EFFECTS OF DISSOLUTION RATE AND FLOW CHARACTERISTICS ON SCALLOPING OF PIPE SURFACES

7

Suphanan Sinthuphan

12 ° 1

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2008

512042

Thesis Title:	Effects of Dissolution Rate and Flow Characteristics on
	Scalloping of Pipe Surfaces
By:	Suphanan Sinthuphan
Program:	Petrochemical Technology
Thesis Advisors:	Assoc. Prof. Thirasak Rirksomboon
	Prof. Derek H. Lister
	Prof. Frank R. Steward

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Nantaya Jammet College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

Brull

(Assoc. Prof. Thirasak Rirksomboon)

(Prof. Derek H. Lister)

drant R Sterrand

(Prof. Frank R. Steward)

(Assoc. Prof. Anuvat Sirivat)

21

(Dr. Boonrod Sajjakulnukit)

. . .

ABSTRACT

4971019063: Petrochemical Technology

. . .

Suphanan Sinthuphan: Effects of Dissolution Rate and Flow

Characteristics on Scalloping of Pipe Surfaces.

Thesis Advisors: Assoc. Prof. Thirasak Rirksomboon, Prof. Derek H. Lister, and Prof. Frank R. Steward 109 pp.

Keywords: Scallop/ Dissolution/ Corrosion/ Plaster of Paris/ Gypsum/ Solubility/ Water chemistry

The phenomenon of flow-accelerated corrosion (FAC) is a significant problem with steels in water-cooling systems. The sculpting of surfaces that undergo FAC normally develops a characteristic described as "scalloping". To obtain further insight into FAC it is of interest to understand the formation of scallops and their significance in the dissolution rate of steel piping. This study investigated how the dissolution rate and the flow characteristics lead to scalloping by altering water chemistry, temperatures and flow velocities. Experiments comprised of twelveconditions were carried out on the dissolution of pipe coated with gypsum (Ca\$O₄.2H₂O). Scallop morphology was characterised with a digital camera. Atomic Absorption Spectroscopy (AAS) was used to analyse the dissolution rate. It was found that the large population of scallops develops with increasing water flow rate. The average dissolution rate increases with flow rate and temperature but is not significantly affected by the pH. The dissolution rate increases with time at pH 3 and 7 but decreases with time at pH 10. The dissolution rate of gypsum is controlled by diffusion transport mechanism at room temperature (25°C). At a lower temperature (10°C), the dissolution rate of gypsum is first controlled by the surface reaction mechanism but changes to diffusion transport mechanism after 2 hours into the experiment.

บทคัดย่อ

สุภานันท์ สินธุพันธ์ : ชื่อหัวข้อวิทยานิพนธ์ ผลกระทบจากอัตราการละลายและ ลักษณะการไหลต่อพื้นผิวชนิคสแกลอปบนพื้นผิวของท่อ (Effects of Dissolution Rate and Flow Characteristics on Scalloping of Pipe Surfaces) อ. ที่ปรึกษา : รศ. คร. ธีรศักดิ์ ฤกษ์ สมบูรณ์ ศ. คร. คีเรก เอช ลิสเตอร์ และ ศ. คร. แฟรงค์ อาร์ สจ้วต 109 หน้า

