REFERENCES

- American Public Health Association (APHA) (1995) <u>Standard methods for the</u> <u>examination of water and wastewater</u>. Washington, DC.
- Arooj, M.F., Han, S.K., Kim, S,H., Kim, D.H., and Shin, H.S. (2007). Sludge characteristics in anaerobic SBR system producing hydrogen gas. <u>Water</u> <u>Research</u>, 41, 1177-1184.
- Atiif, A.A.Y., Razi, F.R., Ngan, M.A., Morimoto, M., Iyuke, S.E., and Veziroglu, N.T. (2005). Fed batch production of hydrogen from palm oil mill effluent using anaerobic microflora. <u>International Journal of Hydrogen Energy</u>, 30, 1393-1397.
- Artan, N., and Orhan, D. (2006). Nutrient removal performance of a five-step sequencing batch reactor as a function of wastewater composition. <u>Process</u> <u>Biochemistry</u>, 41, 216-220.
- Becker, P., Koster, D., Popov, M.N., Markossian, S., Antranikian, G., and Markl, H. (1999). The biodegradation of olive oil and the treatment of lipid-rich wool scouring wastewater under aerobic thermophilic conditions. <u>Water</u> <u>Research.</u> 33, 653-660.
- Cammarota, M.C., and Freire, D.M.G. (2006). A review on hydrolytic enzymes in the treatment of wastewater with high oil and grease content. <u>Biosource</u> <u>Technology</u>, 97, 2195-2210.
- Chang, F.Y., and Lin, C.Y. (2004). Biohydrogen production using an up-flow anaerobic sludge blanket reactor. <u>International Journal of Hydrogen</u> <u>Energy</u>, 29, 33-39.
- Chittibabu, G., and Nath, K., and Das, D. (2006). Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21. <u>Process Biochemistry</u>, 41, 682-688.
- Das, D., and Verzirglu, T.N. (2001). Hydrogen production by biological procedded: a survey of literature. <u>International Journal of Hydrogen Energy</u>, 26, 13-28.

- Fan, Y.T., Zhang, G.S., Guo, X.Y., Xing, Y., and Fan, M.H., (2006). Biohydrogen production from beer lees biomass by cow dung compost. <u>International</u> <u>Journal of Hydrogen Energy</u>, 30(5), 493-496.
- Fang, H.H.P., and Liu, H., (2002). Effect of pH on hydrogen production from glucose by a mixed culture. <u>Bioresource Technology</u>, 82(1), 87-93.
- Greenberg, A.E., Clesceri, L.S., and Eaton, A.D., (1992). <u>Standard Methods for The Examination of Water and Wastewater</u>. Washington, DC: American Public Health Association.
- Han, S.K., Kim, S.H., and Shin, H.S. (2005). UASB treatment of wastewater with VFA and alcohol generated during hydrogen fermentation of food waste. <u>Process Biochemistry</u>, 40, 2897-2905.
- Jahan, K., Ahmed, T., and Maier, W.J. (1999). Modeling the influence of nonionic surfactants on biodegradation of phenanthrene. <u>Water Research</u>, 33, 2181-2193.
- Kapdan, I.K., and Kargi. F. (2006). Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 38, 569-582.
- Kotsopoulos, T.A., Zeng, R.J., and Angelidaki I. (2006). Biohydrogen production in granular up-flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyper-thermophilic temperature (70 degrees C).
 <u>Biotechnology and bioengineering</u>, 94, 296-302.
- Lee, K.S., Lin, P.J., and Chang, J.S. (2006). Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers. <u>International Journal of Hydrogen Energy</u>, 31, 1648-1657.
- Lee, K.S., Lo, Y.C., Lin, P.J., and Chang, J.S. (2006). Improving biohydrogen production in carrier-induced granular sludge bed by altering physical configuration and agitation pattern of the bioreactor. <u>International Journal</u> <u>of Hydrogen Energy</u>, 31, 1648-1657.
- Lee, K.S., Lo, Y.S., Lin, P.J., and Chang, J.S. (2004). Operating strategies for hydrogen production with high-rate anaerobic granular sludge bed bioreactor. <u>Enzyme and Micribial Technology</u>, 35, 605-612.

