ADMICELLAR POLYMERIZATION OF DOPED POLYPYRROLE AND POLYTHIOPHENE ON NATURAL RUBBER

2

Adisorn Chirasakulkarun

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2008

Thesis Title:	Admicellar polymerization of doped Polypyrrole and
	Polythiophene on natural rubber
By:	Adisorn Chirasakulkarun
Program:	Polymer Science
Thesis advisors:	Assoc. Prof. Rathanawan Magaraphan

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

Nantaya Innumit College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

Q. Maynigh

(Assoc. Prof. Rathanawan Magaraphan)

Hathacharn M.

(Asst.Prof. Hathaikarn Manuspiya)

Kambai Mongez

(Asst.Prof. Chanchai Tongpin)

บทคัดย่อ

อดิสร จิระสกุลการุญ : ชื่อหัวข้อวิทยานิพนธ์ การเตรียมและทดสอบคุณสมบัติเม็ดยาง ธรรมชาติที่เคลือบพอลิเมอร์นำไฟฟ้า(พอลิไพโรลและพอลิไทโอฟีน) ด้วยวิธีการแอดไมเซลลา. (Admicellar Polymerization of dope conductive polymers on natural rubber.) อ.ที่ปรึกษา : รศ. ดร. รัตนวรรณ มกรพันธุ์ 350 หน้า

พอลิไพโรล(PPy) และพอลิไทโอฟิน(PTh) จัดเป็นพอลิเมอร์ที่คุณสมบัติในการนำ ไฟฟ้าได้ดี แต่มีข้อจำกัดในความสามารถการขึ้นรูปและความยึดหยุดของวัสดุประเภทนี้ไม่ดีนัก วิธีการแก้ปัญหาสามารถทำได้โดยใช้จากการใช้วิธีการแอคไมเซล ด้วยเทคนิคอิโตรเคมี ทำโดย การเคลือบแบบบางของฟิล์มพอลิเมอร์บนพื้นผิวที่มีประจุ โดยการใช้สารลดแรงดึงผิวโซเดียมโนแม่แบบ งานวิจัยนี้ใช้เม็ดยางธรรมชาติเป็นวัสดุที่จะถูกเคลือบด้วยชั้นของสารลดแรงตึงผิวโซเดียมโตเดซิล ซัลเฟต (SDS) โดยทำการศึกษาจากการเพิ่มประมาณพอลิเมอร์ในยางธรรมชาติที่ถูกเคลือบด้วย สารลดแรงดึงผิว จากนั้นใช้เทคนิคการดูดกลืนแสงรังสีอินฟาเรดแบบฟูเรียทรานสฟอร์ม เพื่อ ยืนยันความสำเร็จในการสังเคราะห์ การทดสอบคุณสมบัติการทนต่ออุณหภูมิของเม็ดยางที่ผ่าน กระบวนการเกลือบผิวแล้วพบว่าอุณหภูมิในการสลายตัวเพิ่มสูงขึ้นเมื่อเทียบกับพอลิไพโรลและ พอลิไทโอฟินที่บริสุทธิ์ ซึ่งแสดงให้เห็นว่าเม็ดยางเคลือบผิวมีคุณสมบัติในการทนความต่อร้อนที่ ดีขึ้น ในด้านดุณสมบัติเชิงกลของเม็ดยางเกลือบผิวก็ได้รับการปรับปรุงให้ดีขึ้นเช่นกัน โดยเม็ดยาง เคลือบผิวจะมีความแข็งที่มากกว่าเม็ดยางธรรมชาติ และจากผลการศึกษาคุณสมบัติในการนำ ไฟฟ้าของเม็ดยางเกลือบผิวพบว่ามีก่าการนำไฟฟ้าประมาณ 10⁻⁶ ถึง10⁻⁴ S/cm ซึ่งมีก่ามากกว่า ก่าการนำไฟฟ้าของยางธรรมชาติหลายเท่า เนื่องจากโดยปกติยางธรรมชาดิมีก่าการนำไฟฟ้าเพียง 10⁻¹⁵ S/cm.

ABSTRACT

4972002063 : Polymer Science Program
Adisorn Chirasakulkarun: Admicellar Polymerization of dope conductive polymers on natural rubber.
Thesis Advisors: Assoc. Prof. Rathanawan Magaraphan, 350 pp.
Keywords : Admicellar polymerization/ Polypyrrole/ Polythiophene/ Electrochemical technique/ Conductive polymer /Natural rubber latex/

Iodine doping/ Composites/ Doping

Polypyrrole(PPy) and polythiophene(PTh) are good electrically conductive polymers; however, they have poor processibility and their flexibility is limited. To overcome these limitations, electrochemical and admicellar polymerization with Sodium Dodecyl Sulfate (SDS) is used. The admicellar polymerization of PPy and PTh by electrochemical method over natural rubber particles is investigated by varying monomer content and applied voltages. The success of synthesis was confirmed by density, FTIR, SEM. TGA, and TEM. Mechanical properties of admicelled rubber were revealed by tensile strength and hardness test. The conductivity of the modified rubber is about 10⁻⁹ to 10⁻⁴ S/cm for PPy and about 10⁻¹² to 10⁻⁶ S/cm, both of which are much higher than that of natural rubber by several orders (the conductivity of pure natural rubber is about 10⁻¹⁵ S/cm).

