COMBINED REFORMING AND PARTIAL OXIDATION OF CO₂-CONTAINING NATURAL GAS USING LOW-TEMPERATURE GLIDING ARC DISCHARGE: EFFECT OF STAGE NUMBER OF PLASMA REACTORS

221

.....

Wariya Jittiang

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2008

Thesis Title:	Combined Reforming and Partial Oxidation of CO ₂ -Containing
	Natural Gas Using Low-Temperature Gliding Arc Discharge:
]	Effect of Stage Number of Plasma Reactors
By:	Wariya Jittiang
Program:	Petroleum Technology
Thesis Advisors:	Dr. Thammanoon Sreethawong
	Assoc. Prof. Sumaeth Chavadej

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Nantays Troumet College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

;

1.1

T. Sreethey

(Dr. Thammanoon Sreethawong)

havady Jumai

(Assoc. Prof. Sumaeth Chavadej)

Promoce R

(Assoc. Prof. Pramoch Rangsunvigit)

K Squit

(Dr. Korada Supat)

วริยา จิตเที่ยง : การรวมกระบวนการเปลี่ยนรูปและการออกซิเดชันบางส่วนของก๊าซ ธรรมชาติที่มีการ์บอน ไดออก ไซด์เป็นองก์ประกอบ ในระบบพลาสมาประกายไฟฟ้าร่อนอุณหภูมิ ต่ำแบบหลายขั้นตอน: ผลกระทบของจำนวนเครื่องปฏิกรณ์ (Combined Reforming and Partial Oxidation of CO₂-Containing Natural Gas Using Low-Temperature Gliding Arc Discharge: Effect of Stage Number of Plasma Reactors) อ. ที่ปรึกษา : ดร.ธรรมนูญ ศรี ทะวงศ์ และ รศ. ดร. สุเมธ ชวเดช, 93 หน้า

ระบบพลาสมาประกายไฟฟ้าร่อนอุณหภูมิต่ำแบบหลายขั้นตอนได้ถูกนำมาใช้ใน การศึกษาผลกระทบของจำนวนเครื่องปฏิกรณ์ต่อการเกิดปฏิกิริยาของระบบการรวมการเปลี่ยนรูป และการออกซิเคชันบางส่วนของก๊าซธรรมชาติจำลองที่มีการ์บอนไคออกไซค์เป็นองก์ประกอบ โคยมีอัตราส่วนโคยโมลของก๊าซมีเทน, ก๊าซอีเทน, ก๊าซโพรเพน, และก๊าซการ์บอนไคออกไซด์ เป็น 70:5:5:20 ในการศึกษาปฏิกิริยาออกซิเคชั่นแบบบางส่วน ออกซิเจนบริสุทธิ์และอากาศถูก - นำมาใช้เป็นแหล่งของก๊าซออกซิเจน โคยมีอัตราส่วนระหว่างไฮโครการ์บอนต่อออกซิเจนเป็น 2/1 ้งากการศึกษาพบว่าในระบบที่ไม่มีการออกซิเคชันบางส่วนและมีอัตราการไหลของสารตั้งต้นคงที่ ้ค่าการเปลี่ยนแปลงของสารตั้งต้นทั้งหมดยกเว้นก๊าซการ์บอนไดออกไซด์เพิ่มขึ้นเมื่อเพิ่มจำนวน เครื่องปฏิกรณ์เป็น 3 เครื่อง แต่ถ้าเพิ่มจำนวนเครื่องปฏิกรณ์มากกว่า 3 เครื่อง ค่าการเปลี่ยนแปลง ของสารตั้งต้นจะไม่เปลี่ยนแปลงต่อไป สำหรับระบบที่มีการควบคุมให้มีเวลาในการเกิดปฏิกิริยา ้คงที่ มีเฉพาะค่าการเปลี่ยนแปลงของก๊าซโพรเพนเท่านั้นที่เพิ่มขึ้นเล็กน้อย ในขณะที่ค่าการ เปลี่ยนแปลงของสารตั้งต้นตัวอื่นๆ ไม่เปลี่ยนแปลงมากนักเมื่อจำนวนของเครื่องปฏิกรณ์เพิ่มขึ้น ้เมื่อทำการเติมก๊าซออกซิเจนให้แก่ระบบพบว่าช่วยเพิ่มประสิทธิภาพในการเปลี่ยนรูปของก๊าซ ธรรมชาติเป็นอย่างมาก ซึ่งการใช้อากาศเป็น แหล่งของก๊าซออกซิเจนส่งผลดีต่อประสิทธิภาพของ ระบบมากกว่าการใช้ออกซิเจนบริสุทธิ์ ทั้งในแง่ของค่าการเปลี่ยนแปลงของสารตั้งต้น ค่าผลได้ และค่าการเลือกเกิดของผลิตภัณฑ์ที่ต้องการ และค่าการใช้พลังงานไฟฟ้า โดยพบว่าค่าการใช้ พลังงานไฟฟ้าที่เหมาะสมสำหรับการเปลี่ยนแปลงสารตั้งต้น คือ 3.21×10⁻¹⁸ วัตต์ วินาที ต่อ โมเลกุลของสารตั้งต้นที่เปลี่ยนแปลงไปและ 2.57×10⁻¹⁸ วัตต์ วินาที ต่อโมเลกุลของก๊าซ ใฮโครเจนที่ผลิตได้ ซึ่งได้จากระบบที่มีการใช้อากาศเป็นแหล่งของก๊าซออกซิเจนและใช้เครื่อง ้ปฏิกรณ์จำนวน 3 เครื่อง โคยควบคุมเวลาของการเกิดปฏิกิริยาให้คงที่ที่ 4.38 วินาที