ปรากฏการณ์การกัดกร่อนแบบเร่งด้วยความเร็วของของไหล (flow-accelerated corrosion) เป็นปัญหาสำคัญที่เกิดขึ้นกับท่อเหล็กในระบบน้ำหล่อเย็น โดยปกติการกัดเซาะของง ้พื้นผิวที่เกิดขึ้นภายใต้ปรากฏการณ์นี้จะเกิดเป็นพื้นผิวที่มีลักษณะเฉพาะเรียกว่า พื้นผิวสแกลอป (scalloping) ดังนั้นจึงจำเป็นต้องมีความเข้าใจเกี่ยวกับการก่อตัวของสแกลอปและความสัมพันธ์ ของสแกลอปต่ออัตราการละลายตัวของท่อเหล็ก สำหรับงานวิจัยนี้ได้ศึกษาถึงอัตราการละลาย โดยการเปลี่ยนคุณสมบัติทางเคมีของน้ำ และลักษณะการใหลที่จะนำไปสู่การเกิดสแกลอป อุณหภูมิ และความเร็วของของไหล โคยใช้สภาวะการทคลองทั้งหมดสิบสองสภาวะ เพื่อวิเคราะห์ ค่าการละลายตัวของท่อที่เคลือบด้วยยิปชัม (CaSO₄·2H₂O) ได้ศึกษารูปร่างของสแกลอปโดยใช้ กล้องถ่ายรูปแบบคิจิตอล และวิเคราะห์อัตราการละลายโดยเครื่อง Atomic absorption spec-จากผลการทคลองพบว่าจำนวนสแกลอปเพิ่มขึ้นเมื่อเพิ่มอัตราการไหลของของไหล troscopy ้อัตราการละลายโดยเฉลี่ยเพิ่มขึ้นที่อัตราการไหลสูงขึ้น โดยที่ค่าความเป็นกรค-ค่างของสารละลาย มีผลต่อการเปลี่ยนแปลงอัตราการละลายโดยเฉลี่ยน้อย ที่สภาวะกรด (pH 3) และกลาง (pH 7) อัตราการละลายมีแนวโน้มเพิ่มขึ้นตามเวลา แต่มีแนวโน้มลดลงเมื่อสภาวะของสารละลาย เปลี่ยนเป็นค่าง (pH 10) ที่อุณหภูมิห้อง (25°C) อัตราการละลายของยิปซัมถูกควบคุมโดยกลไก การเคลื่อนที่แบบแพร่ แต่ที่อุณหภูมิต่ำลง (10°C) อัตราการละลายของยิปซัมเมื่อเริ่มต้นถูก ควบคุมโคยกลไกปฏิกริยาบนผื้นผิว แล้วเปลี่ยนเป็นกลไกการเคลื่อนที่แบบแพร่หลังจากผ่านไป สองชั่วโมง

ACKNOWLEDGEMENTS

I am grateful for the partial scholarship and partial funding of the thesis work provided by the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University.

This work could not have been completed without the great kind help from Prof. Derek H. Lister, my supervisor. I am very grateful for his valuable advice, knowledge and support throughout my study.

I would like to thank my supervisors, Prof. Frank R. Steward and Assoc. Prof. Thirasak Rirksomboon for the opportunity to do research in Canada and their support and advice.

I would like to thank Mr. Andrew Feicht for his support and providing all equipment throughout my work. The kind help from Dr. Lihui Liu on the Laser Raman analysis and Scanning Electron Microscope is appreciated. The knowledge from Mr. Piti Srisukvatananan on the Atomic Absorption Spectrophotometer is appreciated. The construction of the testing loop from Mr. Gorngrit Intasopa is appreciated. The helping from Mr. Chien-Ee Ng on the computer and calculation is appreciated.

Finally, this work could not have been done without grate encouragement from my family. I would also like to thank all my seniors and friends at UNB and Thailand for their friendship and encouragement.

TABLE OF CONTENTS

	P	A	l	C	7	F
--	---	---	---	---	---	---

-	Title Page	i
1	Abstract (in English)	iii
1	Abstract (in Thai)	iv
1	Acknowledgements	v
-	Table of Contents	vi
I	List of Tables	ix
I	List of Figures	x
1	Abbreviations	xiv
l	List of Symbols	xv
СНАН	PTER	
]		1
]	II LITERATURE REVIEW	3
J	III EXPERIMENTAL	17
	3.1 Materials and Equipment	17
	3.1.1 Instrument and Apparatus	17
	3.1.2 Plaster of Paris (CaSO ₄ . ¹ / ₂ H ₂ O)	17
	3.1.3 Water and Chemicals for Controlling pH	
	and Temperature	18
	3.2 Methodology	19
	3.2.1 Mixing of the Plaster	19
	3.2.2 Test Section	20
	3.2.3 Test Loop	21
	3.2.4 Test Runs and Conditions	22

