

REFERENCES

- Adebajo, M.O., and Frost, R.L. (2005). Oxidative Benzene Methylation with methane over MCM-41 and Zeolite Catalysts: Effect of Framework Aluminum, SiO₂/Al₂O₃ Ratio, and Zeolite Pore Structure. <u>Energy and Fuels</u>, 19, 783–790.
- Adebajo, M.O., Howe, R.F., and Long, M.A. (2001). Methylation of Toluene with Methane over ZSM-5 Catalysts. <u>Energy and Fuels</u>, 15, 671-674.
- Adebajo, M.O., Long, M.A., and Howe, R.F. (2000). Methane activation over zeolite catalysts: The methylation of benzene. <u>Res. Chem. Intermed.</u>, 26(2), 185-191.
- Baba, T. (2005). Conversion of methane over Ag⁺-exchanged zeolite in the presence of ethane. <u>Catalysis Surveys from Asia</u>, 9(3), 147-154.
- Baba, T., and Abe, Y. (2003). Metal cation-acidic proton bifunctional catalyst for methane activation: conversion of ¹³CH₄ in the presence of ethylene over metal cations-loaded H-ZSM-5. <u>Applied Catalysis A: General</u>, 250, 265-270.
- Baba, T., and Sawada, H. (2002). Conversion of methane into higher hydrocarbons in the presence of ethylene over H-ZSM-5 loaded with silver cations. <u>Phys.</u> <u>Chem. Chem. Phys.</u>, 4, 3919-3923.
- Baba, T., Abe, Y., Nomoto, K., Inazu, K., Echizen, T., Ishikawa, A., and Murai, K. (2005). Catalytic Transformation of Methane over In-Loaded ZSM-5 Zeolite in the Presence of Ethene. J. Phys. Chem. B, 109(9), 4263-4268.
- Baba, T., Iwase, Y., Inazu, K., Masih, D., and Matsumoto, A. (2007). Catalytic properties of silver-exchanged zeolites for propene production by conversion of methane in the presence of ethane. <u>Microporous and Mesoporous Materials</u>, 101, 142–147.
- Chatterjee, M., Bhattcharya, D., Hayashi, H., Ebina, T., Onodera, Y., Nagase, T., Sivasanker, S., and Iwasaki, T. (1998). Hydrothermal synthesis and characterization of indium containing beta zeolite. <u>Microporous and Mesoporous Materials</u>, 20, 87-91.

- Choudhary, V.R., Kinage, A.K., and Choudhary, T.V. (1997). Low-Temperature Nonoxidative Activation of Methane over H-Galloaluminosilicate (MFI) Zeolite. <u>Science</u>, 275, 1286-1288.
- Ding, B., Huang, S., and Wang, W. (2008). Methane activation over Ag-exchanged ZSM-5 zeolites: A theoretical study. <u>Applied Surface Science</u>, 254, 4944-4948.
- Ertl, G. (2008). <u>Handbook of heterogeneous catalysis</u>. Weinheim: Wiley-VCH Verlag.
- Gesser, H.D., and Hunter, N.R. (1998). A review of C-1 conversion chemistry. Catalysis Today, 42, 183-189.
- Hackworth, J.H., Koch, R.W., and Rezaiyan, A.J. (1995). <u>Economic Evaluation and</u> <u>Market Analysis for Natural Gas Utilization - Topical Report</u>. Washington DC: K&M Engineering and Consulting Corporation.
- Halasz, J., Konya, Z., Fudala, A., Beres, A., and Kiricsi, I. (1996). Indium and gallium containing ZSM-5 zeolites: acidity and catalytic activity in propane transformation. <u>Catalysis Today</u>, 31, 293 – 304.
- Halasz, J., Nyari, W., Meretei, E., Hannus, I., Nagy, J.B., and Kiricsi, I. (2003).
 Structural properties and catalytic activity in selective oxidation of Incontaining ZSM-5 catalysts. Journal of Molecular Structure, 651–653, 315–322.
- Han, S., Schmitt, K.D., and Chang, C.D. (2000). Why In³⁺ is not isomorphously substituted into zeolite ZSM-5: reaction of ZSM-5 with aqueous InF₃. <u>Inorganica Chimica Acta</u>, 304, 297–300.
- He, S.J.X., Long, M.A., Attalla, M.I., and Wilson, M.A. (1994). Methylation of naphthalene by methane-carbon-13 over copper-exchanged silicoaluminophosphate. <u>Energy Fuels</u>, 8 (1), 286–287.
- He, S.J.X., Long, M.A., Wilson, M.A., Gorbaty, M.L., and Maa, P.S. (1995).
 Methylation of Benzene by Methane-¹³C over Zeolitic Catalysts at 400 °C.
 <u>Energy and Fuels</u>, 9, 616-619.
- Kennedy, E.M., Lonyi, F., Ballinger, T.H., Rosynek, M.P., and Lunsford, J.H. (1994). Conversion of Benzene to Substituted Aromatic Products over Zeolite Catalysts at Elevated Pressures. <u>Energy and Fuel</u>, 8, 846-850.

