REFERENCES

- Ted Mao, David C.S. Kuhn, and Honghi Tran. (1997). Spread and Rebound of Liquid Droplets upon Impact on Flat Surfaces. <u>AIChE Journal</u>, 43(9), 2169-2179.
- Xiaoguang Zhang, and Osman A. Basaran. (1997). Dynamic Surface Tension Effect in Impact of a Drop with a Solid Surface. <u>Journal of Colloid and interface</u> <u>science</u>, 187, 166-178.
- N. Mourougou-Candoni, B. Prunet-Foch, F. Legay, M. Vignes-Adler, K. Wong. (1997). Influence of Dynamic Surface Tension on the Spreading of Surfactant Solution Droplets Impacting onto a Low-Surface-Energy Solid Substrate. <u>Journal of Colloid and interface science</u>, 192, 129-141.
- R. Rioboo, M. Marengo, and C. Tropea. (2002). Time Evolution of Liquid drop impact onto solid, dry surfaces. <u>Experiments in Fluids</u>, 33, 112-124.
- R. Rioboo, C. Bauthier, J. Conti, M. Voué, and J. De Coninck. (2003). Experimental Investigation of splash and crown formation during single drop impact on wetted surfaces. <u>Experiments in Fluids</u>, 35, 648-652.
- F. Gentner, R. Rioboo, J.P. Baland, J. De Coninck. (2004). Low Inertia Impact Dynamics for Nanodrops. <u>Langmuir</u>, 20, 4748-4755.
- R. Rioboo, C. Tropea. (2001). Outcome from a drop impact on solid surfaces. <u>Jour-</u> <u>nal article</u>, 11(2), 155-165.
- Abdullatif M. Alterraifi, Dalai Sherif, Abdelsamie Moet. (2003). Interfacial effects in the spreading of liquid droplets on solid substrates. <u>Journal of Colloid</u> <u>and Interface Science</u>, 264, 221-227.
- R. Rioboo, M. H. Adão, M. Voué, J. De Coninck. (2006). Experimental evidence of liquid drop break-up in complete wetting experiments. <u>Journal of Material</u> <u>Science</u>, 41(16), 5068-5080.
- M. Voué, R. Rioboo, C. Bauthier, J. Conti, M. Charlot, J. De Coninck. (2003). Dissipation and moving contact lines on non-rigid substrates. <u>Journal of the</u> <u>European Ceramic Society</u>, 23(15), 2769-2755.

- Š. Šikalo, C. Tropea, E.N. Gannić. (2005). Impact of droplets onto inclined surfaces. Journal of Colloid and Interfacial science, 286, 661-669.
- Zhao Yu, Tang Ge, L.-S. Fan. (2006). Multiscale simulation of oblique collisions of droplet on a surface in the Leidenfrost regime. <u>Chemical Engineering science</u>.
- Hatta, N., Fujimoto, H., Kinoshita, K., Takuda, H. (1997). Experimental studies of deformation mechanism of a water droplet impinging on hot metallic surfaces above the Leidenfrost temperature. <u>Journal of Fluid Engineering</u>, 119, 692-699.
- Fukai, J., Zhao, Z., Poulikakos, D., Megaridis, C. M., Miyatake, O. (1993), Modeling of the deformation of a liquid droplet impinging upon a flat surface, <u>Phys.</u> <u>Fluids</u> 5, 2588.

APPENDICES

System calibration

In order to calibrate high speed solid state CCD Camera, 4 methods of calibration must be applied (Ball calibration, Needle Calibration, Pendant drop calibration, and sessile drop calibration). The objective of calibration is to align CCD camera perpendicular to light system and object.

Appendix A Ball Calibration

A1 Ball Calibration

Figure A1 Iron ball (2 mm-diameters) on inverse needle and 9 different positions (Top, Top-Left, Top-Right, Middle, Left, Right, Bottom, Bottom-Left, and Bottom-Right).

.