3.3	3 Analytical Techniques	
	3.3.1 Dissolution Rate Analysis	23
	3.3.2 Characterization of Scallop Surface	24

IV	RESULTS AND DISCUSSION	25		
	4.1 The Effect Flow Rate on the Scallop Surface	25		
	4.1.1 Scallop Surface	25		
	4.1.2 Dissolution Rates	27		
	4.2 The Effect pH on the Scallop Surface	30		
	4.2.1 Scallop Surface	30		
	4.2.2 Dissolution Rates	34		
	4.3 The Effect Temperature on the Scallop Surface	37		
	4.3.1 Scallop Surface	37		
	4.3.2 Dissolution Rates	41		
	4.4 The Other Observation for Understanding	47		
	the Dissolution Rate Mechanism			
	4.4.1 Dissolution Rate at pH 3 and 10			
	4.4.2 Dissolution Rate Along the Pipe	50		
	4.4.3 Dissolution Coefficient Along the Pipe	54		
V	CONCLUSIONS AND RECOMMENDATIONS	58		
	REFERENCES	60		
	APPENDICES	63		
	Appendix A Plaster Test Section Mixing and Molding	63		
	Appendix B Solubility of Gypsum	66		
	Appendix C Raw Data	68		

. .

vii

	C.1 The Raw Data for Run Experiment	
	under Condition, $pH_{25^{\circ}C}$ 7 and 25°C	68
	C.2 The Raw Data for Run Experiment	
	under Condition, pH _{25°C} 3 and 25°C	71
	C.3 The Raw Data for Run Experiment	
	under Condition, pH _{25°C} 10 and 25°C	74
	C.4 The Raw Data for Run Experiment	
	under Condition, pH _{25°C} 7 and 10°C	76
	C.5 The Raw Data for Run Experiment	
	under Condition, pH _{25°C} 3 and 10°C	79
	C.6 The Raw Data for Run Experiment	
	under Condition, pH _{25°C} 10 and 10°C	82
Appendix D	The Developing of Scallop at any Time	85
Appendix E	The Results from SEM/EDX	86
Appendix F	Dissolution Rate Along the Pipe and	
	Dissolution Coefficient	90
	F.1 Dissolution Rates Along the Pipe	90
	F.2 Dissolution Coefficient Along the Pipe	
	and Mass Transfer Coefficient	99

109

LIST OF TABLES

3.1 Test conditions	22
4.1 The average dissolution rate of plaster from different	
calculation at 25°C	45
4.2 The average dissolution rate of plaster from different	
calculation at 10°C	46
4.3 The composition of plaster after run in different conditions	49

.

...

•

•

1

•

.

.

LIST OF FIGURES

FIGURE PAGE 1.1 Scallops found on outlet feeder pipe k16 (Lister, 2004) 1 Scalloping on the inner surface of a carbon steel feeder pipe 2.1 4 (Villien *et al.*, 2001) 5 2.2 Schematic of primary coolant in CANDU reactor 7 Flute hydrodynamics (Blumberg, 1970) 2.3 2.4 Evolution of a surface according to (1) passive-bed theory 7 and (2) defect theory 2.5 Stages in the development of experimental Flutes (a-e) and grooves (f), (g) from defects introduced into Plaster of Paris beds. Flow from bottom to top. (e) is 10 cm wide. (Allen, 1971*) 9 2.6 Dissolution rates of gypsum as functions of flow rates. (Villien et al., 2005) 12 2.7 Concentration of calcium ion vs. time for four experiments, each run at 300-rpm spinning rate and 25°C. (Raines and · 13 Dewers, 1997) Schematic of different scallup types at inlet and outlet (Shao, 2.8 2006) 14 2.9 The 1000/T dependence of log k (dissolution rate constant) at different specimen or different kind of gypsum (Lebedev, et al. 1989). 14 The pressure drop versus time (Shao, 2006) 15 2.10 3.1 18 SEM of the plaster structure 19 Schematic of the mixing apparatus 3.2 Schematic of the test section. (Villien, et al., 2005) 20 3.3 21 3.4 Schematic of the experimental loop

• •

.