- Lee, M., Kang, H., and Do, W. (2005). Application of nonionic surfactant enhanced in situ flushing to a diesel contaminated site. <u>Water Research</u>, 39, 139-146.
- Lif, A., and Holmberg, K. (2006). Water-in-Diesel emulsions and related systems. Advances in Colliod and Interfacial Science, 231-239.
- Lin, C.Y., and Chang, R.C., (2004) Fermentative hydrogen production at ambient temperature. International Journalof Hydrogen Energy, 29, 715-720
- Lin, C.Y., Lee, C.Y., Tseng, I.C., and Shiao, I.Z. (2006). Biohydrogen production from sucrose using base-enrichef anaerobic mixed microflora. <u>Process</u> <u>Biochemistry</u>, 41, 915-919.
- Lin, C.Y., and Lin, S.A. (2007). Effect of emulsion variable on fuel properties of two- and three-phase biodiesel emulsions. <u>Fuel</u>, 86, 210-217.
- Matcarf & Eddy. (2003). <u>Wastewater Engineering: Treatment and Reuse</u>. New York: McGraw-Hill.
- Masse, L., Kennedy, K.J., and Chou, S. (2001). Testing of alkaline and enzymatic hydrolysis pretreatments for fat particles in slaughterhouse wastewater. <u>Bioresource Technology</u>, 77, 145-155.
- Mendes, A.A., Pereira, B.E., and Heizir F. de Castro. (2006). Effect of the enzymatic hydrolysis pretreatment of lipids-rich wastewater on the anaerobic biodigestion. <u>Biochemical Engineering Journal</u>, 32, 185-490.
- Morimoto, M., Atsuko, M., Atif, A.A.Y., Ngan, M.A., Fakhru'l-Razi, A., Iyuke,
 S.E., and Bakir, A.M., (2004). Biological production of hydrogen from glucose by natural anaerobic microflora. <u>International Journal of Hydrogen</u> Energy, 29(7), 709-713.
- Ni, M., Leung, D.Y.C., Leung, M.K.H., and Sumathy K. (2006). An review of hydrogen production from biomass. <u>Fuel Process Technology</u>, 87, 461-472.
- Perez, M., Rodriguez-Cano, R., Romero, L.I., and Sales D. (2006). Performance of anaerobic thermophilic fluidized bed in the treatment of cutting-oil wastewater. <u>Biosource Technology</u>, doi:10.1016/j.biotech.2006.11.005.
- Rosen, M.J. (2004). <u>Surfactants and Interfacial Phenomena</u>. New York: Wiley Interscience

- Salminen, E., and Rintala, J. (2002). Anaerobic digestion of solid poultry slaughterhouse wasrte-a review. <u>Biosource Technology</u>, 83, 13-26.
- Ting, C.H., and Lee, D.J. (2007). Production of hydrogen and methane from wastewater sludge using anaerobic fermentation. <u>International Journal of</u> <u>Hydrogen Energy</u>, 32, 677-682.
- Vidal, G., Carvalho, A., Méndez, R., and Lema, J.M. (2000). Influence of the content in fats and proteins on the anaerobic biodegradability of dairy wastewaters. <u>Bioresource Technology</u>, 74, 231-239.
- Vijayaraghavan, K., Ahmad, D. (2006). Biohydrogen generation from palm oil mill effluent using anaerobic contact filter. <u>International Journal of Hydrogen</u> <u>Energy</u>, 31, 1284-1291.
- Vijayaraghavan, K., Ahmad, D., and Ibrahim, M.K.B. (2006). Biohydrogen generation from jackfruit peel using anaerobic contact filter. <u>International</u> Journal of Hydrogen Energy, 31, 569-579.
- Wang, L., Zhou, Q., and Li, F.T. (2006). Avoiding propionic acid accumulation in the anaerobic process for biohydrogen production. <u>Biomass and Bioenergy</u>, 30, 177-182.
- Yeh, D.H., Pennell, K.D., and Pavlostathis, S.G. (1998). Toxicity and biodegradability screening of nonionic surfactants using sedimentderived methanogenic consortia. <u>Water Science and Technology</u>, 38, 55-62.
- Zhang, Z.P., Show, K.Y., Tay, J.H., Liang, D.T., Lee, D.J., and Jiang, W.J. (2006). Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. <u>Process Chemistry</u>, 41, 2118-2123.
- Zhang, Z.P., Tay, J.H., Show, K.Y., Yan, R., Liang, D.T., Lee, D.J., and Jiang, W.J. (2007). <u>International Journal of Hydrogen Energy</u>, 32, 185-191.
- Zhu, H., and Beland, M. (2006). Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge. <u>International</u> <u>Journal of Hydrogen Energy</u>, 31, 1980-1988.

APPENDICES

Appendix A Experimental Data of Solubilization Study

Table A1 Enhanced-solubilization of hydrocarbons and the weight of Solubilized carbon to weight of surfactant ratio at 0.05% w/vsurfactant concentration

Paramatar	Day												
Farameter	1	2	3	4	5	6	7	8	9	10			
TOC of oil, surfactant, and water (mg/l)	582	636	673	938	974	1,086	1,223	1,382	1,424	1,436			
TOC of surfactant 0.05% w/v (mg/l)	328.9	328.9	328.9	328.9	328.9	328.9	328.9	328.9	328.9	328.9			
TOC of oil (mg/l)	190.3	234.9	261.8	510.8	537.1	646.4	781.1	939.8	981.7	984.3			
Enhanced Solubilization (mg/l)	62.8	72.2	82.3	98.3	108	110.7	113.0	113.3	113.4	122.8			
Wt. of solubilized C to wt. of surfactant	0.1282	0.1473	0.1680	0.2006	0.2204	0.2259	0.2306	0.2312	0.2314	0.2506			

