CATALYST DEVELOPMENT FOR METHANE REFORMING WITH CO₂

Mr. Krit Punburananon

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma and Case Western Reserve University 1999

ISBN 974-331-897-6

I19584830

Thesis Title	: Catalyst Development for Methane Reforming with CO ₂
By	: Mr. Krit Punburananon
Program	: Petrochemical Technology
Thesis Advisors	: Prof. Erdogan Gulari
	Assoc. Prof. Kunchana Bunyakiat
	Dr. Thirasak Rirksomboon

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

...... College Director (Prof. Somchai Osuwan)

Thesis Committee

Indopen (

(Prof. Erdogan Gulari)

K. Bunyaliat.

(Assoc. Prof. Kunchana Bunyakiat)

->

(Dr. Thirasak Rirksomboon)

Semanth Chovedaj

(Assoc. Prof. Sumaeth Chavadej)

ABSTRACT

##971009: PETROCHEMICAL TECHNOLOGY PROGRAMKEY WORDS: Methane Reforming/Nickel/Sol-Gel

Krit Punburananon : Catalyst Development for Methane Reforming with CO₂. Thesis Advisors : Prof. Erdogan Gulari, Assoc. Prof. Kunchana Bunyakiat, and Dr. Thirasak Rirksomboon 51 pp ISBN 974-331-897-6

The reforming of methane with CO₂ produces synthesis gas with high CO/H₂ ratio, which is suitable to produce higher hydrocarbons and oxygenated compounds by Fischer-Tropsch synthesis. In this study, the sol-gel technique, which has several advantages over conventional technique, was applied to prepare 5% Ni/Al₂O₃ catalyst and alumina support. The performance of 5% sol-gel catalyst on CH₄ reforming with CO₂ was compared to that of 5% impregnation catalysts supported on commercial alumina and on sol-gel alumina. It was found that all three catalysts deactivated with time on stream, because of carbon deposition on the catalysts resulting in total loss of catalytic activity. In addition, the reverse water gas shift reaction, the side reaction, uses H_2 to produce CO. Therefore, CO selectivity is higher than H_2 selectivity. Temperature programmed oxidation (TPO) on thermogravimetric analyzer (TGA) was used to determine the amount of carbon on the three prepared catalysts used for 20 hours. It was found that the carbon deposition on the catalyst can be oxidized at high temperatures in the range of 670-700 °C and % carbon on Ni/sol-gel Al₂O₃ is 17.61%, whereas that on sol-gel Ni/Al₂O₃ is 25.15% and on Ni/commercial Al_2O_3 is 17.89%.

บทคัดย่อ

กฤษฎิ์ พันธ์บูรณานนท์ : การพัฒนาตัวเร่งปฏิกริยาการรีฟอร์มก๊าซมีเทนด้วยก๊าซ คาร์บอนไดออกไซด์ (Catalyst Development for Methane Reforming with CO₂) อ. ที่ปรึกษา : ศ.ดร. เออโดแกน กูลารี (Prof. Erdogan Gulari) รศ. กัญจนา บุณยเกียรติ และ ดร. ธีรศักดิ์ ฤกษ์สมบูรณ์ 51 หน้า ISBN 974-331-897-6

