สมบัติเชิง โครงสร้างและเชิงอิเล็กตรอนของสารเชิงซ้อนคีเอ็นเอ-แอ โรแมติค โคร โมฟอร์แบบอินเตอร์คาเลต : การศึกษา โดยวิธีกลศาสตร์ควอนตัมร่วมกับพลวัต โมเลกุล

นางสาวภาลาวัณย์ ฉุยฉาย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรคุษฎีบัณฑิต สาขาวิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึษา 2548 ISBN 974-53-2496-5 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

STRUCTURAL AND ELECTRONIC PROPERTIES OF DNA-INTERCALATED AROMATIC CHROMOPHORE COMPLEXES: A COMBINED QUANTUM MECHANICS AND MOLECULAR DYNAMICS STUDY

Miss Parawan Chuichay

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy Program in Chemistry

Department of Chemistry

Faculty of Science

Chulalongkorn University ISBN 974-53-2496-5

481819

Thesis Title	Structural and Electronic Properties of DNA- Intercalated	
	Aromatic Chromophore Complexes: A Combined	
	Quantum Mechanics and Molecular Dynamics Study	
Ву	Miss Parawan Chuichay	
Filed of study	Chemistry	
Thesis Advisor	Professor Dr. Supot Hannongbua	
Thesis Co-advisor	Professor Dr. Notker Rösch	

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctor's Degree

tunt? Marry_____Dean of Faculty of Science

(Professor Piamsak Menasveta, Ph.D.)

THESIS COMMITTEE

Simil Kobpol (Associate Professor Sirirat Kokpol, Ph.D.) (Professor Supot Hannongbua, Ph.D.) W. Man-Thesis Co-advisor

(Professor Notker Rösch, Ph.D.)

Inld.

(Associate Professor Vudhichai Parasuk, Ph.D.)

(Assistant Professor Pornthep Sompornpisut, Ph.D.)

(Mr. Rath Pichyangkura, Ph.D.)

Member Member

(Associate Professor Bhinyo Panijpan, Ph.D.)

ภาลาวัณย์ ฉุยฉาย : สมบัติเชิงโครงสร้างและเชิงอิเล็กตรอนของสารเชิงซ้อนดีเอ็นเอ-แอ โรแมติคโครโมฟอร์แบบอินเตอร์คาเลต: การศึกษาโดยวิธีกลศาสตร์ควอนตัมกับพลวัต โมเลกุล. (STRUCTURAL AND ELECTRONIC PROPERTIES OF DNA-INTERCALATED AROMATIC CHROMOPHORE COMPLEXES: A COMBINED QUANTUM MECHANICS AND MOLECULAR DYNAMICS STUDY) อ.ที่ปรึกษา : ศ. คร. สุพจน์ หารหนองบัว, อ.ที่ปรึกษาร่วม PROF DR. NOTKER RÖSCH, 156 หน้า. ISBN 974-53-2496-5

