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ABSTRACT

4973001063:  Petroleum Technology Program
Chompoonuch Junbua: Photocatalytic Hydrogen Production from
Water Splitting Under Visible Light Irradiation Using Sensitized-
TiC Photocatalyst
Thesis Advisors: Dr. Thammanoon Sreethawong, Assoc. Prof,
Sumaeth Chavadej, and Prof. Susumu Yoshikawa 87 pp.
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Alternative energy resources, especially hydrogen, are being considered as an
ideal energy supply. Hydrogen can be directly produced from the photocatalytic
water splitting reaction by using renewable energy resources, i.e. water and solar
light. The most promising photocatalyst, TiC», can be effectively used for this
purpose because of its high photocatalytic activity. However, the difficulty in
applying this photocatalyst for the water splitting is its large band-gap energy, which
can only be employed under uv light. In this study, a combination of sensitizer
addition and noble metal loading was employed to modify TiC= photocatalyst in
order to achieve efficient photocatalytic hydrogen production under abundant visible
light irradiation. The dependence of the hydrogen production on type of TiC»
photocatalyst (synthesized mesoporous and commercial non-mesoporous TiCx
without and with Pt loading), calcination temperature of photocatalyst, sensitizer
(Eosin Y, E.Y.) concentration, electron donor (diethanolamine, DEA) concentration,
photocatalyst dosage, and initial solution pH, was studied. The experimental results
showed that the E.Y.-sensitized Pt-loaded mesoporous TiCs prepared by single-step
sol-gel method and calcined at 500°c exhibited the highest photocatalytic hydrogen
production activity from a 30% (v/v) DEA/distilled water solution with dissolved 2
mM E.Y. Moreover, the optimum photocatalyst dosage and initial solution pH for the
maximum photocatalytic activity of hydrogen production were 3.33 ¢/1 and 115,
respectively.
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