
CHAPTER III
POTENTIAL ENERGY, MINIMIZATION AND 

MOLECULAR DYNAMIC SIMULATIONS

3.1 Potential energy functions
The same for all approached, the theoretical studies to investigate the 

relationships between structure, function and dynamics at the atomic level are based on 
several assumptions. As many of the problems, especially in biological systems 
involve many atoms, quantum mechanics is too expensive to treat these systems. 
However, the problems become much more adaptable when turning to empirical 
potential energy functions. On the other hand, there are certain limitations of empirical 
force fields. One of the most important is that no drastic changes in electronic structure 
are allowed, for instance, no events like bond making or breaking can be modeled.

Up to date development potential energy functions (or force field) provide a 
reasonably good compromise between accuracy and computational efficiency. They 
are often calibrated to experimental results and quantum mechanical calculations of 
small model compounds. Their facility to reproduce physical properties calculable by 
experiment is tested; these properties include structural data obtained from x-ray 
crystallography and NMR, dynamic data obtained from spectroscopy and 
thermodynamic data. The most commonly used potential energy functions are 
AMBER [65], CHARMM [66], GROMOS [67] and OPLS/AMBER [68] force fields. 
The continuing development of force fields remains an intense area of research with 
implications for both fundamental researches as well as applied researches in the 
pharmaceutical industry.

We have briefly reviewed the variety of interactions which are 
important in bimolecular interactions and seen suitable simple mathematical forms for 
their representation. These are drawn together to form a potential energy function

V{R) = Vmtn (*) + K o n -^ J R )  . (3.1)
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3.1.1 Intramolecular interactions

The Vinaa (R ) is sum of the following three terms

(3.2)

which correspond to three types of atom movement, r2 3, $ 3 4 , and $ 2 3 4  shown in Figure
3.1)

Figure 3.1 Geometry of a simple chain molecule, illustrating the definition of 
interatomic distance r23 , bend angle $ 34, and torsion angle $  2 3 4-

atoms 2 and 3 in Figure 3.1. It is a harmonic potential representing the interaction 
between atomic pairs where atoms are separated by one covalent bond, i.e., 1, 2 pair. 
This is the approximation to the energy of a bond as a function o f displacement from 
the ideal bond length, b0. The force constant, Kb, determines the strength of the bond. 
Both ideal bond lengths and force constants are specific for each pair of bound atoms, 
i.e., their value only depend on chemical type of atoms-constituents,

E b0nds is the energy function for stretching a bond between two atoms,

I ^ ( 6 - $ ) 2 . (3 3)

Values of force constant are often evaluated from experimental data 
such as infrared stretching frequencies or from quantum mechanical calculations.
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Values of bond length can be inferred from high resolution crystal structures or 
microwave spectroscopy data.

The second term in Equation 2.2 is associated with alteration of bond 
angles from ideal values 00 and from constant K e , which are also represented by a 
harmonic potential. Values of 00 and ^ d e p e n d  on chemical type o f atoms constituting 
the angle,

E bon̂ =  J ^ K g{ 0 - 0 0)2 . (3.4)
a n g le s

These two terms describe the deviation from an ideal geometry. They 
are penalty functions and that in a perfectly optimized structure; the sum of them 
should be close to zero.

The last term in Equation 2.2 represents the torsion angle potential 
function which models the presence of steric barriers between atoms separated by 3 
covalent bonds (1 ,4  pair). The motion associated with this term is a rotation around 2- 
3 bond in a four atom sequence 1-2-3-4 (see Figure 3.1), described by a dihedral angle. 
This potential is assumed to be periodic and is often expressed as a cosine function.

to rs io n -a n g le s  = Y j K J X  -  C 0 s (  n& )) ( 3 . 5 )
1,4 p a i r

3.1.2 Non-bond interactions
The non-bonded interactions are contributed by two functions which are 

van der Waals interaction energy and the electrostatic interaction energy.

to n -b o n d e d  ( E )  — t d w  ^electrostatic ( 3 . 6 )

The van der Waals energy, £ vdw, describes the repulsion or attraction 
between atoms that are not directly bonded. This term can be interpreted as the part of
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the interaction which is not related to atomic charges. The van der Waals interaction 
between two atoms arises from a balance between repulsive and attractive forces. The 
repulsive force comes up at short distances because the electron-electron interaction is 
strong. The attractive force, also referred to as the dispersion force, arises from 
fluctuations in the charge distribution in the electron clouds. The fluctuation in the 
electron distribution on one atom or molecules gives rise to an instantaneous dipole 
which, in turn, induces a dipole in a second atom or molecule giving rise to an 
attractive interaction. Each of these two effects is equal to zero at infinite atomic 
separation R . The attractive interaction is longer range than the repulsion but as the 
distance become short, the repulsive interaction becomes dominant. This gives rise to a 
minimum in the energy. Both value of energy at the minimum E *  and the optimal 
separation of atoms r*  which is roughly equal to the sum of van der Waals radii of the 
atoms. It will depend on chemical type of these atoms.

