ผลของตัวแปรในกระบวนการผลิตและสูตรต่ำรับต่อการเกิด เพลเลตไดโคลฟีแนคโซเดียมที่เตรียมโดยเทคนิคการหลอม

นางสาวสุนทริยา รงรองเมือง

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต สาขาวิชาเภสัชอุตสาหกรรม ภาควิชาเภสัชอุตสาหกรรม คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2548 ISBN 974-17-5006-4 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

EEFECT OF PROCESS AND FORMULATION VARIABLES ON FORMATION OF DICLOFENAC SODIUM PELLETS PREPARED BY MELT TECHNIQUE

Miss Soonthariya Rongrongmuang

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmacy Program in Industrial Pharmacy Department of Manufacturing Pharmacy Faculty of Pharmaceutical Sciences Chulalongkorn University Academic Year 2005 ISBN 974-17-5006-4

481540

Thesis Titles	Effect of Process and Formulation Variables on Formation of
	Diclofenac Sodium Pellets Prepared by Melt Technique
Ву	Miss Soonthariya Rongrongmuang
Field of study	Industrial Pharmacy
Thesis advisor	Jittima Chatchawalsaisin, Ph.D.
Thesis Co-advisor	Assistant Professor Wichein Thanindratarn, M.Sc.in Pharm.

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master's Degree

THESIS COMMITTEE

P. IartwanichChairman

(Associate Professor Poj Kulvanich, Ph.D.)

1 Chatchawalsaisin Thesis Advisor

(Jittima Chatchawalsaisin, Ph.D.)

Wichain Thanindratory Thesis Co-Advisor

(Assistant Professor Wichein Thanindratarn, M.Sc.in Pharm.)

to Haribal Member

(Narueporn Sutanthavibul, Ph.D.)

W. Muomghi Member

(Walaisiri Muangsiri, Ph.D.)

สุนทริยา รงรองเมือง : ผลของตัวแปรในกระบวนการผลิตและสูตรตำรับต่อการเกิดเพลเลตได โคลฟีแนคโซเดียมที่เตรียมโดยเทคนิคการหลอม (EFFECT OF PROCESS AND FORMULATION VARIABLES ON FORMATION OF DICLOFENAC SODIUM PELLETS PREPARED BY MELT TECHNIQUE.) อ.ที่ปรึกษา : อ.ดร.จิต ติมา ชัชวาลย์สายสินธ์, อ.ที่ปรึกษาร่วม : ผศ.วิเซียร ธานินทร์ธราธาร, 186 หน้า. ISBN 974-17-5006-4.

การวิจัยนี้เป็นการศึกษาการผลิตเพลเลตโดยเทคนิคการหลอม โดยใช้เครื่องผสมแบบแพลเนทารีซึ่ง มีอุปกรณ์หุ้มให้ความร้อนและควบคุมอุณหภูมิ การศึกษาผลของตัวแปรในกระบวนการผลิตและสูตรตำรับต่อ การเกิดเพลเลตไดโคลฟีแนคโซเดียม ทำโดยใช้กลีเซอริลโมโนสเทียเรตเป็นสารยึดเกาะ และออกแบบการ ทดลองแบบแฟคทอเรียล โดยเปลี่ยนแปลงความเร็วของใบพัด (100 รอบ และ 200 รอบ) อุณหภูมิที่ใช้ในการ ผสม (58 องซาเซลเซียส และ 78 องศาเซลเซียส) เวลาที่ใช้ในการผสม (5 นาที และ 15 นาที) และสารเพิ่ม ปริมาณ (แลกโทส และ ไดเบสิคแคลเซียสฟอสเฟต) นอกจากนี้การศึกษาผลของจุดหลอมเหลวและความ หนืดของสารยึดเกาะ ทำโดยการเตรียมเพลเลตไดโคลฟีแนคโซเดียมที่มีแลกโทสเป็นสารเพิ่มปริมาณ และกลี เซอริลโมโนสเทียเรต Precirol® ATO5 Compritol 888 ATO® Gelucire 50/02 หรือ Tristearin® เป็นสารยึด เกาะ