- Kosslick, H., Tuan, V.A., Walther, G., Storec, W. (1993), Study on the Isomorphous Substitution of Silicon by Indium in the MFI Framework. Crystal Research and Technology, 28(8), 1109–1114.
- Lunsford, J.H. (2000). Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. <u>Catalysis Today</u>, 63, 165–174.
- Lukyanov, D.B., and Vazhnova, T. (2009). Selective and stable benzene alkylation with methane into toluene over PtH-MFI bifunctional catalyst. Journal of Molecular Catalysis A: Chemical, 305, 95-99.
- Luzgin, M.V., Gabrienko, A.A., Rogov, V.A., Toktarev, A.V., Parmon, V.N., and Stepanov, A.G. (2010). The "Alkyl" and "Carbenium" Pathways of Methane Activation on Ga-Modified Zeolite BEA: ¹³C Solid-State NMR and GC-MS Study of Methane Aromatization in the Presence of Higher Alkane. J. Phys. Chem., 114(49), 21555–21561.
- Mavrodinova, V., and Popova, M. (2005). Selective p-xylene formation upon toluene disproportionation over MCM-22 and ZSM-5 zeolites modified with indium. <u>Catalysis Communications</u>, 6, 247–252.
- Mcketta, J.J. (1993). Chemical Processing Handbook. New York: Marcel Dekker.
- Mihalyi, R.M., Beyer, H.K., Mavrodinova, V., Minchev, Ch, and Neinska, Y. (1998). Study of the reductive solid-state ion exchange of indium into an NH₄-beta zeolite. <u>Microporous and Mesoporous Materials</u>, 24, 143–151.
- Mihalyi, R.M., Schay, Z., and Szegedi A. (2009). Preparation of In,H-ZSM-5 for DeNOx reactions by solid-state ion exchange. <u>Catalysis Today</u>, 143, 253– 260.
- Miro, E.E., Gutierrez, L., Lopez, J.M.R., and Requejo, F.G. (1999). Perturbed Angular Correlation Characterization of Indium Species on In/H-ZSM5 Catalysts. Journal of Catalysis, 188, 375–384.
- Naccache, C.M., Meriaudeau, P., Sapaly, G., Tiep, L.V., and Taarit, Y.B. (2002). Assessment of the Low-Temperature Nonoxidative Activation of Methane over H-Galloaluminosilicate (MFI) Zeolite: A C-13 Labelling Investigation. Journal of Catalysis, 205, 217-220.

- Ogura, M., Ohsaki, T., and Kikuchi, E. (1998). The effect of zeolite structures on the creation of InO⁺ active sites for NO_x reduction with methane. <u>Microporous and Mesoporous Materials</u>, 21, 533-540.
- Olah, G.A. (1987). Electrophilic methane conversion, <u>Acc.Chem.Res.</u>, 20, 422-428.
- Price, G.L. (2006). Catalyst Preparation: Science and Engineering. In Regalbuto, J (Eds.), Solid-State Ion-Exchange (pp. 283-295). New York: CRC Press.
- Schmidt, C., Sowade, T., Loffler, E., Birkner, A. and Grunert, W. (2002), Preparation and Structure of In-ZSM-5 Catalysts for the Selective Reduction of NO by Hydrocarbons. J. Phys. Chem., 106, 4085-4097.
- Schutze, F.W.; Berndt, H.; Richter, M.; Lucke, B.; Schmidt, C.; Sowade, T. and Grunert, W. (2001). Investigation of indium loaded zeolites and additionally promoted catalysts for the selective catalytic reduction of NOx by methane. <u>Studies in Surface Science and Catalysis</u>, 135(Zeolites and Mesoporous Materials at the Dawn of the 21st Century), 1517–1524.
- Solt, H., Lonyi, F., Mihalyi, R.M., Valyon, J., Gutierrez, L.B., and Miro, E.E. (2008). A Mechanistic Study of the Solid-State Reactions of H-Mordenite with Indium(0) and Indium(III)oxide. *J. Phys. Chem.*, 112, 19423-19430.
- Sowade, T., Schmidt, C., Schutze, F.-W., Berndt, H. and Grunert, W. (2003). Relations between structure and catalytic activity of Ce-In-ZSM-5 catalysts for the selective reduction of NO by methane I. The In-ZSM-5 system. Journal of Catalysis, 214, 100-112.
- Zamaro, J.M., Miro, E., Boix, A.V., Martinez-Hernandez, A., and Fuentes, G. (2010). In-zeolites prepared by oxidative solid state ion exchange (OSSIE): Surface species and structural characterization. <u>Microporous and</u> <u>Mesoporous</u> Materials, 129, 74-81.

APPENDICES

Appendix A Calculation of Catalysts Composition

The catalysts composition is calculated base on the Si/Al ratio of HZSM-5 equal to 20.

The formula of HZSM-5 with Si/Al ratio 20 is represented by AlSi₂₀O₄₂H.

The formula weight of HZSM-5 is 1260 g/mol.

The molecular weight of InCl₃ is 221 g/mol.

The catalysts was prepared base on 5 g of HZSM-5.

The weight of loaded InCl₃ is represented by

$$m = \frac{5 \times 221 \times n}{1260}$$

Where n = required In/Al ratio m = weight of InCl₃ required

The prepared catalysts was using the composition as shown in Table A1.

 Table A1
 The ingredients of prepared catalysts

In/Al ratios	HZSM-5 (g)	InCl ₃ (g)	Loading (wt. %)
0.1	5.00	0.0877	1.7
0.3	5.00	0.2631	5.0
0.5	5.00	0.4385	8.1
1.0	5.00	0.8770	14.9

Appendix B Calibration Data and Feed Flow Adjustment

The calibration curve and regression equation of raw materials and some products is shown below. The response factors used for calculate the products amount that derived from the slope of calibration curve is also shown.

Figure B1 Response area from GC FID as a function of injection volume of methane.

Figure B2 Response area from GC FID as a function of injection volume of benzene.

Figure B3 Response area from GC FID as a function of injection volume of toluene.

Figure B4 Response area from GC FID as a function of injection volume of *p*-xylene.

Figure B5 Response area from GC FID as a function of injection volume of *m*-xylene.

Figure B6 Response area from GC FID as a function of injection volume of *o*-xylene.

ances

Chemicals	Slope(Area/ml)	Density(g/ml)	(Area/g)	MW(g/mol)	Response factor (Area/mol)
Methane	150669	-	-	-	3685027598
Benzene	354754464	0.88	403130073	78	31444145673
Toluene	339434893	0.87	390155049	92	35894264547
<i>p</i> -Xylene	326341167	0.86	379466473	106	40223446165
<i>m</i> -Xylene	331883881	0.86	385911490	106	40906617891
o-Xylene	336617430	0.88	382519807	106	40547099523

The value of response factors calculated from the calibration curve that shown in Table B1 is further used in the products quantification for each chemical. For the non-calibrated chemicals found during the analysis would use the response factor of p-xylene to represent and calculate amount of that chemicals.