The Lennard-Jones potential is the most commonly used form. It can be written
as

E U ( R )  = ร
r „  V 2 - 2
V ' y

r o
y , ( 3 . 7 )

with two parameters: r0, the diameter, and ร ,  the well depth, r -6 represents the
attraction interaction and the repulsive part is given by/"-12. The van der Waals 
interactions are one of the most important for the stability of the biological 
macromolecules.

Another part of the non-bonded interaction is £ e1ect10513tic which is due to 
internal distribution of the electron. It is created by positive and negative parts o f the 
molecule. The electrostatic interaction between a pair of atoms is represented by 
Coulomb potential; D  is the effective dielectric function for the medium and r  is the 
distance between two atoms having charges qi and qk.

■ 'electrostatic =  ? . .n o n b o n d e d
p a i r

( 3 . 8 )
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The empirical potential energy function is differentiable with respect to 
the atomic coordinates; this gives the value and the direction of the force acting on an 
atom and thus it can be used in a molecular dynamics simulation.

Bonds

Em pirica l Potentia l Energy Function

Angles
b0

E h0̂  = b - b j 2
เ̂  1,2 - p a i r s

e0
' b o n d s - a n g le s  = y~̂. E I t  (0  — 9n)

a n g le s
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Figure 3.2 Interactions included in representative potential energy function for MD 
simulation.
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3.2 Minimization methods
Using the force field that has been assigned to the atoms in the system it is 

essential to find a stable point or a minimum on the potential energy surface by 
adjusting the atomic coordinates, in order to begin dynamics. Derivatives provide 
information that can be very useful in minimization procedure. At the minimum the net 
force on each atom vanishes, i.e. the derivative or gradient V F(R ) = 0 . There can be 
more than one minimum for a large molecule. The minima are called loca l minima. 
The ideal solution of geometry minimization is the g loba l m inim um . Due to numerical 
limitations, however, it is impossible to exactly reach the global minimum or even the 
local minimum. In practice, local minimum refers to a point on the potential energy 
surface where the applied minimization procedure cannot further reduce the function 
value. Mostly, the magnitude of the first derivative is a rigorous way to characterize 
convergence. The minimum has converged when the derivatives are close to zero. The 
typical tolerance, for example, in AMBER program [69] is in the range of 10'5 to 10'6 
kcal-mof'-Â'1. To reach the minimum the structure must be successively updated by 
changing the coordinates (taking a step) and checking for convergence. Each complete 
cycle of differentiation and stepping is known as minimization iteration. The efficiency 
of minimization can be judged by both the number of iterations required to converge 
and number of function evaluations needed per iteration. Typically, thousands of 
iterations are required for macromolecules to reach the convergence.

Two first-order minimization methods, which are frequently used in molecular 
modeling, are steepest descents and conjugate gradien t methods. Both techniques use 
the first derivatives of the potential function. Additionally, the N ew ton-R aphson  
method which uses both the first and the second derivatives to locate the minimum, 
namely the second-order method, is also widely used.

3.2.1 Steepest descents method
The steepest descents method uses the first derivatives to determine the 

direction to move towards the minimum. This direction is defined by the negative first 
derivative of the potential energy, -V F (R ) . However, the derivative (gradient) merely 
points downhill of potential energy surface but not necessarily direct the minimum.
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Thus the technique so-called line search, which is used to locate the minimum along 
the gradient direction, is required to decide how far to move along the direction or to 
determine the step size. Figure 3.3 shows a contour of the potential energy surface for 
a simple quadratic function. The gradient direction from the arbitrarily starting point a 
is along the line ac. Using the line search (lower curve), the minimum along this line is 
obtained (point b). Thus, minimization path (thick solid line in Figure 3.3) moves from 
point a  to b. For the next minimization step, then, the new gradient direction is defined 
at point b and perpendicular to the previous gradient. The iteration processes until the 
convergence is reached.