4.1	Plaster test sections at different positions (a) 25 LPM at the		
	entrance, (b) 25 LPM at the exit, (c) 35 LPM at the entrance,		
	(d) 35 LPM at the exit	25	
4.2	Plaster test sections after experimental runs at different flow		
	rates (a) at 35 LPM, (b) at 25 LPM	26	
4.3	Scallop surfaces on the plaster surface after a five-hours run		
	at different flow rates: (a) 25 LPM, $pH_{25^{\circ}C}$ 7, 25°C and (b) 35		
	LPM, pH _{25°C} 7, 25 °C	27	
4.4	Dissolution rate of plaster versus time at different flow rates		
	for Type I, pH _{25°C} 7, 25°C	28	
4.5	Dissolution rate of plaster versus time at different flow rates		
	in Type II, pH _{25°C} 7, 25°C	29	
4.6	Dissolution rate of plaster versus time at different flow rates		
÷	in Type III pH _{25°C} 7, 25°C	29	•
4.7	The scallop surfaces on the plaster surface after run under		
	different conditions: (a1) pH25°C 3, 25 LPM, (b1) pH25°C 7,		
	25 LPM, (c1) pH _{25°C} 10, 25 LPM, (a2) pH _{25°C} 3, 35 LPM,		
	(b2) pH _{25°C} 7, 35LPM and (c2) pH _{25°C} 10, 35 LPM	31	
4.8	The scallop surface developing every one hour at 25 LPM	-	
	under different conditions: (a1-5) pH _{25°C} 3, (b1-5) pH _{25°C} 7		
	and (c1-5) pH _{25°C} 10	32	
4.9	The scallop surface developing every one hour at 35 LPM		
	under different conditions: (a1-5) pH25°C 3, (b1-5) pH25°C 7		
	and (c1-5) pH _{25°C} 10	33	
4.10	The dissolution rate versus time at pH25°C 3, 25°C	34	
4.11	The dissolution rate versus time at pH _{25°C} 10, 25°C	35	
4.12	Comparison of the dissolution rate at 25 LPM in different		
	pHs	36	
4.13	Comparison of the dissolution rate at 35 LPM in different		
	pHs	37	

;

4.14	Comparison of the scallop surfaces on the plaster surface			
	after run at 25 LPM under different conditions: (a1) pH _{25°C}			
	3, 10°C, (b1) pH _{25°C} 7, 10°C, (c1) pH _{25°C} 10, 10°C, (a2)			
	pH _{25°C} 3, 25°C, (b2) pH _{25°C} 7, 25°C and (c2) pH _{25°C} 10, 25°C		38	
4.15	Comparison of the scallop surfaces on the plaster surface			
	after run at 35 LPM under different conditions: (a1) pH _{25°C}			
	3, 10°C, (b1) pH _{25°C} 7, 10°C, (c1) pH _{25°C} 10, 10°C, (a2)			
	pH _{25°C} 3, 25°C, (b2) pH _{25°C} 7, 25°C and (c2) pH _{25°C} 10, 25°C		39	
4.16	The scallop surface developing every one hour at 35 LPM			
	and 10°C under different conditions: (a1-5) pH _{25°C} 3, (b1-5)			
	pH _{25°C} 7 and (c1-5) pH _{25°C} 10		40	
4.17	The dissolution rate versus time at pH25°C 7, 10°C		41	
4.18	The dissolution rate versus time at pH25°C 3, 10°C		42	
4.19	The dissolution rate versus time at pH25°C 10, 10°C		43	
4.20	Comparison the dissolution rate under different conditions:	•		
	(a) $pH_{25^{\circ}C}$ 3, (b) $pH_{25^{\circ}C}$ 7 and (c) $pH_{25^{\circ}C}$ 10	.1	44	
4.21	Comparison the average dissolution rate versus time under			
	different conditions		46	
4.22	Raman spectrum of plaster surface before run		48	i es
4.23	Raman spectrum of plaster surface at 25 LPM, $pH_{25^{\circ}C}$ 3 and			
	25°C		48	
4.24	Raman spectrum of plaster surface at 25 LPM, $pH_{25^{\circ}C}$ 10 and			
	25°C		50	
4.25	The dissolution rate profile along the pipe under condition			
	pH _{25°C} 3, 25°C and 25 LPM		51	
4.26	The dissolution rate profile along the pipe under condition			
	pH _{25°C} 7, 25°C and 25 LPM		52	
4.27	The dissolution rate profile along the pipe under condition			
	pH _{25°C} 10, 25°C and 25 LPM		52	
4.28	The dissolution rate profile along the pipe under condition			
	$pH_{25^{\circ}C}$ 3, 10°C and 25 LPM		53	