ผลการวิจัยพบว่า ปริมาณของสารยึดเกาะที่ใช้ในการเตรียมเพลเลดขึ้นกับชนิดของสารยึดเกาะและ ชนิดของสารเพิ่มปริมาณที่ใช้ ความเร็วของใบพัดและชนิดของสารเพิ่มปริมาณเป็นตัวแปรสำคัญที่มีผลต่อ การเปลี่ยนแปลงคุณสมบัติทางกายภาพของเพลเลต เมื่อความเร็วที่ใช้ในการผสมเพิ่มขึ้นทำให้เพลเลตมี ขนาดโตขึ้นและการกระจายของขนาดแคบ เพลเลตที่เตรียมโดยใช้ไดเบสิคแคลเซียมฟอสเฟตมีผิวเรียบและ กลมกว่าเพลเลตที่เตรียมจากแลกโทส ความหนาแน่นจริงของเพลเลตขึ้นกับความหนาแน่นจริงของสารเพิ่ม ปริมาณที่นำมาใช้เตรียม สารยึดเกาะที่มีจุดหลอมเหลวต่ำให้เพลเลตที่กลมกว่า สารยึดเกาะที่มีความหนืดต่ำ ให้เพลเลตที่มีการกระจายของขนาดแคบ เพลเลตที่เตรียมได้จากการวิจัยนี้พบว่ามีการไหลที่ดี ปริมาณตัวยา สำคัญของเพลเลตที่เตรียมจากแลกโทสผ่านมาตรฐานตำรายาประเทศสหรัฐอเมริกา 27 และพบว่ามีความคง สภาพภายหลังการเก็บในสภาวะเร่งที่ 45 องศาเซลเซียส ความขึ้นสัมพัทธ์ 75 เปอร์เซนต์เป็นเวลา 4 เดือน เพลเลตที่เตรียมจากไดเบสิคแคลเซียมฟอสเฟตอาจเกิดการเสื่อมสลายของตัวยาสำคัญ แต่ตรวจวิเคราะห์ไม่ พบ diclofenac related compound A เพลเลตส่วนใหญ่มีการปลดปล่อยยานอกร่างกายมากกว่า 80 เปอร์เซนต์ ผลการวิจัยนี้พิสูจน์ว่าตัวแปรของกระบวนการและสูตรดำรับมีผลต่อคุณภาพของเพลเลตที่เตรียมโดยเครื่อง ผสมแบบแพลเนทารี

ภาควิชา	.เภสัชอตสาหกรรม	ลายมือชื่อนิสิต	gunan	נסעוכמינו
สาขาวิชา	.เภสัชอุตสาหกรรม	ลายมือชื่ออาจารย์ที่	ปรึกษา <i>(</i> อิส)	หมา ฮัธอาลอีสายลินวิ
ปีการศึกษา		ลายมือชื่ออาจารย์ที่ปรึ	ึกษาร่วม	a a L

4576620233 : MAJOR MANUFACTURING PHARMACY KEY WORD : DICLOFENAC SODIUM / PELLETS / MELT TECHNIQUE / PELLETIZATION / GLYCERYL MONOSTEARATE

SOONTHARIYA RONGRONGMUANG : EFFECT OF PROCESS AND FORMULATION VARIABLES ON FORMATION OF DICLOFENAC SODIUM PELLETS PREPARED BY MELT TECHNIQUE. THESIS ADVISOR : JITTIMA CHATCHAWALSAISIN, Ph.D., THESIS CO-ADVISOR : ASST. PROF. WICHEIN THANINDRATRAN, M.Sc.in Pharm., 186 pp. ISBN 974-17-5006-4.

A melt pelletization process was investigated in a planetary mixer with heat from heating jacket. The effect of process variables, i.e. mixing speed (100 rpm and 200 rpm), temperature (58°C and 78°C) and time (5 min and 15 min), and formulation variable, i.e. types of filler (lactose and dibasic calcium phosphate), on formation of diclofenac sodium pellets, were investigated by mean of factorially designed experiments using glyceryl monostearate as a binder. The effect of binder melting point and viscosity was also investigated through the formulation containing lactose and glyceryl monostearate, Precirol® ATO5, Compritol 888 ATO®, Gelucire 50/02 or Tristearin®.