In the case of feed adjustment, the feed flow controller and catalyst weight in various reaction conditions is shown in Table B2.

 Table B2
 Flow controller adjustment and catalyst weight in various reaction

 conditions

Reaction of	condition	Elow co adjustmen	catalyst weight	
WHSV (h ⁻¹)	M/B feed ratio	Methane	Oxygen	(g)
1.8	45	21.0	9.0	0.940
	19	15.0	15.0	
6.6	45	21.0	9.0	0.250
	105	25.5	4.5	
13.2	45	21.0	9.0	0.125

Appendix C Raw Data of Reaction Results

The reaction results as a raw data of GC FID peak area and calculated data are shown below.

Table C1 The results of the reaction with N_2 treatment at 350 °C and N_2 carrier using In/Al ratio 0.5, WHSV 6.6 h⁻¹ and methane to benzene feed ratio 45 at reaction temperature 300 °C

Same.		F.	ID area	1.2.124	1.1.12	4.国际	Charles -	and the second	一世故之后,后长	
Time	Reac	Reactants		Products			Total	Benzene	selectivity (%)	
stream (min)	Methane	Benzene	Toluene	C8	C9+	aromatic (µmol)	product (µmol)	conversion(%)	Toluene	Other
10	31792	6233.2	4.6	0	0	0.19836	0.00013	0.065	100	0
40	31932	6239.6	6.9	0	0	0.19863	0.00019	0.097	100	0
70	31825	6262.3	6.8	0	0	0.19935	0.00019	0.095	100	0
100	31763	6225.6	6.5	0	0	0.19817	0.00018	0.091	100	0
130	31774	6178.1	6.6	0	0	0.19666	0.00018	0.093	100	0
160	31561	6120.1	6.6	0	0	0.19482	0.00018	0.094	100	0

Table C2 The results of the reaction with N_2 treatment at 350 °C and N_2 carrier using In/Al ratio 0.5, WHSV 6.6 h⁻¹ and methane to benzene feed ratio 45 at reaction temperature 350 °C

E State	行行就的	: F	ID area	A ST	·~ 3		ないののである。	- 銀星に言		
Time	Reactants		Products			Total	Total	Renzene	selectivity (%)	
stream (min)	Methane	Benzene	Toluene	C8	.C3+.	aromatic (µmol)	product (µmol)	conversion(%)	Toluene	Other
10	32995	6515.8	76.1	0	0	0.20934	0.00212	1.013	100	0
40	33037	6486.9	51.9	0	0	0.20775	0.00145	0.696	100	0
70	33018	6656.5	39.8	0	0	0.21280	0.00111	0.521	100	0
100	32904	6566.4	31.7	0	0	0.20971	0.00088	0.421	100	0
130	32919	6566.6	28.4	0	0	0.20962	0.00079	0.377	100	0
160	33017	6643.6	26.1	0	0	0.21201	0.00073	0.343	100	0

Table C3 The results of the reaction with N_2 treatment at 350 °C and N_2 carrier using In/Al ratio 0.5, WHSV 6.6 h⁻¹ and methane to benzene feed ratio 45 at reaction temperature 400 °C

1-17.5	CARLON CARLON	F	ID area	1 18				行為の基本目的で	· 是自己的 法上下的	
Time	Reac	tants	Products			Total	Total	Baaraa	selectivity (%)	
stream (min)	Methane	Benzene	Toluene	Yoluene C8 C9+ aromatic (µmol)	aromatic (µmol)	product (µmol)	conversion(%)	Toluene	Other	
10	31875	5641.4	186.9	4.23	3.17	0.18480	0.00539	2.917	96.604	3.396
40	31893	5855.6	74	0	0.89	0 18831	0.00208	1.107	98.938	1.062
70	31960	5881.7	46	0	0	0.18833	0.00128	0.680	100	0
100	31606	5894.5	32.7	0	0	0.18837	0.00091	0.484	100	0
130	31729	5958.5	22.9	0	0	0.19013	0.00064	0.336	100	0
160	31837	5974.4	12.3	0	0	0.19034	0.00034	0.180	100	0

Table C4 The results of the reaction with O_2 treatment at 350 °C and N_2 carrier using In/Al ratio 0.5, WHSV 6.6 h⁻¹ and methane to benzene feed ratio 45 at reaction temperature 350 °C

P The se	- Erical	F	ID area	1臺灣	化高升	-		2012 198	·····································	
Time	Reactants		Products			Total	Total	Renzone	selectivity (%)	
stream (min)	Methane	Benzene	Toluene	C8	C9 #	aromatic (µmol)	product (µmol)	conversion(%)	Toluene	Other
10	32711	6672.9	51.1	0	0	0.21364	0.00142	0.666	100	0
40	32825	6668.7	42.1	0	0	0.21325	0.00117	0.550	100	0
70	32660	6741.6	37.9	0	0	0.21546	0.00106	0.490	100	0
100	32600	6627.3	34.1	0	0	0.21171	0.00095	0.449	100	0
130	32571	6719.1	31.6	0	0	0.21456	0.00088	0.410	100	0
160	32780	6735.2	29.6	0	0	0.21502	0.00082	0.384	100	0

Table C5 The results of the reaction with H_2 treatment at 350 °C and N_2 carrier using In/Al ratio 0.5, WHSV 6.6 h⁻¹ and methane to benzene feed ratio 45 at reaction temperature 350 °C

