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ABSTRACT

4973010063:  Petroleum Technology Program
Wariya Jittiang: Combined Reforming and Partial Oxidation of
C02-Containing Natural Gas Using Low-Temperature Gliding Arc
Discharge: Effect of Stage Number of Plasma Reactors.
Thesis Advisors: Dr. Thammanoon Sreethawong and Assoc. Prof,
Sumagth Chavadej, 93 pp.

Keywords:  Natural Gas/ Reforming/ Partial Oxidation/ Gliding Arc Discharge/

Plasma

The effect of the stage number of a multistage AC gliding arc discharge
system on 'the system performance of the combined reforming and partial
oxidation of simulated C02-containing natural gas havinga 44:02 6: 3 8: (2
molar ratio-of 70:5:5:20 was investigated. For the experiments with partial
oxidation, either pure oxygen or air was used as an oxygen source, with a
hydrocarbons-to-oxygen molar ratio of 2/1. Without partial oxidation at a fixed
feed flow rate, all conversions of hydrocarbons, except COz, greatly increased
with increasing number of stages from 1to 3; but beyond 3 stages, the reactant
conversions remained almost unchanged. However, for a fixed residence time,
only CsHs conversion gradually increased, whereas the conversions of other
reactants remained almost unchanged with increasing number of stages. The
addition of oxygen was found to significantly enhance the system performance of
natural gas reforming. The utilization of air as an oxygen source showed a
superior system performance to pure oxygen in terms of reactant conversions,
desired product yields and selectivities, and power consumptions. The optimum
power consumptions of 321xI0"8  per molecule of reactant converted and
251x10B  per molecule of hydrogen produced were obtained using air as an
0Xygen source and 3 stages of plasma reactors at a fixed residence time 0f4.38 .
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