ACKNOWLEDGEMENTS

This work would not been possible without the assistance of the following individuals:

First of all, the author would like to gratefully give special thanks to his advisors Assoc. Prof. Rathanawan Magaraphan, the Petroleum and Petrochemical College, Chulalongkorn University for her constructive criticism, very useful suggestions, valuable guidance and vital help throughout this research work.

The author gratefully appreciates Dr. Thanyalak Chaisuwan and Mr. Robert Wright for their invaluable suggestion and criticism.

The author would like to thank Asst. Prof. Hathaikarn Manuspiya for being on the thesis committee.

The author would like to acknowledge the Petroleum and Petrochemical College; the National Excellence Center for Petroleum, Petrochemicals; and Advanced Materials, Thailand; and, the Polymer Processing and Polymer Nanomaterials Research Unit for the financial support of this project.

Special thank to Mr. Chaturong Tiamsiri, the technician at the Petroleum and Petrochemical College, Chulalongkorn University, for his help in designing and fabricating the electrochemical chamber and devices for measurement.

Finally, the author would like to take the opportunity to thank all of his friends and the staffs at this college for their friendly assistance, creative suggestions, and strong encouragement. The author is also greatly indebted to his parents for their love, support, understanding, and encouragement during this pursuit.

TABLE OF CONTENTS

	PAGE
Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	xii
List of Figures	xv

4.2.00

CHAPTERS

÷

5 -

I	INTRODUCTION	1
II.	LITERATURE REVIEW	
	2.1 Surfactant	6
	2.1.1 Fundamental of surfactants	6
	2.1.2 Adsorption of Surfactant at Solid-liquid Interface	8
	2.1.2.1 S-Shape curve Parameters for surfactant adsorption	tion10
	2.1.2.2 L-Shape curve	14
	2.2 Admicellar polymerization technique	15
	2.2.1 Step 1 Admicelle Formation	15
	2.2.2 Step 2 Monomer Adsolubilization	16
	2.2.3 Step 3 Polymerization of adsolubilized monomer	16
	2.2.4 Step 4 Surfactant removal	17
	2.3 Natural Rubber	17
	2.3.1 Natural Rubber in Thailand	19

	2.3.2 Properties of Raw Natural Rubber	19
	2.3.3 The production of natural rubber latex concentrate	20
	2.3.4 The chemical formula of natural rubber	22
	2.4 Electrochemistry	25
	2.4.1 Cell emf dependency on changes in concentration	28
	2.4.1.1 Nernst Equation	28
	2.4.1.2 Standard electrode potential	29
	2.4.2 Concentration cells	31
	2.5 The Theoretical consideration of conductive polymer	33
	2.5.1 Band structure	33
	2.5.2 Metal, Semiconductor and Insulator	34
	2.5.3 Concept of doping	36
÷	2.6 Application of organic conducting polymer	42
1.1	2.7 Polypyrrole	45
9	2.7.1 Synthesis of polypyrrole	46
	2.7.1.1 Electrochemical polymerization	46
	2.7.1.2 Chemical polymerization in solution	48
	2.7.2 Literature survey	50
	2.8 Polythiophene	57
	2.8.1 Synthesis of Polythiophene	58
	2.8.1.1 Electrochemical polymerization	58
	2.8.1.2 Chemical polymerization	62
	2.8.2 Literature survey	63
III.	EXPERIMENTAL	
	3.1 Materials	67

3.2 Equipments

3.3 Methodology

forming

2.8.1.1 Electrochemical polymerization	58
2.8.1.2 Chemical polymerization	62
2.8.2 Literature survey	63
RIMENTAL	
terials	67
aipments	68
thodology	70
3.3.1 Particle size measurement	70
3.3.2 Preparation the rubber in surfactant as bilayer	
ming	70

3.3.3 Preparation of conductive natural rubber by	
electrochemical method	70
3.3.4 Morphological study	72
3.3.5 Thermal properties measurement	73
3.3.6 FTIR observation	74
3.3.7 Mechanical properties measurement	74
3.3.8 Shore A and Shore D hardness measurement	75
3.3.9 Conductivity measurement	76
3.3.10 Density measurement	77

IV. RESULTS AND DISCUSSION OF PPY-COATED LATEX

PARTICLES BY ADMICELLAR POLYMERIZATION

4.1	Abstract	78
4.2	Introduction	78
4.3	Experiment	81
4:4	Results and discussion	90
•	4.4.1 Preparation of natural rubber sheet	90
	4.4.2 Fourier-Transform Infrared Spectroscopy of	
	admicelled NR latex	95
	4.4.3 Density measurement	100
	4.4.4 Particle size distribution of NR latex	103
	4.4.5 Transmission electron microscopy	104
	4.4.6 Scanning electron microscopy	110
	4.4.7 Thermogravimetric analysis	115
	4.4.8 Mechanical properties measurement	120
	4.4.8.1 Lloyd Universal Testing Machine	120
	4.4.8.2 Instron Universal Testing Machine	124
	4.4.9 ShoreA and ShoreD hardness measurement	128
	4.4.10 Conductivity properties measurement	130
4.5	Conclusion	133

4

V. **RESULTS AND DISCUSSION OF PTH-COATED LATEX** PARTICLES BY ADMICELLAR POLYMERIZATION

135
136
137
147
147
152
156
159
160
166
172
177
177
182
186
188
191
192

VI.	COMPARED THE PROPERTIES OF COATING PPY AND E	PTH ON N	R
	6.1 Compared reaction time and mass of PPy and PTh on NR	193	