SE EN		F	ID area	St 13. 6-2	論意				N. 35. 5 . 1 . 1	
Time	Reactants		Products			Total	Total	n and a second second	selectivity (%)	
stream (min)	Methane	Bénžene	Toluene	C8	C9+	aromatic (µmol)	product (µmol)	conversion(%)	Toluene	Other
10	33058	6282.5	13.5	0	0	0.20017	0.00038	0.188	100	0
40	32940	6249.7	12.4	0	0	0.19910	0.00035	0.174	100	0
70	32888	6420.4	8.9	0	0	0.20443	0.00025	0.121	100	0
100	32662	6417.7	6.7	0	0	0.20429	0.00019	0.091	100	0
130	32898	6457	5.8	0	0	0.20551	0.00016	0.079	100	0
160	32884	6420.1	4.6	0	0	0.20430	0.00013	0.063	100	0

Table C6 The results of the reaction with H₂ treatment at 350 °C followed by O_2 treatment at 350 °C and N₂ carrier using In/Al ratio 0.5, WHSV 6.6 h⁻¹ and methane to benzene feed ratio 45 at reaction temperature 350 °C

a de la se	Same and	F	ID area		道垫鞋					
Time	Reac	tants	Products			Total	Total	Bernard	selectivity (%)	
stream (min)	Methane	Benzene	Toluene	C8	C9+	aromatic (µmol)	product (µmol)	conversion(%)	Toluene	Other
10	33111	6543.7	95.6	0	9.7	0.21101	0.00290	1.376	91.697	8.303
40	33133	6801.1	20.6	0	0	0.21687	0.00057	0.265	100	0
70	33120	6750.6	11.2	0	0	0.21500	0.00031	0.145	100	0
100	33241	6800.7	7.7	0	0	0.21649	0.00021	0.099	100	0
130	33006	6688.8	5.9	0	0	0.21288	0.00016	0.077	100	0
160	33023	6702.5	5	0	0	0.21330	0.00014	0.065	100	0

Table C7 The results of the reaction with N_2 treatment at 450 °C and N_2 carrier using In/Al ratio 0.5, WHSV 6.6 h⁻¹ and methane to benzene feed ratio 45 at reaction temperature 350 °C

用目標	instraine.	F	ID area	计长期	1.5		S.S. Real		42.11 第十日上	
Time	Reactants		Products			Total	Total	Demonstration	selectivity (%)	
stream (min)	Methane	Benzene	Tolaene	C8	C9+	aromatic (µmol)	product (µmol)	conversion(%)	Toluene	Other
10	33007	6630.9	46.4	0	0	0.21217	0.00129	0.609	100	0
40	33239	6716.9	37	0	0	0.21464	0.00103	0.480	100	0
70	33090	6790.9	33.2	0	0	0.21689	0.00092	0.426	100	0
100	32970	6812.8	30.1	0	0	0.21750	0.00084	0.386	100	0
130	32987	6701	28	0	0	0.21389	0.00078	0.365	100	0
160	32906	6574.5	25.7	0	0	0.20980	0.00072	0.341	100	0

Table C8 The results of the reaction with O_2 treatment at 450 °C and N_2 carrier using In/Al ratio 0.5, WHSV 6.6 h⁻¹ and methane to benzene feed ratio 45 at reaction temperature 350 °C

	Hundrey .	F	ID area	P.				「大学をないない	BAT 21 27 2417	
Time	Reac	tants	Products			Total	Total	Renzone	selectivity (%)	
stream (min)	Methane	Benzene	Toluene	C8	C9±	aromatic (µmol)	product (µmol)	conversion(%)	Toluene	Other
10	33044	6710.5	68	0	0	0.21530	0.00189	0.880	100	0
40	33118	6633.4	50.7	0	0	0.21237	0.00141	0.665	100	0
70	33052	6634.8	41.1	0	0	0.21215	0.00115	0.540	100	0
100	33083	6688.9	35.5	0	0	0.21371	0.00099	0.463	100	0
130	32975	6644.9	31.3	0	0	0.21220	0.00087	0.411	100	0
160	32961	6695.4	28.6	0	0	0.21373	0.00080	0.373	100	0

Table C9 The results of the reaction with H_2 treatment at 450 °C and N_2 carrier using In/Al ratio 0.5, WHSV 6.6 h⁻¹ and methane to benzene feed ratio 45 at reaction temperature 350 °C

Time	大学家	F	Darea	1/2/	NE2-7:	10 5331	Total	WERE AND A REAL	"外国生"的	
Ţime	Reac	tants	Produets			Total	Total	Benzone	selectivi	ty (%)
stream (min)	Methane	Benzene	Toluene	C8	(C9+	aromatic (µmol)	product (µmol)	conversion(%)	Toluene 3	Other
10	33248	6542.5	14.9	0	0	0.20848	0.00042	0.199	100	0
40	33319	6649.8	6	0	0	0.21165	0.00017	0.079	100	0
70	33139	6550.6	4.4	0	0	0.20845	0.00012	0.059	100	0
100	33079	6558.4	3.7	0	0	0.20868	0.00010	0.049	100	0
130	33001	6513.3	3.2	0	0	0.20723	0.00009	0.043	100	0
160	30002	6499.8	3	0	0	0.20679	0.00008	0.040	100	0

Table C10 The results of the reaction with H_2 treatment at 450 °C followed by O_2 treatment at 350 °C and N_2 carrier using In/Al ratio 0.5, WHSV 6.6 h⁻¹ and methane to benzene feed ratio 45 at reaction temperature 350 °C