The iron ball images are fit by program in order to indentify "H position" of iron ball image. After that, COEDG.BAT and SPH3.BAT is complied in C++ program in order to fit curve to calculate "Center of sphere", "sphere radius", "Aspect Ratio", and Standard error.

en C:\WINDOWS\s	ystem32\cmd exe		- And And		_ _ ×
C:\DOCUME~1\PAR	RENDESKTOPNMYLABS	TEST	FILE : 135	DIR : 0	TOTAL SIZE : 12
102.EDG 103.EDG 104.EDG 105.EDG 106.EDG 107.EDG 108.EDG 109.EDG 110PRE1.EDG 110PRE2.EDG 111PRE1.EDG 111PRE1.EDG 112PRE1.EDG 112PRE1.EDG 112PRE1.EDG 113.EDG 113.EDG 113PRE1.EDG 113.EDG 113.EDG	$\begin{array}{c} 920 & 08/13/107 \\ 920 & 08/13/107 \\ 920 & 08/13/107 \\ 920 & 08/13/107 \\ 921 & 08/13/107 \\ 921 & 08/13/107 \\ 920 & 08/13/107 \\ 920 & 08/13/107 \\ 920 & 08/13/107 \\ 920 & 08/13/107 \\ 921 & 08/14/107 \\ 921 & 08/14/107 \\ 921 & 08/14/107 \\ 922 & 08/14/107 \\ 920 & 08/13/107 \\ 921 & 08/14/107 \\ 921 &$	02 40P 03 12P 03 21P 03 22P 03 25P 03 26P 03 26P 03 26P 03 26P 11 39P 11 43P 02 36P 11 38P 11 44P 02 53P 11 40P			
.DIR ENTER: Load/Dir	^Backswape(2):	10/0 Delete	5 11:04 ^I: Joset F	HYPER 2: Save com	3 1 Replace

Figure A2 COEDG program interface.

••• C:\	DOCUME	~1\pare\C	Desktop₩	IYLABS~1\test	\TB.EXE			- 🗆 ×
	File	Edit	Run	Compile	bo Basic — Options	Setup	Window	Debug
500 600 700 900 1010 1020 1040 1100 1110 Com	C:SPH Cal Fil usi to DEFDBL DIM AC DIM IR ITMAX= ' open	3.BAS ibratio e Name ng NEWT find ou A-H,O- 4,5>, X 60W(10), 8 : NO= data f Mess SPH3	Line n of Sp - CSphe ON-RAPH t FOUR Y : (1000), JCOL(10 4 : EPS ile and sage —	Edit 1 Col here-Ball re.bas SON method parameters DEFSTR Z Y(1000), X >,JORD(10), 1=1E-08 : E get data	1 Insert - Xo, Yo, S : DEFINT 3(10), ZDA(YY(5) PS2=1E-4 :	Indent Ta :<= delt_x I-N 10> S=1.0001# Run Run	b /delt_y), ion	an
Line	e: 207	Stmt:	229		Standar	Xo= Yo= rd Error =	46.765310 27.392558 4.1400967	123 044 582

Figure A3 SPH3.BAT program interface.

Figure A4 Curve fitting of iron ball.

In order to calibrate by using iron ball, the accuracy of value must be set within 3 digits.

Table A1 5 position of iron ball calibration results (1.Top, 2.Middle, 3.Bottom,4.Left, and 5.Right).

Тор	X	У	Radius	Aspect Ratio	STD
110	28.73	36.38	8.3267	0.9852	0.0408
111	28.70	36.38	8.2923	0.9812	0.0381
112	28.71	36.88	8.8001	0.9884	0.0390
113	28.67	36.38	8.2551	0.9789	0.0394
114	28.70	36.38	8.2854	0.9817	0.0878
AVG			8.2919	0.9821	0.0390
STDEN	eren zorieri Seleri zorieri		0.0259	0.0024	0.0012

Middle	X	У	Radius	Aspect Ratio	STD
110	29.75	29.45	8.3473	0.9856	0.0265
111	29.72	29.45	8.3152	0.9822	0.0255
112	29.73	29.45	8.3331	0.9846	0.0253
113	29.74	29.45	8.3440	0.9848	0.0271
114	29.71	29.45	8.3151	0.9824	0.0281
AVG	internet in the second second		8.3309	0.9839	0.0265
STDEN			0.0154	0.0015	0.0012

3. Bottom

Bottom	X	У	Radius	Aspect Ratio	STD
115	31.62	19.25	8.3163	0.9858	0.0449
116	31.63	19.25	8.3365	0.9887	0.0472
117	31.63	19.25	8.3412	0.9879	0.0429
118	31.63	19.25	8.3381	0.9874	0.0433
119	31.67	19.24	8.3560	0.9815	0.0488
AVG			8.3376	0.9863	0.0444
SIDEM			0.0142	0.0029	0.0017

