REFERENCES

- Chavadej, S., Kiatubolpaiboon, W., Rangsunvigit, P., and Sreethawong, T. (2007). A combined multistage corona discharge and catalytic system for gaseous benzene removal. <u>Journal of Molecular Catalysis A: Chemical</u>, 263, 128-136.
- Chavadej, S., Saktrakool, K., Rangsunvigit, P., Lobban, L.L., and Sreethawong, T. (2007). Oxidation of ethylene by a multistage corona discharge system in the absence and presence of Pt/TiO₂. <u>Chemical Engineering Journal</u>, 132, 345-353.
- Chavadej, S., Supat, K., Lobban, L.L., and Mallinson, R.G. (2005). Partial oxidation of methane and carbon dioxide reforming with methane in corona discharge with/without Pt/KL catalyst. Journal of Chemical Engineering of Japan, 38(3), 163-170.
- Dawe, R.A. (2000) <u>Modern Petroleum Technology: Volume 1 Upstream</u>. 6th, England: John Wiley & Sons Ltd.
- Dean, J.A. (1999) <u>Lange's handbook of chemistry</u>. 15th, New York: McGraw-Hill, Inc.
- Effendi, A., Zhang, Z.G., Hellgardt, K., Honda, K., and Yoshida, T. (2002) Steam reforming of a clean model biogas over Ni/Al₂O₃ in fluidized- and fixed-bed reactors. <u>Catalysis Today</u>, 77, 181-189.
- Eliasson, B., Hirth, M., and Kogeischatz, U. (1987). Ozone synthesis from oxygen in dielectric barrier discharge. Journal of Applied Physics, 20, 1421-1437.
- Eliasson, B. and Kogeischatz, U. (1991). Nonequilibrium volume plasma chemical processing. IEEE Transactions on Plasma Science, 19(6), 1063-1077.
- Fridman, A., Naster, S., Kennedy, L.A., Savaliev, A., and Mutaf-Yardimci, O. (1999). Gliding arc discharge. <u>Journal of Progress in Energy and</u> <u>Combustion Science</u>, 25, 211-231.
- Hwang, B.B., Yeo, Y.K., and Na, B.K. (2003). Conversion of CH₄ and CO₂ to syngas and higher hydrocarbons using dielectric barrier discharge. <u>Korean</u> <u>Journal of Chemical Engineering</u>, 20(4), 631-634.

- Indarto, A., Yang, D.R., Choi, J.W., Lee, H., and Song, H.K. (2007). Gliding arc plasma processing of CO₂ conversion. <u>Journal of Hazardous Materials</u>, 146, 309-315.
- Jeong, H.K., Kim, S.C., Han, C., Lee, H., Song, H.K., and Na, B.K. (2001). Conversion of methane to higher hydrocarbons in pulsed DC barrier discharge at atmospheric pressure. <u>Korean Journal Chemical Engineering</u>, 18(2), 196-201.
- Jiang, T., Li, Y., Liu, C.J., Xu, G.H., Eliasson, B., and Xue, B. (2002). Plasma methane conversion using dielectric-barrier discharges with zeolite A. <u>Catalysis Today</u>, 72, 229-235.
- Juan-Juan, J., Roman-Martinez, M.C., and Illan-Gomez, M.J. (2004). Catalytic activity and characterization of Ni/Al₂O₃ and NiK/Al₂O₃ catalysts for CO₂ methane reforming. <u>Applied Catalysis A: General</u>, 264, 169-174.
- Kado, S., Urasaki, K., Sekine, Y., and Fujimoto, K. (2003). Direct conversion of methane to acetylene or syngas at room temperature using non-equilibrium pulsed discharge. <u>Fuel</u>, 82, 1377-1385.

a. • • .