y

Figure 3.3 Minimization 
approach combining with 
function.

path (thick solid line) given by the steepest descents 
the line search (lower curve) for the simple quadratic

However, because each gradient direction must be orthogonal to the 
previous direction, each segment of the minimization path tends to reverse progress 
made in an earlier iteration. Consequently, the steepest descents is an insufficient 
method which gives the oscillating directions along the way to the minimum converges 
slowly near the minimum, especially on the potential energy surface having narrow 
valleys. In contrast, the advantage of this method is that it is extremely robust and most 
likely to generate a lower energy structure regardless of what potential function is or 
where the process begins. Therefore, this method is often used when the gradients are
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large and the configurations are far from the minimum, e.g. the configuration obtains 
from poorly refined crystallographic data or from graphically built models.

3.2.2 Conjugate gradient method
The conjugate gradient method also uses the first derivatives of the 

potential energy. But instead of using local gradient for going downhill as in the 
steepest descents method, the conjugate gradient technique defines the new gradient 
direction for each iteration by using information from previous gradient directions to 
determine the optimum direction for the line search. Using an algorithm that produces 
a complete basis set of mutually conjugate directions, each successive step continually 
refines the direction toward the minimum. Therefore, the conjugate gradient method is 
more efficient and gives smaller number of iterations to reach the convergence, 
comparing to the steepest descents method (see Figure 3.4).

y

Figure 3.4 Minimization path given by the conjugate gradient method.

Generally, this method converges in approximately M  steps for a 
quadratic function, where M  is the number of degrees of freedom of the function. Note 
that several terms in the potential energy are quadratic. Nevertheless, the disadvantage 
is that the line minimizations need to be performed accurately in order to ensure that
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the conjugate direction is set up correctly and thus time consuming. In addition, the 
method can be unstable if conformation is so far away from a local minimum.

3.2.3 Newton-Raphson method
The Newton-Raphson method uses the second derivatives providing 

information about curvature of the function, as well as the first derivatives providing 
the gradient. In addition to the use of the gradient to identify a search direction, the 
curvature of the function is also applied to predict where the function passes through a 
minimum along that direction, i.e. to predict where along the gradient the function will 
change direction. This gives rise to the Newton-Raphson method to converge faster (if 
the starting geometry is not too far from the minimum) and more accurate with a 
tolerance up to 10~9 kcal m of'-Â '1 in comparing to that of 10"6 kcal-mof'-A'1 of the 
conjugate gradient method. However, for a molecule of N  atoms it requires not only 
the vector o f 31V first derivatives but also the Hessian matrix of (3N )2 second 
derivatives, which must be inverted. The need to calculate the Hessian matrix, the 
iteration makes this algorithm computationally expensive and large storage 
requirement. In particular, calculating, inverting and storing the second derivative 
matrix are prohibitive for large systems (usually more than 100 atoms). Furthermore, 
when a structure is far from the minimum, the minimization can become unstable.

From the above description, it can be seen that different minimization 
algorithms have different advantages and disadvantages. To optimize the minimization 
procedure it is usually best to combine several algorithms in the minimization scheme. 
For instance, the steepest descents method should be used for the first 10-1000 steps of 
minimization procedure to obtain the configuration close to the local minimum, then 
the conjugate gradient or the Newton-Raphson method (depending on how large the 
system) is employed to reach the minimum.

3.3 Molecular dynamics simulations
Computer simulations serve as a complement to conventional experiments, 

enabling US to learn. The two main families of simulation technique are molecular
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dynamics (MD) and Monte Carlo (MC). The obvious advantage of MD over MC is 
that it gives a route to dynamical properties of the system.

Experiment

Macroscopic

Molecular Simulation

Microscopic

A molecular dynamics simulation (MD) is one of the principal tools in the 
theoretical study o f biological molecules such as molecule o f life or proteins. This 
computational method calculates the time dependent behavior o f a molecular 
system. MD simulations have presented detailed information on the fluctuations and 
conformational changes of nucleic acids and proteins. These methods are now 
routinely used to investigate the structure, dynamics and thermodynamics of biological 
molecules and their complexes. Molecular dynamics simulation techniques are widely 
used in experimental procedures such as X-ray crystallography and NMR structure 
determination.

