WATER DROPLET IMPACT PHENOMENA ONTO SUPER-HYDROPHOBIC SURFACE

Patrapee Arcade

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2008

Thesis Title:	Water droplet impact phenomena on super-hydrophobic
	surface
By:	Patrapee Arcade
Program:	Petrochemical Technology
Thesis Advisors:	Assoc.Prof. Sumaeth Chavadej
	Prof. Lin Shi-Yow

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Nantaya Traumit College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

Sumaith Chandlip

(Assoc. Prof. Sumaeth Chavadej)

Shi you La

(Prof. Lin Shi-Yow)

Mals Lin

(Dr. Malee Santikunaporn)

(Dr. Thammanoon Sreethawong)

ABSTRACT

4971029063: Petrochemical Technology Program
Patrapee Arcade: Water Droplet Impact Phenomena on Super-Hydrophobic Surface
Thesis Advisors: Assoc. Prof. Sumaeth Chavadej, Prof. Lin Shi-Yow, 107 pp.
Keywords: Water droplet/ Super-hydrophobic surface/ High speed solid state

CCD camera/ Droplet rebound.

The water droplet impact phenomena on the super-hydrophobic surface of plasma-treated polypropylene film coated on a glass surface were investigated by using a high-speed solid-state CCD camera. The experiments were conducted at an impact height of 10 mm, with three different sizes of water droplets: 5.9650, 10.9691, and 12.6049 mm³ and impact height of 20 mm with a size of water droplet 11.0941 mm³. The volumes and the center of mass of falling and rebounding droplets obtained from using the 2007 version of AutoCAD software were used to calculate the change in energy stage. The results showed that water droplets of both 5.9650 and 10.9691 mm³ exhibited 4 total rebounds without droplet splash, whereas the largest droplet, 12.6049 mm³, showed only 2 rebounds. The bigger the droplet size, the greater the energy loss. In addition, the greater the initial impact velocity, the greater the energy loss. The movement of center of mass showed that during the water droplet rebound, there were two peaks, unlike a solid particle free falling body having a single maximum peak. The two peak maxima are due to the water moving inside the liquid body during rebounding.

บทคัดย่อ

ภัทร์ระภี อาเขต : การศึกษาปรากฏการณ์ของหยดน้ำตกกระทบบนพื้นผิวที่มี คุณสมบัติไม่ชอบน้ำสูง (Droplet impact phenomena onto super-hydrophobic surface) อ.ที่ ปรึกษา : รศ. คร. สุเมธ ชวเคช, ศ. หลิน ซื่อ โย่ว 107 หน้า