ABSTRACT

4973010063: Petroleum Technology Program

Wariya Jittiang: Combined Reforming and Partial Oxidation of CO₂-Containing Natural Gas Using Low-Temperature Gliding Arc Discharge: Effect of Stage Number of Plasma Reactors. Thesis Advisors: Dr. Thammanoon Sreethawong and Assoc. Prof. Sumaeth Chavadej, 93 pp.

Keywords: Natural Gas / Reforming/ Partial Oxidation/ Gliding Arc Discharge/ Plasma

The effect of the stage number of a multistage AC gliding arc discharge system on the system performance of the combined reforming and partial oxidation of simulated CO₂-containing natural gas having a CH₄:C₂H₆:C₃H₈:CO₂ molar ratio of 70:5:5:20 was investigated. For the experiments with partial oxidation, either pure oxygen or air was used as an oxygen source, with a hydrocarbons-to-oxygen molar ratio of 2/1. Without partial oxidation at a fixed feed flow rate, all conversions of hydrocarbons, except CO₂, greatly increased with increasing number of stages from 1 to 3; but beyond 3 stages, the reactant conversions remained almost unchanged. However, for a fixed residence time, only C₃H₈ conversion gradually increased, whereas the conversions of other reactants remained almost unchanged with increasing number of stages. The addition of oxygen was found to significantly enhance the system performance of natural gas reforming. The utilization of air as an oxygen source showed a superior system performance to pure oxygen in terms of reactant conversions, desired product yields and selectivities, and power consumptions. The optimum power consumptions of 3.21×10⁻¹⁸ Ws per molecule of reactant converted and 2.57×10^{-18} Ws per molecule of hydrogen produced were obtained using air as an oxygen source and 3 stages of plasma reactors at a fixed residence time of 4.38 s.

ACKNOWLEDGEMENTS

This thesis work would have never been possible without the assistance of the following persons and organizations:

First of all, I would like to express my deepest appreciation to Dr. Thammanoon Sreethawong and Assoc. Prof. Sumaeth Chavadej, for all of their excellent guidance, useful recommendations, creative comments, intensive attention, and encouragement throughout the course of my work. They have not only taught me about the theoretical knowledge but also made me realize in myself that this research is very challenging. As well as, they taught me in the better way of working life and working style.