6.2 The particle size distribution of particle	195
6.3 Morphology	197
6.4 Thermogravimetric behavior of samples	201
6.5 Mechanical properties measurement	204
6.5.1 Lloyd universal testing machine	205

6.5.2 Instron universal testing machine	208
6.6 Hardness properties measurement	212
6.7 Conductivity properties measurement	214
6.8 Conclusion	217
6.9 Acknowledgements	219

RESULTS AND DISCUSSION EFFECT OF DOPING WITH IODINE VII INTO CONDUCTIVE RUBBER BY ADMICELLED TECHNIQUE 220 7.1 Abstract 221 7.2 Introduction 225 7.3 Experiment 7.4 Results and discussion 233

	7.4.1 Effect of monomer content dope with iodine on reaction	
	time and %yield	233
4	7.4.2 Scanning electron microscopy	236
.*	7.4.3 Fourier-Transform Infrared Spectroscopy of admicelled	
	NR latex	241
	7.4.4 Thermogravimetric analysis	247
	7.4.5 Mechanical properties measurement	252
	7.4.6 Conductivity properties measurement	259

7.6 Acknowledgement 266

VIII. THE APPLICATION OF CONDUCTIVE RUBBER

7.5 Conclusion

8.1 Abstract	267
8.2 Introduction	268
8.3 Experiment	269
8.4 Results and discussion	273
8.5 Conclusion	277
8.6 Acknowledgement	277

REFERENCES

APPENDICES

Appendix A Admicelled Latex Recipe	297
Appendix B Calculation for Volume and Surface Resistivity	299
Appendix C Data of Particle Size Distribution	303
Appendix D Weight of preparation admicelled rubber	304
Appendix E The pH values for preparation admicelled rubbers	312
Appendix F Data of Fourier-Transform Infrared Spectroscopy	314
Appendix G Data of Conductivity Measurement	316
Appendix H Scanning electron microscopy	339
Appendix I Determination of density by using Pycnometer	347
Appendix J Calculation of density	348

CURRICULUM VITAE

284

TABLE		PAGE
1.1	Conductivity of common CPs	3
1.2	Comparison of chemical and electrochemical CP polymerization	4
2.1	World production of natural rubber (2004)	18
2.2	Different types of rubber in Thailand (2004)	19
2.3	Composition of fresh latex and dry rubbers	20
2.4	Standard reduction potentials	29
2.5	Typical conducting polymers	42
2.6	Change of properties upon electrical stimulation to organic conducting polymers	44
2.7	Anion content of conducting film	49
2.8	Polypyrrole film with different anion	49
2.9	Conductivity of composite films	63
2.10	Degree of sulfonation ratios (S/N ratios) and dry conductivity values of the polymer films obtained from the acetonitrile/0.1M LiBF ₄ solutions containing 300mM aniline, 75mM HSO ₃ F and different concentrations of thiophene	64
3.1	Parameter to be measured for admicelled rubber properties	68
3.2	Rubber compound test method	69
3.3	Comparison between the particle size and magnification	73
4.1	Parameters to be measured for admicelled rubber properties	81
4.2	Test method	82
4.3	Effect of voltage on % yield and reaction times at pyrrole 100 mM(3.35g, 15.473%wt), NR latex(60%wt DRC) 25 g, and SDS 2.307g	91
4.4	Effect of PPy content on % yield and reaction times at 9 V, NR latex (60%DRC) 25g, and SDS 2.307 g	93
4.5	Assignment for the FTIR spectrum of pyrrole	97
4.6	Assignment for the FTIR spectrum of isoprene	98
4.7	Assignment for the FTIR spectrum of combination	99

LIST OF TABLES

4.8	Measurement density of conductive polymer	102
4.9	Degradation temperature of the admicelled rubbers	116
4.10	Composition and properties of PPy/NR obtained by admicellar	121
	technique by Lloyd universal testing machine	
4.11	Composition and properties of PPy/NR were obtain by	125
	admicellar technique Instron Universal Testing Machine	
4.12	Shore hardness with concentration for admicellar rubber	128
4.13	Conductivity of natural rubber sheet prepared at 25°C, 9V, at	131
	various to PPy contents	
4.14	Conductivity of natural rubber sheet prepared at 25°C, 9V, at	132
	various to volume fraction	
5.1	Parameters to be measured for admicelled rubber properties	137
5.2	Test method and ASTM	138
5.3	Effect of voltage on % yield and reaction times at Thiophene	147
	100 mM(4.207g), NR latex(60%wt DRC) 25 g, and SDS	
	2.307g	
5,4	Effect of PTh content on % yield and reaction times at 9 V,	149
	NR latex (60%DRC) 25g, and SDS 2.307 g	
5.5	Assignment for the FTIR spectrum of thiophene	153
5.6	Assignment for the FTIR spectrum of isoprene	154
5.7	Assignment for the FTIR spectrum of combination	155
5.8	Measurement density of conductive polymer	158
5.9	Degradation temperature of the admicelled rubbers	173
5.10	Composition and properties of PTh/NR were obtain by	178
	admicellar technique with UTM (Lloyd universal machine)	
5.11	Composition and properties of PTh/NR were obtain by	183
	admicellar technique with UTM (Instron Machine)	
5.12	Shore hardness with concentration for admicellar rubber	186
5.13	Conductivity of natural rubber sheet at various PTh content	189
5.14	Conductivity of natural rubber sheet prepared at 25°C, 9V, at	191
	various to volume fraction	
6.1	Effective of PPy content on % yield and reaction times at 9 V	193
6.2	Effective of PTh content on % yield and reaction times at 9 V $$	193

