตอนการ ทำงานโดยหลังจากผู้ใช้ระบุตำแหน่งพิกัคสองจุคที่ต้องการหาค่าความต่างศักย์ โปรแกรมจะทำการ ตรวจสอบว่าค่าตำแหน่งพิกัคนั้น ๆ อยู่ภายในเอลิเมนต์สามเหลี่ยมซึ่งล้อมรอบด้วยจุคต่อ (Node) อะไรบ้าง ดังในหัวข้อที่ 2.6 จากนั้นก็จะทำการประมาณค่าภายใน (สมการที่ 2.30) เพื่อหาศักย์ไฟฟ้า และความต่างศักย์

รูปแบบไฟล์นำเข้า (Input file) ที่ใช้สำหรับโปรแกรมการประมาณค่าภายในนี้ จะใช้ไฟล์ ผลลัพธ์สำหรับแสดงผลกราฟฟิกที่ได้จากโปรแกรมไฟไนต์เอลิเมนต์ ดังแสดงในภาคผนวก ข.2 ซึ่ง ประกอบไปด้วยจำนวนจุดต่อ, จำนวนเอลิเมนต์, ตำแหน่งพิกัดจุดต่อ, ค่าศักย์ไฟฟ้าที่จุดต่อ, หมายเลขจุดต่อที่รวมกันเป็นเอลิเมนต์

```
PROGRAM INTERPOLATION
C
C------
C.......PROGRAM INTERPOLATATION FOR THREE NODES
C.......TRIANGULAR ELEMENT
C------C
C
PARAMETER (MXPOI=20000, MXELE=20000)
INTEGER NPOIN, NELEM, NVAR
C
DIMENSION COORD(MXPOI,2), INTMAT(MXELE,3)
DIMENSION VOLT(MXPOI), ANSWER(2)
C
```

REAL X(3), Y(3), N(3) REAL V(3), A(3), B(3), C(3) С CHARACTER*20 FILENAME CHARACTER*50 TEXT С C.....READ NAME OF DATA FILES С 2 WRITE(6,5)5 FORMAT(/, 'ENTER OF DATA FILE FOR INTERPOLATION') READ(5, '(A)', ERR=2) FILENAME OPEN(UNIT=7, FILE=FILENAME, STATUS='OLD', ERR=2) С С READ NODE-NUMBER, COORDINATES, AND VALUE AT THAT NODE С READ(7,*) TEXT !NPOIN, NELEM, NVAR READ(7,*) NPOIN, NELEM, NVAR READ(7,*) TEXT !NODAL COORDINATE & SOLUTIONS DO 10 IP=1,NPOIN READ(7,*) I, (COORD(I,K), K=1,2), VOLT(I) IF(I.NE.IP) WRITE(*,100) IP 100 FORMAT(/,'NODE NO.', 18, 'DATA FILE IS MISSING') IF(I.NE.IP) STOP 10 CONTINUE С С READ ELEMENT-NUMBER, NODE-CONNECTON С READ(7,*) TEXT !ELEMENT NODAL CONNECTIONS DO 20 IE=1,NELEM READ(7,*) I, (INTMAT(I,J), J=1,3) IF(I.NE.IE) WRITE(*,200) IE

IF(I.NE.IE) STOP

20 CONTINUE

С

```
C.....INPUT COORDINATE OF POINT TO EVALUATE
С
    DO 9000 M=1,8
    DO 5000 L=1,2
    WRITE(6,300)
300 FORMAT(3X, 'ENTER (-/+)XX COORDINATE')
    READ(5,*) XX
    WRITE(6,400)
400 FORMAT(3X, 'ENTER (-/+)YY COORDINATE')
     READ(5,*) YY
С
C-----
C.....INPUT NODE NUMBER OF TRIANGULAR ELEMENT TO INTERPOLATE
C-----
С
     DO 30 IE=1,NELEM
С
C.....INPUT NODE NUMBER OF FIRST POINT
С
     X(1) = COORD(INTMAT(IE,1),1)
     Y(1) = COORD(INTMAT(IE,1),2)
     V(1) = VOLT(INTMAT(IE,1))
С
C.....INPUT NODE NUMBER OF SECOND POINT
С
     X(2) = COORD(INTMAT(IE,2),1)
     Y(2) = COORD(INTMAT(IE,2),2)
     V(2) = VOLT(INTMAT(IE,2))
С
```

```
C.....INPUT NODE NUMBER OF THIRD POINT
С
    X(3) = COORD(INTMAT(IE,3),1)
    Y(3) = COORD(INTMAT(IE,3),2)
    V(3) = VOLT(INTMAT(IE,3))
С
C-----
C.....CHECK ELEMENT WHETHER POINT INSIDE
C-----
С
    AREA = 0.5*(X(2)*(Y(3)-Y(1)) +
         X(1)^{*}(Y(2)-Y(3)) + X(3)^{*}(Y(1)-Y(2)))
С
    AREA1 = 0.5*(X(2)*Y(3) - X(3)*Y(2) +
   *
           (Y(2)-Y(3))*XX + (X(3)-X(2))*YY)
    IF(AREA1.LT.0.) GO TO 30
С
    AREA2 = 0.5*(X(3)*Y(1) - X(1)*Y(3) +
           (Y(3)-Y(1))*XX + (X(1)-X(3))*YY)
    IF(AREA2.LT.0.) GO TO 30
С
    AREA3 = 0.5*(X(1)*Y(2) - X(2)*Y(1) +
   *
           (Y(1)-Y(2))*XX + (X(2)-X(1))*YY)
    IF(AREA3.LT.0.) GO TO 30
С
     AREAT = AREA1 + AREA2 + AREA3
С
C-----
C.....PART OF COMPUTATION
C-----
С
```

```
AREA = 0.5*(X(2)*(Y(3)-Y(1)) +
```

$$A(1) = X(2)*Y(3)-X(3)*Y(2)$$

- A(2) = X(3)*Y(1)-X(1)*Y(3)
- A(3) = X(1)*Y(2)-X(2)*Y(1)
- B(1) = Y(2)-Y(3)