MD methods date back to the 1950’ร, when Alder and Wainwright [7071] 
studied the interactions of hard and elastic spheres leading to important insights into 
the behavior of simple liquids. The first molecular dynamics simulation of a realistic 
system was done by Rahman and Stillinger.[72] They investigated the simulation of 
liquid water in 1974. The first protein simulations performed in 1977 with the 
simulation o f the bovine pancreatic trypsin inhibitor (BPTI). [73] Nowadays, one 
usually finds molecular dynamics simulations of solvated proteins, solvated DNA, 
protein-DNA complexes. The number of simulation techniques has seriously extended; 
the exist now many specialized techniques for particular problems, including mixed 
quantum mechanical classical simulations, which are being employed to study 
enzymatic reactions in the context of the full protein and also drug design 
development.



37

3.3.1 Basic theory of molecular dynamics
Molecular dynamics simulation consists of the numerical, step-by-step, 

solution of Newton’s second law or the equation of motion, which for a simple atomic 
system may be written as

F. = เท,a, = m, (3.9)

Where F j is the force acting on atom /', เท1 is its mass and a, is its acceleration (the 
second derivative of coordinate r, with respect to time, t).

From Equation 3.9, the acceleration a, is thus expressed as

a, = £ -  (3.10)
เท  i

1 d V {R )  
m , dr,

(3.11)

which F, is the first derivative of potential function with respect to coordinate r,.

1,  _  dV(R) 
dr, (3.12)

For this purpose we need to be able to carry out the forces F i acting on 
the atoms, and these are usually derived from a potential energy V {R ), where R  = (/ ;ๆ 
r2; ..., rN) represents the complete set of 3 N  atomic coordinates. The potential energy 
is a function of the atomic positions (3N ). Because of the complicated nature of this 
function, there is no analytical solution to the equations of motion. They must be 
solved numerically. Numerous numerical algorithms have been developed for 
integrating the equations of motion.

Time integration algorithms are required to integrate the equation of 
motion of the interacting particles and follow their trajectories. They are the engine of 
a molecular dynamics program, which are based on f in ite  d ifference methods. The
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equations are solved step-by-step in discrete time interval that is called tim e step, A t . 
Knowing the positions and some of their time derivatives at time t, the integration 
scheme gives the same quantities at a later time t + A t .  By iterating the procedure, the 
time evolution o f the system can be followed for long times. There are many 
integration methods widely used in a molecular dynamics simulation.

3.3.2 Integration algorithms
The simplest and most straight forward way to construct an integrator is 

by expanding the positions, velocities and accelerations in a Taylor series,

r ( t + A t) = r(r) + v(/)Ar + —a { t)A t2 + —b (t)A t2 + - i-  c(/)A/4 +... (3.13)2 6 24

v(/ + A t) = v(0 + a (t)A t + ^ b ( t ) A t 2 +-^c(/)A/3 + ... (3.14)

a (t + A t)  = a ( t)  + b (t)A t + ̂ c ( t ) A t 2 +..., (3.15)

where V is the velocity (the first derivative with respect to time).

In molecular dynamics, the most commonly used time integration 
algorithm is probably the so-called Verlet algorithm . [74] The basic idea is to use two 
third-order Taylor expansions for the positions r ( t ) ,  one forward r ( t  + A t) and one 
backward r{t -  A t) in time. The relation can be written as,

r ( t  + A t )  = r ( t )  + v ( t ) A t + ^ a ( t ) A t 2 + ... (3.16)

r ( t - A t ) - r ( t ) - v ( t ) A t  + ] - a ( t ) A t2 (3.17)

Adding the two expressions give
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r ( t  + A t)  -  2 r ( t  )  -  r ( t  -  A t )  + a ( t  ) A t1 )  . (3.18)

This is the basic form of the Verlet algorithm. Because we are
integrating Newton's equations, acceleration, a (t) , is just the force divided by the mass 
(Equation 2.11). As one can see, the truncation error of the algorithm when evolving 
the system by A t is of the order of four, even if third derivatives do not appear 
explicitly. This algorithm is at the same time simple to implement, accurate and stable, 
explaining its large popularity among molecular dynamics simulators.