Table A2 Enhanced-solubilization of hydrocarbons and the weight of solubilized carbon to weight of surfactant ratio at 0.10% w/v

surfactant concentration

Parameter	Day											
Parameter	1	2	3	4	5	6	7	8	9	10		
TOC of oil, surfactant, and water (mg/l)	1,948	2,105	2,424	3,138	3,217	3,347	3,472	3,557	3,621	3,631		
TOC of surfactant 0.10% w/v (mg/l)	415.1	415.1	415.1	415.1	415.1	415.1	415.1	415.1	415.1	415.1		
TOC of oil (mg/l)	190.3	234.9	261.8	510.8	537.1	646.4	781.1	939.8	981.7	984.3		
Enhanced Solubilization (mg/l)	1,342.6	1,455.0	1,747.1	2,212.1	2,264.8	2,285.5	2,275.8	2,202.1	2,224.2	2,231.6		
Wt. of solubilized C to wt. of surfactant	1.3700	1.4847	1.7828	2.2572	2.3110	2.3321	2.3222	2.2470	2.2696	2.2771		

Table A3 Enhanced-solubilization of hydrocarbons and the weight of solubilized carbon to weight of surfactant ratio at 0.30% w/v surfactant concentration

Parameter	Day												
Parameter	1-	2	3	4	5	6	7	8	9	10			
TOC of oil, surfactant, and water (mg/l)	4,445	4,984	5,748	7,384	7,438	7,563	7,614	7,764	7,784	7,818			
TOC of surfactant 0.30% w/v (mg/l)	1,163	1,163	1,163	1,163	1,163	1,163	1,163	1,163	1,163	1,163			
TOC of oil (mg/l)	190.3	234.9	261.8	510.8	537.1	646.4	781.1	939.8	981.7	984.3			
Enhanced Solubilization (mg/l)	3,091.7	3,586.1	4,323.2	5,710.2	5,737.9	5,753.6	5,669.9	5,661.2	5,639.3	5,670.7			
Wt. of solubilized C to wt. of surfactant	1.0516	1.2198	1.4705	1.9422	1.9517	1.9570	1.9285	1.9256	1.9181	1.9288			

Table A4 Enhanced-solubilization of hydrocarbons and the weight of solubilized carbon to weight of surfactant ratio at 0.50% w/v surfactant concentration

Decomptor	Day											
Faialletei	1	2	3	4	5	6	7	8	9	10		
TOC of oil, surfactant, and water (mg/l)	5,384	6,441	7,351	10,243	10,487	10,683	10,983	11,045	11,064	11,093		
TOC of surfactant 0.50% w/v (mg/l)	1,677	1,677	1,677	1,677	1,677	1,677	1,677	1,677	1,677	1,677		
TOC of oil (mg/l)	190.3	234.9	261.8	510.8	537.1	646.4	781.1	939.8	981.7	984.3		
Enhanced Solubilization (mg/l)	3,516.7	4,529.1	5,412.2	8,055.2	8,272.9	8,359.6	8,524.9	8,428.2	8,405.3	8,431.7		
Wt. of solubilized C to wt. of surfactant	0.7177	0.9243	1.1045	1.6439	1.6883	1.7060	1.7398	1.7200	1.7154	1.7208		

 Table A5 Enhanced-solubilization of hydrocarbons and the weight of solubilized carbon to weight of surfactant ratio at 0.75% w/v

 surfactant concentration

Parameter					D	Day				
	1	2	3	4	5	6	7	8	9	10
TOC of oil, surfactant, and water (mg/l)	7,461	9,671	13,081	13,762	13,937	14,392	14,430	14,601	14,698	14,723
TOC of surfactant 0.75% w/v (mg/l)	2,074	2,074	2,074	2,074	2,074	2,074	2,074	2,074	2,074	2,074
TOC of oil (mg/l)	190.3	234.9	261.8	510.8	537.1	646.4	781.1	939.8	981.7	984.3
Enhanced Solubilization (mg/l)	5,196.7	7,362.1	10,745.2	11,177.2	11,325.9	11,671.6	11,574.9	11,587.2	11,642.3	11,664.7
Wt. of solubilized C to wt. of surfactant	0.7070	1.0016	1.4619	1.5207	1.5409	1.5880	1.5748	1.5765	1.5840	1.5870