การศึกษาปรากฏการณ์การตกกระทบของหยดน้ำบนพื้นผิวที่มีคุณสมบัติไม่ชอบน้ำสูงบน ผิวของฟิลม์โพลีนพอพีลีนที่ปรับปรุงค้วยพลาสม่าซึ่งเคลือบบนพื้นผิวแก้วโดยใช้กล้องความเร็ว สูง ในการทคลองได้มีการศึกษาตัวแปรสองตัวคือความสูงในการตกกระทบและขนาดของหยดน้ำ ความสูงของหยดน้ำในการตกกระทบที่ความสูง 10 และ 20 มิลลิเมตร และขนาดของหยดน้ำที่ ขนาค 5.9650, 10.9691 และ 12.6049 ลบ.มม. ปริมาตรและจุดศูนย์กลางมวลสารสามารถคำนวณ ได้จากโปรแกรม AutoCAD เวอร์ชั่น 2007 โดยข้อมูลที่ได้นำไปใช้ศึกษาการเปลี่ยนแปลงของ ระดับพลังงานของหยดน้ำที่ศูนย์เสียไปจากการตกกระทบบนพื้นผิว จากผลการทดลองแสดงให้ เห็นว่า หยดน้ำขนาค 5.9650 และ 10.9691 ลบ.มม. สามารถกระคอนขึ้นจากพื้นผิวได้ถึง 4 ครั้ง ในขณะที่หยดน้ำขนาด 12.6049 ลบ. มม. สามารถกระคอนขึ้นจากพื้นผิวได้ถึง 4 ครั้ง ในขณะที่หยดน้ำขนาด 12.6049 ลบ. มม. สามารถกระคอนได้เพียง 2 ครั้ง ผลการทดลองเลดงให้ เล็กกว่า เช่นเดียวกับหยดน้ำที่มีตกกระทบจากที่สูงกว่าซึ่งมีความเร็วสูงกว่าจะมีแนวโน้มที่จะ สูญเสียพลังงานมากกว่าหยดน้ำที่มีความเร็วในการตกกระทบด่ำกว่า ยิ่งกว่านั้นจากการศึกษาการ เลื่อนใหวของศูนย์กลางมวลสารของหยดน้ำพบว่า ที่จุดสูงสุดในการกระดอนในแต่ละครั้งมีถึง สองจุดด้วยกัน ซึ่งไม่เหมือนกับการกระคอนของของแข็งที่จะมีจุดสูงสุดเพียงจุดเดียวเท่านั้น ทั้งนี้ เนื่องจาก การเคลื่อนที่ของมวลสารภายในหยดน้ำในขณะกระคอนขึ้น

ACKNOWLEDGEMENTS

This thesis work was partially funded by the National Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, under the Ministry of Education and the Research unit of Applied Surfactants for Separation and Polution Control, Chulalongkorn University.

First of all, I would like to thank Assoc. Sumaeth Chavadej who gave me an opportunity to conduct this research in Taiwan. Secondly, I would like to thank Prof. Lin Shi-Yow and Prof. Wang Meng-Jiy, at the Department of Chemical Engineering, National Taiwan University of Science and Technology, for advising me hoe to conduct my experiment. Mr. Aaron, Kelvin, Matt, Khoan, and Arief, M.S. students in the Surface Phenomena Lab who helped me everything during I stayed in Taiwan.

Moreover, I would like to thank all of faculty staffs and my friends in the Petroleum and Petrochemical College who share our happy time during these 2 years.

Finally, I would like to thank my family and my girlfriend who always are my side and give me warm care and love.

TABLE OF CONTENTS

	PAGE
Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	V
Table of Contents	vi
List of Tables	viii
List of Figures	х

CHAPTER

I	INTRODUCTION	1
II	LITERATURE REVIEW	3
III	EXPERIMENTAL	9
	3.1 Experimental Set up	9
	3.1.1 Light source unit	9
	3.1.2 Droplet generator unit	10
	3.1.3 Image capture unit	11
	3.1.4 Support unit	12
	3.2 Studies liquid and solid substrate	12
	3.3 Experimental procedure	13
	3.3.1 Data grabber	13
	3.3.2 Data analysis	14
IV	RESULTS AND DISCUSSION	17
	4.1 The Change of Center of Mass	17

 \mathbf{V}

4.2 Internal Oscillation of Rebounding Droplet	21
4.3 Peak of Maxima	23
4.4 The Change in Projection Area	25
4.5 The Change in Center of Mass in Horizontal Direction	28
4.6 Energy Loss during impact process	29
4.7 Effect of Droplet Size	30
4.8 Effect of Droplet Impact Velocity	35
4.9 Energy Balance	38
CONCLUSIONS AND RECOMMENDATIONS REFERENCES	40 43
APPENDICES	45
Appendix A Ball Calibration	45
Appendix B Needle calibration	50
Appendix C Pendant drop calibration	52
Appendix D Sessile drop calibration	54
CURRICULUM VITAE	56