AT MARA	F	ID area			A State	Total	and an art	colocitivity (9/)	
Reac	tants	Products			Total	Total	Renzene	selectivi	ty (%)
Methane	Benzene	Toluene	C8	C9+	aromatic (µmol)	product (µmol)	conversion(%)	Toluene	Other
33164	6567.8	85.3	0	12.7	0.21156	0.00269	1.273	88.272	11.73
33191	6592.2	23.7	0	3.6	0.21040	0.00075	0.356	88.063	11.94
33016	6638.2	12.8	0	0	0.21147	0.00036	0.169	100	0
32934	6685.6	8.6	0	0	0.21286	0.00024	0.113	100	0
33182	6727.2	6.7	0	0	0.21413	0.00019	0.087	100	0
33004	6785.7	5.4	0	0	0.21595	0.00015	0.070	100	0
	Reac Methane 33164 33191 33016 32934 33182 33004	F Reactants Methane Benzene 33164 6567.8 33191 6592.2 33016 6638.2 32934 6685.6 33182 6727.2 33004 6785.7	FID area Reactants P Methane Benzene Toluene 33164 6567.8 85.3 33191 6592.2 23.7 33016 6638.2 12.8 32934 6685.6 8.6 33182 6727.2 6.7 33004 6785.7 5.4	FID area Reactants Products Methane Benzene Toluene C8 33164 6567.8 85.3 0 33191 6592.2 23.7 0 33016 6638.2 12.8 0 32934 6685.6 8.6 0 33004 6785.7 5.4 0	FID area Reactants Products Methane Benzene Toluene C8 C9+ 33164 6567.8 85.3 0 12.7 33191 6592.2 23.7 0 3.6 33016 6638.2 12.8 0 0 32934 6685.6 8.6 0 0 33004 6785.7 5.4 0 0	FID area Reactants Products Total aromatic (µmol) Methane Benzene Toluene C8 C9+ 33164 6567.8 85.3 0 12.7 0.21156 33191 6592.2 23.7 0 3.6 0.21040 33016 6638.2 12.8 0 0 0.21147 32934 6685.6 8.6 0 0 0.21286 33182 6727.2 6.7 0 0 0.21413 33004 6785.7 5.4 0 0 0.21595	FID area Total aromatic products Total aromatic product (μmol) Reactants Products Total aromatic (μmol) Total aromatic (μmol) Total aromatic (μmol) 33164 6567.8 85.3 0 12.7 0.21156 0.00269 33191 6592.2 23.7 0 3.6 0.21040 0.00075 33016 6638.2 12.8 0 0 0.21147 0.00036 32934 6685.6 8.6 0 0 0.21286 0.00024 33182 6727.2 6.7 0 0 0.21413 0.00019 33004 6785.7 5.4 0 0 0.21595 0.00015	Reactants Products Total aromatic μromatic μ	FID area Total aromatic product Total aromatic product Total aromatic product Benzene selectivit Methane Benzene Toluene C8 C9+ Total aromatic product (µmol) Total aromatic product (µmol) Benzene conversion(%) Toluene Toluene Toluene Toluene Rescription (µmol) Benzene product (µmol)

Table C11 The results of the reaction with N₂ treatment at 350 °C and 100% O_2 carrier using In/Al ratio 0.5, WHSV 6.6 h⁻¹ and methane to benzene feed ratio 45 at reaction temperature 350 °C

Time	12 10 12	E	ID area	1-305		したいでは	防止流行	A ANA REAL	THE R.	- (0()
Time	Reac	tants	Products			Total	Total	Benzene	selectivi	(%)
stream (min)	Methane	Benzene	Toluene	C8	C9+	aromatig (µmol)	product (µmol)	conversion(%)	Toluene	Other
10	33118	6095	17.1	0	34.1	0.19516	0.00132	0.679	35.977	64 02
40	32879	5824	59.7	0	21.7	0.18742	0.00220	1.175	75.525	24.48
70	33019	6072.2	67	0	12.1	0.19528	0.00217	1.110	86.111	13.89
100	32973	6146.5	65.4	0	10.5	0.19756	0.00208	1.054	87.468	12.53
130	32740	6227.4	60.3	0	8.63	0.19994	0.00189	0.948	88.675	11.33
160	32581	6306.8	55.1	0	6.7	0.20227	0.00170	0.841	90.211	9.789

Table C12 The results of the reaction with O_2 treatment at 350 °C and 100% O_2 carrier using In/Al ratio 0.5, WHSV 6.6 h⁻¹ and methane to benzene feed ratio 45 at reaction temperature 350 °C

Time	法学校	F	ID area		高に行	「二」なる	19.30	P		
Time	Reac	tants	Products			Total	Total	Benzene	selectivi	ty (%)
stream (min)	Methane	Benzene	Toluene	C8	Č9+	aromatic (µmol)	'product (µmol)	conversion(%)	Toluene	Other
10	32827	6316.4	34.7	0	32	0.20264	0.00176	0.870	54.857	45.14
40	33026	6287.1	56.5	0	27.4	0.20220	0.00226	1.115	69.795	30.21
70	32798	6242.5	50.7	0	18.7	0.20040	0.00188	0.937	75.227	24.77
100	32780	6354.2	44.6	0	11.9	0.20362	0.00154	0.755	80.795	19.21
130	32773	6351	42.3	0	8.4	0.20336	0.00139	0.682	84.947	15.05
160	32731	6553.8	40.9	0	8.3	0.20977	0.00135	0.642	84.667	15.33

Table C13 The results of the reaction with H_2 treatment at 350 °C and 100% O_2 carrier using In/Al ratio 0.5, WHSV 6.6 h⁻¹ and methane to benzene feed ratio 45 at reaction temperature 350 °C

	Land R	F	ID area	The second	·并有 1.150	大学が対応	 一 一 一 一 一			ABUS.
Time	Reac	tants	Products			Total	Total	Renzone	selectivi	ity (%)
stream (min)	Methane	Benzene	Toluene	C8	C9+	a romatic (jumol)	product (µmol)	conversion(%)	Toluene	Other
10	32974.8	4847.5	200.1	1.7	62.8	0.16134	0.00718	4.449	77.661	22.339
40	33044.2	5527.6	138.3	0	19	0.18012	0.00433	2.401	89.079	10.921
70	32967.8	5798.2	97.7	0	8.4	0.18733	0.00293	1.564	92.874	7.126
100	32851.7	5967.5	70.7	0	5.9	0.19190	0.00212	1.103	93.069	6.931
130	32972.3	6009.9	52.7	0	3.4	0.19268	0.00155	0.806	94.556	5.444
160	33125.1	6057.3	40.5	0	2.7	0.19383	0.00120	0.617	94.385	5.615