- Kim, S.S., Lee, H., Choi, J.W., Na, B.K., Song, H.K. (2007). Methane conversion to higher hydrocarbons in a dielectric-barrier discharge reactor with Pt/γ-Al₂O₃ catalyst. <u>Catalysis Communications</u>, 8, 1438-1442.
- Krawczyk, K., and Młotek, M. (2001). Combined plasma-catalytic processing of nitrous oxide. <u>Applied Catalysis B: Environmental</u>, 30, 233-245.
- Kruapong, A. (2000). <u>Partial Oxidation of Methane to Synthesis Gas in Low</u> <u>Temperature Plasma</u>. M.S. Thesis in Petrochemical Technology, The Petroleum and Petrochemical College, Chulalongkorn University.
- Li, M.W., Xu, G.H., Tian, Y.L., Chen, L., and Fu, H.F. (2004). Carbon dioxide reforming of methane using DC corona discharge plasma reaction. <u>Journal</u> <u>of Physical Chemistry A</u>, 108(10), 1687-1693.
- Nair, S.A., Nozaki, T., and Okazaki, K. (2007). Methane oxidative conversion pathways in a dielectric barrier discharge reactor-Investigation of gas phase mechanism. <u>Chemical Engineering Journal</u>, 132, 85-95.
- Nasser, E. (1971). <u>Fundamentals of Gaseous Ionization and Plasma Electronics</u>. USA: John Wiley & Sons, Inc.

- Perry R.H., Green D.W., and Maloney J.O., (1997). <u>Perry's Chemical Engineering'</u> <u>Handbook.</u> 7th, USA: McGraw-Hill, Inc.
- Paulmier, T., and Fulcheri, L. (2005). Use of non-thermal plasma for hydrocarbon reforming. <u>Chemical Engineering Journal</u>, 106, 59-71.
- Poonphatanapricha, P. (1997). <u>Methane_Conversion in an AC Electric Discharge</u>.
 M.S. Thesis in Petrochemical Technology, The Petroleum and Petrochemical College, Chulalongkorn University.
- Rosacha, L.A., Anderson, G.K.. bechtold, L.A., Coogan, J.J., Heck, H.G., Kang, M., McCulla, W.H., Tennant, R.A., and Wantuck, P.J. (1993). Treatment of hazardous organic wastes using silent discharge plasma. <u>NATO ASI</u> <u>Series</u>, 34, Part B.
- Rueangjitt, N., Akarawitoo, C., Sreethawong, T., and Chavadej, S. (2007).
 Reforming of CO₂-containing natural gas using an AC gliding arc system:
 Effect of gas component in natural gas. <u>Plasma Chemistry and Plasma</u> <u>Processing</u>, 27, 559-576.
- Rueangjitt, N., Sreethawong, T., and Chavadej, S. (2008). Reforming of CO₂containing natural gas using an AC gliding arc system: Effects of operational parameters and oxygen addition in feed. <u>Plasma Chemistry and</u> <u>Plasma Processing</u>, 28, 49-67.
- Rusu, I., and Cornier, J.M. (2003). On a possible mechanism of the methane steam reforming in a gliding arc reactor. <u>Chemical Engineering Journal</u>, 91, 23-31.
- Sekine, Y., Urasaki, K., Kado, S., Matsukata, M., and Kikuchi, E. (2004). Nonequilibrium pulsed discharge: A novel method for steam reforming of hydrocarbons or alcohols. <u>Energy & Fuels</u>, 18, 455-459.
- Sreethawong, T., Thakonpatthanakun, P., and Chavadej, S. (2007). Partial oxidation of methane with air for synthesis gas production in a multistage gliding arc discharge system. <u>International Journal of Hydrogen Energy</u>, 32, 1067-1079.
- Supat, K., Chavadej, S., Lobban L.L, and Millinson G.R. (2003). Combined steam reforming and partial oxidation of methane to synthesis gas under electrical discharge. <u>Industrial & Engineering Chemistry Research</u>, 42, 1654-1661.

- Thanyachotpaiboon, K., Chavadej, S., Caldwell, L., Lobban, L.L., and Mallinson, R.G. (1998). Conversion of methane to higher hydrocarbons in AC nonequilibrium plasmas. <u>AIChE Journal</u>, 44(10), 2252-2257.
- Xu, H., Shi, K., Shang, Y., Zhang, Y., Xu, G., and Wei, Y. (1999). A study on the reforming of natural gas with steam, oxygen and carbon dioxide to produce syngas for methanol feedstock. <u>Journal of Molecular Catalysis A:</u> <u>Chemical</u>, 147, 41-46.
- Zhang, K., Kogelschatz, U., and Eliasson, B. (2001). Conversion of greenhouse gases synthesis gas and higher hydrocarbons. <u>Energy & Fuels</u>, 15, 395-402.
- Zhang, X., Zhu, A., Li, X., and Gong, W. (2004). Oxidative dehydrogenation of ethane with CO₂ over catalyst under pulse corona plasma. <u>Catalysis Today</u>, 89, 97-102.
- Zou, J.J., Zhang, Y.P., and Liu, C.J. (2007). Hydrogen production from partial oxidation of dimethyl ether using corona discharge plasma. <u>International Journal of Hydrogen Energy</u>, 32, 958-964.