I would like to express my sincere thank to the National Research Council of Thailand (NRCT); the National Excellence Center for Petroleum, Petrochemicals, and Advanced Materials under the Ministry of Education, Thailand; and the Research Unit of Petrochemical and Environmental Catalysis under the Ratchadapisek Somphot Endowment Fund, Chulalongkorn University, Thailand for providing the financial support for this thesis work.

I deeply appreciate C.P.O. Poon Arjpru, who assisted me to repair the experimental instrument and electrical parts. I would like to thank the Petroleum and Petrochemical College's staffs for their help in many aspects.

Special thanks go to Ms. Nongnuch Rueangjitt for her valuable suggestions throughout this research work.

Finally, I would like to take this opportunity to thank all of my PPC friends for their friendly assistance, cheerfulness, and encouragement. Also, I am greatly indebted to my parents and my family for their support, love, and understanding.

TABLE OF CONTENTS

		PAGE
Title P	age	i
Abstra	ct (in English)	iii
Abstra	ict (in Thai)	iv
Ackno	wledgements	v
Table	of Contents	vi
List of	Tables	x
List of	Figures	xi
CHAPTER		
I	INTRODUCTION	1
II	LITERATURE REVIEW	4
	2.1 Natural gas	4
	2.2 Physical and Chemical Properties of Methane	5
	2.3 Gaseous Plasma for Activating Methane Molecules	6

2.2 Physical and Chemical Properties of Methane	5
2.3 Gaseous Plasma for Activating Methane Molecules	6
2.3.1 Fundamental Properties of Plasma	6
2.3.2 Generation of Plasma	7
2.4 Types of Non-Equilibrium Plasma	9
2.4.1 Glow Discharge	9
2.4.2 Corona Discharge	9
2.4.3 Radio Frequency Discharge (RF discharge)	10
2.4.4 Microwave Discharge	10
2.4.5 Dielectric Barrier Discharge	10
2.4.6 Gliding Arc Discharge	10
2.5 Related Research Works	12

III	EXPERIMENTAL	
	3.1 Materials	19

IV

3.1.1 Reactant Gases for Reaction Experiments	19
3.1.2 Gases for GC Analysis	19
3.2 Experiment Setup	
3.2.1 Feed Gases Mixing Section	20
3.2.2 Reaction Section	20
3.2.2.1 Reactor Units	20
3.2.2.2 Power Supply Unit	20
3.2.3 Analytical Section	21
3.3 Experimental Procedure	22
3.4 Studied Conditions	23
3.5 Reaction Performance Evaluation	25
RESULTS AND DISCUSSION	27
4.1 Reforming of Natural Gas without Partial Oxidation	30
4.1.1 Effect of Feed Flow Rate at Constant	
Residence Time	30
4.1.1.1 Effect on reactant conversion and	
product yield	31
4.1.1.2 Effect on product selectivity	33
4.1.1.3 Effect on power consumption	35
4.1.2 Effect of Residence Time at Constant	
Feed Flow Rate	36
4.1.2.1 Effect on reactant conversion and	
product yield	36
4.1.2.2 Effect on product selectivity	38
4.1.2.3 Effect on power consumption	38
4.2 Reforming of Natural Gas with Partial Oxidation	40
4.2.1 Reforming of Natural Gas with Partial Oxidation	
by Using Pure Oxygen	41