Table A6 Enhanced-solubilization of hydrocarbons and the weight of solubilized carbon to weight of surfactant ratio at 1.00% w/v

surfactant concentration

Desemptor	Day												
F al allietel	1	2	3	4	5	6	7	8	9	10			
TOC of oil, surfactant, and water (mg/l)	10,621	11,540	14,725	14,917	15,803	16,102	16,243	16,491	16,512	16,913			
TOC of surfactant 1.00% w/v (mg/l)	2,237	2,237	2,237	2,237	2,237	2,237	2,237	2,237	2,237	2,237			
TOC of oil (mg/l)	190.3	234.9	261.8	510.8	537.1	646.4	781.1	939.8	981.7	984.3			
Enhanced Solubilization (mg/l)	8,193.7	9,068.1	12,226.2	12,169.2	13,028.9	13,218.6	13,224.9	13,314.2	13,293.3	13,691.7			
Wt. of solubilized C to wt. of surfactant	0.8361	0.9253	1.2476	1.2418	1.3295	1.3488	1.3495	1.3586	1.3565	1.3971			

 Table A7 Enhanced-solubilization of hydrocarbons and the weight of solubilized carbon to weight of surfactant ratio at 2.00% w/v

 surfactant concentration

Parameter				`	D	ay				
Farameter	1	2	3	4	5	6	7	8	9	10
TOC of oil, surfactant, and water (mg/l)	12,740	14,384	18,921	26,173	26,381	26,571	27,841	28,014	28,132	28,312
TOC of surfactant 2.00% w/v (mg/l)	2,391	2,391	2,391	2,391	2,391	2,391	2,391	2,391	2,391	2,391
TOC of oil (mg/l)	190.3	234.9	261.8	510.8	537.1	646.4	781.1	939.8	981.7	984.3
Enhanced Solubilization (mg/l)	10,158.7	11,758.1	16,268.2	23,271.2	23,452.9	23,533.6	24,668.9	24,683.2	24,759.3	24,936.7
Wt. of solubilized C to wt. of surfactant	0.5183	0.5999	0.8300	1.1873	1.1966	1.2007	1.2586	1.2593	1.2632	1.2723

Table A8 Enhanced-solubilization of hydrocarbons and the weight of solubilized carbon to weight of surfactant ratio at 3.00% w/v

surfactant concentration

Parameter	Day												
Falanielei	1	2	3	4	5	6	7	8	9	10			
TOC of oil, surfactant, and water (mg/l)	14,361	14,980	19,530	28,860	29,130	29,330	30,680	31,730	32,840	32,850			
TOC of surfactant 3.00% w/v (mg/l)	2,639	2,639	2,639	2,639	2,639	2,639	2,639	2,639	2,639	2,639			
TOC of oil (mg/l)	190.3	234.9	261.8	510.8	537.1	646.4	781.1	939.8	981.7	984.3			
Enhanced Solubilization (mg/l)	11,531.7	12,106.1	16,629.2	25,710.2	25,953.9	26,044.6	27,259.9	28,151.2	29,219.3	29,226.7			
Wt. of solubilized C to wt. of surfactant	0.3922	0.4118	0.5656	0.8745	0.8828	0.8859	0.9272	0.9575	0.9939	0.9941			

Table A9 Enhanced-solubilization of hydrocarbons and the weight of solubilized carbon to weight of surfactant ratio at 4.00% w/v surfactant concentration

Decemptor	Day												
Falametei	1	2	3	4	5	6	7	8	9	10			
TOC of oil, surfactant, and water (mg/l)	18,240	18,650	23,920	31,570	32,610	34,200	34,280	34,360	34,470	34,570			
TOC of surfactant 4.00% w/v (mg/l)	2,853	2,853	2,853	2,853	2,853	2,853	2,853	2,853	2,853	2,853			
TOC of oil (mg/l)	190.3	234.9	261.8	510.8	537.1	646.4	781.1	939.8	981.7	984.3			
Enhanced Solubilization (mg/l)	15,196.7	15,562.1	20,805.2	28,206.2	29,219.9	30,700.6	30,645.9	30,567.2	30,635.3	30,732.7			
Wt. of solubilized C to wt. of surfactant	0.3877	0.3970	0.5307	0.7195	0.7454	0.7832	0.7818	0.7798	0.7815	0.7840			

Table A10 Enhanced-solubilization of hydrocarbons and the weight of solubilized carbon to weight of surfactant ratio at 5.00% w/v

surfactant concentration

Parameter	Day												
Falalletei	1	2	3	4	5	6	7	8	9	10			
TOC of oil, surfactant, and water (mg/l)	21,800	24,162	28,951	35,421	36,633	37,682	38,162	38,412	38,673	39,760			
TOC of surfactant 5.00% w/v (mg/l)	3,015	3,015	3,015	3,015	3,015	3,015	3,015	3,015	3,015	3,015			
TOC of oil (mg/l)	190.3	234.9	261.8	510.8	537.1	646.4	781.1	939.8	981.7	984.3			
Enhanced Solubilization (mg/l)	18,594.7	20,912.1	25,674.2	31,895.2	33,080.9	34,020.6	34,365.9	34,457.2	34,676.3	35,760.7			
Wt. of solubilized C to wt. of surfactant	0.3795	0.4268	0.5240	0.6509	0.6751	0.6943	0.7013	0.7032	0.7077	0.7298			