APPENDICES

Appendix A Experimental data

Table A1 Effect of stage number of plasma reactors on reactant conversions and product yields for reforming of natural gas without partial oxidation in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s)

Feed flow rate	Number of stage	R	eactant co	Product yield (%)			
(cm ³ /min)	01 20080	CH ₄	C ₂ H ₆	C ₃ H ₈	CO ₂	H ₂	C ₂
31.25	1	21.6005	38.1316	58.8239	12.4586	39.17	42.24
62.50	2	21.3141	41.8887	67.2458	13.5631	42.39	37.79
93.75	3	18.3443	40.1798	67.0140	8.6508	47.99	43.21
125.00	4	18.9529	40.7346	72.8272	10.4294	47.29	51.38

Table A2 Effect of stage number of plasma reactors on concentrations of outlet gases for reforming of natural gas without partial oxidation in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s)

Feed flow rate	Number of stage	Concentration of outlet gas (mol%)								
(cm ³ /min)	01 01 000	H ₂	CO	CH ₄	CO ₂	C_2H_2	C_2H_4	C ₂ H ₆	C ₃ H ₈	C ₄ H ₁₀
31.25	1	15.19	1.04	52.36	16.07	2.66	2.03	3.03	2.01	0.22
62.50	2	15.49	1.03	53.52	15.95	1.76	2.24	2.66	1.57	0.26
93.75	3	15.54	1.12	51.29	15.96	1.63	2.27	2.76	1.48	0.28
125.00	4	15.71	1.11	52.41	15.84	2.49	2.58	2.81	1.28	0.21

Table A3 Effect of stage number of plasma reactors on product selectivities for reforming of natural gas without partial oxidation in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s)

Feed flow rate (cm ³ /min)	Number of stage	Product selectivity (%)						
()	Stuge	H ₂	C ₂ H ₂	C ₂ H ₄	CO	C ₄ H ₁₀		
31.25	1	33.04	19.86	15.13	3.56	3.31		
62.50	2	32.49	12.58	16.00	3.37	1.19		
93.75	3	38.23	13.45	18.45	4.33	4.30		
125.00	4	35.69	18.88	19.57	3.92	3.17		
L	. · · · .		1	1	1			

ct of stage number of plasma reactors on r

Table A4 Effect of stage number of plasma reactors on product molar ratios for reforming of natural gas without partial oxidation in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s)

Feed flow rate	Number of stage		Molar ratio						
(cm ³ /min)		H ₂ /CO	H_2/C_2H_2	H_2/C_2H_4	C_2H_4/C_2H_2				
31.25	1	14.66	5.70	7.49	0.76				
62.50	2	15.08	8.78	6.91	1.27				
93.75	3	1.39	13.93	9.52	6.83				
125.00	4	1.04	14.19	6.30	6.08				

Table A5 Effect of stage number of plasma reactors on power consumptions for reforming of natural gas without partial oxidation in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s)

Feed flow rate	Feed flow rate (cm ³ /min)	Power consumption (× 10 ¹⁸ Ws/molecule)				
(cm ³ /min)		per reactant converted	per H ₂ produced			
31.25	1	5.10	7.21			
62.50	2	3.16	4.52			
93.75	3	3.45	3.97			
125.00	4	2.75	3.41			

143.2 ge

Table A6 Effect of stage number of plasma reactors on reactant conversions and product yields for reforming of natural gas without partial oxidation in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min)

Residence time (s)	Number of stage	Re	eactant cor	Product yield (%)			
time (3)	of stage	CH ₄	C ₂ H ₆	C ₃ H ₈	CO ₂	H ₂	C ₂
1.095	1	10.11	19.40	33.36	6.93	13.73	20.41
2.190	2	17.02	30.54	52.34	10.62	27.13	33.09
3.286	3	18.91	40.59	67.80	8.84	49.10	46.23
4.381	4	18.95	40.74	72.83	10.43	47.29	51.38

Table A7 Effect of stage number of plasma reactors on concentrations of outlet gases for reforming of natural gas without partial oxidation in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min)