CHAPTER

4.2.1.1 Effect of Feed Flow Rate at Constant	
Residence Time	41
4.2.1.1.1 Effect on reactant conversion	
and product yield	41
4.2.1.1.2 Effect on product selectivity	43
4.2.1.1.3 Effect on power consumption	44
4.2.1.2 Effect of Residence Time at Constant	
Feed Flow Rate	45
4.2.1.2.1 Effect on reactant conversion	
and product yield	45
4.2.1.2.2 Effect on product selectivity	47
4.2.1.2.3 Effect on power consumption	49
4.2.2 Reforming of Natural Gas with Partial Oxidation	
by Using Air	50
4.2.2.1 Effect of Feed Flow Rate at Constant	
Residence Time	50
4.2.2.1.1 Effect on reactant conversion	
and product yield	50
4.2.2.1.2 Effect on product selectivity	52
4.2.2.1.3 Effect on power consumption	53
4.2.2.2 Effect of Residence Time at Constant	
Feed Flow Rate	54
4.2.2.2.1 Effect on reactant conversion	
and product yield	54
4.2.2.2.2 Effect on product selectivity	56
4.2.2.2.3 Effect on power consumption	57
4.3 Comparison of Reforming of Natural Gas without and	
with Partial Oxidation Using either Oxygen or Air	58

CHAPTER		PAGE		
V	CONCLUSI	ONS AND RECOMMENDATIONS		66
	REFERENC	ES		68
	APPENDICES		72	
	Appendix A	Experimental Data		72
	Appendix B	Comparison of Natural Gas Reforming without/with Partial Oxidation Using either		
		Pure Oxygen or Air Addition	2	89
	CURRICUL	UM VITAE	•	93

*

....

.....

.

LIST OF TABLES

TABLE

1984 C 20

2.1	Average chemical bond energy of some covalent bonds	6
2.2	The first ionization potential of some common gases	6
2.3	Collision mechanisms in the plasma	8
3.1	Experimental conditions that will be used in this study	24

21

LIST OF FIGURES

FIGURE		PAGE
2.1	Phase of gliding arc phenomena: (A) reagent gas break-down; (B)	11
	equilibrium heating phase, and (C) non-equilibrium reaction phase	
3.1	The schematic of the multistage gliding arc discharge system	19
3.2	Schematic of the gliding arc reactor	20
3.3	Schematic diagram of the power supply unit	21
4.1	Effect of stage number of plasma reactor on reactant conversions	
	and product yields for reforming of natural gas without partial	
	oxidation in the case of varying feed flow rate (applied voltage, 17.5	
1.1	kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence	
	time, 4.38 s)	32
4.2	Effect of stage number of plasma reactor on concentrations of outlet	
	gases for reforming of natural gas without partial oxidation in the	
	case of varying feed flow rate (applied voltage, 17.5 kV; frequency,	
	300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s)	32
4.3	Effect of stage number of plasma reactor on product selectivities for	1.0
	reforming of natural gas without partial oxidation in the case of	
	varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz;	
	electrode gap distance, 6 mm; and residence time, 4.38 s)	34
4.4	Effect of stage number of plasma reactor on product molar ratios for	
	reforming of natural gas without partial oxidation in the case of	
	varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz;	
	electrode gap distance, 6 mm; and residence time, 4.38 s)	34
4.5	Effect of stage number of plasma reactor on power consumptions for	
	reforming of natural gas without partial oxidation in the case of	
	varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz;	
	electrode gap distance, 6 mm; and residence time, 4.38 s)	35

- 4.6 Effect of stage number of plasma reactor on reactant conversions and product yields for reforming of natural gas without partial oxidation in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min)
- 4.7 Effect of stage number of plasma reactor on concentrations of outlet gases for reforming of natural gas without partial oxidation in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min)
- 4.8 Effect of stage number of plasma reactor on product selectivities for reforming of natural gas without partial oxidation in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min)
- 4.9 Effect of stage number of plasma reactor on product molar ratios for reforming of natural gas without partial oxidation in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min)
- 4.10 Effect of stage number of plasma reactor on power consumptions for reforming of natural gas without partial oxidation in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min)
- 4.11 Effect of stage number of plasma reactor on reactant conversions and product yields for reforming of natural gas with pure O₂ addition in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s)