Appendix B Experimental Data of COD Removal

 Table B1 Effluent COD and % COD removal at 10 kg COD/m³d loading with influent COD of 22,000 mg/l

Day	Effluent COD (mg/l)	% COD removal
7	11,431	48.04
8	11,244	48.89
9	10,998	50.01
10	10,804	50.89
11	10,487	52.33
12	9,940	54.82
13	9,319	57.64
14	8,532	61.22
15	7,984	63.71
16	7,421	66.27
17	7,806	64.52
18	7,625	65.34
19	7,029	68.05
20	6,816	69.02
21	6,827	68.97
22	6,809	69.05
23	6,805	69.07
24	6,844	68.89
25	6,811	69.04
Last 5 days average	6,819	69.01

Day	Effluent COD (mg/l)	% COD removal
7	11,634	47.12
8	11,297	48.65
9	11,746	46.61
10	11,249	48.87
11	10,993	50,03
12	10,606	51.79
13	10,080	54.18
14	9,110	58.59
15	8,796	60.02
16	8,433	61.67
17	8,107	63.15
18	7,821	64.45
19	7,183	67.35
20	6,882	68.72
21	6,846	68.88
22	6,860	68.82
23	6,818	69.01
24	6,921	68.54
25	6,824	68.98
Last 5 days average	6,859	68.83

Table B2 Effluent COD and % COD removal at 20 kg COD/m³d loading with influent COD of 22,000 mg/l

Day	Effluent COD (mg/l)	% COD removal
7	12,008	45.42
8	11,741	46.63
9	11,524	47.62
10	11,695	46.84
11	11,073	49.67
12	10,809	50.87
13	10,197	53.65
14	9,379	57.37
15	9,027	58.97
16	8,829	59.87
17	8,241	62.54
18	7,575	65.57
19	7,396	66.38
20	6,912	68.58
21	6,875	68.75
22	6,895	68.66
23	6,901	68.63
24	6,888	68.69
25	6,904	68.62
Last 5 days average	6,896	68.66

 Table B3 Effluent COD and % COD removal at 30 kg COD/m³d loading with influent COD of 22,000 mg/l

Day	Effluent COD (mg/l)	% COD removal
7	13,321	39.45
8	13,156	40.20
9	12,727	42.15
10	12,129	44.87
11	11,328	48.51
12	10,866	50.61
13	10,228	53.51
14	9,693	55.94
15	9,438	57.10
16	9,126	58.52
17	8,562	61.08
18	7,874	64.21
19	7,511	65.86
20	7,456	66.11
21	7,528	65.78
22	7,438	66.19
23	7,427	66.24
24	7,447	66.15
25	7,454	66.12
Last 5 days average	7,458	66.10

Table B4 Effluent COD and % COD removal at 40 kg COD/m^3d loading with influent COD of 22,000 mg/l

Day	Effluent COD	% COD removal
7	16 949	22.96
8	16.687	24.15
9	16,181	26.45
10	15,521	29.45
11	15,875	27.84
12	15,367	30,15
13	14,487	34,15
14	13,818	37.19
15	13,607	38.15
16	13,158	40,19
17	12,500	43.18
18	11,774	46.48
19	11,398	48.19
20	11,385	48.25
21	11,136	49.38
22	11,141	49.36
23	11,211	49.04
24	11,143	49.35
25	11,136	49.38
Last 5 days average	11,192	49.13

Table B5 Effluent COD and % COD removal at 60 kg COD/m³d loading with influent COD of 22,000 mg/l

Day	Effluent COD	% COD removal
7	17.371	21.04
8	17,140	22.09
9	16,826	23.52
10	16,713	24.03
11	16,293	25.94
12	15,880	27.82
13	15,215	30.84
14	14,920	32.18
15	14,509	34.05
16	14,753	32.94
17	14,062	36.08
18	14,282	35.08
19	13,600	38.18
20	13,059	40.64
21	13,057	40.65
22	12,962	41.08
23	13,055	40.66
24	13,059	40.64
25	13,055	40.66
Last 5 days average	13,041	40.72

Table B6 Effluent COD and % COD removal at 80 kg COD/m^3d loading with influent COD of 22,000 mg/l

Day	Effluent COD (mg/l)	% COD removal
7	14, 628	33.51
8	14, 524	33.98
9	14, 494	34.12
10	14, 379	34.64
11	14, 370	34.68
12	14, 854	32.48
13	14, 093	35.94
14	13, 917	36.74
15	14, 150	35.68
16	13, 748	37.51
17	13, 387	39.15
18	13, 330	39.41
19	13, 077	40.56
20	12, 828	41.69
21	12, 969	41.05
22	12, 654	42.48
23	12, 507	43.15
24	12, 637	42.56
25	12, 619	42.64
Last 5 days average	12, 702	42.26

.