Residence time (s)	Number of stage	Concentration of outlet gas (mol%)								
unic (3) of stuge	H ₂	CO	CH4	CO ₂	C ₂ H ₂	C ₂ H ₄	C ₂ H ₆	C ₃ H ₈	C ₄ H ₁₀	
1.095	1	5.27	0.34	64.64	17.75	0.95	1.32	3.89	3.39	0.16
2.190	2	10.40	0.65	57.72	16.77	1.82	1.84	3.25	2.35	0.22
3.286	3	16.36	1.03	51.73	15.90	2.21	2.35	2.77	1.50	0.28
4.381	4	15.71	1.11	52.41	15.84	2.49	2.58	2.81	1.28	0.21
	<u>l</u>	I	1	1		.÷. _{Ү.}	·····	L	1	1

Table A8 Effect of stage number of plasma reactors on product selectivities for reforming of natural gas without partial oxidation in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min)

Residence time (s)	Number of stage	Product selectivity (%)					
	stuge	H ₂	C ₂ H ₂	C ₂ H ₄	CO	C ₄ H ₁₀	
1.095	1	21.84	12.25	16.99	2.19	4.03	
2.190	2	27.16	14.92	15.02	2.64	3.59	
3.286	3	38.57	16.49	17.47	3.85	4.13	
4.381	4	35.69	17.65	18.30	3.92	2.97	

Table A9 Effect of stage number of plasma reactors on product molar ratios for reforming of natural gas without partial oxidation in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s)

Residence time (s)	Number of stage		Molar ratio					
	8-	H ₂ /CO	H_2/C_2H_2	H_2/C_2H_4	C_2H_4/C_2H_2			
1.095	1	15.48	5.53	3.99	1.39			
2.190	2	16.12	5.70	5.67	1.01			
3.286	3	15.84	7.39	6.98	1.06			
4.381	4	14.19	6.30	6.08	1.04			
		1			I			

Table A10 Effect of stage number of plasma reactors on power consumptions for reforming of natural gas without partial oxidation in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min)

and a second

Residence time (s)	Number of stage	Power consumption (× 10 ¹⁸ Ws/molecule)				
	or stuge	per reactant converted	per H ₂ produced			
1.095	1	2.344	4.993			
2.190	2	1.951	3.347			
3.286	3	2.497	2.847			
4.381	4	2.753	3.409			

Table A11 Effect of stage number of plasma reactors on reactant conversions and product yields for reforming of natural gas with pure O_2 addition in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s)

Feed flow	Number		Reactar	Product yield (%)				
rate (cm ³ /min)	of stage	CH₄	C ₂ H ₆	C ₃ H ₈	CO ₂	02	H ₂	C ₂
31.25	1	36.52	57.55	72.85	-0.45	66.07	81.28	47.60
62.50	2	45.66	67.53	82.99	2.81	76.92	102.03	52.47
93.75	3	46.12	68.89	85.63	-0.90	79.01	111.51	56.12
125.00	4	45.33	68.17	85.23	-0.13	77.99	106.83	57.39

Table A12 Effect of stage number of plasma reactors on product selectivities for reforming of natural gas with pure O_2 addition in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s)

Feed flow rate	Number of stage	Product selectivity (%)					
(cm ³ /min)	8-	H ₂	C ₂ H ₂	C ₂ H ₄	CO	C_4H_{10}	
31.25	1	48.70	17.45	11.15	59.33	1.47	
62.50	2	52.01	16.94	9.43	55.73	1.19	
93.75	3	55.58	18.23	9.88	60.41	1.26	
125.00	4	53.76	18.77	10.13	56.94	1.33	

Table A13 Effect of stage number of plasma reactors on concentrations of outlet gases for reforming of natural gas with pure O_2 addition in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s)

Feed flow rate	Number of stage			nol%)							
(cm ³ /min)	01 stage	H ₂	02	CO	CH ₄	CO ₂	C ₂ H ₂	C ₂ H ₄	C ₂ H ₆	C ₃ H ₈	C ₄ H ₁₀
31.25	1	22.54	8.89	15.66	27.11	12.56	2.31	1.47	1.40	0.88	0.10
62.50	2	29.76	6.27	18.29	23.55	12.37	2.75	1.53	1.08	0.56	0.10
93.75	3	30.91	5.55	19.03	22.34	12.31	2.88	1.56	1.00	0.45	0.10
125.00	4	29.99	5.70	18.05	23.07	12.27	2.98	1.61	1.04	0.47	0.11

:

·• .