ท) the storage requirements are modest. The disadvantage is that the algorithm is 
moderate precision. A problem with this version of the Verlet algorithm is that 
velocities are not directly generated. While they are not needed for the time evolution, 
their knowledge is sometimes necessary. Moreover, they are required to compute the 
kinetic energy K, whose estimate is necessary to test the conservation of the total 
energy E=K+V. This is one of the most important tests to verify that a MD simulation 
is proceeding correctly. One could compute the velocities from the positions using

been developed. They give rise to exactly the same trajectory, and the stored variables 
are different in memory and at what times. The leap-frog a lgorithm  [75] is one of such 
variants where velocities are handled somewhat better. In this algorithm, the velocities 
are first calculated at time t + (l/2)A/; these are used to calculate the positions, r, at 
time r + A t .

The advantages of the Verlet algorithm are, i) it is straightforward, and

(3.19)

To overcome this difficulty, some variants of the Verlet algorithm have

V / + At = V t —~ At + a (t)A t
l  2 J { 2 (3.20)

(3.21)
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The advantage of this algorithm is that the velocities are explicitly 
calculated, however, the disadvantage is that they are not calculated at the same time 
as the positions. The velocities at time t can be approximated by the relationship:

v(/ + ̂ -A/) + v ( /-^ A 0  . (3.22)

An improved integrator, which was also used in simulations, is the 
Velocity Verlet a lgorithm  [76] which is designed to further improve on the velocity 
evaluations. The positions, velocities and accelerations at time / + Ar are obtained 
from the same quantities at time t in the following way:

r ( t  + A t) = r ( t)  + A tv(t) + ̂ d t 2a (t) (3.23)

v(/ + A t) = v(t) + At[a(t) + a{t + A/)]. (3.24)

The advantage is the best evaluation of velocities but there is also the 
disadvantage which is computationally more expensive than other integration 
algorithms (Verlet, Leap-Frog).

3.3.3 Bond constrained
According to biological model, the atoms of macromolecules are linked 

by covalent bonds. Such bonds vibrate at a very high frequency, so that a typical 
timestep for the simulation is very small, which is around one femtosecond. This is the 
cause of the total simulation time. The Bond constrained is the effective techniques to 
be proposed to increase the timestep.

A common method for the application of bond constraints in molecular 
simulations employing Cartesian coordinates is the SHAKE procedure invented by 
Ryckaert et al. [77] This algorithm is applied for the fastest processes which are the 
stretching vibrations, especially those involving hydrogen. Theses degrees of freedom 
have relatively small influence on interested properties. Therefore it is the advantage to
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constrain all these bond lengths, which consequently longer simulation times can be 
obtained for the same computational cost. However, the SHAKE algorithm works 
well for time steps 1-2 fs, it is commonly used with SHAKE on the hydrogen atoms. 
The constraint equation is expressed as

g ( r )  = \\rlk( t ) - r Jk(t) 2-d ] ,k -  1 ,2 .. . , / , (3.25)

where k labels the rigid bond connecting atom 4  and atom jk  o f length dk and the norm 
III is the distance.

We need the smallest deviation. However, satisfying one constraint may 
cause other constraints to be violated, and so it is necessary to iterate round the 
constraints until they are all satisfied to within some tolerance, e.g. 0.00001 Â2.

3.3.4 Periodic boundary condition
MD simulations are used to investigate on macroscopic behavior and to 

obtain information that is not easily got from experiments. Nevertheless, computers 
still cannot model more than a few million atoms at one time, despite the rapid 
advancement of computer power. These numbers are still far below the real size of 
most systems. In order to model a macroscopic system in terms o f a finite simulation 
system of N  particles, the concept of periodic boundary conditions is often employed.

This idea is represented in Figure 3.5. The original box contains a solute 
and solvent molecules which is surrounded with identical images of itself. The 
positions and velocities of corresponding particles in all of the boxes are identical. The 
common approach is to use a cubic or rectangular parallelepiped box, but other shapes 
are also possible, e.g., truncated octahedron. By this approach, we obtain what is in 
effect an infinite sized system.
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Figure 3.5 T w o dim ension o f  periodic boundary condition.

In the w ay o f  the sim ulation, when a m olecule m oves in the central box, 
its periodic im age in every one o f  the other boxes m oves w ith  exactly  the same 
orientation in exactly  the sam e w ay. Thus, as a m olecule leaves the central box through 
the right w all, its im age will en ter the box through the left w all from  the neighboring 
box. The num ber o f  particles in the central box (and hence in the entire system ) is 
conserved.