*

- B(2) = Y(3)-Y(1)
- B(3) = Y(1)-Y(2)
- C(1) = X(3)-X(2)
- C(2) = X(1)-X(3)
- C(3) = X(2)-X(1)
- DO 3 I=1,3
- N(I) = 0.
- N(I) = (A(I)+(B(I)*XX)+(C(I)*YY))/(2.*AREA)
- 3 CONTINUE

ANSWER(L) = V(1)*N(1)+V(2)*N(2)+V(3)*N(3)

```
WRITE(*,14) (INTMAT(IE,J), J=1,3)
```

- 14 FORMAT(/, 3X, 'POINT1 = ', I8
 - * /, 3X, 'POINT2 = ', I8
 - * /, 3X, 'POINT3 = ', I8)
- 30 CONTINUE
- 5000 CONTINUE
 - DVOLT = 0.
 - DVOLT = ANSWER(1)-ANSWER(2)
 - WRITE(*,15) ANSWER(1), ANSWER(2), DVOLT

- 15 FORMAT(/, 3X, 'ANSWER1= ', E14.6
 - * /, 3X, 'ANSWER2= ', E14.6
 - * /, 3X, 'DVOLT = ', E14.6)
- 9000 CONTINUE
 - STOP
 - END

ภาคผนวก ง

ความต่างศักย์และความต่างศักย์ใร้หน่วย ที่ตำแหน่ง วัดความต่างศักย์เป็นระยะต่าง ๆ

ภาคผนวกนี้แสดงความต่างศักย์ไร้หน่วย (V/V,) ที่จุดวัดความต่างศักย์บนและล่าง กึ่งกลางรอยร้าวเป็นระยะต่าง ๆ โดยแบ่งเป็นสามกรณี คือความต่างศักย์ไร้หน่วยสำหรับกรณีป้อน กระแสไฟฟ้าแกน y วัดความต่างศักย์แกน y $(I_y - V_y)$ จำนวนแปดตาราง ดังตารางที่ ง.1 ถึง ตาราง ที่ ง.8 ความต่างศักย์สำหรับกรณีป้อนกระแสไฟฟ้าแกน y วัดความต่างศักย์แกน x $(I_y - V_x)$ และ ความต่างศักย์ไร้หน่วยสำหรับกรณีป้อนกระแสไฟฟ้าแกน x วัดความต่างศักย์แกน x $(I_x - V_x)$ กรณีละสองตาราง ดังตารางที่ ง.9 ถึง ตารางที่ ง.10 และดังตารางที่ ง.11 ถึง ตารางที่ ง.12 ตามลำดับ

ง.1 ความต่างศักย์ไร้หน่วยสำหรับกรณีป้อนกระแสไฟฟ้าแกน y วัดความต่างศักย์แกน y

5 มม. เมื่อป้อนกระแสไฟฟ้าแกน y									
มุมเอียงรอยร้าว,		a/w							
heta (องศา)	0.1	0.2	0.3	0.4	0.5	0.6	0.7		
10	1.030	1.125	1.278	1.487	1.754	2.091	2.529		
20	1.027	1.113	1.259	1.458	1.708	2.024	2.425		
30	1.024	1.098	1.229	1.408	1.638	1.924	2.270		
40	1.019	1.080	1.189	1.349	1.549	1.789	2.078		
50	1.014	1.059	1.146	1.277	1.446	1.652	1.884		
60	1.009	1.039	1.100	1.200	1.339	1.503	1.683		
70	1.005	1.021	1.055	1.125	1.229	1.349	1.476		
80	1.003	1.008	1.020	1.055	1.125	1.193	1.258		

ตารางที่ ง.1 ความต่างศักย์ไร้หน่วยบนแกน y ที่ห่างจากศูนย์กลางรอยร้าว บนและล่าง 5 มม. เมื่อป้อนกระแสไฟฟ้าแกน y

 $V_r = 21.978 \ \mu V$ (ตารางที่ ก.1)

มุมเอียงรอยร้าว,	a/w							
heta (องศา)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	
10	1.010	1.042	1.098	1.179	1.291	1.441	1.644	
20	1.009	1.038	1.090	1.165	1.266	1.404	1.587	
30	1.008	1.032	1.077	1.141	1.229	1.348	1.500	
40	1.006	1.026	1.060	1.113	1.184	1.276	1.397	
50	1.005	1.019	1.044	1.081	1.134	1.205	1.296	
60	1.003	1.012	1.028	1.051	1.085	1.134	1.198	
70	1.002	1.006	1.014	1.026	1.043	1.070	1.108	
80	1.001	1.003	1.005	1.009	1.014	1.022	1.037	

ตารางที่ ง.2 ความต่างศักย์ไร้หน่วยบนแกน y ที่ห่างจากศูนย์กลางรอยร้าว บนและล่าง 10 มม. เมื่อป้อนกระแสไฟฟ้าแกน y

 $V_r = 43.956 \ \mu V$ (ตารางที่ ก.1)

ตารางที่ ง.3 ความต่างศักย์ไร้หน่วยบนแกน _y ที่ห่างจากศูนย์กลางรอยร้าว บนและล่าง 15 มม. เมื่อป้อนกระแสไฟฟ้าแกน _y