Table C14 The results of the reaction with H_2 treatment at 350 °C and 2% O_2 carrier using In/Al ratio 0.5, WHSV 6.6 h⁻¹ and methane to benzene feed ratio 45 at reaction temperature 350 °C

Time	当時になって	E CAR	ID area	27 22	122	3	States	ANK - ALCON		C VEL
Time	Reac	tants	Products			Total	Total	Ranzane	selectivi	ty (%)
stream (min)	Methane	Benzene	Toluene	C8	C9+	aromatic (µmol)	product (µmol)	conversion(%)	Toluene	Other
10	33247	6351.6	85.5	1 05	5.39	0.20454	0.00254	1.243	93.71	6.29
40	33153	6492.5	70.9	0	5.03	0.20858	0.00210	1.007	94.046	5.954
70	33089	6466.6	62.8	0	5.46	0.20754	0.00189	0.908	92.8	7 200
100	33024	6489.3	47.6	0	5.2	0.20783	0.00146	0.700	91.117	8.883
130	33228	6512.3	42.8	0	5.3	0.20843	0.00132	0.635	90.049	9.951
160	33211	6555.8	40.5	0	5.3	0.20975	0.00126	0.601	89.543	10.46

Table C15 The results of the reaction with H_2 treatment at 350 °C and 21% O_2 carrier using In/Al ratio 0.5, WHSV 6.6 h⁻¹ and methane to benzene feed ratio 45 at reaction temperature 350 °C

	建的	F	ID area	1102	the s		Total	172-515	selectivity (%)	
Time	Reac	tants	Products			Total	Total	Renzene	selecuvi	LY:(70)
stream (min)	Methane ,	Benzene	Toluene	C8	C9+	arom (tic (jumol)	product (µmol)	conversion(%)	Toluene	Other
10	33511	5919.5	126.7	0.9	46.7	0.19297	0.00471	2.442	74.892	25.11
40	33372	6062.3	118.3	0	36.7	0.19700	0.00421	2.136	78.318	21.68
70	33504	6115	106.6	0	22.5	0.19800	0.00353	1.782	84.15	15.85
100	33375	6189.1	91	0	15.6	0.19975	0.00292	1.463	86.732	13.27
130	33533	6261.7	76.6	0	12.2	0.20157	0.00244	1.209	87.556	12.44
160	33292	6208.1	64.4	0	9.6	0.19947	0.00203	1.019	88.259	11.74

Table C16 The results of the reaction with H_2 treatment at 350 °C and 100% O_2 carrier using In/Al ratio 0.1, WHSV 6.6 h⁻¹ and methane to benzene feed ratio 45 at reaction temperature 350 °C

ALC: N	C. B. How	F	ID area	山水市	なるころ	45342	S. A. P.A.	with the state	selectivity (%)	
Time	Reac	tants	Products			Total	Total	Benzene	selectivi	ty (%)
stream (min)	Methane	Benzene	Toluene	8	C9+	aromatic (µmol)	product (µmol)	conversion(%)	Tolnene	Other
10	33373	5312.6	48.3	0	53.1	0.17162	0.00267	1.553	50.478	49.52
40	33357	5719.5	33.4	0	26.7	0.18349	0.00159	0.869	58.365	41.64
70	33183	5964.6	23.1	0	13.6	0.19067	0.00098	0.515	65.557	34.44
100	33252	6165.1	20.1	0	8.6	0.19684	0.00077	0.393	72.369	27.63
130	33388	6228.1	17.5	0	6.2	0.19871	0.00064	0.323	75.979	24.02
160	33237	6266.6	13.6	0	4.6	0.19979	0.00049	0.247	76.815	23.19

Table C17 The results of the reaction with H_2 treatment at 350 °C and 100% O_2 carrier using In/Al ratio 0.3, WHSV 6.6 h⁻¹ and methane to benzene feed ratio 45 at reaction temperature 350 °C

秋日 省		F. F	ID area	的时候	1 Part				colectivity (%)	
Time	Reac	tants	Products		A COL	l'otal	Total	Renzena	selectivi	(y (%)).
stream (min)	Methane	Benzene	Toluene	C8	C9+	Bromatic (µmol)	product (µmol)	conversion(%)	Toluene	Other
10	25476	4052.7	69.1	0	66.4	0 13246	0.00358	2.700	53.836	46.16
40	25608	4411.8	52.2	0	33.6	0.14260	0.00229	1.606	63.516	36.48
70	25523	4623_6	38	0	10.8	0.14837	0.00133	0.895	79.769	20.23
100	25402	4525.1	27.1	0	6.6	0.14483	0.00092	0.635	82.147	17.85
130	25099	4557.9	19	0	4.2	0.14559	0.00063	0.435	83.524	16.48
160	25373	4632.9	13.8	0	2.6	0.14779	0.00045	0.304	85.607	14.39

Table C18 The results of the reaction with H_2 treatment at 350 °C and 100% O_2 carrier using In/Al ratio 1.0, WHSV 6.6 h⁻¹ and methane to benzene feed ratio 45 at reaction temperature 350 °C