The amounts of binder required to form pellets were dependent on types of binders and fillers. Mixing speed and types of filler were the most important variables affecting the physical properties of pellets. Increased mixing speed produced larger pellets with narrow size distribution. Pellets with dibasic calcium phosphate were smoother and rounder than pellets with lactose. True density of pellets depended on true density of filler. The binder of lower melting point gave rounder pellets. The binder of lower viscosity produced narrow size distribution of pellets. All the pellets possessed good flowability. Drug content of pellets prepared with lactose complied with USP 27 and the pellets were stable after storage at 45°C and 75% relative humidity for 4 mouths. Drug degradation could occur in pellets prepared with dibasic calcium phosphate. However, diclofenac related compound A was not presented. The 80 % drug release was obtained for most formulations. The results obtained from this study proved that the process and formulation variables affecting quality of pellets prepared by planetary mixer.

Department	Manufacturing Pharmacy	Student's name. S. Rongrongmuling
Field of study	Industrial Pharmacy	Advisor's name? Chatchaual saisin
Academic year		Co-Advisor's name. WICken Manin

ACKNOWLEDGEMENTS

I would like to express my grateful and sincere thankfulness to my thesis advisor, Jittima Chatchawalsaisin, Ph.D. for her invaluable attention, guidance, encouragement and support throughout this research. Her generosity and helpfulness are really appreciated.

Special acknowledgement is given to my thesis co-advisor, Assistant Professor Wichein Thanindratarn for his invaluable attention and guidance. Acknowledgement is also extended to Vipaporn Panapisal, Ph.D. in Pharmaceutics, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Chulalongkorn University for her thoughtful advices during data analysis.

A special appreciation is also given to Graduate school, Chulalongkorn University for granting partial support to fulfill this investigation and being the place for learning, participating activities, which is one of the valuable experiences in my life.

I wish to thank Gattefosse, France for the supply of Glyceryl behenate (Compritol 888 ATO®), Glyceryl pamitostearate (Precirol® ATO5), Saturated polyglycolized glycerides (Gelucire 50/02).

My special thanks is send to all staff and members in the department of Manufacturing Pharmacy and all of my friends in Master's degree for their encouragement and assistance.

Finally, I would like to express my tremendous gratitude to my parents. Their endless love and encouragement given to me are immeasurable and contributed me to finish this work.

CONTENTS

		I ug
Thai Abstract	t	iv
English Abst	ract	v
Acknowledge	ements	vi
Contents		vii
List of Table	S	viii
List of Figure	es	xi
List of Abbre	eviations	xvi
Chapter		
Ι	Introduction	1
	Objectives of the study	5
II	Literature Review	6
	1. Pellets	6
	2. Materials	27
III	Experimental	32
	1. Materials	32
	2. Equipment	33
	3. Methods	34
IV	Results and Discussion	50
	1. Material characterization	50
	2. Pelletization	52
	3. Characterizaton of diclofenac sodium pellets	58
V	Conclusions	158
References		160
Appendices.		160
Appe	ndix A	16