มุมเอียงรอยร้าว,	a/w							
heta (องศา)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	
10	1.006	1.025	1.059	1.109	1.178	1.274	1.405	
20	1.005	1.023	1.054	1.099	1.162	1.248	1.365	
30	1.005	1.019	1.046	1.084	1.137	1.210	1.305	
40	1.004	1.015	1.036	1.066	1.107	1.162	1.234	
50	1.003	1.011	1.025	1.047	1.076	1.115	1.165	
60	1.002	1.007	1.016	1.029	1.047	1.071	1.101	
70	1.001	1.004	1.008	1.014	1.023	1.034	1.049	
80	1.001	1.001	1.003	1.005	1.007	1.011	1.015	

 $V_r = 65.934 \ \mu V$ (ตารางที่ ก.1)

มุมเอียงรอยร้าว,				a/w			
heta (องศา)	0.1	0.2	0.3	0.4	0.5	0.6	0.7
10	1.004	1.018	1.043	1.080	1.131	1.201	1.299
20	1.004	1.016	1.039	1.072	1.118	1.182	1.268
30	1.003	1.014	1.033	1.061	1.100	1.153	1.222
40	1.003	1.011	1.026	1.048	1.078	1.117	1.168
50	1.002	1.008	1.018	1.034	1.054	1.082	1.117
60	1.001	1.005	1.012	1.021	1.033	1.050	1.071
70	1.001	1.003	1.006	1.010	1.016	1.024	1.034
80	1.000	1.001	1.002	1.003	1.005	1.007	1.010

ตารางที่ ง.4 ความต่างศักย์ไร้หน่วยบนแกน _y ที่ห่างจากศูนย์กลางรอยร้าว บนและล่าง 20 มม. เมื่อป้อนกระแสไฟฟ้าแกน _y

 $V_r = 87.912 \ \mu V$ (ตารางที่ ก.1)

ตารางที่ ง.5 ความต่างศักย์ไร้หน่วยบนแกน y ที่ห่างจากศูนย์กลางรอยร้าว บนและล่าง 25 มม. เมื่อป้อนกระแสไฟฟ้าแกน y

มุมเอียงรอยร้าว,				a/w			
heta (องศา)	0.1	0.2	0.3	0.4	0.5	0.6	0.7
10	1.003	1.015	1.034	1.063	1.104	1.16	1.238
20	1.003	1.013	1.031	1.057	1.094	1.144	1.213
30	1.003	1.011	1.026	1.048	1.079	1.121	1.176
40	1.002	1.009	1.020	1.038	1.061	1.092	1.133
50	1.002	1.006	1.015	1.027	1.043	1.065	1.092
60	1.001	1.004	1.009	1.016	1.026	1.039	1.055
70	1.001	1.002	1.005	1.008	1.013	1.019	1.026
80	1.000	1.001	1.002	1.003	1.004	1.006	1.008

V, = 109.890 µV (ตารางที่ ก.1)

มุมเอียงรอยร้าว,				a/w			
heta (องศา)	0.1	0.2	0.3	0.4	0.5	0.6	0.7
10	1.003	1.012	1.028	1.052	1.086	1.133	1.198
20	1.003	1.011	1.026	1.048	1.078	1.120	1.177
30	1.002	1.009	1.022	1.04	1.066	1.101	1.146
40	1.002	1.007	1.017	1.032	1.051	1.077	1.111
50	1.001	1.005	1.012	1.022	1.036	1.054	1.076
60	1.001	1.003	1.008	1.014	1.022	1.032	1.046
70	1.001	1.002	1.004	1.007	1.011	1.015	1.022
80	1.000	1.001	1.001	1.002	1.003	1.005	1.006

ตารางที่ ง.6 ความต่างศักย์ไร้หน่วยบนแกน _y ที่ห่างจากศูนย์กลางรอยร้าว บนและล่าง 30 มม. เมื่อป้อนกระแสไฟฟ้าแกน _y

 $V_r = 131.868 \ \mu V$ (ตารางที่ ก.1)

ตารางที่ ง.7 ความต่างศักย์ไร้หน่วยบนแกน _y ที่ห่างจากศูนย์กลางรอยร้าว บนและล่าง 35 มม. เมื่อป้อนกระแสไฟฟ้าแกน _y

มุมเอียงรอยร้าว,				a/w			
heta (องศา	0.1	0.2	0.3	0.4	0.5	0.6	0.7
10	1.002	1.01	1.024	1.045	1.074	1.114	1.169
20	1.002	1.009	1.022	1.041	1.067	1.103	1.152
30	1.002	1.008	1.019	1.034	1.056	1.086	1.125
40	1.001	1.006	1.015	1.027	1.044	1.066	1.095
50	1.001	1.004	1.010	1.019	1.030	1.046	1.065
60	1.001	1.003	1.006	1.012	1.019	1.028	1.039
70	1.000	1.002	1.003	1.006	1.009	1.013	1.019
80	1.000	1.001	1.001	1.002	1.003	1.004	1.005

 $V_r = 153.846 \ \mu V$ (ตารางที่ ก.1)

มุมเอียงรอยร้าว,				a/w			
heta (องศา)	0.1	0.2	0.3	0.4	0.5	0.6	0.7
10	1.002	1.009	1.021	1.039	1.065	1.100	1.148
20	1.002	1.008	1.019	1.036	1.059	1.090	1.133
30	1.002	1.007	1.016	1.030	1.049	1.075	1.110
40	1.001	1.005	1.013	1.024	1.038	1.057	1.083
50	1.001	1.004	1.009	1.017	1.027	1.040	1.057
60	1.001	1.002	1.006	1.010	1.016	1.024	1.034
70	1.000	1.001	1.003	1.005	1.008	1.012	1.016
80	1.000	1.001	1.001	1.002	1.003	1.004	1.005

ตารางที่ ง.8 ความต่างศักย์ไร้หน่วยบนแกน y ที่ห่างจากศูนย์กลางรอยร้าว บนและล่าง 40 มม. เมื่อป้อนกระแสไฟฟ้าแกน y

 $V_r = 175.824 \ \mu V$ (ตารางที่ ก.1)