PAGE

xii

37

39

37

39

4.12 Effect of stage number of plasma reactor on concentrations of outlet gases for reforming of natural gas with pure O₂ addition in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s) 42 Effect of stage number of plasma reactor on product selectivities for 4.13 reforming of natural gas with pure O₂ addition in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s) 43 Effect of stage number of plasma reactor on product molar ratios for 4.14 reforming of natural gas with pure O_2 addition in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s) 44 Effect of stage number of plasma reactor on power consumptions for 4.15 reforming of natural gas with pure O₂ addition in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s) 45 4.16 Effect of stage number of plasma reactor on reactant conversions and product yields for reforming of natural gas with pure O₂ addition in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, $125 \text{ cm}^3/\text{min}$) 46 4.17 Effect of stage number of plasma reactor on concentrations of outlet gases for reforming of natural gas with pure O_2 addition in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min) 47

- 4.18 Effect of stage number of plasma reactor on product selectivities for reforming of natural gas with pure O2 addition in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm3/min)
 4.19 Effect of stage number of plasma reactor on product molar ratios for reforming of natural gas with pure O₂ addition in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz;
- 4.20 Effect of stage number of plasma reactor on power consumptions for reforming of natural gas with pure O₂ addition in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min)

electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min)

- 4.21 Effect of stage number of plasma reactor on reactant conversions and product yields for reforming of natural gas with air addition in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s)
- 4.22 Effect of stage number of plasma reactor on concentrations of outlet gases for reforming of natural gas with air addition in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s)
- 4.23 Effect of stage number of plasma reactor on product selectivities for reforming of natural gas with air addition in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s)

PAGE

49

50

51

51

- 4.24 Effect of stage number of plasma reactor on product molar raios for reforming of natural gas with air addition in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s)
- 4.25 Effect of stage number of plasma reactor on power consumptions for reforming of natural gas with air addition in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s)
- 4.26 Effect of stage number of plasma reactor on reactant conversions and product yields for reforming of natural gas with air addition in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min)
- 4.27 Effect of stage number of plasma reactor on concentrations of outlet gases for reforming of natural gas with air addition in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min)
- 4.28 Effect of stage number of plasma reactor on product selectivities for reforming of natural gas with air addition in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min)
- 4.29 Effect of stage number of plasma reactor on product molar ratios for reforming of natural gas with air addition in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min) 57

53

54

55

55

4.30	Effect of stage number of plasma reactor on power consumptions for	
	reforming of natural gas with air addition in the case of varying	
	residence time (applied voltage, 17.5 kV; frequency, 300 Hz;	
	electrode gap distance, 6 mm; and feed flow rate, 125 cm3/min)	58
4.31	Comparison of (a) CH4, (b) C2H6, (c) C3H8, (d) CO2, and (e) O2	
	conversions for combined reforming and partial oxidation of natural	
	gas in the case of varying feed flow rate (applied voltage, 17.5 kV;	
	frequency, 300 Hz; electrode gap distance, 6 mm; and residence	
	time, 4.38 s)	60
4.32	Comparison of (a) H_2 and (b) C_2 yields for combined reforming and	
	partial oxidation of natural gas in the case of varying feed flow rate	
	(applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap	
	distance, 6 mm; and residence time, 4.38 s)	61
4.33	Comparison of (a) H_2 , (b) C_2H_2 , (c) C_2H_4 , (d) CO, and (e) C_4H_{10}	
	selectivities for combined reforming and partial oxidation of natural	
	gas in the case of varying feed flow rate (applied voltage, 17.5 kV;	
	frequency, 300 Hz; electrode gap distance, 6 mm; and residence	
	time, 4.38 s)	63
4.34	Comparison of power consumptions for combined reforming and	
	partial oxidation of natural gas in the case of varying feed flow rate	
	(a) power consumption per molecule converted, (b) power	
	consumption per hydrogen molecule produced) (applied voltage,	
	17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and	
	residence time, 4.38 s)	64