	6.3	Anion content of conducting film	194
	6.4	Comparison the degradation temperature of the admicelled	201
		rubbers	
	6.5	Composition and properties of (PPY,PTH)/NR (Lloyd	205
		universal machine)	
	6.6	Composition and properties of Monomer/NR	208
	6.7	Shore hardness with concentration for admicellar rubber	212
	6.8	Conductivity of natural rubber sheet prepared at 25°C, 9V	215
		various to monomer content.	
	6.9	Elemental composition (wt.%), conductivity of polythiophene	216
		and polypyrrole prepared in the presence of surfactant	
	7.1	Molecular characteristics of natural rubber	222
	7.2	Effect of PPy content on % yield and reaction times at 9 v	234
	7.3	Assignment for the FTIR spectrum of Iodine	241
	7.4	Assignment for the FTIR spectrum of isoprene	242
	7.5	Assignment for the FTIR spectrum of pyrrole	243
	7.6	Assignment for the FTIR spectrum of thiophene	244
	7.7	Assignment for the FTIR spectrum of composite	246
	7.8	Degradation temperature of the admicelled rubber	248
	7.9	Composition and properties of conductive rubber with effect.	253
		of iodine doping were tested by UTM (Lloyd universal	
		machine)	
	7.10	Conductivity of natural rubber sheet at various monomer	261
		concentrations	
	7.11	Doping levels and conductivites of a variety of CPs	264
	8.1	Effect of stretching on volume conductivity of admicelled	275
		rubber PPy at various to PPy contents	
	8.2	Effect of stretching on surface conductivity of admicelled	276
		rubber PPy at various to PPy contents	
	8.3	Effect of stretching on volume conductivity of admicelled	276
		rubber PTh at various to PTh contents	
	8.4	Effect of stretching on surface conductivity of admicelled	277
		rubber PTh at various to PTh contents	

e e

FIGURE		PAGE
1.1	Chemical structures of common conductive polymers:	2
	polyacetylene, polypyrrole, polythiophene, poly(3,4-	
	ethylenedioxythiophene), and polyaniline	
2.1	Surfactant molecule	7
2.2	Molecular structure of a surfactant	7
2.3	Surfactant aggregates	8
2.4	Typical adsorption isotherm of surfactant in solution.(S-shaped	11
	curve)	
2.5	Point of zero charge on natural rubber surface	13
2.6	Adsorption isotherm of surfactant from aqueous solution onto	14
	nonpolar, hydrophobic adsorbents.(L-shape curve)	
2.7	Formation of a sodium dodecyl sulfate (SDS) admicelle on the	15
 2	alumina surface	
2.8	a) Admicelle formation of polymerization process	16
	b-1) Admicelle Adsolubilization of polymerization process	16 •
	b-2) Phenomena of solubilization and adsolubilization	16
	c) Polymer formation of polymerization process	17
	d) Surfactant removal of polymerization process	17
2.9	Structure of the NR latex particles	22
2.10	Schematic representation of structure of NR latex particle	22
2.11	Schematic representing the structure isomerism with both cis-	23
	and <i>trans</i> - isoprene, repeating units	
2.12	Unit cell structure of the natural rubber molecule	23
2.13	Effects of the stretched rubber molecule	24
2.14	Typical structure of NR latex from Heavea brasiliensis	24
2.15	Schematic representation of structure of cis-polymer : cis-1.4-	25
	polyisoprene (~97%), cis-1,2- polyisoprene(~2.7) and cis-3,4-	
	polyisoprene(<0.3%)	
2.16	Three electrode setup for electrochemical synthesis: reference	26
	electrode, working electrode (where polymerization occurs),	
	and counter electrode all submersed in a monomer and	

LIST OF FIGURES

. .

electrolyte solution

100

2.17	Mechanism for heterocycle polymerization via electrochemical	27
	synthesis. X=NH, S, or O. This pathway is initiated by the	
	oxidation of a monomer at the working electrode to give a	
	cation species, which can react with a neutral monomer species	
	or radical cation oligomeric species to generate the polymer.	
2.18	Formation of a band of N orbitals by the successive addition of	33
	atoms to a line.	
2.19	S-band, P-band and the band gap.	34
2.20	Relationship of energy gaps in the tree types of solids.	35
2.21	Band structure of a polymer chain containing: a) two polarons	36
	b) one bipolarons	
2.22	Introduction of polaron and bipolaron lattice deformation upon	38
	oxidation (p-type doping) in heterocyclic polymers. X=S, N, or	
	O. A polaron or radical cation is introduced into the conjugated	
	backbone after the loss of an electron. When oxidation of the	
	same segment of the conjugated backbone occurs the unpaired	
	electron of the polaron is lost and a dication (i.e., bipolaron) is	
	formed	
2.23	Valence-effective Hamiltonian band structure evolution of PPy	39
	(top) and PTh (bottom) upon doping	
2.24	P-type doping of polypyrrole resulting in a polaron and	40
	bipolaron.	
2.25	Different redox form of PTh : (a) reduced ; (b) half-oxidized	41
	(polaronic) and (c) Oxidized (bipolaronic).	
2.26	Conductivity of various organic compounds in comparison to	43
	inorganic materials	
2.27	Structure of polypyrrole	45
2.28	The polymerization involve with oxidation of polypyrrole	47
2.29	Polymerization of Polypyrrole	47
2.30	Preparation of the compressed PVC/PPy composites	51
2.31	Polypyrrole-coated PS particle using PVP as stabilizer	52
2.32	Schematic formations of polypyrrole-coated latex particles as	53

•

.