การคำนวณทางกลศาสตร์ควอนตัม และแบบจำลองพลวัตเชิงโมเลกุลถูกนำมาใช้ในศึกษา สมบัติทางโครงสร้าง และทางอิเล็กตรอนของสารเชิงซ้อนคีเอนเอ อินเตอร์คาเลตแอโรแมติคโคร โมฟอร์ ในขั้นแรกได้ศึกษาสเปกตรัมเชิงอิเล็กครอนของโครโมฟอร์ซึ่งได้แก่ สารอะครีคืน และ อนุพันธ์ของอะมิโนอะครีคืน ไพโรนีน 6จี และโรคามีน 6จี ในสถานะแก๊ส และในสารละลาย โคย ใช้ระเบียบวิธีเซมิเอ็มพิริกัลแบบ เอ็นคีดีโอ-จี และเอเอ็ม1 และระเบียบวิธีทางกลศาสตร์ควอนตัม แบบ ที่ดี ดีเอฟที่ ผลจากการกำนวณพบว่าพลังงานการดูดกลื่นของอะครีดีน และอนุพันธ์อะมิ ์ โนอะครีคืน มีค่าสอคคล้องกับผลจากการทคลองและผลการคำนวณที่มีความแม่นยำสูง ในขณะที่ พลังงานของโรคามีน 6จี ค่าจากการคำนวณสูงกว่าจากการทคลอง พบว่าสเปกตรัมการดูดกลื่นจะ เปลี่ยนแปลงเมื่อทำการศึกษาในสารละลาย นอกจากนี้ได้ศึกษาแบบจำลองพลวัตเชิงโมเลกุลของ ไพโรนีน 6จี แคตไอออนไคเมอร์ และ โรคามีน 6จี แคตไอออนไคเมอร์ ในสารสะลาย ผลจาก การศึกษาพบว่าโครงรูปของไพโรนีน 6จี และโรคามีน 6จี มีการหมุนไปมาได้ง่าย นอกจากนั้นยัง พบว่าแรงไฟฟ้าสถิตระหว่างตัวทำละลาย และสารละลาย มีส่วนสำคัญอย่างยิ่งที่ทำให้โครโมฟอร์ เสถียรอยู่ได้ งานวิจัยในส่วนสุดท้ายได้จำลองพลวัติโมเลกุลเพื่อศึกษาสมบัติทางโครงรูป และทาง พลวัดของสารเชิงซ้อนอนุพันธ์โรคามีน 6จี กับคีเอนเอ สามระบบ ซึ่งการวางตัวของโครโมฟอร์ นอกจากนี้ยังพบว่าการมีอันตรกิริยา สัมพัทธ์กับเบสกัวนี้นของคีเอนเอมีความยื่คหยุ่นมาก แบบสแตกกิ้ง กับโคร โมฟอร์ มีผลกระทบน้อยมากบนเบสลำคับที่สองและสาม

ภาควิชา	เคมี	ลายมือชื่อนิสิต การพา วิจาว
สาขาวิชา	เคมี	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา	2548	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม <i></i>

4473826623 : MAJOR CHEMISTRY KEY WORD: CHROMOPHORE / DNA / RHODAMINE / MD / SIMULATION CHUICHAY: STRUCTURAL **ELECTRONIC** PARAWAN AND PROPERTIES OF DNA- INTERCALATED AROMATIC CHROMOPHORE COMPLEXES: Α COMBINED OUANTUM **MECHANICS** AND MOLECULAR DYNAMICS STUDY. THESIS ADVISOR : PROF. SUPOT HANNONGBUA, Ph.D. THESIS COADVISOR : PROF. NOTKER RÖSCH, Ph.D., 138 pp. ISBN 974-53-2496-5

.

The quantum mechanical calculations and molecular dynamic simulations were used to investigate the structural and electronic properties of DNA-Intercalated aromatic chromophore complexes. In the first step, electronic spectra of chromophores, acridine, aminoacridine derivatives, pyronine 6G and rhodamine 6G, were studied in gas phase and in aqueous solution using semiempirical, NDDO-G and AM1 and quantum mechanical methods, TDDFT. The calculated absorption energies of the acridine and aminoacridine derivatives agree well with the experiment and the high level of theory, while overestimates that of the rhodamine 6G the experimental value. Changes of the absorption spectra were observed when solvent effects were included. Then, molecular dynamics simulations on the dimers of the positively charged pyronine 6G and rhodamine 6G in aqueous solutions were carried out using newly generated force field parameters. It was found that monomers of pyronine 6G and rhodamine 6G easily undergo relative rotations. Moreover, stability of the dimer was observed to be obviously dominated by the electrostatic interaction between the solute and its aqueous environment. Finally, MD simulations were performed to study conformational features and dynamics of three complexes of rhodamine-6G derivative with DNA. Highly flexible of the chromophore orientations relative to guanine base of DNA was observed. Additionally, the stacking interaction with chromophore effects only slightly on the second and the third base pairs.

Department	Chemistry	Student's signature	man	-jan C
Field of study	Chemistry	Advisor's signature	J.C.	
Academic year	2005	Co-advisor's signature.	N. Ol-	2

ACKNOWLEDGEMENT

This work would not have been likely without the help and friendship of my two advisors, Prof. Dr. Supot Hannongbua and Prof. Dr. Notker Rösch. They gave me the freedom and the means to mature my ideas while always pointing me in the right direction. They regularly challenged me to think in new ways and to critically evaluate my work. I will forever appreciate the devoted effort which they invested in my education and research.