3.3.5 Treatment of long-range electrostatic forces
C urrently  sim ulations o f  bim olecular system s include a  very large 

num bers o f  atom s ten  to  hundred o f  thousands atom s. T hey  are involved over 
tim escales o f  m any nanoseconds. The accurate com putation o f  electrostatic  and van 
der W aals in teractions is the m ost difficult task in com puter m odeling . The m ost tim e 
consum ing part o f  any m olecular dynam ics sim ulation is the calculation  o f  the 
electrostatic interactions. These interactions fall o f f  as 1/r, w here r  is the separation 
betw een charges, and have consequently to be considered as long-range.

T he need for efficiency treatm ent o f  long-range electrostatic 
interactions in the m olecular size (e.g., DNA strands, proteins, m em branes, enzym es,
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etc.) has been clearly  w ell-know n in the last decade. Eeleclr051011c rep resen ts a  sum  over 
N (N -l)/2  pairs; Le., it is an 0 (N 2)  calculation necessary to  evaluate all nonbonded pairs 
in m acrom olecu lar system s. The treatm ent long-range forces w ere ignored in the 
m acrom olecu lar sim ulations, being with the use o f  ‘truncation ’ or ‘c u to f f ,  r 0fT. [78] 
T hese m ethods w ere developed to lim it the com putational effort needed by the 
evaluation  o f  the long-range forces. H ow ever, there is problem  to select the truncation 
technique. O ne can use a straight truncation m ethod, w hich the electrostatic 
interactions are zero  at r 0ff. The truncation sim ulations can perform  in the old version 
o f  A M B E R  package. [79] A nother truncation m ethod, the shifting  functions ร (r), 
scales the in teraction  potential to  zero at the specific d istance

ร ( r )  = \ ( l - ( r / r otf) 2) 2,r< ro{[
0  ,r > ro f f -

(3.26)

One can see that the short-range interactions are disturbed. The 
distortion and overestimation of the short-range interactions are the drawbacks of the 
shifting function scheme. The switching function is other smoothing scheme, which 
brings the potential to zero between a switcheSon and switcheSoff distance. [80] With a 
suitable switcheSon the short-range interactions are not distorted, giving continuous 
force or potential energy. Although the truncation methods can significantly reduce the 
amount of computational time for evaluating the electrostatic interactions, these 
methods are inaccuracy because of finite cutoff distance which restricts severely the 
infinite character o f the system. This may result an unstable geometry for a long 
simulation.

In order to im prove the treatm ent o f  the long-range electrostatic 
interactions, the Ew ald sum m ation m ethods, [81,82] including the particle  m esh Ew ald 
(PM E) sum m ation m ethod, have been im plem ented in M D  packages. [83] These 
m ethods im pose a  crystal-like periodicity on the system  and a llow  one to  calculate all 
non-bonded electrosta tic  forces w ithout truncation.

Ew ald sum m ation was developed in 1921 to  study energetic  o f  ionic 
crystals. In th is m ethod a particle interacts w ith all the o ther particles in the sim ulation 
box and w ith all their im ages in an infinite array o f  periodic cells. C ou lom b’s Law
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cannot be used to  com pute electrostatic energy as it is poorly converg ing  conditionally  
convergent. T he Ew ald sum  splits up the slow ly converging sum  over the C oulom b 
potential into th ree contributions w hich converge exponentially,

บ  = Ur +  U f+ U s .  (3.27)

Real space part:

v.-tq,q 1 erfcja\r(J +n\
H=o 4 ^ 0  k  +  «

(3.28)

2 °°rerfc{x) = —j=  f e x p ( - r ) c / t ,  V *  i
(3.29)

R eciprocal part:

บ ,  =
1 y  exp [- k 1 /  4 q 2]

’ o r3,  t 22T £'0 ^ £ e x p [ - /£ • /• ] (3.30)

S e lf interaction:

บ 4^f0 ,=1 -v/tt (3.31)

rtJ is the m inim um  distance betw een the charges i and j .  T he position o f
each im age box is assum ed for sim plification to be a cube o f  side L  contain ing N 
particles. Each particle i at position n  w ithin the cell has a num ber o f  im age particles at 
position n+n, w ith  n = nxL + nyL + n_L, and nx, ny, ท; integers. T he vector k is

reciprocal vector. H ere, a  is the splitting param eter o f  the real and reciprocal part. For 
an optim al a  the  Ew ald sum m ation scale as 0 (N 3/2)  H ow ever, even w ith these 
optim izations, Ew ald sum m ation rem ains costly com pared to  conventional cu to ff 
schem es.
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The particle m esh Ew ald m ethods (PM E) [84] w as has been developed 
that approxim ate the reciprocal space term  o f  the standard E w ald  sum m ation by a 
discrete convolution  on an interpolation grid, using the d iscrete Fast-Fourier 
transform s (FFT). By choosing an ap p ro p ria ted :, the com putational cost can be reduce 
from  0 (N 3/2)  to 0(NlogN). The advantages o f  the PM E are the m ethod for the 
treatm ent o f  long-range forces in m acrom olecular system s. The high accuracy can be 
obtained w ith relatively little increase in com putational cost and efficiently  
im plem ented into usual M D  algorithm s such as A M B E R  package.[69,84]

In m olecular dynam ics sim ulations o f  bim olecular, accurate treatm ents 
o f  the long-range in teractions are crucial for achieving stable nanosecond trajectory. 
The im portance o f  the treatm ent and also com parison o f  the  m ethods have been 
review ed. [85-88] The particle m esh Ewald m ethod is recom m ended to  use for the 
long-range electrostatic in teractions . 88

3.4 Procedure to analyze base step parameters program
In this section, w e briefly present a basic approach to  the calculation o f  step 

param eters. The param eters describe the m utual position and orientation o f  tw o 
fragm ents. T he step param eters (see Figure 3.6) are tilt, roll, tw ist, shift, slide and rise 
and are determ ined as rotations and displacem ents about the X, y  and z  axes o f  the base- 
pair reference tried.

T he program  is based on the C am bridge U niversity  E ngineering  D epartm ent 
H elix C om putation  Schem e (CEH S) [89,90] param eters. A detailed  algorithm  for the 
evaluation has been already described.[91,92]

Calculation scheme

Definitions of structural parameters. PDB files (B rookhaven Protein Data 
Bank) w ill be used to analyze that define residue nam es, atom  nam es, and atom ic 
coordinates. Local coordinate system  is used for each fragm ent to  derive base 
param eters. T he corresponding transform ation o f  coordinates has to  be carried out. The
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atom ic positions for reference bases are the sam e as defined for W atson-C rick  pairs 
(i.e. A, T, G and C).

T he equations for calculating  the position and orientation  o f  the  coordinate frame 
o f  each base in a  structure are convenient to express in the m atrix  form . To derive 
these equations, consider an atom  with absolute X, y  and z-coord inates (px, Py, P-), 
w hich can be represented  as a colum n vector p\

p  =
Px
P y

Pz

T he position  o f  the  I h base-pair (or base) is defined by a (1*3) vector, 0 „ 
representing  the orig in  o f  the triad (F ig u re  3.7);

o ,  =  [o,x o 1y o, J .

z
z

F ig u re  3.6 C oordinate fram e and base step param eters.
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The orien tation  is defined as following:

1---------
.ร

1____

X = . y  = y * , z  = z iy

3 . T / z . _ Z , z _

T hey are the absolute X, y  and z-unit vector, respectively, tha t define the X, y  and 
z-axes o f  their reference triad o f  base-pair i. The relationship  betw een the local 
coordinate fram e o f  base i and the absolute coordinate fram e is illustrated in tw o 
dim ensions in Figure 3.7.

Figure 3.7 T he X and y-coordm ates o f  an origin as m easured in the  absolute coordinate 
fram e (ox,Oy) o f  base-pair /.

It can be seen from  Figure 3.8 that in order to define the reference triads o f  the 
bases and base-pairs, one strand needs to be arbitrarily assigned strand I and the other 
strand II. Briefly, the reference triads are defined as follows:

B ase-pair triad: The origin is the m idpoint o f  the line connection  C 6  for 
pyrim idines and C 8  for purines. The C 6 -C 8  line gives th ey -ax is . Its positive direction 
points from  strand II to  strand I. T he z-axis is defined as the norm al to the least-squares 
plane through atom s o f  the base pair and its positive d irection  is along the 5 '-> 3 ' 
direction o f  strand I. The x-axis com pletes a right-handed triad w ith the y  and z-axes. 
The positive x-axis direction  points along the short axis o f  the base-pair form  the m inor 
groove side to  the m ajor groove side.
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Base triad: T he j - a x is  alw ays point from  strand II to  strand  I, and  it lies along 
N 1-C4 (purine) and N 3-C 6 (pyrim idine). The origin is given by  the  m idpo in t o f  the 
N 1-C 4 for purine and N 3-C 6 for pyrim idine. It should be c lear from  F igure 3.8. For 
the z-axis, it is defined as the norm al o f  the least-squares plane th rough  all atom s in the 
base excluding hydrogen  and C l atom . It is positive d irection  is along the 5 '->  3' 
direction.

a)

Strand II

Figure 3.8 Schem atic description o f  the base and base-pair reference fram es with 
respect to  the actual bases: a) give the base reference fram es and b) g ives the  base-pair 
reference fram e.