The states	F	ID area	成次下			Total		coloctivity (%)	
Reactants		Products			Total	Total	Banzana	selectivi	ty (%)
Methane	Benzene	Toluene	C8	C9+	aromatic (µmol)	product (µmol)	conversion(%)	Toluene	Other
33345	5353.6	399.3	11.6	27.1	0.18234	0.01208	6.628	92.053	7.947
33386	5860.8	225.9	3.3	17.4	0.19320	0.00681	3.524	92.441	7.559
33343	5980.1	163.4	1.8	12	0.19508	0.00490	2.509	92.992	7.008
33177	6114	123.5	1.1	8.1	0.19811	0.00367	1.852	93.767	6.233
33468	6108.5	100.1	0.78	6.8	0.19724	0.00298	1.509	93.67	6.330
33129	6194.1	84	0	6.3	0.19948	0.00250	1.252	93.727	6.273
	React Methane 33345 33386 33343 33177 33468 33129	Reactants Methane Benzene 33345 5353.6 33386 5860.8 33343 5980.1 33177 6114 33468 6108.5 33129 6194.1	Reactants P Methane Benzene Toluene 33345 5353.6 399.3 33386 5860.8 225.9 33343 5980.1 163.4 33177 6114 123.5 33468 6108.5 100.1 33129 6194.1 84	Reactants Products Methane Benzene Toluene C8 33345 5353.6 399.3 11.6 33386 5860.8 225.9 3.3 33343 5980.1 163.4 1.8 33177 6114 123.5 1.1 33468 6108.5 100.1 0.78 33129 6194.1 84 0	Reactants Products Methane Benzene Toluene C8 C9+ 33345 5353.6 399.3 11.6 27.1 33386 5860.8 225.9 3.3 17.4 33343 5980.1 163.4 1.8 12 33177 6114 123.5 1.1 8.1 33468 6108.5 100.1 0.78 6.8 33129 6194.1 84 0 6.3	Reactants Products Total aromatic (µmol) Methane Benzene Toluene C8 C9+ Total aromatic (µmol) 33345 5353.6 399.3 11.6 27.1 0.18234 33386 5860.8 225.9 3.3 17.4 0.19320 33343 5980.1 163.4 1.8 12 0.19508 33177 6114 123.5 1.1 8.1 0.19811 33468 6108.5 100.1 0.78 6.8 0.19724 33129 6194.1 84 0 6.3 0.19948	Reactants Products Total aromatic product (µmol) Total aromatic product (µmol) 33345 5353.6 399.3 11.6 27.1 0.18234 0.01208 33386 5860.8 225.9 3.3 17.4 0.19320 0.00681 33343 5980.1 163.4 1.8 12 0.19508 0.00490 33177 6114 123.5 1.1 8.1 0.19811 0.00367 33468 6108.5 100.1 0.78 6.8 0.19724 0.00298 33129 6194.1 84 0 6.3 0.19948 0.00250	Reactants Products Total aromatic product (μmol) Total aromatic product (μmol) Benzene conversion(%) 33345 5353.6 399.3 11.6 27.1 0.18234 0.01208 6.628 33386 5860.8 225.9 3.3 17.4 0.19320 0.00681 3.524 33343 5980.1 163.4 1.8 12 0.19508 0.00490 2.509 33177 6114 123.5 1.1 8.1 0.19811 0.00367 1.852 33468 6108.5 100.1 0.78 6.8 0.19724 0.00298 1.509 33129 6194.1 84 0 6.3 0.19948 0.00250 1.252	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Table C19 The results of the reaction with H_2 treatment at 350 °C and 100% O_2 carrier using In/Al ratio 1.0, WHSV 1.8 h⁻¹ and methane to benzene feed ratio 45 at reaction temperature 350 °C

Time	学習品	F	D area		$c \in U_{c}$	E P E	Total	AND SHE	selectivity (%)	
Time	Reac	taots	Products			Total	Total	Benzene	selectivi	L y (70)
stream (min)	Methane	Benzene	Toluene	C 8	C 9#	aromatic (µmol)	product (µmol)	conversion(%)	Toluene	Other
10	32526	3455.5	262.3	8.3	117	0.12031	0.01041	8.655	70.177	29.82
40	32828	4253	137.4	0	135	0.14245	0.00719	5.050	53.209	46.79
70	32935	4793.8	135.2	0	96.9	0.15863	0.00618	3.893	60.991	39.01
100	32812	5313.5	131.5	0	54.8	0.17401	0.00503	2.888	72.893	27.11
130	32868	5710.4	112.5	0	9.4	0.18497	0.00337	1.821	93.061	6.939
160	32582	5867.4	89.8	0	6.1	0.18925	0.00265	1.402	94.285	5.715

Table C20 The results of the reaction with H_2 treatment at 350 °C and 100% O_2 carrier using In/Al ratio 1.0, WHSV 13.2 h⁻¹ and methane to benzene feed ratio 45 at reaction temperature 350 °C

Time	经委员会	F	ID area	1			and they	A State State	352	(0/)
Time	Reac	tants	Products			Total	Total	Renzene	selectivi	ty (%)
stream (min)	Methane	Benzene	Toluene	C 8	C9+	aromatic <u>(</u> µmol)	product (µmol)	conversion(%)	Toluene	Other
10	33364	5954.4	235.2	5.3	17	0.19647	0.00711	3.617	92.199	7.801
40	33239	6213.1	125.3	1.8	17.4	0.20156	0.00397	1.969	87.971	12.03
70	33355	6343.5	92.7	1	5.9	0.20449	0.00275	1.347	93.771	6.229
100	32952	6330.9	73.7	0	4.7	0.20351	0.00217	1.066	94.616	5.384
130	33233	6344	61.1	0	4	0.20356	0.00180	0.885	94.48	5.520
160	33202	6383.4	51.7	0	3	0.20452	0.00151	0.741	95.077	4.923

Table C21 The results of the reaction with H_2 treatment at 350 °C and 100% O_2 carrier using In/Al ratio 1.0, WHSV 6.6 h⁻¹ and methane to benzene feed ratio 19 at reaction temperature 350 °C

ALC: NO	- PER 78'50	F	ID area	1716-11	4 6			The second second	We Are (B/)	
Time	Reactants		P	Products		Total	Total	Benzene	Selectivity (%)	
stream (min)	Methane	Benzene	Toluene	C8	C9 +	aromatic: (µmol)	product (µmol)	conversion(%)	Toluene	Other
10	27071	10922	402.7	4.4	55.1	0.36003	0.01270	3.527	88.351	11.65
40	27174	11762	178.1	1.1	37.2	0.37996	0.00591	1.557	83.892	16.11
70	27218	12021	121.1	0	20.1	0.38617	0.00387	1.003	87.077	12.92
100	27110	12121	92.5	0	15.6	0.38846	0.00297	0.763	86.897	13.10
130	27107	12214	74.7	0	13.9	0.39086	0.00243	0.621	85.76	14.24
160	27173	12303	62.1	0	11.5	0.39327	0.00202	0.513	85.818	14.18