ง.2 ความต่างศักย์สำหรับกรณีป้อนกระแสไฟฟ้าแกน y วัดความต่างศักย์แกน x

ตารางที่ ง.9 ความต่างศักย์ (µV) บนแกน x ที่ห่างจากศูนย์กลางรอยร้าว ซ้ายและขวา 5 มม. เมื่อป้อนกระแสไฟฟ้าแกน y

มุมเอียงรอยร้าว,		_		a/w			
heta (องศา)	0.1	0.2	0.3	0.4	0.5	0.6	0.7
10	0.106	0.557	1.788	5.967	15.112	25.046	36.147
20	0.202	0.979	2.927	7.201	13.917	22.150	31.799
30	0.270	1.267	3.464	7.297	12.718	19.478	27.375
40	0.294	1.380	3.501	6.853	11.238	16.459	22.725
50	0.300	1.325	3.222	5.921	9.351	13.519	18.244
60	0.262	1.141	2.667	4.717	7.254	10.306	13.765
70	0.198	1.141	1.872	3.271	4.955	6.917	9.164
80	0.105	0.438	0.976	1.683	2.529	3.496	4.582

มุมเอียงรอยร้าว,				a/w			
heta (องศา)	0.1	0.2	0.3	0.4	0.5	0.6	0.7
10	0.064	0.302	0.738	1.509	2.825	5.289	9.887
20	0.123	0.544	1.361	2.754	4.995	8.564	14.547
30	0.163	0.725	1.813	3.531	6.220	10.206	15.950
40	0.182	0.813	1.990	3.826	6.489	10.044	14.987
50	0.185	0.802	1.940	3.616	5.929	9.055	12.987
60	0.162	0.707	1.679	3.081	4.937	7.353	10.247
70	0.123	0.529	1.222	2.219	3.493	5.107	7.053
80	0.065	0.278	0.650	1.170	1.823	2.631	3.583

ตารางที่ ง.10 ความต่างศักย์ (μV) บนแกน x ที่ห่างจากศูนย์กลางรอยร้าว ซ้ายและขวา 10 มม. เมื่อป้อนกระแสไฟฟ้าแกน y

ง.3 ความต่างศักย์ไร้หน่วยสำหรับกรณีป้อนกระแสไฟฟ้าแกน x วัดความต่างศักย์แกน x

ตารางที่ ง.11 ความต่างศักย์ไร้หน่วยบนแกน x ที่ห่างจากศูนย์กลางรอยร้าว บนและล่าง 5 มม. เมื่อป้อนกระแสไฟฟ้าแกน x

มุมเอียงรอยร้าว,				a/w			
heta (องศา)	0.1	0.2	0.3	0.4	0.5	0.6	0.7
10	1.003	1.008	1.019	1.051	1.115	1.174	1.226
20	1.005	1.019	1.050	1.115	1.208	1.308	1.405
30	1.008	1.035	1.089	1.180	1.298	1.430	1.562
40	1.012	1.053	1.129	1.243	1.383	1.535	1.697
50	1.017	1.071	1.167	1.298	1.456	1.634	1.818
60	1.021	1.088	1.200	1.346	1.518	1.714	1.921
70	1.025	1.101	1.223	1.381	1.565	1.771	1.995
80	1.027	1.110	1.239	1.406	1.598	1.811	2.042

 $V_r = 5.495 \ \mu V$ (ตารางที่ ก.2)

มุมเอียงรอยร้าว,		-		a / w	-		
heta (องศา)	0.1	0.2	0.3	0.4	0.5	0.6	0.7
10	1.001	1.002	1.004	1.006	1.011	1.017	1.029
20	1.001	1.005	1.010	1.019	1.032	1.051	1.080
30	1.002	1.008	1.020	1.037	1.062	1.096	1.139
40	1.003	1.013	1.031	1.058	1.094	1.139	1.195
50	1.005	1.018	1.043	1.078	1.123	1.182	1.25
60	1.006	1.023	1.054	1.097	1.151	1.219	1.296
70	1.007	1.028	1.062	1.111	1.171	1.246	1.332
80	1.007	1.030	1.068	1.121	1.186	1.264	1.354

ตารางที่ ง.12 ความต่างศักย์ไร้หน่วยบนแกน x ที่ห่างจากศูนย์กลางรอยร้าว บนและล่าง 10 มม. เมื่อป้อนกระแสไฟฟ้าแกน x

 $V_{,} = 10.989 \ \mu V$ (ตารางที่ ก.2)

ภาคผนวก จ

ทดสอบการใช้เส้นโค้งสอบเทียบสำหรับสัดส่วนความยาวต่อความกว้างขึ้น ทดสอบเท่ากับ 4 กับชิ้นทดสอบที่มีสัดส่วน ความยาวต่อความกว้างเท่ากับ 2

ชิ้นทคสอบที่มีรอยร้าวแบบซับซ้อน โคยมีสัคส่วนความยาวต่อความกว้างเท่ากับ 2 [] ดัง รูปที่ ง.1 ถูกสร้างขึ้นเพื่อทคสอบการระบุลักษณะรอยร้าวค้วยวิธี $I_y - V_y$, $I_x - V_x$ (หัวข้อที่ 4.5) แต่วิทยานิพนธ์นี้กำหนคสัคส่วนความยาวต่อความกว้างเท่ากับ 4 จึงต้องทคสอบความแม่นยำของ การใช้เส้นกราฟสอบเทียบที่ได้จากชิ้นทคสอบที่มีสัคส่วนความยาวต่อความกว้างเท่ากับ 4 กับชิ้น ทคสอบที่มีสัคส่วนความยาวต่อความกว้างเท่ากับ 2 ดังตัวอย่างต่อไปนี้