LIST OF TABLES

Page	е
Table 1 Properties of binders that were used in the preliminary study	
Table 2 Compositions of diclofenac sodium pellets prepared with	
glyceryl monostearate	
Table 3 Conditions for preparing of diclofenac sodium pellets using GMS	
as a binder by melt technique (LA-1 – LA-8 and CA-1 – CA-8)	
Table 4 Conditions for preparation of diclofenac sodium pellets using	
GMS as a binder by melt technique (LA-9 and CA-9)	
Table 5 Compositions of diclofenac sodium pellets prepared with different	
binders	
Table 6 Conditions for preparation of diclofenac sodium pellets using different	
binders by melt technique	
Table 7 Relationship between the angle of repose and flowability	
Table 8 Melting point, true density and viscosity of binders	
Table 9 Amounts of binders used to form lactose pellets	
Table 10 Amounts of binders used to form dibasic calcium phosphate pellets 55	
Table 11 Compositions of diclofenac sodium pellets (g) prepared with glyceryl	
monostearate, 300 g batch size57	
Table 12 Composition of diclofenac sodium pellets (g) prepared with different	
binders, 300 g batch size58	
Table 13 Geometric weight mean (d_g) , geometric standard deviation (s_g) and	
lump > 2.8 mm(%) of DS pellets prepared by various conditions 73	
Table 14 The angle of repose, flow rate, bulk density, tapped density and	
% compressibility of DS pellets prepared from each formulation	
(mean (SD))	
Table 15 The true density, % friability, aspect ratio and roundness of DS pellets	
prepared from each formulation. (mean (SD))10	2
Table 16 Percentage of diclofenac sodium content in pellets	0
Table 17 Content uniformity of diclofenac sodium pellets prepared with	
lactose and glyceryl monostearte14	. 1

iv	
17	

Page	
0-	

Table 18 Content uniformity of diclofenac sodium pellets prepared with
dibasic calcium phophate and glyceryl monostearte141
Table 19 Content uniformity of diclofenac sodium pellets prepared with lactose
and other binders142
Table 20 The area under the curve (AUC) of diclofenac sodium pellets in 0.1 N
HCl solution and pH 6.8 phosphate buffer, based on assayed content149
Table 21 %Total amount of diclofenac sodium pellets from different binders about
4 mouth
Table 22 The results of the analysis of variance with full model
Table 23 The results of the analysis of variance with reduced model
Table 24 The results of the analysis of variance comparing the sample mean of
data for formulation studied157
Table 25 Absorbance of diclofenac sodium in 0.1 N HCl at a maximum
wavelength of 275 nm167
Table 26 Absorbance of diclofenac sodium in pH 6.8 phosphate buffer at a
maximum wavelength of 275 nm 168
Table 27 Percentage of analytical recovery of diclofenac sodium
Table 28 Percentage of analytical recovery of diclofenac related compound A 174
Table 29 Data within run precision of diclofenac sodium
Table 30 Data within run precision of diclofenac related compound A
Table 31 Data between run precision of diclofenac sodium
Table 32 Data between run precision of diclofenac related compound A
Table 33 Percentage amount of diclofenac sodium release from pellets,
based on assayed content 178
Table 34 Percentage amount of diclofenac sodium release from pellets,
based on assayed content (continued) 179
Table 35 Percentage amount of diclofenac sodium release from pellets,
based on assayed content (continued) 180
Table 36 Percentage amount of diclofenac sodium release from pellets,
based on assayed content (continued)
Table 37 Percentage amount of diclofenac sodium release from pellets,
based on assayed content (continued)182

Table 38	Percentage amount of diclofenac sodium release from pellets,	
	based on assayed content (continued)	183
Table 39	Percentage amount of diclofenac sodium release from pellets,	
	based on assayed content (continued)	184
Table 40	Percentage amount of diclofenac sodium release from pellets,	
	based on assayed content (continued)	185

Page

LIST OF FIGURES

Page
Figure 1 Agglomerate formation mechanisms in melt agglomeration
Figure 2 States of liquid content in an agglomerate during wet granulation9
Figure 3 Outline of Pelmix PL 1/8 high shear mixer
Figure 4 Outline of Pelmix 10 high shear mixer21
Figure 5 Schematic view of a high shear mixer, Pellet processor PP122
Figure 6 Schematic drawing of the rotary processor
Figure 7 Maillard reaction of reducing sugar and amino compound27
Figure 8 The structural formula of glyceryl monostearate
Figure 9 The structural formula of glyceryl tristearate
Figure 10 Impurities of diclofenac sodium
Figure 11 Schematic presentation of solid state cyclization of diclofenac sodium
due to thermal reaction
Figure 12 Scanning electron photomicrographs of lactose in magnification
of x 1,500
Figure 13 Scanning electron photomicrographs of dibasic calcium phosphate in
magnification of x 1,50050
Figure 14 Scanning electron photomicrographs of diclofenac sodium in
magnification x 1,500
Figure 15 Photomicrograph and scanning electron photomicrograph of LA-1
and CA-1
Figure 16 Photomicrograph and scanning electron photomicrograph of LA-2
and CA-261
Figure 17 Photomicrograph and scanning electron photomicrograph of LA-3
and CA-3
Figure 18 Photomicrograph and scanning electron photomicrograph of LA-4
and CA-463
Figure 19 Photomicrograph and scanning electron photomicrograph of LA-5
and CA-564