Table B7 Effluent COD and % COD removal at 20 kg COD/m^3d loading withinfluent COD of 22,000 mg/land without surfactant

Appendix C Experimental Data of Oil Removal

Table C1 Effluent oil concentration and % oil removal at 10 kg COD/m³d loading with influent Oil concentration of 2% v/v

	Effluent oil	
Day	concentration	% Oil removal
	(% v/v)	
7	0.3632	81.84
8	0.3564	82.18
9	0.3492	82.54
10	0.3380	83.10
11	0.3310	83.45
12	0.3298	83.51
13	0.3092	84.54
14	0.2838	85.81
15	0.2692	86.54
16	0.2822	85.89
17	0.2590	87.05
18	0.2396	88.02
19	0.2138	89.31
20	0.1956	90.22
21	0.1932	90.34
22	0.1964	90.18
23	0.2010	89.95
24	0.1948	90.26
25	0.1960	90.20
Last 5 days average	0.1962	90.19

	Effluent oil	
Day	concentration	% Oil removal
-	(% v/v)	
7	0.3720	81.40
8	0.3568	82.16
9	0.3508	82.46
10	0.3382	83.09
11	0.3098	84.51
12	0.3472	82.64
13	0.3066	84.67
14	0.2804	85.98
15	0.2832	85.84
16	0.2692	86.54
17	0.2596	87.02
18	0.2394	88.03
19	0.2328	88.36
20	0.2018	89.91
21	0.1998	90.01
22	0.2026	89.87
23	0.1996	90.02
24	0.2018	89.91
25	0.2020	89.90
Last 5 days average	0.1962	90.19

Table C2 Effluent oil concentration and % oil removal at 20 kg COD/m³d loadingwith influent oil concentration of 2% v/v

-	Effluent oil	
Day	concentration	% Oil removal
	(% v/v)	
7	0.3898	80.51
8	0.3866	80.67
9	0.3808	80.96
10	0.3670	81.65
11	0.3432	82.84
12	0.3212	83.94
13	0.3168	84.16
14	0.2838	85.81
15	0.2780	86.10
16	0.2908	85.46
17	0.2770	86.15
18	0.2472	87.64
19	0.2392	88.04
20	0.2212	88.94
21	0.2208	88.96
22	0.2218	88.91
23	0.2242	88.79
24	0.2196	89.02
25	0.2214	88.93
Last 5 days average	0.2215	88.93

Table C3 Effluent oil concentration and % oil removal at 30 kg COD/m^3d loading with influent oil concentration of 2% v/v

	Effluent oil	
Day	concentration	% Oil removal
-	(% v/v)	
7	0.4030	79.85
8	0.3976	80.12
9	0.3892	80.54
10	0.3872	80.64
11	0.3790	81.05
12	0.3450	82.75
13	0.3212	83.94
14	0.2958	85.21
15	0.3150	84.25
16	0.2838	85.81
17	0.2758	86.21
18	0.2698	86.51
19	0.2732	86.34
20	0.2640	86.80
21	0.2618	86.91
22	0.2636	86.82
23	0.2652	86.74
24	0.2602	86.99
25	0.2632	86.84
Last 5 days average	0.2630	86.85

Table C4 Effluent oil concentration and % oil removal at 40 kg COD/m³d loading with influent oil concentration of 2% v/v

	Effluent oil	
Day	concentration	% Oil removal
	(% v/v)	
7	0.5232	73.84
8	0.4898	75.51
9	0.5078	74,61
10	0.4790	76.05
11	0.4332	78.34
12	0.4190	79.05
13	0.3898	80.51
14	0.3698	81.51
15	0.3790	81.05
16	0.3592	82.04
17	0.3298	83.51
18	0.3176	84.12
19	0.3218	83.91
20	0.3150	84.25
21	0.3110	84.45
22	0.3116	84.42
23	0.3072	84.64
24	0.2974	85.13
25	0.3092	84.54
Last 5 days average	0.3086	84.57

Table C5 Effluent oil concentration and % oil removal at 60 kg COD/m³d loading with influent oil concentration of 2.0 % v/v

	Effluent oil	
Day	concentration	% Oil removal
-	(% v/v)	
7	0.5794	71.03
8	0.5590	72.05
9	0.5472	72.64
10	0.5584	72.08
11	0.5292	73.54
12	0.5222	73.89
13	0.5030	74.85
14	0.4990	75.05
15	0.5098	74.51
16	0.4832	75.84
17	0.4684	76.58
18	0.4492	77.54
19	0.4478	77.61
20	0.4330	78.35
21	0.4272	78.64
22	0.4132	79.34
23	0.4252	78.74
24	0.4178	79.11
25	0.4232	78.84
Last 5 days	0 4222	78.94
average	0.4233	/0.04