4. Left

Left	x	у	Radius	Aspect Ratio	STD
100	18.73	27.23	8.3074	0.9868	0.0249
101	18.79	27.23	8.3839	0.9845	0.0243
102	18.76	27.23	8.3489	0.9801	0.0237
103	18.81	27.22	8.4097	0.9845	0.0225
104	18.79	27.22	8.3935	0.9826	0.0226
AVG			8.3687	0.9837	0.0236
SIDEV			0.0409	0.0025	0.0010

5.	Right
э.	Mgm

Right	x	У	Radius	Aspect Ratio	STD
125	44.65	26.34	8.3457	0.9855	0.0380
126	44.66	26.34	8.3527	0.9868	0.0374
127	44.70	26.33	8.3868	0.9896	0.0414
128	44.70	26.34	8.3843	0.9907	0.0408
129	44.66	26.34	8.3444	0.9876	0.0360
AVG			8.3628	0.9880	0.0387
STDEN	1	New Street	0.0210	0.0021	0.0023

A2 Ball Calibration results

The average value of "Middle" and "Bottom" position are used to find real scale and aspect ratio since middle and bottom are the most use position in the experiment.

Middle	Radius (pixel)	Aspect Ratio	STD
1	8.3309	0.9839	0.0265
2	8.3621	0.9859	0.0284
3	8.3256	0.9848	0.0253
Average	8.3395	0.9849	0.0267

Bottom	Radius (pixel)	Aspect Ratio	STD
1	8.3376	0.9863	0.0244
2	8.3570	0.9839	0.0413
3	8.3309	0.9864	0.0368
Average	8.3419	0.9855	0.0408

Ball diameter (mm) = 2.0000 **Ball diameter (pixels)** = 16.6814 **Aspect Ratio** = 0.9852 **Real Scale (mm/pixel)** = 0.1199

Appendix B Needle Calibration

The needle calibration is used to verify whether results from ball calibration are correct. The calibration step is;

- a) Place needle in vertical direction perpendicular to the horizontal line.
- b) Take 3 images at different time period without moving needle.
- c) Repeat step a) and b) but place needle in horizontal direction.

Figure B.1 Plot data of needle both in vertical and horizontal direction.

Three positions are used in the calibration Horizontal-Middle, Horizontal-Middle, and Vertical-Middle because these 3 positions are the most use area in the experiment.

 Table B1 Needle calibration results.

	Diameter (pixel)	STDEV
Horizontal - Middle (Ay)	13.0959	0.0934
	13.0969	0.0819
	13.1068	0.0676
average	13.0999	0.0810

Horizontal – Bottom (Åy)	13.0721	0.0409
	13.0742	0.0413
	13.0735	0.0401
average	13.0733	0.0408
Wertical – Middle (Δx)	12.8080	0.0663
	12.8982	0.0988
	12.8606	0.1076
average	12.8556	0.0909

Needle diameter (mm) = 1.4700

Aspect Ratio = 0.9824

Real Scale x-direction (mm/pixel) = 0.1123

Real Scale in y-direction (mm/pixel) = 0.1143

Appendix C Pendant Drop Calibration

After ball and needle calibration, the pendant drop of water and acetone is used to verify since the pendant drop is close to the real experiment more than iron ball and needle.

Figure C1 Pendant drop plot of a) Water and b) Acetone

Pendant drop surface tension is measured but fitting curve from plot data by MEG.BAT program. This program will calculate surface tension, surface area, drop volume.

ũ.	C: DOCUM	E~1\pare\C	Desktop₩	YLABS~1\PEN	DAN~1\TB.EXI			- 🗆 ×
	File	Edit	Run	Compile	bo Basic — Options	Setup	Vindov	Debug
,	C:MA PENDANT CLS DEFDI DEFS DEFII nfrea N1 = N2 = Z1 = ogr ogr	G.BAS BUBBLE BL A-H, IR Z NT I-N ad = 60 1200 3550 "ball.f = 71.97 = 0.00	Line 0-Y il" - exp w	Edit ¹ Gol WII-517 ater of sur	1 Insert M806017 M	Indent Ia III Feb	b 10,'93	- Trace
C	ompiling; ine: 565	Mes: MAG Stmt:	sage — 650		69 I = 1 30.000		76 Err= R0 10.666	2
Al	t-F5-Zoor	n Alt-F	6-Next					

Figure C2: MEG.BAT program interface.