4.29	The dissolution rate profile along the pipe under condition	
	pH _{25°C} 7, 10°C and 25 LPM	53
4.30	The dissolution rate profile along the pipe under condition	
	pH _{25°C} 10, 10°C and 25 LPM	54
4.31	The dissolution coefficient (K) compared with the mass	
	transfer coefficient (K_m) along the pipe under condition	
	pH _{25°C} 3, 25°C and 25 LPM	55
4.32	The dissolution coefficient (K) compared with the mass	
	transfer coefficient (K _m) along the pipe under condition	
	pH _{25°C} 7, 25°C and 25 LPM	55
4.33	The dissolution coefficient (K) compared with the mass	
	transfer coefficient (K _m) along the pipe under condition	
	pH _{25°C} 10, 25°C and 25 LPM	56
4.34	The dissolution coefficient (K) compared with the mass	
	transfer coefficient (K_m) along the pipe under condition	
	pH _{25°C} 3, 10°C and 25 LPM	56 .
4.35	The dissolution coefficient (K) compared with the mass	
	transfer coefficient (K _m) along the pipe under condition	1.4
	pH _{25°C} 7, 10°C and 25 LPM	57
4.36	The dissolution coefficient (K) compared with the mass	
	transfer coefficient (K_m) along the pipe under condition	
	pH _{25°C} 10, 10°C and 25 LPM	57

ABBREVIATIONS

FAC	Flow-accelerated corrosion
AAS	Atomic absorption spectrophotometer
Conc.	Concentration
UNB	University of New Brunswick
CANDU	Canada deuterium uranium
PHWR	Pressurized heavy water reactor
SEM	Scanning electron microscope
LPM	Liters per minute
GPM	Gallons per minute
rpm	Revolutions per minute
USG	United States gypsum company
ID	Inside diameter
LRS	Laser raman spectroscopy

xiv

.

LIST OF SYMBOLS

R	Overall dissolution rate
Cs	Concentration at the surface
C _b	Concentration of dissolved species in the bulk
kı	Mass transfer coefficient
ε	Diffusion layer thickness
D	Diffusion coefficient
ζ	Transport reaction factor
Ω	C _b /C _s
m _{eq}	Molal equilibrium concentration
Ea	Activation energy
f	Friction factor
R _o	Ratio of mass of water to mass of plaster of Paris
m _o	Weight of plaster conduit before run experiment
m _f	Weight of plaster conduit after run experiment
$\mathrm{MW}_{\mathrm{Ca}}$	Molecular weight of calcium
MW_G	Molecular weight of gypsum
t	Running time (min)
А	Surface area (m ²).
C _i	Initial calcium concentration
C_{f}	Final calcium concentration (ppm or mg/L)
U	Volumetric flow rate (L/min)
К	Dissolution coefficient (m/s)
K _m	Mass transfer coefficient (m/s)

140