Table C6 Effluent oil concentration and % oil removal at 80 kg COD/m³d loadingwith influent oil concentration of 2% v/v

	Effluent oil	
Day	concentration	% Oil removal
-	(% v/v)	
7	1.1788	41.06
8	1.1604	41.98
9	1.1488	42.56
10	1.0872	45.64
11	1.0624	46.88
12	1.0338	48.31
13	1.0070	49.65
14	0.9622	51.89
15	0.9466	52.67
16	0.9188	54.06
17	0.8992	55.04
18	0.8632	56.84
19	0.8470	57.65
20	0.8570	57.15
21	0.8276	58.62
22	0.8090	59.55
23	0.8210	58.95
24	0.7972	60.14
25	0.8072	59.64
Last 5 days	0.8198	59.01
average		

Table C7 Effluent oil concentration and % oil removal at 20 kg COD/m³d loadingwith influent oil concentration of 2% v/v and without surfactant

Appendix D Experimental Data of Biogas Production

 Table D1 Biogas production rate and content with various COD loading rate

COD loading rate (kg COD/m ³ d)	Biogas production rate (l/h)	Biogas content					H_2 production	CH ₄ production	CO ₂ production	
		H	(% v/v)	CO ₂	H2	Peak Area	CO2	rate (1/n)	Tate (1/11)	rate (I/n)
10	1.3536	9.05	30.12	60.83	30,166	7.530	60.831	0.1225	0 4077	0 8234
20	1.4718	10.05	28.09	61.86	33,714	7.022	61.858	0.1479	0.4134	0.9105
30	1.4301	10.11	25.84	64.05	33,512	6,464	64,051	0.1446	0.3695	0.9160
40	1.414	8.28	20.03	71.69	27,614	5,007	71,659	0.1171	0.2832	1.0137
60	1.2043	7.75	17.52	74.73	25,833	4,381	74,732	0.0933	0.2110	0.9000
80	1.1806	6.60	14.88	78.52	22,021	3,719	78,518	0.0779	0.1757	0.9270
20 (without surfactant)	0.9615	9.88	27.62	62.50	32,934	6,895	63,541	0.0950	0.2656	0.6009

Appendix E Gas Chromatograph's Calibration Curves

Figure E1 The relationship between peak area and volume of H_2 .

Figure E2 The relationship between peak area and volume of CO₂.

Figure E3 The relationship between peak area and volume of CH₄.

Figure E4 The relationship between peak area and volume of air.

				pH			
							20 kg
Dav	10 kg	80 kg	20 kg	30 kg	40 kg	60 kg	COD/m ³ d
Day	COD/m ³ d	loading					
	loading	loading	loading	loading	loading	loading	(without
							surfactant)
1	6.04	5.89	6.06	5.93	5.85	5.97	6.06
2	6.02	5.81	5.70	5.64	5.61	5.76	5.70
3	5.91	5.74	5.54	5.45	5.52	5.62	5.54
4	5.78	5.71	5.25	5.14	5.53	5.40	5.25
5	5.67	5.64	5.18	5.10	5.02	5.31	5.18
6	5.61	5.59	5.15	5.04	4.99	5.34	5.15
7	5.57	5.60	5.09	4.91	4.82	5.28	5.09
8	5.52	5.61	5.04	4.83	4.62	5.15	5.04
9	5.47	5.57	4.97	4.86	4.63	5.17	4.97
10	5.48	5.46	4.96	4.74	4.56	5.09	4.96
11	5.41	5.37	4.94	4.64	4.54	4.91	4.94
12	5.38	5.31	4.93	4.69	4.51	4.81	4.93
13	5.36	5.28	4.95	4.51	4.59	4.83	4.95
14	5.37	5.29	4.97	4.58	4.50	4.72	4.97
15	5.32	5.18	4.88	4.55	4.49	4.68	4.88
16	5.26	5.16	4.85	4.52	4.44	4.71	4.85
17	5.28	5.12	4.81	4.57	4.47	4.68	4.81
18	5.19	5.10	4.79	4.50	4.38	4.68	4.79
19	5.15	5.09	4.79	4.48	4.36	4.65	4.79
20	5.16	5.07	4.80	4.47	4.33	4.60	4.80
21	5.12	5.11	4.81	4.45	4.31	4.68	4.81
22	5.13	5.06	4.80	4.45	4.29	4.67	4.80
23	5.14	5.10	4.79	4.47	4.30	4.65	4.79
24	5.12	5.09	4.79	4.48	4.26	4.71	4.79
25	5.11	5.07	4.78	4.47	4.27	4.69	4.78
Last 5							
days	5.13	5.08	4.80	4.47	4.29	4.67	4.80
average							