I am also grateful to Dr. Alexander Voituk for this frequent advice on my work over the first year in Germany. Special thanks go to Dr. Sven Kruger and Vivian Torrence, who helped me to survive in Germany easier.

My gratitude also goes to the entire committee, who read and reread quickly in order to help me finalize the study in a timely manner.

Although life in graduate school is so hard, it is a lot easier with friends. I would like to express special thanks to my friends, Khatcharin, Chan, Arthorn, Siriporn, Florian, Andre, Egor, Lyudmila and Alexei, for nice advice, conversations and fun. I would also like to express my special gratitude to Kanjarat and Saowanee. They always help and support me. Especially, they took care of my father when I was in Germany.

I would like to thank Alexander Genest separately for having enough strength to go along with me through the process of finishing the project. He made easier my studying when I did not feel like continuing my work and was feeling discouraged. He had a patience to listen to my explanations when I had a hard time in formulating my thoughts.

Also, my appreciation goes to Computational Chemistry Unit Cell (CCUC) at the Department of Chemistry, Chulalongkorn University and Department of Chemistry, Technische Universität München, Germany for providing the computation time and all facilities.

I am gratefully thanks to Royal Goden Jubilee (RGJ) Ph. D. program and the Thailand Research Fund (TRF) and DAAD scholarships, which provided financial support for my research.

Finally, I would like to extend my greatest gratitude to my mother and father who always understand, support and encourage me. My determination in getting a PhD is due, in part, to the challenge of being part of this dynamic, outgoing family.

			Pages
ABSTF	RACT IN	N THAI	iv
ABST	RACT IN	N ENGLISH	v
ACKN	OWLEI	DGEMENT	vi
CONTI	ENTS		vii
LIST C	F FIGU	IRES	x
Chapte	r I		
Introdu	ction		1
1.1	Resear	ch rationale	1
1.2	DNA-i	intercalated aromatic chromophore complexes	2
1.3	Charge	e transfer in DNA double helix	4
1.4	DNA s	structure	8
1.5	Basic of	electron transfer theory	10
1.6	Resear	ch objectives	14
1.7	Scope	of the work	15
Chapte	r II		
Electro	nic strue	cture calculation	16
2.1	The H	artree-Fock Theory	16
2.2	The Bo	orn-Oppenheimer Approximation	17
2.3	The H	artree-Fock Equations	19
2.4	Semier	mpirical	25
Chapte	r III		
Potenti	al energ	y, minimization and molecular dynamic simulations	27
3.1	Potent	ial energy functions	27
	3.1.1	Intramolecular interactions	
	3.1.2	Non-bond interactions	29
3.2	Minim	nization methods	32
	3.2.1	Steepest descents method	32
	3.2.2	Conjugate gradient method	34
	3.2.3	Newton-Raphson method	35
3.3	Molec	ular dynamics simulations	35

CONTENTS

	3.3.1	Basic theory of molecular dynamics
	3.3.2	Integration algorithms
	3.3.3	Bond constrained
	3.3.4	Periodic boundary condition
	3.3.5	Treatment of long-range electrostatic forces
3.4	Procedur	re to analyze base step parameters program45
Chapter	IV	
Theoret	ical study	ON AN absorption spectra for chromophores
4.1	Models a	and methods
4.2	Results a	and discussions
	4.2.1	Acridine
	4.2.2	Aminoacridine derivatives
	4.2.3	Rhodamine 6G61
4.3	Conclusi	ion67
Chapter	V	
Molecu dimers	lar dynai in aqueou	mics simulations of pyronine 6G and rhodamine 6G s solution
5.1	Atomic of	charges of pyronine 6G and rhodamine 6G70
5.2	Models a	and methods
	5.2.1	Molecular dynamic simulations of pyronine 6G
	5.2.2 of 10 Å s	Molecular dynamic simulations of rhodamine monomers at eparation
	5.2.3	Molecular dynamic simulations of rhodamine 6G dimer 84
5.3	Molecul	ar dynamics results84
	5.3.1	Pyronine 6G dimers
	5.3.2	Rhodamine 6G
		5.3.2.1 Rhodamine monomers at the separation 10 Å 93
		5.3.2.2 Rhodamine 6G dimer
	5.3.3 and R6G	Energy component analysis of monomers and dimers of P6G 96
5.4	Summar	y and conclusions102
СНАРТ	ER VI	

viii

MOLE	CULAR	DYNAMIC	SIMULATION	OF	RHODAMIN-DNA
COMP	LEXES	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	
6.1	Models	and Methods		•••••	
6.2	Results	and Discussion	n	••••	
	6.2.1 neighbor	Analysis of th ring guanine	e chromophore pos	ition 1	elative to the
	6.2.2	Analysis of ba	se pair dynamics	• • • • • • • • • •	
6.3	Conclus	sions	•••••		
CHAP	fer VII				
CONC	LUSION	S		•••••	
APPEN	IDIX	•••••••••••••••••		•••••	
REFER	ENCES			•••••	
CV					