Page
Figure 20 Photomicrograph and scanning electron photomicrograph of LA-6
and CA-665
Figure 21 Photomicrograph and scanning electron photomicrograph of LA-7
and CA-866
Figure 22 Photomicrograph and scanning electron photomicrograph of LA-8
and CA-967
Figure 23 Photomicrograph and scanning electron photomicrograph of LA-9
and CA-968
Figure 24 Photomicrograph and scanning electron photomicrograph of PR
and CP69
Figure 25 Photomicrograph and scanning electron photomicrograph of GL
and TS70
Figure 26 Size distribution of diclofenac sodium pellets prepared by lactose
and GMS at the various pelletization conditions72
Figure 27 Size distribution of diclofenac sodium pellets prepared by dbcp
and GMS at the various pelletization conditions
Figure 28 Size distribution of DS-lactose-GMS pellets prepared with mixing speed
of 200 rpm75
Figure 29 Size distribution of DS-dbcp-GMS pellets prepared with mixing speed
of 200 rpm76
Figure 30 Size distribution of DS-lactose-GMS pellets prepared with mixing speed
of 100 rpm
Figure 31 Size distribution of DS-dbcp-GMS pellets prepared with mixing speed
of 100 rpm77
Figure 32 Size distribution of DS-lactose-GMS pellets prepared with mixing
temperature of 25°C above the melting point of GMS77
Figure 33 Size distribution of DS-dbcp-GMS pellets prepared with mixing
temperature of 25°C above the melting point of GMS78
Figure 34 Size distribution of DS-lactose-GMS pellets prepared with mixing
temperature of 5°C above the melting point of GMS78

Figure 35 Size distribution of DS-dbcp-GMS pellets prepared with mixing
temperature of 5°C above the melting point of GMS
Figure 36 Size distribution of DS-lactose-GMS pellets prepared with mixing
time of 15 min 79
Figure 37 Size distribution of DS-dbcp-GMS pellets prepared with mixing
time of 15 min 80
Figure 38 Size distribution of DS-lactose-GMS pellets prepared with mixing
time of 10 min 80
Figure 39 Size distribution of DS-dbcp-GMS pellets prepared with mixing
time of 10 min 81
Figure 40 Effect of mixing speed on the geometric weight mean (dg) of
DS-GMS pellets
Figure 41 Effect of mixing temperature on the geometric weight mean (d_g) of
DS-GMS pellets82
Figure 42 Effect of mixing time on the geometric weight mean (d_g) of
DS-GMS pellets
Figure 43 Effect of mixing speed on the geometric standard deviation (sg) of
DS-GMS pellets83
Figure 44 Effect of mixing temperature on the geometric standard deviation (s_g)
of DS-GMS pellets
Figure 45 Effect of mixing time on the geometric standard deviation (s_g) of
DS-GMS pellets84
Figure 46 Effect of mixing speed on the % lump > 2.8 mm of DS-GMS pellets84
Figure 47 Effect of mixing temperature on the % lump > 2.8 mm of DS-GMS
Pellets
Figure 48 Effect of mixing time on the % lump > 2.8 mm of DS-GMS pellets85
Figure 49 Size distribution of the DS-lactose-pellets prepared with different binders,
using mixing speed of 100 rpm, temperature of 5°C above the melting
point of binders and time of 10 min
Figure 50 Effect of the melting point of binders on the geometric weight mean (d_g)
of DS-lactose pellets