LIST OF TABLES

PAGE TABLE Impact velocity and minimum impact height of water 4.1 droplet having size of 10.9691 mm³ with an initial impact velocity of 0.4362 m/s onto the CF₄ plasma-treated 19 polypropylene film coated on a glass surface The change in the x and y radius of a water droplet having 4.2 size 10.9691 mm³ with initial impact velocity of 0.4362 m/s onto the CF₄ plasma-treated polypropylene film coated on glass surface during a) y radius, b) x radius 23 Impact time and rebound time of the 1st impact and 1st 4.3 rebounds of a water droplet onto the CF4 plasma-treated polypropylene film coated on a glass surface with different 31 droplet sizes The 1st maximum rebound height and the 1st minimum 4.4 impact height of water droplet onto plasma-treated polypropylene film coated on a glass surface at different droplet sizes 32 4.5 Spreading and receding velocity of droplet having different size during 1st impact process 33 Average radius in Y direction and standard deviation of 4.6 droplet having different sizes during the 1st rebound 34 process 4.7 Initial impact velocity of water droplet onto plasma-treated polypropylene film coated on a glass surface with different impact velocity by varying volume of water droplet. 35

PAGE

TABL

E

4.8	The 1 st maximum rebound height and 1 st minimum impact	
	height of water droplet onto the CF ₄ plasma-treated	
	polypropylene film coated on a glass surface with different	
	impact velocity	36
4.9	Spreading and receding velocity of a water droplet having	
	different initial impact velocity during 1 st impact process	37
4.10	Average radius in Y direction and standard deviation of	
	droplet having different initial impact velocity during 1 st	
	rebound process	38
4.11	Maximum height, Potential energy, energy loss, and ratio	
	of energy loss	
	a. $V = 12.6049 \text{ mm}^3$ and $v = 0.4344 \text{m/s}$,	
	b. $V = 10.9691 \text{ mm}^3 \text{ and } v = 0.4362 \text{m/s}$	

- c. $V = 5.9650 \text{ mm}^3$ and v = 0.4541 m/s,
- d. $V = 11.0641 \text{ mm}^3$ and v = 0.6476 m/s 39

LIST OF FIGURES

FIGURE

2.1	6 Types of outcomes of water droplet impact (Rioboo et	
	<i>at</i> , 2001)	4
2.2	Four stages of the proposed impact process (Mao et al,	
	1997)	6
2.3	Rebound pattern of glycerin droplets on incline surfaces	
	(Šikalo <i>et al</i> , 2005)	7
3.1	Experimental set-up in this study	9
3.2	Set up of a) Light source b) series of lens and filter	10
3.3	a) A droplet generator unit, b) syringe, and c) needles	10
3.4	a) Monitors and b) Computer and CCD camera power	
	supply	11
3.5	High-speed solid state CCD cameras	11
3.6	a) Cover box before wrapped with black paper b) Cover	
	box after wrapped with black paper and c) Vibration-	
	Isolation table	12
3.7	Plasma-treated polypropylene film coated on a glass	
	surface	13
3.8	a) Image of water droplet taken from the high-speed solid	
	state CCD camera, b) Plot of edge location from	
	GRAPHER 4.0 program	14
3.9	Simulated water droplet from 2007 AutoCAD a) Left	
	half, b) right half	15
3.10	Combine of simulated water droplet from 2007	
	AutoCAD simulation program	16