LIST OF FIGURES

Pages

Figure 1.1	Molecular structures of the used dyes
Figure 1.2	Schematic representation of the acridine derivative ACMA, covalently
-	linked to the sugar-phosphate backbone of DNA
Figure 1.3	Schematic representations of possible mechanisms for charge transport
U	through DNA. (a) Superexchange: the charge tunnels from the donor (D)
	to the acceptor (A) through the bridge in a nonadiabatic process. (b)
	Hopping: charge occupies the bridge in travelling from donor to acceptor
	by hopping between discrete molecular orbitals on the bridge
Figure 1.4	Structure of part of a DNA strand (left), and DNA double helix (right)8
Figure 1.5	Watson-Crick base pais found in double stranded DNA; adenine (A),
U U	guanine (G), purine family, and pyrimidines, cytosine (C) and thymine
	(T)
Figure 1.6	Energy diagram for the reactants (D/A) and products (D+/A-) as a
	function of nuclear configuration11
Figure 2.1	A self-consistent field procedure used to solve the wave functions of the
	Schrödinger equation24
Figure 3.1	Geometry of a simple chain molecule, illustrating the definition of
	interatomic distance r_{23} , bend angle θ_{234} , and torsion angle ϕ_{1234}
Figure 3.2	Interactions included in representative potential energy function for MD
	simulation
Figure 3.3	Minimization path (thick solid line) given by the steepest descents
	approach combining with the line search (lower curve) for the simple
5	quadratic function
Figure 3.4	Minimization path given by the conjugate gradient method
Figure 3.5	I wo dimension of periodic boundary condition
Figure 3.6	Coordinate frame and base step parameters
Figure 3.7	I he x and y-coordinates of an origin as measured in the absolute $\frac{1}{2}$
Eigung 2.9	coordinate frame (∂_x, ∂_y) of base-pair <i>l</i>
rigule 5.8	schematic description of the base and base-pair reference frames with
	the base pair reference frame
Figure 3.9	The Transformed base-pair reference triads and MST 50
Figure 4.1	lablonski diagram 54
Figure 4.2	Highest occupied and lowest unoccupied molecular orbitals labels 58
Figure 4.3	Structure of a) R6G, b) Fragment 1(pyronine 6G) and c) Fragment 262
Figure 4.4	The regions F1 and F2 of the R6G
Figure 4.5	Varving the subsistent R1 and R2 on R6G
Figure 5.1	Structure of pyronine 6G (P6G) and rhodamine 6G (R6G)
Figure 5.2	The atom labels for a) pyronine 6G (P6G) and b) rhodamine 6G (R6G).71
Figure 5.3	Relative $R(r)$ quantities (%) of the potential yielded from the between
-	DD and STD charges76
Figure 5.4	The xantylium plane of P6G lies on the xy-plane and the origin is at the
	midpoint O and the opposite C77