รูปที่ จ.1 รูปร่างชิ้นทคสอบที่มีสัคส่วนความยาวต่อความกว้างเท่ากับ 2

<u>ตัวอย่างที่ 1</u> สร้างรอยร้าวที่มีค่า a/w = 0.15 และมีมุมเอียง $\theta = 25$ องศา ในแบบจำลองไฟไนด์ เอลิเมนต์ จากนั้นคำนวณความต่างศักย์ระหว่างจุดที่อยู่ห่างจากรอยร้าว 5 มม. ผลการคำนวณความ ต่างศักย์ไร้หน่วยที่ตกคร่อมจุดที่อยู่บนแกน y, V_y/V_r และแกน x, V_x/V_r , คือ 1.060 และ 1.015 ตามลำดับ ก่า a/w ที่มุมต่าง ๆ ที่ได้จากเส้นโค้งสอบเทียบ $I_y - V_y$ และ $I_x - V_x$ แสดงอยู่ใน ตารางที่ จ.1 เมื่อพล๊อตจุด $(a/w, \theta)$ แล้ววิเคราะห์การถดถอยกำลังสองน้อยสุดจะได้สมการ ต่อไปนี้ (เมื่อนำไปเขียนกราฟจะได้ผลลัพธ์ดังแสดงในรูปที่ จ.2)

กรณี
$$I_y - V_y$$

$$\frac{a}{w} = 1.00 \times 10^{-8} \theta^4 - 8.07 \times 10^{-7} \theta^3 + 4.41 \times 10^{-5} \theta^2 - 1.73 \times 10^{-4} \theta + 1.38 \times 10^{-1}$$
(1.1)
กรณี $I_x - V_x$

$$\frac{a}{w} = 2.13 \times 10^{-8} \theta^4 - 4.96 \times 10^{-6} \theta^3 + 4.46 \times 10^{-4} \theta^2 - 1.93 \times 10^{-2} \theta + 4.32 \times 10^{-1}$$
(1.2)

แก้สมการ (จ.1) และ (จ.2) คือ θ = 26.037 องศา และ a/w = 0.154 ดังนั้นความผิดพลาดในการ ระบุมุมเอียงและความยาว (ไร้หน่วย) คือ 4.148 เปอร์เซ็นต์ และ 2.667 เปอร์เซ็นต์ ตามลำดับ

ตารางที่ จ.1 ค่า a/w ที่มุมเอียงต่าง ๆ ที่ได้จากเส้นโค้งสอบเทียบ $I_y - V_y$ และ $I_x - V_x$ (ลักษณะรอยร้าวที่กำหนด คือ a/w = 0.15 และ $\theta = 25$ องศา)

มุมเอียงรอยร้าว	a/w			
heta (องศา)	$I_v - V_v$	$I_x - V_x$		
10	0.140	0.279		
20	0.148	0.188		
30	0.158	0.138		
40	0.177	0.111		
50	0.201	0.093		
60	0.241	0.084		
70	0.307	0.074		
80	0.404	0.072		

รูปที่ จ.2 ความสัมพันธ์ระหว่าง a/w กับ θ ที่ได้จากเส้นโค้งสอบเทียบ $I_v - V_v$, $I_v - V_v$ (ลักษณะรอยร้าวที่กำหนด คือ a/w = 0.15 และ $\theta = 25$ องศา)

<u>ตัวอย่างที่ 2</u> สร้างรอยร้าวที่มีก่า a/w = 0.65 และมีมุมเอียง $\theta = 65$ องศา ในแบบจำลองไฟไนต์ เอลิเมนต์ จากนั้นกำนวณกวามต่างศักย์ระหว่างจุดที่อยู่ห่างจากรอยร้าว 5 มม. ผลการกำนวณกวาม ต่างศักย์ไร้หน่วยที่ตกกร่อมจุดที่อยู่บนแกน y, V_y/V_r , และแกน x, V_x/V_r , คือ 1.504 และ 1.893 ตามลำดับ ก่า a/w ที่มุมต่าง ๆ ที่ได้จากเส้นโก้งสอบเทียบ $I_y - V_y$ และ $I_x - V_x$ แสดงอยู่ใน ตารางที่ จ.2 เมื่อพล๊อตจุด $(a/w, \theta)$ แล้ววิเกราะห์การถดถอยกำลังสองน้อยสุดจะได้สมการ ต่อไปนี้ (เมื่อนำไปเขียนกราฟจะได้ผลลัพธ์ดังแสดงในรูปที่ จ.3)

$$\begin{aligned} & ns \vec{\mathfrak{u}} \quad I_y - V_y \\ & \frac{a}{w} = 4.02 \times 10^{-8} \,\theta^4 - 4.94 \times 10^{-6} \,\theta^3 + 2.67 \times 10^{-4} \,\theta^2 - 3.95 \times 10^{-3} \,\theta + 4.25 \times 10^{-1} \end{aligned} \tag{9.3} \\ & ns \vec{\mathfrak{u}} \quad I_x - V_x \\ & \frac{a}{w} = 1.75 \times 10^{-8} \,\theta^4 - 5.97 \times 10^{-6} \,\theta^3 + 8.11 \times 10^{-4} \,\theta^2 - 5.21 \times 10^{-2} \,\theta + 1.95 \end{aligned}$$

แก้สมการ (จ.3) และ (จ.4) คือ θ = 65.857 องศา และ a/w = 0.666 ดังนั้นความผิดพลาดในการ ระบุมุมเอียงและความยาว (ไร้หน่วย) คือ 1.32 เปอร์เซ็นต์ และ 2.46 เปอร์เซ็นต์ ตามลำดับ

ตารางที่ จ.2 ค่า a/w ที่มุมเอียงต่าง ๆ ที่ได้จากเส้นโค้งสอบเทียบ $I_y - V_y$ และ $I_x - V_x$ (ลักษณะรอยร้าวที่กำหนด คือ a/w = 0.65 และ $\theta = 65$ องศา)