.

core-shell structure

2.33	Dependence of electrical conductivity on the PPy concentration	56
2.34	Scanning electron micrograph of polypyrrole	56
2.35	Polymerization involved with oxidation of Thiophene	58
2.36	Polymerization of thiophene	59
2.37	Structure of polythiophene.	60
2.38	Possible reiochemical coupling of 3-alkylthiophene	61
2.39	Regioirregular vs. Regioregular poly(3-substituedthiophene)	62
2.40	Oxidative coupling reaction of 3-alkylthiophene by FeCl ₃	62
2.41	Schematic showing the mechanism for the hybridization of	64
	Dy@C82 and PT via electro-polymerization and redox-	
	enhanced mixing.	
2.42	Fatigue fracture types of a conducting Pth coating film on a	66
	substrate. (Left) A spalling fracture type caused by fatigue	
	loading. (Right) A fragmentation fracture type caused by	
est e .	fatigue loading	
3.1	Schematic of SDS	67
3.2	Apparatus for admicelled polymerization with electrolysis	71
3.3	Transmission electron microscope (TEM)	72
3.4	Preparation samples for tensile test	74
3.5	Shore A and shore D measurement	75
3.6	Image of Keithley 8009 resistivity test fixture and Keithley	76
	6517 A Electrometer/ High resistance meter.	
4.1	Phenomena of admicelled polymerization	85
4.2	Apparatus for admicelled polymerization with electrolysis. It	86
	consists of a reaction bottle and cover, cathode and anode	
	electrodes, a voltmeter, an ammeter, a current supply, a hot	
	plate and a magnetic stirrer.	
4.3	Preparation samples for tensile test.	89
4.4	Effect of voltage applied on reaction time.	91
4.5	Effect of voltage applied on % yield.	92
4.6	Effect of pyrrole concentration on reaction times and %yield.	92
4.7	Accumulate weight equation of admicelled rubber (PPy: NR).	94

•

1.1

.'

4.8	Effect of reaction times on pH values.	95
4.9	FTIR spectrum of Polypyrrole	97
4.10	FTIR spectrum of pure Natural rubber, Polyisoprene.	98
4.11	FT-IR spectra of the admicelled rubbers with polypyrrole	99
	(HATR flat plate system with 45°C ZnSe crystal).	
4.12	The absorbance ratio (PPy/NR) at difference concentration	100
4.13	Variation of density with polypyrrole concentration for	102
	admicellar rubber	
4.14	Histogram showing the particle size distribution by volume of	103
	the natural rubber latex.	
4.15	Transmission electron microscope (TEM) imaged of PPy.	105
4.16	Transmission electron microscope (TEM) image of the natural	105
	rubber latex and no OS (left), with OS (right).	
4.17	Transmission electron microscope (TEM) image of the coated	106
	admicelled rubber with Sodium Dodecyl Sulfate (SDS) as a	
	bilayer form, no QS (left), with OS (right).	
4.18	Transmission electron microscope (TEM) image of the coated	106
	admicelled rubber (with 20 mM PPy) by using the	
	electrochemical method.	
4.19	Transmission electron microscope (TEM) image of the coated	107
	admicelled rubber (with 50 mM PPy) by using the	
	electrochemical method.	
4.20	Transmission electron microscope (TEM) image of the coated	107
	admicelled rubber (with 100 mM PPy) by using the	
	electrochemical method.	
4.21	Transmission electron microscope (TEM) image of the coated	108
	admicelled rubber (with 200 mM PPy) by using the	
	electrochemical method.	
4.22	Transmission electron microscope (TEM) of the coating	108
	admicelled rubber (with 500 mM PPy) by using the	
	electrochemical method.	
4.23	Transmission electron microscope (TEM) image of the coated	109
	admicelled rubber (with 800 mM PPy) by using	

electrochemical method.

4.24	Scanning electron micrograph of the coat polypyrrole by using	111
	electrochemical method; magnification 1,500/15 kV	
4.25	Scanning electron micrograph rubber magnification 1,500/15	111
	kV	
4.26	Scanning electron micrograph of the coated admicelled rubber	112
	(with 20 mM PPy) by using electrochemical method;	
	magnification 1,500/15 kV.	
4.27	Scanning electron micrograph of the coated admicelled rubber	112
	(with 50 mM PPy) by using electrochemical method;	
	magnification 1,500/15 kV.	
4.28	Scanning electron micrograph of the coating admicelled rubber	113
	(with 100 mM PPy) by using electrochemical method	
	magnification 1,500/15 kV.	
4.29	Scanning electron micrograph of the coated admicelled rubber	113
	(with 200 mM PPy) by using electrochemical method;	
	magnification 1,500/15 kV.	
4.30	Scanning electron micrograph of the coated admicelled rubber	1]4
	(with 500 mM PPy) by using electrochemical method;	
	magnification 1,500/15 kV.	
4.31	Scanning electron micrograph of the coated admicelled rubber	114
	(with 800 mM PPy) by using electrochemical method;	
	magnification 1,500/15 kV.	
4.32	DTG thermograms at 10 °C/min nitrogen atmosphere of	116
	admicellar rubbers with SDS by using electrochemical	
	methods.	
4.33	Thermogravimetric analysis thermograms at 10°C/min in	117
	nitrogen atmosphere of admicellar rubbers with SDS by using	
	electrochemical methods.	
4.34	Thermogravimetric analysis thermograms at 10°C/min in	117
	nitrogen atmosphere of admicellar rubbers with SDS by using	
	electrochemical methods.	
4.35	Thermogravimetric analysis thermograms at 10°C/min in	118