การรีฟอร์มก๊าซคาร์บอนไดออกไซด์ (CO₂) ด้วยก๊าซมีเทน (CH₄) เพื่อผลิตก๊าซ ้สังเคราะห์ (synthesis gas) ที่มีสัดส่วนของก๊าซไฮโครเจน (${
m H}_2$) ต่อก๊าซคาร์บอนมอนอกไซค์ ต่ำเหมาะสมกับการผลิตไฮโครคาร์บอนโมเลกลใหญ่โคยปฏิกิริยาฟิชเซอร์ทรอป (Fischer-Tropsch) งานวิจัยนี้ใช้ 5% Ni/Al₂O₃ เป็นตัวเร่งปฏิกิริยา เตรียมโดยวิธีโซลเจล (sol-gel technique) และวิธีอิมเพรกเนชั่น (impregnation technique) บนอลมินาที่ใช้ใน อุตสาห กรรมและอลุมินาที่เตรียม โคยวิธี โซลเจล จากการศึกษาพบว่าตัวเร่งปฏิกริยาเสียความ ้ว่องไวเนื่องจากการเกาะตัวของคาร์บอนบนตัวเร่งปฏิกริยา นอกจากนี้ปฏิกริยารีเวอร์ส วอเตอร์ ก๊าซ ชิฟท์ (reverse water gas shift reaction) มีผลให้ ค่าการเลือกของคาร์บอนมอนอกไซด์ (CO selectivity) สูงกว่าค่าการเลือกของไฮโครเจน (H₂ selectivity) ส่วนการหา ้ปริมาณคาร์บอนที่เกาะตัวบนตัวเร่งปฏิกิริยากระทำในเครื่องวิเคราะห์ทางความร้อนชนิดโปรแกรม อุณหภูมิได้ภายใต้บรรยากาศที่มีก๊าซออกซิเจน (temperature programmed oxidation on thermogravimetric analyzer) พบว่า คาร์บอนสามารถทำปฏิกริยากับก๊าซออกซิเจนเป็น ก๊าซ คาร์บอนใดออกไซด์ (CO₂) ในช่วงอุณหภูมิ 670-700 °C และปริมาณคาร์บอนบน sol-gel Ni/Al₂O₃, Ni/commercial Al₂O₃ และ Ni/sol-gel Al₂O₃ เป็น 25.15%, 17.89% และ 17.61% ตามลำคับ

ACKNOWLEDGMENTS

This work cannot be successful without the participation of the following individuals and organizations.

First of all, I wish to express my utmost appreciation and deepest gratitude to my thesis advisors, Professor Erdogan Gulari, Associate Professor Kunchana Bunyakiat and Dr. Thirasak Rirksomboon, for their guidance, discussion, strong encouragement and assistance devotedly throughout my thesis work.

I would like to extend my sincere thanks to all of the Professors who guided me through their courses, establishing the knowledge needed for this thesis. I also would like to thank Assoc. Prof. Sumaeth Chavadej for serving on my thesis committee.

It is a pleasure to acknowledge the PTT Research and Technology Institute for financial support, the Petroleum and Petrochemical College for the support in laboratory facilities and all of the staffs of the college for their helpful assistance.

Very special thanks are forwarded to all of my friends for making my two years of study at the college most memorable and enjoyable.

Finally, I would like to express whole-hearted gratitude to my family for their love, encouragement and measureless support.

TABLE OF CONTENTS

i
iii
iv
v
vi
ix
x

CHAPTER

I	INTRODUCTION	1
п	LITERATURE SURVEY	5
	2.1 Methane Reforming Reaction	5
	2.2 Catalyst Development	6
	2.2.1 Active Metals	6
	2.2.2 Supports	6
	2.2.3 Ni Precursors	7
	2.3 Reaction Conditions	7
	2.4 Carbon Deposition	8
	2.5 Catalyst Regeneration	9
	2.6 The Application of Sol-Gel in Catalyst	
	Preparation	10
ш	EXPERIMENTAL SECTION	14
	3.1 Materials	14

IV

4

PAGE

vii

3.1.1 Catalyst Preparation Materials	14
3.1.2 Gases	14
3.2 Catalyst Preparation	15
3.2.1 Sol-Gel Technique	15
3.2.2 Impregnation Technique	15
3.3 Catalyst Characterization	15
3.3.1 Surface Area Measurement	15
3.3.2 Temperature Programmed Reduction (TPR)	16
3.3.3 Temperature Programmed Oxidation (TPO)	
on Thermogravimetric Analyzer (TGA)	16
3.3.4 X-Ray Diffraction (XRD)	17
3.4 Experimental Apparatus	17
3.4.1 Gas Mixing Section	17
3.4.2 Catalytic Reactor	17
3.4.3 Analytical Instrument	19
3.5 Experimental Procedures	19
3.5.1 The Effect of Calcination Temperature	20
3.5.2 The Effect of Reduction Time	20
3.5.3 The Effect of Reaction Temperature	20
3.5.4 Activation Energy	20
3.5.5 Carbon Deposition Studies	21
RESULTS AND DISCUSSION	22
4.1 Catalyst Characterization	22