มุมเอียงรอยร้าว	a/w				
heta (องศา)	$I_{v} - V_{v}$	$I_x - V_x$			
10	0.407	-			
20	0.420	-			
30	0.445	-			
40	0.480	0.831			
50	0.530	0.741			
60	0.600	0.687			
70	0.726	0.656			
80	_	0.637			

รูปที่ จ.3 ความสัมพันธ์ระหว่าง a/w กับ θ ที่ได้จากเส้นโด้งสอบเทียบ $I_y - V_y, I_y - V_x$ (ลักษณะรอยร้าวที่กำหนด คือ a/w = 0.65 และ $\theta = 65$ องศา)

จากการทดสอบเห็นได้ว่าสามารถใช้กราฟสอบเทียบที่ได้จากชิ้นทดสอบที่มีสัดส่วนความ ยาวต่อความกว้างเท่ากับ 4 กับชิ้นทดสอบที่มีสัดส่วนความยาวต่อความกว้างเท่ากับ 2 ถึงแม้มี แนวโน้มความคลาดเคลื่อนของผลเฉลยที่สูงขึ้น

ภาคผนวก ฉ

เปรียบเทียบความต่างศักย์ในช่วง 10, 20,..., 80 องศา กับความต่างศักย์ในช่วง 100, 110,..., 170 องศา

ภาคผนวกนี้แสดงการเปรียบเทียบความต่างศักย์ไร้หน่วย (V / V,) ตามแนวแกน y ของมุม เอียงรอยร้าว (θ) ในช่วง 10, 20,..., 80 องศา กับความต่างศักย์ไร้หน่วยของมุมเอียงรอยร้าวในช่วง 100, 110,..., 170 องศา เมื่อป้อนกระแสไฟฟ้าแกน y โดยแสดงเฉพาะความต่างศักย์ไร้หน่วยสำหรับ จุดวัดความต่างศักย์ที่ระยะห่างจากศูนย์กลางรอยร้าว บนและล่าง 5 มม. เท่านั้น

มุมเอียงรอยร้าว,				a/w			
heta (องศา)	0.1	0.2	0.3	0.4	0.5	0.6	0.7
10	1.030	1.125	1.278	1.487	1.754	2.091	2.529
20	1.027	1.113	1.259	1.458	1.708	2.024	2.425
30	1.024	1.098	1.229	1.408	1.638	1.924	2.270
40	1.019	1.080	1.189	1.349	1.549	1.789	2.078
50	1.014	1.059	1.146	1.277	1.446	1.652	1.884
60	1.009	1.039	1.100	1.200	1.339	1.503	1.683
70	1.005	1.021	1.055	1.125	1.229	1.349	1.476
80	1.003	1.008	1.020	1.055	1.125	1.193	1.258

ตารางที่ ฉ.1 ความต่างศักย์ไร้หน่วย (V / V,) บนแกน y ของมุมเอียงรอยร้าว (heta) ในช่วง 10, 20, ..., 80 องศา เมื่อป้อนกระแสไฟฟ้าแกน y

 $V_r = 21.978 \ \mu V$ (ตารางที่ ก.1)

มุมเอียงรอยร้าว,	a / w							
heta (องศา)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	
170	1.030	1.124	1.276	1.486	1.752	2.090	2.527	
160	1.027	1.113	1.258	1.459	1.709	2.023	2.423	
150	1.024	1.099	1.229	1.408	1.639	1.923	2.271	
140	1.019	1.079	1.189	1.349	1.547	1.789	2.081	
130	1.014	1.060	1.145	1.278	1.446	1.653	1.885	
120	1.010	1.039	1.100	1.200	1.337	1.501	1.683	
110	1.006	1.021	1.056	1.126	1.229	1.349	1.476	
100	1.003	1.008	1.020	1.055	1.125	1.193	1.259	

ตารางที่ ฉ.2 ความต่างศักย์ไร้หน่วย (V / V,) บนแกน y ของมุมเอียงรอยร้าว (θ) ในช่วง 100, 110, ..., 170 องศา เมื่อป้อนกระแสไฟฟ้าแกน y

V_r = 21.978 µV (ตารางที่ ก.1)

ภาคผนวก ช

จำนวนจุดต่อและจำนวนเอลิเมนต์ของแบบจำลอง ไฟในต์เอลิเมนต์สำหรับกราฟสอบเทียบ

ภาคผนวกนี้แสดงจำนวนจุดต่อ (บรรทัดบน) และจำนวนเอลิเมนต์ (บรรทัดล่าง) ที่ใช้ กำนวณกวามต่างศักย์สำหรับเส้นโค้งสอบเทียบ (Calibration curve) $I_y - V_y$ (รูปที่ 4.7), $I_y - V_x$ (รูปที่ 4.8) และ $I_x - V_x$ (รูปที่ 4.9) โดยก่าที่แสดง เลือกจากจำนวนจุดต่อหรือจำนวนเอลิเมนต์ที่ทำ ให้กวามต่างศักย์ที่กำนวณได้ลู่เข้า (กำหนดไว้ไม่เกิน 0.5 เปอร์เซ็นต์, 0.5 > $\left| \frac{V_{NEW} - V_{OLD}}{V_{NEW}} \right| \times 100$)