Defining and calculating base-step parameters.
1) W e now  apply  the angle R oll-T ilt (r) w hich is defined as the  m agnitude o f  the 

angle betw een Z; and Zi+1,

r  = cos-‘( z , .z i+I). (3.32)
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2) N ext w e calcu late  the R oll-T ilt axis (rt), w hich need to  take the cross product 
o f  z-axis o f  the tw o successive base-pair. This im m ediately  gives the direction 
o f  R oll-T ilt axis,

rt - z, X  z. (3.33)

3) W e now  rotate the tw o base-pair triads: one base pair triad is rotated about 

R oll-T ilt axis by a n g le [+^/2 ), and the other is rotated ( - ^ / 2 ) also about Roll- 

T ilt axis:

® = (±r/ 2 )> (3-34)

X ix  Ttc z ix x  ix  y  IX Z ix

x]y y<y z iy =  R r M X iy y ,y z  iy
_x i  y * x ,  y ,  z r,_

(3.35)

w hich Rr1 (co) [93] describing a rotation o f  m agnitude (ช about and arbitrary unit 
vector rt = r t j  + rty]  4- rt,ic :

*„(® ) =
cos CO + ( 1  -  cos co) rt]

( 1  -  cos tจ)rtxrt + rt 1 sin CO 
( 1 - c o s  co)rtxrt 1 - r t y smco

( 1  -  c o sco)rtxrty -  rt, sin CO 
cos&) + ( l - c o s  co)rt2y 

(1 -  cos co)rtyrt. + rt 1 sin  CO

(1 -  cos co)rtxrtz + rty sin CO 
( 1 - c o s  co)rtyrt 1 - r t xs\nco 

cos CO + (1 -  cos co) r t2.

(3.36)
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W e then ro tate tw o base-pair triads about R oll-T ilt axis until the ir x-y planes are 
precisely parallel; the curren t z-axis is the axis o f  the m id-step  triad  (M ST). T he X- and 
y -axes o f  M ST  lies along the bisector o f  the angle betw een the transform ed X and y  
axis o f  the i h and (i+ l)th base-pair. The Roll-T ilt axis, in general, w ill not bisect the 
angle betw een the tw o transform  y-axis. It is in the x-y plane o f  the  M ST, w hich is 
inclined at an angle (^) to the y  axis (See Figure 3.9).

m̂sl

Figure 3.9 T he T ransform ed base-pair reference triads and M ST

4) T he angle betw een the tw o transform ed y -  (or X-) axis o f  the base-pair is T w ist 
(Q), w hich is given by:

Q  = c o s - '(y ;+ > -:+1) .  (3.37)

5) To determ ine the angle betw een the Roll-Tilt axis and the M S T y -ax is

</> = co s ' 1 ( r t . y m1, ,) .  (3.38)

6 ) Roll and T ilt, w hich are define as the com ponent o f  R ollT ilt along the y -  and X-  
axes o f  the M ST, respectively, are given as follow ing:

p  --= r  cos(^), โ -  r  s in ( ^ ) . (3.39)
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T est calcu la tions w ere perform ed on 12 base pairs show n in T able 3.1. It lists the 
step param eters (translations in Â, rotations in degree) analyzed by new  code. The 
m ost considerab le d ifference is found for the rotation param eters. T he rise param eter 
o f  the th ird  pair is 27.73°, w hile  carried out by 3DNA program  is 27 .96°. For the tilt 
and roll param eters, the m ost different are found about 0 .15° and -0.28° for the third 
and eighth pair, respectively. The code for calculation step param eters o f  base pair 
alm ost reproduces the  step param eters given by X 3DNA program .

T his program  is m odified for the analysis the step param eters o f  DNA- 
chrom ophore com plex. It can describe the position and orien ta tion  o f  chrom ophore 
relative w ith  base in the com plex.
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