Appendix F Experimental Data of Effluent pH

Table F1 Effluent pH at various COD loading rate and time

Appendix G Determination of Volatile Fatty Acids as Acetic Acid by Distillation

Recovery Factor (f) Determination

- Distilling 150 ml of 0.0333 M (2,000 mg/l) of acetic acid (99.7 % purity) in distillation apparatus (volatile fatty acid is simulated by acetic acid)

- Calculate the recovery factor

$$f = \frac{a}{b}$$

where

a = volatile acid concentration recovered in distillate, mg/l
b = volatile acid concentration in standard solution used, mg/l

- Find volatile acid concentration recovered in distillate by titrating with 0.1 M of NaOH using phenolphthalein as an indicator (MW of acetic acid is 60.5 g/mol)

1) Volatile fatty acid in 50 ml of distillate equivalents with 11.7 ml of NaOH

Used NaOH	=	(11.7 ml) x (0.1 mol/l)
	=	1.17x10 ⁻³ mol
Acetic acid in distillate	=	1.17x10 ⁻³ mol
	=	(1.17x10 ⁻³ mol) x (60.5 g/mol)
	-	0.07 g of acetic acid
Concentration of acetic ac	id in dis	tillato

Concentration of acetic acid in distillate

=	(0.07 g of acetic acid)/(50 ml)
=	1.405×10^{-3} g/ml
=	1,405 mg/l

2) Volatile fatty acid in 25 ml of distillate equivalents with 5.7 ml of NaOH

Used NaOH	=	(5.7 ml) x (0.1 mol/l)
	=	5.7×10^{-4} mol

Acetic acid in distillate	=	5.7×10^{-4} mol
	=	(5.7x10 ⁻⁴ mol) x (60.5 g/mol)
	=	0.034 g
Concentration of a cetic ac	id in die	illate

Concentration of acetic acid in distillate

Average volatile acid concentration recovered in distillate = (1,405+1,368)/2= 1,387 mg/l

Then volatile acid concentration recovered in distillate (a) = 1,387 mg/lVolatile acid concentration in standard solution = 2,000 mg/l

Recovery factor (f)	=	(1,387 mg/l)/(2,000 mg/l)
	=	0.6935

Determination of volatile fatty acids as acetic acid by distillation

From

$$\frac{\text{mg valitile acids as acetic acid}}{L} = \frac{\text{mL NaOH x N x 60,000}}{\text{mL sample x f}}$$
where
$$N = \text{Normality of NaOH solution}$$

$$f = \text{recovery factor}$$

At 20 kg/m³d COD Loading Rate without surfactant at temperature of 37° C and uncontrolled pH, volatile fatty acid in distillate of 5 ml titrating equivalent with 5.5 ml of 0.1 M NaoH.

$$\frac{\text{mg volatile acids as acetic acid}}{L} = \frac{5.5 \times 0.1 \times 60,000}{5 \times 0.6935}$$
$$= \frac{9,541}{L} \frac{\text{mg VFA as acetic acid}}{L}$$

COD loading rate	VFA concentration	
$(\text{kg COD/m}^3\text{d})$	(mg/l)	
10	8,427	
20	23,807	
30	28,974	
40	31,945	
60	22,534	
80	9,541	
20	12.054	
(without surfactant)	12,054	

Appendix H Experimental Data of VFA Concentration

 Table H1 Effluent VFA concentration at various COD loading rate

COD loading rate (kg COD/m ³ d)	MLSS (g/l)
10	42.62
20	87.34
30	79.61
40	61.42
60	52.75
80	49.71
20	51.46
(without surfactant)	51.40

Appendix I Experimental Data of MLSS

 Table I1 Final MLSS at various COD loading rate (started at 20 g/l of TSS)

CURRICULUM VITAE

vat Sema

Date of Birth:	May 16,	1984
----------------	---------	------

Nationality: Thai

University Education:

2004-2007 Bachelor Degree of Engineering in Petrochemicals and Polymeric materials (first class honor), Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand

Proceedings:

 Sema, T., Comchumpoo, K., Malakul, P., and Chavadej, S. (2007, December 20-22) Surfactant-enhanced biodegradation of crude oil sludge in an aerobic sequencing batch reactor (SBR): Effects of surfactant concentration, oil loading rate, and number of operation cycle per day. <u>Proceedings of the 2007</u> <u>International Conference on Engineering Research</u>, Ho Chi Minh city, Vietnam.

Presentations:

 Sema, T., Comchumpoo, K., Malakul, P., and Chavadej, S. (2007, December 20-22) Surfactant-enhanced biodegradation of crude oil sludge in an aerobic sequencing batch reactor (SBR): Effects of surfactant concentration, oil loading rate, and number of operation cycle per day. Paper presented at <u>2007 International</u> <u>Conference on Engineering Research</u>, Ho Chi Minh city, Vietnam.