Table A14 Effect of stage number of plasma reactors on product molar ratios for reforming of natural gas with pure O_2 addition in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s)

Feed flow rate	Number of stage		Molar ratio								
(cm ³ /min)		H ₂ /CO	H_2/C_2H_2	H_2/C_2H_4	C_2H_4/C_2H_2						
31.25	1	1.44	9.77	15.29	0.64						
62.50	2	1.63	10.82	19.45	0.56						
93.75	3	1.62	10.73	19.83	0.54						
125.00	4	1.66	10.08	18.66	0.54						

Table A15 Effect of stage number of plasma reactors on power consumptions for reforming of natural gas with pure O_2 addition in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s)

.

Feed flow rate	Number of stage	Power consumption (× 10 ¹⁸ Ws/molecule)						
(cm ³ /min)	or stuge	per reactant converted	per H ₂ produced					
31.25	1	4.542	3.987					
62.50	2	2.844	2.400					
93.75	3	2.309	1.786					
125.00	4	2.016	1.617					

....

Table A16 Effect of stage number of plasma reactors on reactant conversions and product yields for reforming of natural gas with pure O_2 addition in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min)

Residence time (s)	Number of stage		Reacta	Product yield (%)				
	01 00080	CH ₄	C_2H_6	C ₃ H ₈	CO ₂	O ₂	H ₂	C ₂
1.095	1	9.78	27.05	38.55	-0.31	35.251	54.15	46.14
2.190	2	33.33	52.23	66.36	-2.15	57.46	71.90	46.69
3.286	3	48.28	70.20	86.68	1.52	81.18	121.35	56.72
4.381	4	45.33	68.17	85.23	-0.13	77.99	106.83	57.39

Table A17 Effect of stage number of plasma reactors on product selectivities for reforming of natural gas with pure O_2 addition in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min)

Residence time (s)	Number of stage	Product selectivity (%)						
	6-6-	H ₂	C ₂ H ₂	C ₂ H ₄	CO	C ₄ H ₁₀		
1.095	1	71.83	37.08	24.39	83.61	3.96		
2.190	2	47.33	19.49	11.69	55.81	1.73		
3.286	3	59.15	17.92	9.52	58.50	1.19		
4.381	4	53.76	18.77	10.13	56.94	1.33		

Table A18 Effect of stage number of plasma reactors on concentrations of outlet gases for reforming of natural gas with pure O_2 addition in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min)

Residence time (s)	Number of stage	Concentration of outlet gas (mol%)									
	8-	H ₂	O ₂	CO	CH₄	CO ₂	C ₂ H ₂	C ₂ H ₄	C ₂ H ₆	C ₃ H ₈	C ₄ H ₁₀
1.095	1	12.02	17.74	8.44	40.26	13.00	1.88	1.24	2.51	2.08	0.10
2.190	2	20.11	11.22	13.39	28.67	12.75	2.36	1.42	1.58	1.09	0.10
3.286	3	34.21	4.97	19.29	21.49	12.16	2.94	1.56	0.96	0.42	0.10
4.381	4	29.99	5.70	18.06	23.07	12.27	2.98	1.61	1.04	0.47	0.11

Table A19 Effect of stage number of plasma reactors on product molar ratios for reforming of natural gas with pure O_2 addition in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min)

Residence time (s)	Number of stage	Molar ratio								
		H ₂ /CO	H_2/C_2H_2	H_2/C_2H_4	C_2H_4/C_2H_2					
1.095	1	1.42	6.40	9.73	0.66					
2.190	2	1.50	8.50	14.18	0.60					
3.286	3	1.77	11.65	21.92	0.53					
4.381	. 4	1.66	10.07	18.66	0.54					

Table A20 Effect of stage number of plasma reactors on power consumptions for reforming of natural gas with pure O_2 addition in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min)

Residence time (s)	Number of stage	Power consumption (× 10 ¹⁸ Ws/molecule) per reactant converted per H ₂ produced						
1.095	1	4.267	2.328					
2.190	2	1.751	1.563					
3.286	3	1.769	1.305					
4.381	4	2.016	1.617					

Table A21 Effect of stage number of plasma reactors on reactant conversions and product yields for reforming of natural gas with air addition in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s)