4.1.1 X-Ray Diffraction 23

PAGE

	4.1.2 Surface Area and the Reduction	
	Temperature	24
	4.2 The Effect of Calcination Temperature	29
	4.3 The Effect of Reduction Time	31
	4.4 The Effect of Reaction Temperature	33
	4.5 Catalytic Activity, Stability and Selectivity	35
	4.6 Activation Energy	37
	4.7 Carbon Deposition Studies	41
V	CONCLUSIONS	47
	REFERENCES	48

CHAPTER

CURRICULUM VITAE	51
	51

LIST OF TABLES

TABLE PAGE 4.1 The crystallite phases on 5% sol-gel Ni/Al₂O₃, fresh and used 5% Ni/sol-gel Al₂O₃ identified by XRD. 24 4.2 The surface areas and the reduction temperatures (T_R) for the catalysts. 25 The average of CO. H₂ selectivity, CO:H₂ ratio and water 4.3 formation rate of 5% sol-gel Ni/Al₂O₃ at various temperatures over 6 hours on stream. 35 The average of CO. H₂ selectivity, CO:H₂ ratio and water 4.4 37 formation rate of all three catalysts over 20 hours on stream. The activation energies of 5% sol-gel Ni/Al₂O₃, 5% 4.5 Ni/commercial Al₂O₃ and 5% Ni/sol-gel Al₂O₃ based on CO and H₂ formation rate. 41 4.6 The oxidation temperatures for carbon and % carbon on all three catalysts used for 20 hours. 42

LIST OF FIGURES

FIGURE

1.1	Schematic diagram of the chemical energy transmission	
	system (CETS).	3
3.1	Schematic of experiment apparatus.	18
4.1	XRD patterns of sol-gel Al_2O_3 , fresh and used 5% sol-gel	
	Ni/Al ₂ O ₃ .	26
4.2	XRD patterns of commercial Al_2O_3 , fresh and used 5%	
	Ni/commercial Al ₂ O ₃ .	27
4.3	XRD patterns of sol-gel Al_2O_3 , fresh and used 5% Ni/sol-gel	
	Al_2O_3 .	28
4.4	Catalytic activity of 5% sol-gel Ni/Al ₂ O ₃ calcined at 500 $^{\circ}$ C	
	and 600°C when tested at 700 °C: (a) CH_4 conversion (b)	
	CO ₂ conversion.	30
4.5	Catalytic activity of 5% sol-gel Ni/Al ₂ O ₃ calcined at 500 $^{\circ}$ C	
	reduced for 3,4 and 5 hours when tested at 700 °C: (a) CH_4	
	conversion (b) CO_2 conversion.	32
4.6	Catalytic activity of 5% sol-gel Ni/Al ₂ O ₃ calcined at 500 $^{\circ}$ C	
	when tested at 600, 650, 700, 750 °C: (a) CH_4 conversion	
	(b) CO_2 conversion.	34
4.7	Catalytic activity of 5% sol-gel Ni/Al ₂ O ₃ , 5% Ni/commercial	
	Al_2O_3 and 5% Ni/sol-gel Al_2O_3 when tested at 700 °C: (a)	
	CH_4 conversion (b) CO_2 conversion.	36
4.8	Arrhenius plots of 5% sol-gel Ni/Al ₂ O ₃ : (a) based on CO	
	formation rate (b) based on H_2 formation rate.	38

4.9	Arrhenius plots of 5% Ni/commercial Al_2O_3 : (a) based on	
	CO formation rate (b) based on H_2 formation rate.	39
4.10	Arrhenius plots of 5% Ni/sol-gel Al_2O_3 : (a) based on CO	
	formation rate (b) based on H_2 formation rate.	40
4.11	Temperature programmed oxidation (TPO) profiles of all	
	three catalysts tested for 20 hours.	44
4.12	Temperature programmed oxidation (TPO) profiles of the	
	catalysts when tested for 20 hours: (a) 5% sol-gel Ni/Al ₂ O ₃ ,	
	(b) 5% Ni/commercial Al ₂ O ₃ , (c) 5% Ni/sol-gel Al ₂ O ₃	46

PAGE