nitrogen atmosphere of admicellar rubbers with SDS by using electrochemical methods. 4.36 Thermogravimetric analysis thermograms at 10°C/min in 118 nitrogen atmosphere of admicellar rubbers with SDS by using electrochemical methods. 4.37 119 Thermogravimetric analysis thermograms at 10°C/min in nitrogen atmosphere of admicellar rubbers with SDS by using electrochemical methods. 4.38 121 Effect of polypyrrole concentration on the stress-strain curves of admicelled rubber. 4.39 122 Tensile strength varying the concentration of polypyrrole. 122 4.40 Elongation varying the concentration of polypyrrole 4.41 Effect of polypyrrole concentration on the energy at break. 123 4.42 Effect of polypyrrole concentration on Young's modulus 123 4.43 Effect of polypyrrole concentration on the stress-strain curves 125 of conductive rubber. 4.44 126 Tensile strength varying the concentration of polypyrrole (Instron machine). 126 4.45 Elongation varying the concentration of polypyrrole (Instron machine). 4.46 Effect of polypyrrole concentration on the energy at break. 127 4.47 Effect of polypyrrole concentration on Young's modulus. 127 4.48 Variation of hardness shoreA with polypyrrole concentration 129 for admicellar rubber 4.49 Variation of hardness shoreD with polypyrrole concentration 129 for admicellar rubber 4.50 Electrical conductivity as a function of polypyrrole content in 131 composites with natural rubber latex (applied dc 0.1-20 volts). 4.51 132 Percolation threshold of electrical conductivity as a function of polypyrrole content in composites with natural rubber latex (applied dc 0.1-100 volts). 5.1 136 Oxidation of conductive polymer: X represents a hetero atom as nitrogen (for Polypyrrole) or sulfur (for Polythiophene)

5.2	Phenomena of admicelled polymerization	141
5.3	Apparatus for admicelled polymerization with electrolysis. It	142
	consists of a reaction bottle and cover, cathode and anode	
	electrodes, a voltmeter, an ammeter, a current supply, a hot	
	plate and a magnetic stirrer.	
5.4	Preparation samples for tensile test.	145
5.5	Effect of voltage applied on reaction time	147
5.6	Effect of voltage applied on % yield.	148
5.7	Effect of thiophene concentration on reaction times and %yield.	149
5.8	Accumulate weight equation of admicelled rubber (PTh: NR).	150
5.9	Effect of reaction times on pH values of PTh solution	151
5.10	FT-IR spectrum of Polythiophene	153
5.11	FTIR spectrum of pure natural rubber, polyisoprene.	154
5.12	FT-IR spectra of the admicelled rubbers with polythiophene	155
	(HATR flat plate system with 45 °C ZnSe crystal).	
5.13	The absorbance ratio (PTh/NR) at difference concentration	156
5.14	Variation of density with polypyrrole concentration for	158
	admicellar rubber	
5.15	Histogram showing the particle size distribution by volume of	159
	the natural rubber latex.	
5.16	Transmission electron microscope (TEM) of PTh	161
5.17	Transmission electron microscope (TEM) image of the natural	161
	rubber latex and no OS (left), with OS (right)	
5.18	Transmission electron microscope (TEM) image of the coated	162
	admicelled rubber with Sodium Dodecyl Sulfate (SDS) as a	
	bilayer form, no OS (left),	
5.19	Transmission electron microscope (TEM) image of the coated	162
	admicelled rubber (with 20 mM PTh) by using the	
	electrochemical method.	
5.20	Transmission electron microscope (TEM) image of the coated	163
	admicelled rubber (with 50 mM PTh) by using the	
	electrochemical method.	
5.21	Transmission electron microscope (TEM) image of the coated	163

	admicelled rubber (with 100 mM PTh) by using the	
	electrochemical method.	
5.22	Transmission electron microscope (TEM) image of the coated	164
	admicelled rubber (with 200 mM PTh) by using the	
	electrochemical method.	
5.23	Transmission electron microscope (TEM) image of the coated	164
	admicelled rubber (with 500 mM PTh) by using the	
	electrochemical method.	
5.24	Transmission electron microscope (TEM) image of the coated	165
	admicelled rubber (with 800 mM PTh) by using the	
	electrochemical method.	
5.25	Scanning electron micrograph of the coat polythiophene by	167
	using electrochemical method; magnification 1,500/15 kV	
5.26	Scanning electron micrograph rubber magnification 1,500/15	168
	kV	
5.27	Scanning electron micrograph of the coated admicelled rubber	168
	(with 20 mM PTh) by using electrochemical method;	
	magnification 1,500/15 kV.	
5.28	Scanning electron micrograph of the coated admicelled rubber	169
	(with 50 mM PTh) by using electrochemical method;	
	magnification 1,500/15 kV	
5.29	Scanning electron micrograph of the coated admicelled rubber	169
	(with 100 mM PTh) by using electrochemical method;	
	magnification 1,500/15 kV	
5.30	Scanning electron micrograph of the coated admicelled rubber	170
	(with 200 mM PTh) by using electrochemical method;	
	magnification 1,500/15 kV	
5.31	Scanning electron micrograph of the coated admicelled rubber	170
	(with 500 mM PTh) by using electrochemical method;	
	magnification 1,500/15 kV	
5.32	Scanning electron micrograph of the coated admicelled rubber	171
	(with 800 mM PTh) by using electrochemical method;	
	magnification 1,500/15 kV	