Feed flow	Number		Reactar	Product yield (%)				
rate (cm ³ /min)	of stage	CH₄	C ₂ H ₆	C ₃ H ₈	CO ₂	O ₂	H ₂	C ₂
31.25	1	54.73	70.91	78.23	15.28	74.01	119.66	80.40
62.50	2	63.85	81.12	88.13	20.38	84.25	140.42	90.47
93.75 .	3	66.54	83.87	90.84	22.12	86.76	144.69	93.10
125.00	4	62.97	78.92	86.89	21.51	80.89	130.08	88.66

Table A22 Effect of stage number of plasma reactors on product selectivities for reforming of natural gas with air addition in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s)

144

Feed flow rate	Number of stage	Product selectivity (%)						
(cm ³ /min)		H ₂	C ₂ H ₂	C ₂ H ₄	CO	C_4H_{10}		
31.25	1	58.69	30.79	7.90	62.77	0.74		
62.50	2	60.24	31.03	6.90	59.87	0.65		
93.75	3	59.97	30.97	6.68	58.93	0.59		
125.00	4	56.86	28.79	6.64	57.20	0.73		

Table A23 Effect of stage number of plasma reactors on concentrations of outlet gases for reforming of natural gas with air addition in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s)

Feed flow rate	Number of stage		Concentration of outlet gas (mol%)									
(cm ³ /min)	Stage	H ₂	O ₂	N ₂	CO	CH ₄	CO ₂	C ₂ H ₂	C ₂ H ₄	C ₂ H ₆	C ₃ H ₈	C ₄ H ₁₀
31.25	1	17.81	3.16	45.81	11.20	9.20	5.12	2.60	0.67	0.45	0.33	0.03
62.50	2	21.35	1.95	45.15	12.55	7.40	4.83	3.06	0.68	0.30	0.18	0.03
93.75	3	22.10	1.65	45.22	12.87	6.86	4.70	3.17	0.68	0.25	0.14	0.03
125.00	4	20.32	2.41	45:12	· 12.12	7.76	4.80	3.05	0.70	0.34	0.21	0.04

Table A24 Effect of stage number of plasma reactors on product molar raios for reforming of natural gas with air addition in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s)

Feed flow rate	Number of stage	Molar ratio								
(cm ³ /min)	orstuge	H ₂ /CO	H_2/C_2H_2	H_2/C_2H_4	C_2H_4/C_2H_2					
31.25	1	1.59	6.84	26.63	0.26					
62.50	2	1.70	6.98	31.38	0.22					
93.75	3	1.72	6.96	32.29	0.22					
125.00	4 ·	1.68	6.66	28.88	0.23					

Table A25 Effect of stage number of plasma reactors on power consumptions for reforming of natural gas with air addition in the case of varying feed flow rate (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and residence time, 4.38 s)

Feed flow rate	Number of stage	Power consumption (× 10 ¹⁸ Ws/molecule)					
(cm ³ /min)	01 stage	per reactant converted	per H ₂ produced				
31.25	1	6.88	5.54				
62.50	2	3.63	2.88				
93.75	3	3.21	2.57				
125.00	4	2.89	2.44				

Table A26 Effect of stage number of plasma reactors on reactant conversions and product yields for reforming of natural gas with air addition in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min)

Residence time (s)	Number of stage		Reactar	Product yield (%)				
	or stuge	CH ₄	C ₂ H ₆	C ₃ H ₈	CO ₂	O ₂	H ₂	C ₂
1.095	1	30.72	40.93	48.95	2.98	41.02	57.17	50.28
2.190	2	48.86	64.63	73.84	8.19	66.43	100.47	73.69
3.286	3	59.16	75.67	84.12	16.39	77.90	124.17	87.03
4.381	4	62.97	78.92	·86.89	21.51	80.89	130.08	88.66

.

Table A27 Effect of stage number of plasma reactors on product selectivities for reforming of natural gas with air addition in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, $125 \text{ cm}^3/\text{min}$)

. .