Table C22 The results of the reaction with H_2 treatment at 350 °C and 100% O_2 carrier using In/Al ratio 1.0, WHSV 6.6 h⁻¹ and methane to benzene feed ratio 105 at reaction temperature 350 °C

Time	TY-Farther	F	Darea	たちが	12.2	1.3.4.4	1200 日本	法派 去回过	Sales and stars and	
	Reactants		Ð	P roducts		Total	Total	Banzana	selectivity (%)	
stream (min)	Methane	Benzene	Toluene	C8	C9+	aromatic (µmol)	product (µmol)	conversion(%)	Toluene	Other
10	36833	2326.1	287.5	15.4	7.6	0.08255	0.00858	10.392	93.361	6.639
40	36931	2523.4	217.6	6.4	10.2	0.08673	0.00647	7.466	93.626	6.374
70	36674	2611.8	174.6	4	7	0 08820	0.00514	5.825	94.677	5.323
100	36835	2680.2	145.8	2.9	5.1	0.08950	0.00426	4.761	95.332	4.668
130	36828	2709	124.1	2.1	4.5	0.08977	0.00362	4.034	95.469	4.531
160	36583	2698.1	105.5	1.6	3.1	0.08886	0.00306	3.439	96.177	3.824

Appendix D Raw Data of Catalysts Characterization

The temperature program desorption (TPD) characterization results is shown in Figure D1. The peak in the range of 150 to 200 °C represented to the weak Bronsted acid while the peak in the range of 220 to 300 °C represented to the strong Bronsted acid.

Figure D1 Temperature program desorption (TPD) profiles of catalyst with various In/Al ratios.

The desorption temperature and peak area, calculated from integration program (fityk) using Gaussian curve from obtained TPD profile, are shown in Table D1.

dr da	HZSM-5		In7Al 0.	ratio .1	In/Al ratio 0.3 0.5		In/Al ratio 1.0			
Acid	Temp (°C)	Area	Temp (°C)	Area	Temp (°C)	Area	Temp (°C)	Area	Temp (°C)	Area
sites	206.6	5.56	204.9	5.73	198.8	8.70	202.9	3.67	227.9	1.57
	284.4	42.65	284.6	42.56	288.9	29.27	285.6	8.66	314.9	3.69
	305.0	12.78	310.6	15.35	344.0	16.69	378.0	11.87	371.3	2.16
Weak acid		5.56		5.73		8.70		3.67		1.57
Strong acid		55.43		57.91		45.96		20.53		5.85
Total acid		60.99		63.64		54.65		24.19		7.42

 Table D1
 Desorption temperature and peak area

The calculation of acidity from TPD peak area used the calibration factor from propylene to calculate.

The area of propylene per mole from the calibration is equal to 7.672×10^{6}

The weight of used catalysts is 0.0400 g.

The acidity of catalysts in μ mol/g was calculated by

Acidity (
$$\mu$$
mol/g) = $\frac{\text{Area}}{(7.672 \text{ area}/\mu\text{mol}) \times (0.0400 \text{ g})}$

The acidity of the catalyst is already shown in Table 4.4.

The temperature program oxidation (TPO) characterization results are shown in Table D2.

The calibration factor was calculated by using CO_2 calibration. The injection loop value is 100 μ L.

Mole of injected CO₂ calculated from ideal gas law.

$$n = \frac{(1 \text{ atm}) \times (100 \text{ } \mu\text{L})}{(0.0821 \text{ atm.L/mol.K}) \times (298 \text{ K})} = 4.087 \text{ } \mu\text{mol}$$

The calibration factor is represented by

Calibration factor =
$$\frac{CO_2 \text{ area}}{4.087 \,\mu\text{mol}}$$

The amount of carbon deposition determined by the area from TPO result divided by the calibration factor. Carbon deposition is calculated as the weight of carbon observed per weight of catalyst used.

Table D2	Calculation of	of carbon	deposition	from	TPO
----------	----------------	-----------	------------	------	-----

Spent catalyst carrier gas	TPO result (area)	CO ₂ calibration (area)	Calibration factor (area/µmol)	Carbon (µmol)	Carbon <u>(mg)</u>	Spent catalyst used (mg)	Carbon deposition (%)
N ₂	33059	16595	4060	8.142	0.0977	20.4	0.48
2% O ₂	215948	16671	4079	52.95	0.6353	21.6	2.94
21% O ₂	606698	14805	3622	167.5	2.010	20.2	9.95
100% O ₂	745863	13201	3230	230.9	2.771	21.5	12.89

CURRICULUM VITAE

i unici i i i i i i i i i i i i i i i i i i

Date of Birth: July 1, 1987

Nationality: Thai

University Education:

2006–2010 Bachelor Degree of Engineering in major of Petrochemicals and Polymeric Materials, Faculty of Engineering and Industrial Technology, Silpakorn University, Sanamchandra Palace Campus, Nakornprathom, Thailand

Work Experience:

2009	Position:	Internship Student
	Company name:	The Siam Cement Group

Proceedings:

 Srisayan, T.; Jermwongratanachai, T.; Kitiyanan, B. and Apphakvan, T. (2012, April 24) Indium-Containing ZSM-5 Catalyst for Methylation of Benzene: Effect of Treatment and Co-feed. <u>Proceedings of 3rd Research Symposium on Petrochemical and Materials Technology and 18th PPC Symposium on <u>Petroleum, Petrochemicals and Polymers, Bangkok, Thailand.</u>
</u>