xxii

5.33	DTG thermograms at 10 °C/min nitrogen atmosphere of	174
	admicellar rubbers with SDS by using electrochemical	
	methods.	
5.34	Thermogravimetric analysis thermograms at 10 °C/min in	174
	nitrogen atmosphere of admicellar rubbers with SDS by using	
	electrochemical methods.	
5.35	Thermogravimetric analysis thermograms at 10°C/min in	175
	nitrogen atmosphere of admicellar rubbers with SDS by using	
	electrochemical methods.	
5.36	Thermogravimetric analysis thermograms at 10 °C/min in	175
	nitrogen atmosphere of admicellar rubbers with SDS by using	
	electrochemical methods.	
5.37	Thermogravimetric analysis thermograms at 10°C/min in	176
	nitrogen atmosphere of admicellar rubbers with SDS by using	
	electrochemical methods.	
5.38	Thermogravimetric analysis thermograms at 10°C/min in	176
	nitrogen atmosphere of admicellar rubbers with SDS by using	
	electrochemical methods.	
5.39	Effect of polythiophene concentration on the stress-strain	179
	curves of admicelled rubber	
5.40	Tensile strength vary the concentration of polythiophene	179
	(Lloyd universal machine)	
5.41	Elongation vary the concentration of polythiophene (Lloyd	180
	universal machine)	
5.42	Effect of polythiophene concentration to work at break (Lloyd	180
	universal machine)	
5.43	Effect of polythiophene concentration to Young's modulus	181
	(Lloyd universal machine)	
5.44	Effect of polythiophene concentration on the stress-strain	183
	curves of admicelled rubber.	
5.45	Tensile strength vary the concentration of polythiophene	184
	(Instron machine)	
5.46	Elongation vary the concentration of polythiophene (Instron	184

machine)

	,		
5.47	Effect of polythiophene concentration to the energy at break.	185	
5.48	Effect of polythiophene concentration to Young's modulus	185	
5.49	Variation of hardness shoreA with polythiophene	187	
	concentration for admicellar rubber		
5.50	Variation of hardness shoreD with polythiophene	187	
	concentration for admicellar rubber		
5.51	Electrical conductivity as a function of polypyrrole content in	189	
	composites with natural rubber latex (Apply dc 0.1-20 volt).		
5.52	Percolation threshold of electrical conductivity as a function of	190	
	polythiophene content in composites with natural rubber latex		
	(applied dc 0.1-100 volts).		
6.1	Transmission electron microscope (TEM) of the monomer	195	
	coating by using the admicelled technique.		
6.2	Histogram showing the particle size distribution by volume of	196	
	the natural		
6.3	Transmission electron microscope (TEM) of the natural rubber	196	
	latex.		
6.4	Scanning electron micrograph of the coating with	197	
	(a) polypyrrole (b) polythiophene (c) natural rubber		
	by using electrochemical method magnification 1,500-3,500		
	/15 Kv		
6.5	Scanning electron micrograph of the coating admicelled rubber	199	
	(with various content of PPy) by using electrochemical method		
	magnification 3,500/15 kV.		
6.6	Scanning electron micrograph of the coating admicelled rubber	200	
	(with various content of PTh) by using electrochemical method		
	magnification 3,500/15 kV.		
6.7	Thermogravimetric analysis thermograms at 10 °C/min of	202	
	nitrogen atmosphere of admicellar rubbers with SDS by using		
	electrochemical methods.		
6.8	Thermogravimetric analysis thermograms at 10 °C/min of	202	

nitrogen atmosphere of admicellar rubbers with SDS by using electrochemical methods.

- 6.9 203 Thermogravimetric analysis thermograms at 10 °C/min of nitrogen atmosphere of admicellar rubbers with SDS by using electrochemical methods. 6.10 203 Thermogravimetric analysis thermograms at 10 °C/min of nitrogen atmosphere of admicellar rubbers with SDS by using electrochemical methods. 6.11 Preparation samples for tensile test. 204 206 6.12 Elongation vary the concentration of monomer (Lloyd UTM) Tensile strength vary the concentration of monomer (Lloyd 206 6.13 UTM) 207 6.14 Effect of monomer concentration to the energy at break (Lloyd UTM) 6.15 Effect of monomer concentration to Young's modulus (Lloyd 207 UTM) 6..16 Elongation vary the concentration of monomer (Instron UTM) 209 6.17 Tensile strength vary the concentration of monomer (Instron 210 UTM) 6.18 Effect of monomer concentration to the energy at break 210 (Instron UTM) 6.19 211 Effect of monomer concentration to Young's modulus (Instron UTM) 6.20 213 Variation of hardness shoreA with conductive polymer for admicellar rubber. 213 6.21 Variation of hardness shoreD with conductive polymer for admicellar rubber. 6.22 Electrical conductivity as a function of monomer content in 215 composites with natural rubber latex (Apply dc 0.1-20 volt). 6.23 Variation of density with monomer concentration for 216
- 7.1 Doping methods in conjugated polymers demonstrated for 222 chemical and electrochemical doping.

admicellar rubber.