Image	Surface	radius	β	\mathbf{X}_{apex}	y apex	Surface Area	Volume
no.	Tension	(pixel)				(mm ²)	(mm ³)
100	71.930	9.977	-0.173	32.000	31.786	17.618	7.275
101	71.860	10.135	-0.179	31.000	30.466	18.201	7.671
102	71.956	10.086	-0.177	39.000	30.021	17.199	7.387
103	71.999	10.095	-0.177	38.000	30.043	17.205	7.403
104	71.982	10.081	-0.176	38.000	30.026	17.187	7.377
105	71.940	9.850	-0.168	39.000	31.932	16.109	6.771
106	71.911	9.854	-0.169	39.000	31.919	16.125	6.782
107	71.940	9.850	-0.168	39.000	31.930	16.714	6.896

 Table C1 Water pendant drop results.

The target of pendant drop calibration is to measure surface tension of water and acetone. If surface tension is close to the reference that means CCD camera alignment is in a correct position. The reference surface tension value of water and acetone at 20 $^{\circ}$ C and 1 atm are 72.8 and 23.7 respectively.

Image	Surface	Radius	β	Xapex	Yapex	Surface area	Volume
no.	tension	(pixel)				(mm ²)	(mm ³)
100	23.081	7.492	-0.304	31.000	30.578	10.237	3.507
101	23.001	7.503	-0.306	30.000	29.472	10.781	3.654
102	22.957	7.548	-0.810	88.000	88.764	11.142	3.782
103	22.979	7.523	-0.308	33.000	33.617	11.153	3.760
104	23.018	7.458	-0.302	29.000	30.250	10.769	3.602

 Table C2 Acetone pendant drop results.

Appendix D Sessile Drop Calibration

Water is used as a tested liquid in sessile drop calibration. Water sessile drop on parafilm surface has contact angle between 105-120 degree depends on the wrap quality of parafilm on acrylic surface.

Figure D1 SS.BAT results of water sessile drop on parafilm wax surface.

In this calibration SS.BAT program is complied to calculate sessile drop contact angle (both left and right contact angle).

File	Edit	Run	Compile	Options	Setup	Window	Debug
C:SS CLS DEFSN DIM DIM DIM DIM DIM DIM	.BAS NDANT BU G A-H, O "ball.f "ball.f "I", #3 KE(nn1), y1(nn2), y7(nn2), X7(nn2), A(4, 5),	Line BBLE -Y: il": yE(nn1 y2(nn2 ¥8(nn2 JCOL(5 X(10),	Edit 1 Col for DEFSIR Z: nn2 = 3000 NFILE = 0: >, DX(nn1), >, Y3(nn2), >, Y9(nn2), >, JORD(5), Y(10), X3(1)	i Insert AT DEFIN : nfrea ija = DZ(nn1), N Y4(nn2), Y Y11(cn2), YV(5), XIN 10), ST(22)	Indent Ta I I-N d = 60 9 PT(nn1), 5(nn2), Y y22(nn2), C(S), XOL	b DIST(nn1) 6(nn2) Y33(nn2) D(5)	Trace
ompiling ine: 552	Hes SS Stnt:	sage — 672		THE FIN 34.055	Run AL SOLUTI 38.701 0185	ONS = 13.925 + 4 S = 0.19238	- 12.

Figure D1 SS.BAT results program interface of water sessile drop on parafilm wax surface.

The water sessile drop is showed on the table below.

 Table D1
 Water sessile drop on parafilm wax surface.

Water Sessile drop on parafilm wax surface				
STC	25.076			
Radius (pixel)	14.7552			
β	1.0967			
Left contact angle	113.452			
Right contact angle	113.452			
Xapex	34.007			
Yapex	38.692			
STD	0.14703			
Temp	25			
Left plate	53.6785±0.0048			
Right plate	53.6656±0.0093			
Plate different	0.01294			

Because parafilm surface can be stretched which affect to the water contact angle the water contact angle is vary depend on the warp quality of parafilm wax surface.

CURRICULUM VITAE

Name:	Mr. Patrapee Arcade
Date of Birth:	January 13 th , 1981

Nationality: Thai

University Education:

2000-2004 Bachelor Degree of Chemical Engineering, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

Working Experience:

2004-2006	Position:	Process Engineer
	Company name:	Siam Mitsui PTA co., Ltd

Presentations:

 Chavadej, S Y, Lin. (2008, April 23) Water droplet impact phenomena onto super-hydrophobic surface. Paper presented at The <u>14th Symposium on</u> <u>Petroleum, Petrochemicals</u>, and Polymers, Bangkok, Thailand.