มุมเอียงรอยร้าว,	a/w						
heta (องศา)	0.1	0.2	0.3	0.4	0.5	0.6	0.7
10	1,077	1,151	1,282	1,372	1,480	2,124	3,563
	2,048	2,188	2,430	2,590	2,786	3,980	6,658
20	1,084	1,098	1,262	1,419	1,515	2,202	3,742
	2,062	2,082	2,390	2,684	2,856	4,134	7,010
30	1,073	1,101	1,251	1,393	1,522	2,339	3,881
	2,040	2,088	2,368	2,632	2,870	4,408	7,278
40	1,065	1,080	1,247	1,437	1,592	2,407	4,183
	2,024	2,046	2,360	2,720	3,010	4,548	7,848
50	1,064	1,084	1,252	1,441	1,576	2,404	4,224
	2,022	2,054	2,370	2,728	2,978	4,542	7,970
50	1,038	1,052	1,268	1,404	1,573	2,416	4,362
	1,970	1,990	2,402	2,654	2,972	4,564	8,206
70	1,067	1,049	1,239	1,413	1,593	2,385	4,432
	2,028	1,984	2,344	2,672	3,012	4,506	8,346
80	1,032	1,061	1,276	1,404	1,607	2,394	4,427
	1,958	2,008	2,418	2,654	3,040	4,522	8,336

ตารางที่ ช.1 จำนวนจุดต่อและจำนวนเอลิเมนต์ของแบบจำลองไฟไนต์เอลิเมนต์

ภาคผนวก ซ

ตารางและกราฟคำนวณ Stress intensity factor

ภาคผนวกนี้แสดงกราฟและตารางคำนวณตัวประกอบความเข้มของความเค้น (Stress intensity factor) สำหรับชิ้นทคสอบที่มีรอยร้าวเอียงอย่างง่าย รอยร้าวแบบซับซ้อน และวิธีคำนวณ ของ API-579

ซ.1 ตารางคำนวณ Stress intensity factor สำหรับรอยร้าวเอียงอย่างง่าย

ตารางคำนวณ Stress intensity factor (K_I) สำหรับชิ้นทคสอบสัคส่วน H/W เท่ากับ 2 ที่มี รอยร้าวเอียงอย่างง่าย โคย a/w และ θ หาจากวิธีการระบุลักษณะรอยร้าว $I_y - V_y$, $I_x - V_x$

					0			
-		a/W	15°	30°	45°	60°	75°	
		0.1	0.9391	0.7557	0.5046	0.2527	0.0678	
23 .		0.2	0.9577	0.7730	0.5181	0.2605	0.0701	
¥ Y P Z		0.3	0.9904	0.8025	0.5406	0.2730	0.0736	
		0.4	1.0402	0.8456	0.5719	0.2896	0.0783	
	FL	0.5	1.1128	0.9046	0.6119	0.3099	0.0837	
28		0.6	1.2183	0.984	0.6611	0.3332	0.0896	
1		0.7	1.378	1.091	0.721	0.359	0.0957	
<u> </u>		0.8	1.653	1.245	0.795	0.388	0.102	

รูปที่ ซ.1 ตารางคำนวณ Stress intensity factor สำหรับรอยร้าวเอียง โคย H/W เท่ากับ 2 [29]

$$K_{I} = \frac{F_{I} P \sqrt{\pi a}}{2wt}$$
(Y.1)

โดยที่ P คือ แรงคึง (1 นิวตัน)

เ คือ ความหนาชิ้นทดสอบ

ซ.2 กราฟกำนวณ Stress intensity factor สำหรับรอยร้าวแบบซับซ้อน

กราฟคำนวณ Stress intensity factor ประกอบไปด้วยค่าที่ปลาย A และปลาย B โดยใช้ค่า Stress intensity factor ที่มากสุดในการเปรียบเทียบกับ Stress intensity factor ของวิธีการอื่น ๆ

รูปที่ ซ.2 กราฟคำนวณ Stress intensity factor สำหรับรอยร้าวที่ซับซ้อน [28]

$$K_{I} = \left(\frac{K_{I}}{K_{o}}\right) \cdot \frac{P\sqrt{\pi a}}{2wt}$$
(9.2)

โดยที่ P คือ แรงคึง (1 นิวตัน)

เ กือ กวามหนาชิ้นทคสอบ

ซ.3 วิธีคำนวณขนาดรอยร้าวของ API-579

วิธีการนี้จะเปลี่ยนลักษณะรอยร้าวแบบซับซ้อนให้อยู่ในรูปอย่างง่าย เพื่อให้สามารถ คำนวณ Stress intensity factor ได้จาก Handbook ทั่วไป

รูปที่ ซ.3 การเปลี่ยนรอยร้าวเอียงเป็นรอยร้าวแบบไม่เอียง [30]

$$\frac{c}{c_o} = \cos^2 \alpha + \frac{(1-B)\sin\alpha\cos\alpha}{2} + B^2\sin^2\alpha \qquad (\text{W.3})$$

โดยที่
$$B = \frac{\sigma_2}{\sigma_1}$$
 เมื่อ $\sigma_1 > \sigma_2$ และ $0 \le B \le 1$

รูปที่ ซ.4 การหาความขาวรอยร้าวรวมของรอยร้าวสองรอยที่อยู่ใกล้กัน [30]

$$K_{I} = \frac{P}{t} \sqrt{\frac{\pi a}{4w^{2}} \sec \frac{\pi a}{2w}}$$
(9.4)

โดยสมการข้างต้นใช้ได้เฉพาะกรณี a/w < 0.95

ซ.4 ตัวอย่างการคำนวณ Stress intensity factor ของรอยร้าวที่ได้จากวิธีวัดความต่างศักย์ตกคร่อม

<u>ตัวอย่าง</u> รอยร้าวแบบซับซ้อนที่มีก่า a/w = 0.3 และ a/b = 1 และมีมุม $\alpha = 10$ องศา

ขั้นตอนที่ 1 ประยุกต์เส้นโค้งสอบเทียบของวิธี $I_y - V_y; I_x - V_x$ กับชิ้นทคสอบที่มีรอย ร้าวแบบซับซ้อน (แสคงคังตัวอย่างที่ 1 ในหัวข้อที่ 4.5.3) ผลเฉลย (ลักษณะรอยร้าว) ที่ไค้จะอยู่ใน รูปรอยร้าวเอียงเพียงรอยเดียวคังรูปที่ 4.1 โคยรอยร้าวมีลักษณะคังนี้