xi

Figure 5.5	Electrostatic interaction between the two monomers of a P6G model
	dimer as a function of the torsion angle β (see Figure 5.8), relative to
	eclipsed stacking $\beta = 0^\circ$. Both xantylium planes are parallel at a distance
	of 3.8 Å. Calculations for the atomic charge assignments STD and DD.
	solid and dashed lines, respectively
Figure 5.6	The probed water plane and the P6G molecules are on rv plane and z is
I igure 5.0	the distance between Ω of water molecule and P6G 79
Figure 57	Biding energy surface between P6G and a water molecule using AMBER
Figure 5.7	program 70
Figure 5.9	program
rigule 5.8	a) Torsion angle $p = C1$ -M-N -C1 and M-M distance M-M, defined for the DCC dimen M is the center of mass of the 14 heavy stome in
	ine Pool dimer. Wils the center of mass of the 14 heavy atoms in
	xantnylium rings which make up the three aromatic rings. b) PoG dimer
	in which monomer I (light and thin) is above monomer 2 (dark and thick)
	in antiparallel configuration, $\beta = 180^{\circ}$
Figure 5.9	Constrained distance $X - X'$ between the centroids X, X' of the central rings
	of the xantylium moieties
Figure 5.10	Orientation of the R6G dimers in the antiparallel configuration, $\beta = 180^{\circ}$
	with the separation r
Figure 5.11	<i>M-M</i> distance (see Figure 5.8) in pyronine 6G dimers based on various
	MD protocols. Simulations treating the Coulomb interaction with a PME
	technique and a residue-based cutoff of 12 Å, for force field variants with
	standard (STD) or DD charge assignment (see text)
Figure 5.12	Torsion angle β (see Figure 5.8) of P6G dimers based on various MD
0	protocols. Simulations treating the Coulomb interaction with a PME
	technique and a residue-based cutoff of 12 Å, for force field variants with
	standard (STD) or DD charge assignment (see text)
Figure 5.13	Total energy along the MD trajectory for R6G in water
Figure 5.14	Fluctuation of the dihedral angle C2-C1-C11-C16 in R6G along the MD
8	trajectory (a) and its distribution (b)
Figure 5.15	RMSD derived from 900 ns MD trajectory of Fragment 1 (black)
i iguie 5.15	Fragment 2 (green) and Fragment 2 without C19 (red) relative to initial
	structure 97
Figure 5.16	Comparison of MD snapshots (blue) with the initial structure (red) for
Tigule 5.10	Eragment 2: two snapshots at 502 ps (a) and 503 ps (b) are presented 02
Figure 5 17	Changes of the M M and M P distances of a D6G dimer yielded from an
rigule 5.17	MD run starting in an anti-narallal configuration at an inter plana
	MD run starting in an anti-paratici configuration at an inter-plane
F :	Separation of 10 A
Figure 5.18	Side and top views of RoG snapshot taken from simulation started with
E: 6.10	an anti-parallel configuration at an inter-plane separation of 10 A
Figure 5.19	<i>M-M</i> distance (a) and torsion angle β (b) of R6G see Figure 5.10.
	Simulation based on the SID charge assignment, treating the Coulomb
	interaction with the PME technique
Figure 5.20	Free energy profile of a P6G dimer from thermodynamic integration
	along the centroid distance $X-X'$ in forward and reverse directions; see
	also Figure 5.9101
Figure 6.1	Chemical structure of the derivative rhodamine 6G (Rho) 106

xii

Figure 6.2	The model of the DNA duplex 5'-CAAAGCG-3' with Rhodamine 6G derivative (Rho-5C)
Figure 6.3	The initial set up for the simulation, Rho-5C and Na ⁺ ions with TIP3P water molecules
Figure 6.4	RMSD of DNA of Rho-5C, Rho-5G and Rho-5G' system with respect to the starting structure as a function of time for a 1 ns from 4-5 ns MD
	trajectory110
Figure 6.5	The six snapshots of Rho-5C derivative complex taken from dynamic simulation
Figure 6.6	Coordinate system used to describe the position of the chromophore and the neighboring guanine base
Figure 6.7	Rhodamine 6G derivatives in tmr1_39, tmr2_20 and tmr2_3 NMR
Figure 6.8	Results of MD simulations, demonstrating the fluctuations of the step parameters in the Rho–5C, Rho-5G and Rho-5G' systems
Figure 6.9 Figure 6.10	The average structure of Rho-5C and Rho-5G complex
0	and DNA where P1 is projection of a linking atom into (GC) plane, points O and P2 lye in the middle of C6 - C8 and N1-N9 distances, respectively
Figure 6.11	Position of linker atoms (the bond angle P_1 -O- P_2 in degree) determined for MD trajectory of the complex Rho-5C within 1000 ps (from 11 ns till 12 ns)
Figure 6.12	Selected structures of the Rho-C complex
Figure 6.13	Fluctuation of the dihedral angle C2-C1-C11-C16 (defined in Figure 5.2) of Rho-C system along the MD trajectory a) its distribution and b) its
	histogram
Figure 6.14	The six parameters used to describe the conformation of a base-pair in DNA