Residence time (s)	Number of stage	Product selectivity (%)					
		H ₂	C ₂ H ₆	C ₂ H ₄	CO	C ₄ H ₁₀	
1.095	1	47.40	28.74	12.68	53.76	1.31	
2.190	2	53.63	29.71	9.17	56.91	0.95	
3.286	3	56.71	31.33	7.62	58.99	0.77	
4.381	4	56.86	30.69	7.08	57.20	0.78	

Table A28 Effect of stage number of plasma reactors on concentrations of outlet gases for reforming of natural gas with air addition in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min)

1999 - N

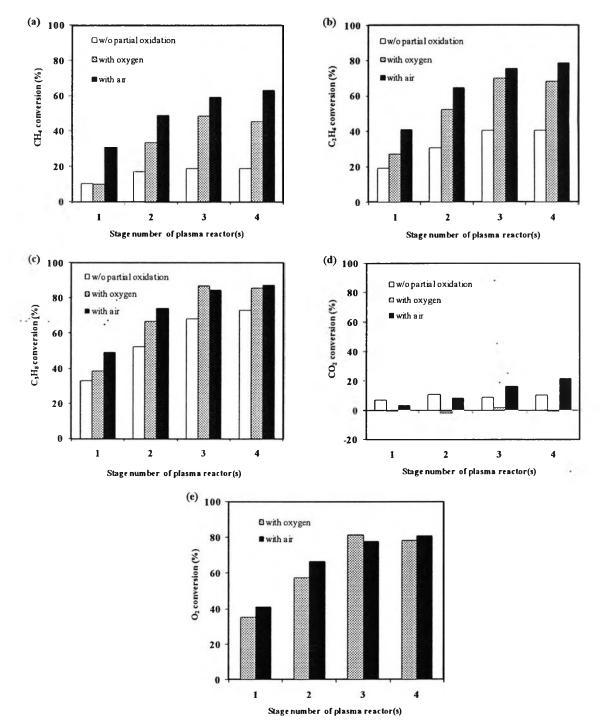
Residence time (s)	Number of stage	Concentration of outlet gas (mol%)										
	Stuge	H ₂	O ₂	N ₂	CO	CH ₄	CO ₂	C_2H_2	C ₂ H ₄	C ₂ H ₆	C ₃ H ₈	C ₄ H ₁₀
1.095	1	8.76	7.66	47.73	5.68	14.93	6.10	1.49	0.66	0.98	0.83	0.03
2.190	2	15.25	4.26	46.44	9.35	10.77	5.64	2.37	0.73	0.57	0.42	0.04
3.286	3	18.88	2.75	45.63	11:53	8.43	5.03	2.91	0.71	0.39	0.25	0.04
4.381	4	20.32	2.41	45.12	12.12	7.76	4.80	3.05	0.70	0.34	0.21	0.04
	1	<u>_</u> .	1	;	1	l	I	I		I	1	L

87

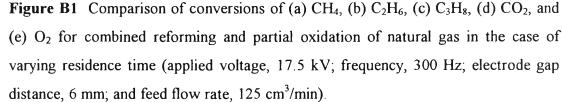
Table A29 Effect of stage number of plasma reactors on product molar ratios for reforming of natural gas with air addition in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, $125 \text{ cm}^3/\text{min}$)

Residence time (s)	Number of stage		M	olar ratio		
	01 00080	H_2/CO H_2/C_2H_2 H_2/C_2H_4 C_2H_4/C_2H_4				
1.095	1	1.54	5.87	13.31	0.44	
2.190	2	1.63	6.45	20.89	0.31	
3.286	3	1.64	6.49	26.71	0.24	
4.381	4	1.68	6.66	- 28.88	0.23	

Table A30 Effect of stage number of plasma reactors on power consumptions for reforming of natural gas with air addition in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min)


10.00

. •


Residence time (s)	Number of stage	Power con (× 10 ¹⁸ Ws/	•		
1.095	1	2.82	2.67		
2.190	2	2.52	2.15		
3.286	3	2.36	1.96		
4.381	4	2.89	2.44		

۰,

. .

Appendix B Comparison of Natural Gas Reforming without/with Partial Oxidation Using either Pure Oxygen or Air Addition

•

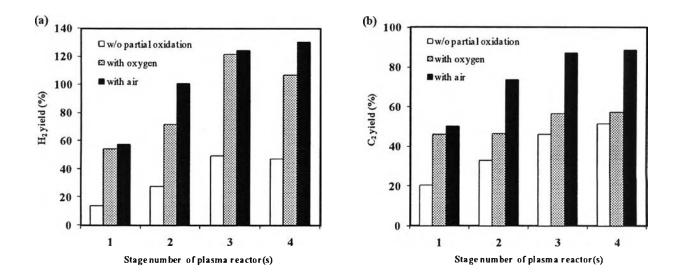


Figure B2 Comparison of yields of (a) H_2 and (b) C_2 for combined reforming and partial oxidation of natural gas in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min).