 $\theta = 14.19$ องศาและ a / w = 0.46

ขั้นตอนที่ 2 คำนวณค่า F, (รูปที่ ซ.1) โดยการประมาณค่าภายในแบบเชิงเส้น (Linear interpolation) โดย F, ที่คำนวณได้เท่ากับ 1.08

ขั้นตอนที่ 3 คำนวณ Stress intensity factor ของรอยร้าวด้วยสมการที่ ซ.1

$$K_{I} = \frac{1.08 \times \sqrt{\pi (0.46 \times 12.5 \times 10^{-3})}}{2 \times (12.5 \times 10^{-3}) \times (5 \times 10^{-3})}$$

$$K_1 = 1,165 \ Pa \cdot \sqrt{m}$$

ซ.5 ตัวอย่างการคำนวณ Stress intensity factor สำหรับรอยร้าวแบบซับซ้อน

<u>ตัวอย่าง</u>รอยร้ำวแบบซับซ้อนที่มีค่า *a / w* = 0.3 และ *a / b* = 1 และมีมุม *a* = 10 องศา ขั้นตอนที่ 1 หาค่า *K₁ / K_o* จากรูปที่ ซ.2 พบว่าปลาย A เท่ากับ 1.475 และปลาย B เท่ากับ

1.15

ขึ้นตอนที่ 2 คำนวณ Stress intensity factor ที่ปลาย A และ ปลาย B ด้วยสมการที่ ซ.2 ปลาย A $K_{I} = \frac{1.475 \times \sqrt{\pi \times 3.75 \times 10^{-3}}}{2 \times (12.5 \times 10^{-3}) \times (5 \times 10^{-3})}$ $K_{I} = 1,280 \ Pa \cdot \sqrt{m}$ ปลาย B $K_{I} = \frac{1.15 \times \sqrt{\pi \times 3.75 \times 10^{-3}}}{2 \times (12.5 \times 10^{-3}) \times (5 \times 10^{-3})}$ $K_{I} = 999 \ Pa \cdot \sqrt{m}$ ซ.6 ตัวอย่างการคำนวณ Stress intensity factor ของรอยร้าวที่ได้จากการประยุกต์วิธีมาตรฐาน API 579

<u>ตัวอย่าง</u> รอยร้าวแบบซับซ้อนที่มีค่า a/w = 0.3 และ a/b = 1 และมีมุม $\alpha = 10$ องศา

งั้นตอนที่ 1 รอยร้าวเอียงจะถูกเปลี่ยนเป็นรอยร้าวแบบไม่เอียงคังรูปที่ ซ.3

$$\frac{c}{c_{s}} = \cos^{2} \alpha + \frac{(1-B)\sin \alpha \cdot \cos \alpha}{2} + B^{2} \sin^{2} \alpha$$

$$c = 3.75 \cdot \left[\cos^{2} 10 + \frac{\sin 10 \cdot \cos 10}{2}\right]$$

$$c = 3.958 \text{ µu}.$$

เนื่องจากปัญหารอขร้าวแบบซับซ้อนที่ศึกษา (รูปที่ 4.17) ประกอบค้วยรอยร้าว 2 รอย ตาม มาตรฐาน API 579 หากปลายรอยร้าวทั้งสองที่อยู่ใกล้กัน ซ้อนทับกันหรืออยู่ใกล้กัน สอคคล้องกับ เงื่อนไขคังรูปที่ ซ.4 จะรวมรอยร้าวทั้งสองเป็นรอยร้าวเคียว

ขั้นตอนที่ 2 พิจารณาระยะห่างระหว่างปลายรอยร้าวทั้งสองที่อยู่ใกล้กัน

ปัญหารอยร้าวแบบซับซ้อนที่ศึกษา กำหนคระยะจากกึ่งกลางชิ้นทคสอบไปยังกึ่งกลางรอย ร้าวแต่ละรอย *b* = 3.75 มม. เมื่อเปรียบเทียบครึ่งหนึ่งของขนาครอยร้าวแต่ละรอย *c* = 3.958 มม. พบว่าเกิคการทับซ้อน (Overlap) ของปลายรอยร้าวทั้งสอง สอคคล้องกับเงื่อนไขรูปที่ ซ.4 กรณีรอย ร้าวทับซ้อนกัน ดังนั้น

 $2c = 3.958 + (3.75 \times 2) + 3.958$

2*c* = 15.416 ມມ.

ขั้นตอนที่ 3 คำนวณ Stress intensity factor ของรอยร้าวค้วยสมการที่ ซ.4

$$K_{I} = \frac{1}{5 \times 10^{-3}} \sqrt{\frac{7.708 \times 10^{-3} \pi}{4 \times (12.5 \times 10^{-3})^{2}}} \sec \frac{7.708 \times 10^{-3} \pi}{2 \times (12.5 \times 10^{-3})}$$

$$K_1 = 1,654 Pa \cdot \sqrt{m}$$

ประวัติผู้เขียนวิทยานิพนธ์

นาย ธนวัฒน์ กรจำรัสกุล เกิดเมื่อวันที่ 25 พฤศจิกายน 2523 ที่จังหวัดกรุงเทพมหานคร สำเร็จ การศึกษาปริญญาวิศวกรรมบัณฑิต สาขาวิศวกรรมเครื่องกล จากมหาวิทยาลัยธรรมศาสตร์ เมื่อปี การศึกษา 2544 และเข้าศึกษาต่อในหลักสูตรวิศวกรรมมหาบัณฑิต ภาควิชาวิศวกรรมเครื่องกล จุฬาลงกรณ์มหาวิทยาลัย เมื่อปีการศึกษา 2545