....

7.2	Molecular structure of the natural rubber.	222
7.3	Typical conducting polymers.	224
7.4	Apparatus for admicelled polymerization with electrolysis	227
7.5	Phenomena of admicelled polymerization	229
7.6	Preparation specimens for tensile test	231
7.7	Effect of pyrrole concentration on reaction times and % yield	234
7.8	Compared the effect of pyrrole concentration on %yield	235
	between iodine doping and undoping.	
7.9	Compared the effect of pyrrole concentration on reaction times	235
	between iodine doping and undoping.	
7.10	Scanning electron micrograph of the coating with	236
	(a) polypyrrole (b) polythiophene by using electrochemical	
	method magnification 1,500-3,500 /15 kV	
7.11	Scanning electron micrograph of the coating admicelled rubber	237
·;	(EA2) by using electrochemical method magnification	
4	3,500/15 kV.	
7.12	Scanning electron micrograph of the coating admicelled rubber	237
14	(EA80) by using electrochemical method magnification	
	3,500/15 kV.	
7.13	Scanning electron micrograph of the coating admicelled rubber	238
	(EB2) by using electrochemical method magnification	
(*)	3,500/15 kV.	
7.14	Scanning electron micrograph of the coating admicelled rubber	238
	(EB80) by using electrochemical method magnification	
	3,500/15 kV.	
7.15	Scanning electron micrograph of the coating admicelled rubber	239
	(Enr) by using electrochemical method magnification	
	3,500/15 kV.	
7.16	Scanning electron micrograph rubber (NR) magnification	239
	3,500/15 kV	
7.17	Compared scanning electron micrograph of the coating	240
	admicelled rubber with dope and undope of lodine, at	
	magnification 3,500/15 kV.	

	7.18	FTIR spectrum of pure Natural rubber, Polyisoprene.	242
	7.19	FT-IR spectrum of Polypyrrole (PPy).	243
	7.20	FT-IR spectrum of Polythiophene (PTh).	244
	7.21	FT-IR spectrum of admicelled rubber with lodine doping.	245
	7.22	DTG thermograms at 10 °C/min of nitrogen atmosphere of	248
		admicellar rubbers with SDS by using electrochemical	
		methods.	
	7.23	Thermogravimetric analysis thermograms at 10 °C/min of	249
		nitrogen atmosphere of admicellar rubbers with SDS by using	
		electrochemical methods.	
	7.24	Thermogravimetric analysis thermograms of on set	249
		temperature at 10 °C/min nitrogen atmosphere of admicellar	
		rubbers with SDS by using electrochemical methods.	
	7.25	Thermogravimetric analysis thermograms of end point	250
		temperature at 10 °C/min nitrogen atmosphere of admicellar	
		rubbers with SDS by using electrochemical methods.	
	7.26	Thermogravimetric analysis thermograms of peak temperature	250
		at 10 °C/min nitrogen atmosphere of admicellar rubbers with	
		SDS by using electrochemical methods.	
	7.27	Thermogravimetric analysis thermograms of residual content	251
1.		at 10 °C/min nitrogen atmosphere of admicellar rubbers with	
		SDS by using electrochemical methods.	
	7.28	Effect of iodine doping on the stress-strain curves of	254
		admicelled rubber	
	7.29	Elongation vary the concentration of monomer (Lloyd	254
		universal machine)	
	7.30	Tensile strength vary the concentration of monomer (Lloyd	255
		universal machine)	
	7.31	Effect of monomer concentration to the energy at break (Lloyd	255
		universal machine)	
	7.32	Effect of monomer concentration to Young's modulus (Lloyd	256
		universal machine)	

.

. *

	7.33	Elongation vary the concentration of monomer (Lloyd	256
		universal machine)	
	7.34	Tensile strength vary the concentration of monomer (Lloyd	257
		universal machine).	
	7.35	Effect of monomer concentration to the energy at break (Lloyd	257
		universal machine)	
	7.36	Effect of monomer concentration to Young's modulus (Lloyd	258
		universal machine)	
	7.37	Electrical conductivity as a function of monomer content with	261
		iodine dope in composites with natural rubber latex (Apply dc	
		0.1-500 volt).	
	7.38	Electrical conductivity as a function of PPY content in	262
		composites with natural rubber latex and doping with iodine	
		(Apply dc 0.1-20 volt).	
÷.	7.39	Electrical conductivity as a function of PTh content in	262
		composites with natural rubber latex and doping with iodine	
		(Apply dc 0.1-20 volt).	
1	7.40	Reactions leading to the formation of conjugated sequences in	263
		polybutadienes following treatment with Iodine.	
	8.1	Schematics of a two-point probe base(left) and probe(right)	272
	8.2	Diagram of conductivity measurement using two-point probe	273
	8.3	Effect of stretching on volume conductivity of the admicelled	274
		rubber PPy (applied dc 0.1-15 volt) under N2 atmosphere	
	8.4	Effect of stretching on volume conductivity of the admicelled	275
		rubbers PTh (applied dc 0.1-15 volt) under N ₂ atmosphere	