.

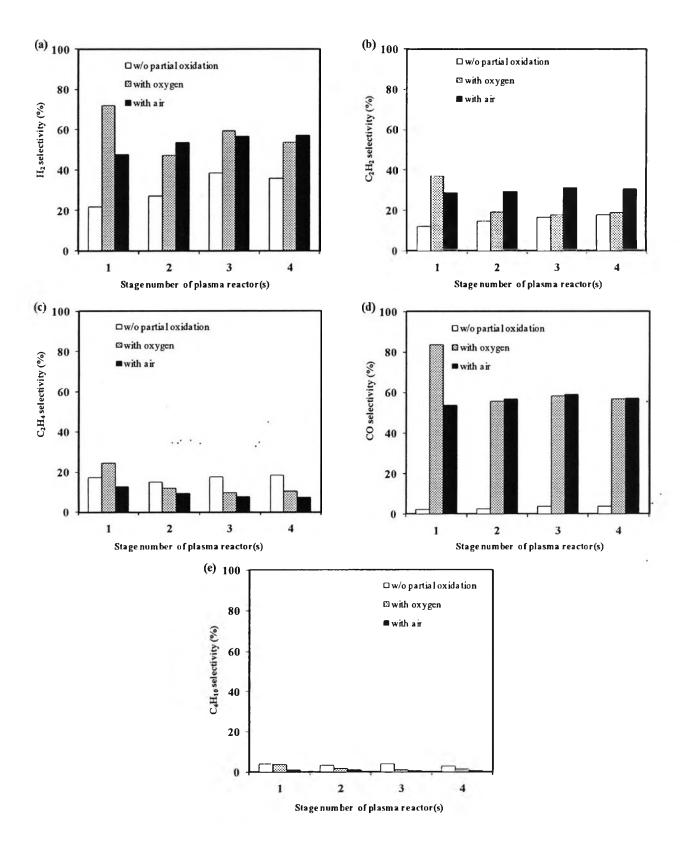
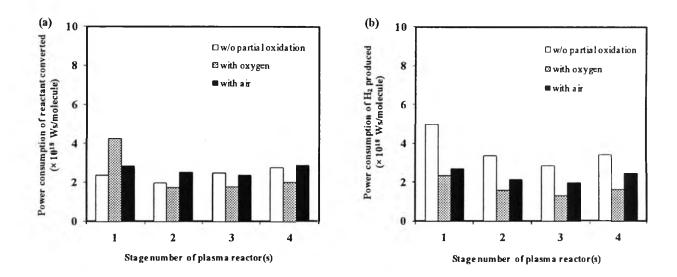



Figure B3 Comparison of selectivities for (a) H_2 , (b) C_2H_2 , (c) C_2H_4 , (d) CO, and (e) C_4H_{10} for combined reforming and partial oxidation of natural gas in the case of varying residence time (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min).

Figure B4 Comparison of power consumptions for combined reforming and partial oxidation of natural gas in the case of varying residence time: (a) power consumption per reactant molecule converted, (b) power consumption per hydrogen molecule produced (applied voltage, 17.5 kV; frequency, 300 Hz; electrode gap distance, 6 mm; and feed flow rate, 125 cm³/min).

CURRICULUM VITAE

Name: Ms. Wariya Jittiang

Date of Birth: September 2, 1982

Nationality: Thai

University Education:

2002-2006 Bachelor Degree of Science, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand

Working Experience:

2005 Position: Student Internship in Department of Research and Development

Company name: Thai Olefins Public Company Limited (TOC)

Presentations and Proceedings:

- Jittiang, W., Sreethawong, T., and Chavadej, S. (2007, November 21-24) Reforming of Natural Gas in Low-Temperature AC Gliding Arc Discharge: Effect of Number of Stages. Paper presented at <u>The 5th Eco-Energy and Materials</u> <u>Science and Engineering Symposium</u>, Pattaya, Thailand.
- Jiittiang, W., Sreethawong, T., and Chavadej, S. (2008, April 23) Combined Reforming and Partial Oxidation of CO₂-containing Natural Gas using Low-Temperature Gliding Arc Discharge: Effect of Stage Number of Plasma Reactors. Proceedings of <u>The 14th PPC Symposium on Petroleum, Petrochemicals, and</u> <u>Polymers</u>, Bangkok, Thailand.