LIST OF TABLES

	Pages
Table 1.1	Average structural parameters for A-DNA, B-DNA and Z-DNA10
Table 4.1	Selected optimized structure parameters of acridine obtained from the AM1 and CASSCF calculation in comparison with experiment (distances in Å angles in degrees) 56
Table 4.2	Excitation energies (E), wavelengths (λ) and oscillator strengths (f) of acridine obtained at semiempirical level of theory and CIS with 100 CI in gas phase
Table 4.3	Excitation energies (E), wavelengths (λ) and oscillator strengths (f) of acridine in water obtained at NDDO-G and CIS with 100 CL
Table 4.4	Selected optimized parameter for structure of aminoacridine derivatives (Å) obtained at the B3LYP/6-31G* level
Table 4.5	Excitation energies (E), wavelengths (λ) and oscillator strengths (f) of aminoacridine derivatives in the gas phase and water obtained with AM1 (CIS with 100 states)
Table 4.6	Excitation energies (E), wavelengths (λ) and oscillator strengths (f) in gas phase obtained at semiempirical level of theory (CIS with CI 100 state) and TDDFT calculation. ^a
Table 4.7	AM1 calculations of the electronic spectrum of R6G and fragment analysis of excitation localization. ^a
Table 4.8	Excitation energies (E), wavelengths (λ) and oscillator strengths (f) of R6G in water obtained with AM1 (CIS with 100 states). ^a
Table 4.9	Comparison of the excitation energies (E), wavelengths (λ) and oscillator strengths (f) of R6G models in gas phase obtained at semiempirical level of theory and CIS with CI 100 state. ^a
Table 4.10 Table 5.3	Calculation deprotonation energies of R6G at AM1 level of theory66 Comparison of various ESP derived charge distributions (in <i>e</i>) of Rhodamine 6G, based on the MK procedure with restricted fitting (RESP). The electrostatic potential was determined using various basis sets, for two optimized geometries (HF/6-31G and B3LYP/6-31G*). The charges used in the preceding work of Daré-Doyen et al. (DD) are also shown. For the designation of the atomic centers. Figure 5.2
Table 5.4	The binding energy of P6G and a water molecule where the coordinate of O of water is (-6.5, 1, 2.5)
Table 5.5	Parameters of MD simulations: numbers of water molecules N in the unit cell and dimensions of the unit cell (in Å) after equilibration
Table 5.6	Geometric parametersa of a pyronine 6G dimer, averaged over various time intervals of MD trajectories. Results are shown for various force field variants (STD, DD) and two treatments of the electrostatic interaction, particle mesh Ewald technique (PME) and a residue-based cutoff of 12 Å
Table 5.7	Comparison of selected bond lengths in xantylium of Rhodamin6G, in Å

xiv

Table 5.8	Geometric parameters of a rhodamine 6G dimer, averaged over various time intervals of MD trajectories with different initial structures ($\beta =$
	120°, 180°). Results obtained from the STD variant of the force field and the PME treatment of the Coulomb interactions as well as those of the
	previous study (DD/PW) were shown
Table 5.9	Energy component analysis ^a of monomers and dimers of P6G and R6G,
	based on trajectories up to 2.5 ns, generated with the standard variant
	(STD) of the force field and different treatments of the electrostatic
	interactions (PME, Ewald, cutoff)
Table 6.1	Base-step parameters (translations in Å, rotations in degree) describing
	the relative position and orientation of rhodamine and guanine in the
	NMR structures where are rh6g1 28, rh6g1 38, tmr1 39, tmr2 20 and
	tmr2 3. derived by Griesinger <i>et al.</i> 112
Table 6.2	Base-step parameters (translations in Å, rotations in degree) derived from
	MD trajectories of the model complexes
Table 6.3	Step parameters between the chromophore and guanine in the Rho-5C
	system (translations in Å, rotations in degree) in three snapshots120
Table 6.4	Average base-step parameters between neighboring pairs in Rho-p-5'-
	CAAAGCG-3' derived from the 12 ns MD trajectories a) and the NMR
	structure of rh6g1 28 (b) and rh6g1 38 (c)
Table 6.5	Base-step parameters of 5'-AA-3' obtained from MD simulation of 123