PAGE

FIGURE

4.1 The profiles of center of mass of water droplet having size 10.9691mm³ with an initial impact velocity of 0.4362 m/s onto CF₄ plasma-treated polypropylene film coated on a glass during (o) rebound phase (+) impact 18 phase 4.2 The profiles of center of mass of water droplet having size 10.9691mm³ with initial impact velocity 0.4362 m/s onto CF₄ plasma-treated polypropylene film coated on a glass during (+) impact phase 18 4.3 Movement of water droplet during contacting, spreading, 19 recoiling, and detaching 4.4 The profiles of center of mass of water droplet having size 10.9691mm³ with initial impact velocity 0.4362 m/s onto CF₄ plasma-treated polypropylene film coated on a glass during (o) rebound phase 20 The change of radius in the x and y radius with time of 4.5 the water droplet having size of 10.9691 mm³ with an initial impact velocity of 0.4362 m/s onto CF₄ plasmatreated polypropylene film coated on glass surface during a) 1st rebound, b) 2nd rebound, c) 3rd rebound, and d) 4th 22 rebound Peaks of maxima of a water droplet having 10.9691 mm³ 4.6 with impact velocity of 0.4362 m/s onto the CF₄ plasmatreated polypropylene film coated on a glass surface 24 4.7 The change of center of mass with time of a water droplet having 10.9691 mm³ with impact velocity of 0.4362 m/s onto the CF₄ plasma-treated polypropylene film coated on a glass surface during the first rebound 25

PAGE

- 4.8 The change in projection area with time of a water droplet having 10.9691 mm³ with initial impact velocity of 0.4362 m/s onto the CF₄ plasma-treated polypropylene film coated on a glass surface
- 4.9 Image of water droplet having 10.9691 mm³ with initial impact velocity of 0.4362 m/s onto the CF₄ plasmatreated polypropylene film coated on a glass surface of droplet volume during 1st impact at a) spreading phase and b) recoiling phase
- 4.10 The change of projection area and droplet 2D-volume with time of water droplet having size 10.9691 mm³ and initial impact velocity 0.4362 m/s onto plasma-treated polypropylene film coated on glass surface during a) 1st rebound, b) 2nd rebound, c) 3rd rebound, and d) 4th rebound
- 4.11 Image of water droplet having 10.9691 mm³ with initial impact velocity of 0.4362 m/s onto the plasma-treated polypropylene film coated on glass surface during a) 1st rebound and b) 2nd rebound
- 4.12 The change in center of mass in horizontal direction with time of water droplet having 10.9691 mm³ volume with initial impact velocity of 0.4362 m/s onto the CF₄ plasmatreated polypropylene film coated on a glass surface
- 4.13 The change of center of mass with time of a different initial sizes of water droplets, at initial impact height of 10 mm onto the CF₄ plasma-treated polypropylene film coated on a glass surface: a) (o) 5.9650, b) (◊) 10.9691,

26

27

28

and c) (Δ) 12.6049 mm³

FIGURE

PAGE

4.14	Small droplet splitting out during the 1 st impact of a water	
	droplet having 12.6049 mm ³ with impact velocity of	
	0.4344 m/s onto the CF ₄ plasma-treated polypropylene	
	film coated on a glass surface	32
4.15	The change in radius in X direction with time of droplet	
	having different size during 1 st impact process a. (o)	
	5.9650, b. (\diamond) 10.9691, and c. (Δ) 12.6049 mm ³	33
4.16	The change in radius in y direction with time of	
	rebounding droplet having different sizes during the 1 st	
	rebound process a. (o) 5.9650, b. (\diamond) 10.9691, and c. (Δ)	
	12.6049 mm^3	34
4.17	Small droplet came off during 1 st impact of water droplet	
	having size 12.6049 mm ³ with impact velocity 0.6476	
	m/s onto CF ₄ plasma-treated polypropylene film coated	
	on a glass surface	35
4.18	The change of center of mass with time of water droplet	
	having different sizes onto CF ₄ plasma-treated	
	polypropylene film coated on a glass surface a. (o) V =	
	10.9691mm3 v 0.4362 m/s, b. (\diamond) V =11.0641, v =	
	0.6476 m/s	36
4.19	The change in radius in X direction with time of a water	
	droplet having different impact velocity during the 1 st	
	impact process a. (o) 0.6476, b. (\diamond) 0.4362 m/s	37
4.20	The change in radius in Y direction with time of	
	rebounding droplet having different initial impact	
	velocity during 1 st rebound process a. (o) 10.9691 and b.	

 (\diamond) 11.0641 mm³