Page
Figure 51 Effect of the melting point of binders on the geometric standard deviation
(sg) of DS-lactose pellets
Figure 52 Effect of the melting point of binders on % $lump > 2.8 mm$ of
DS-lactose pellets
Figure 53 Effect of viscosity of binder, at 5°C above the melting point of binder
on geometric weight mean (dg) of DS-lactose pellets
Figure 54 Effect of viscosity of binder, at 5°C above the melting point of binder
on geometric standard deviation (sg) of DS-lactose pellets
Figure 55 Effect of viscosity of binders, at 5°C above the melting point of binder
on % lump > 2.8 mm of DS-lactose pellets
Figure 56 Effect of mixing speed on the angle of repose of DS-GMS pellets93
Figure 57 Effect of mixing temperature on the angle of repose of DS-GMS
pellets
Figure 58 Effect of mixing time on the angle of repose of DS-GMS pellets
Figure 59 Effect of the melting point of binders on the angle of repose of DS-lactose
pellets
Figure 60 Effect of viscosity of binders, at 5°C above the melting point of binder
on the angle of repose of DS-lactose pellets
Figure 61 Effect of mixing speed on the compressibility index of DS-GMS pellets98
Figure 62 Effect of mixing temperature on the compressibility index of DS-GMS
pellets
Figure 63 Effect of mixing time on the compressibility index of DS-GMS pellets. 99
Figure 64 Effect of the melting point of binders on the compressibility index of
DS-lactose pellets100
Figure 65 Effect of viscosity of binders, at 5°C above the melting point of binder
on the compressibility index of DS-lactose pellets100
Figure 66 Effect of mixing speed on the true density of DS-GMS pellets103
Figure 67 Effect of mixing temperature on the true density of DS-GMS pellets104
Figure 68 Effect of mixing time on the true density of DS-GMS pellets104
Figure 69 Effect of the melting point of binders on the true density of DS-lactose
pellets105

Figure 70 I	Effect of viscosity of binders, at 5°C above the melting point of binder
C	on the true density of DS-lactose pellets105
Figure 71	Effect of mixing speed on the aspect ratio of DS-GMS pellets108
Figure 72 l	Effect of mixing speed on the roundness of DS-GMS pellets108
Figure 73	Effect of mixing temperature on the aspect ratio of DS-GMS pellets109
Figure 74	Effect of mixing temperature on the roundness of DS-GMS pellets109
Figure 75 l	Effect of mixing time on the aspect ratio of DS-GMS pellets110
Figure 76	Effect of mixing time on the roundness of DS-GMS pellets110
Figure 77	Effect of the melting point of binders on the aspect ratio of DS-lactose
I	pellets
Figure 78	Effect of the melting point of binders on the roundness of DS-lactose
I	pellets111
Figure 79	Effect of viscosity of binders, at 5°C above the melting point of binder
C	on the aspect ratio of DS-lactose pellets112
Figure 80	Effect of viscosity of binders, at 5°C above the melting point of binder
C	on the roundness of DS-lactose pellets
Figure 81	The X-ray diffraction pattern of DS-lactose-GMS pellets114
Figure 82	The X-ray diffraction pattern of DS-dbcp-GMS pellets115
Figure 83	The X-ray diffraction pattern of DS pellets containing different
	binders116
Figure 84	The IR spectrum of lactose, dbcp, diclofenac sodium and
C	diclofenac related compound A118
Figure 85	The IR spectrum of glyceryl monosterate (GMS), Precirol® ATO5,
(Compritol 888 ATO®, Gelucire50/02 and Tristearin®119
Figure 86	The IR spectrum of DS-lactose-GMS pellets for LA-1 – LA-4
Figure 87	The IR spectrum of DS-lactose-GMS pellets for LA-5 – LA-9122
Figure 88	The IR spectrum of DS-dbcp-GMS pellets for CA-1 – CA-4123
Figure 89	The IR spectrum of DS-dbcp-GMS pellets for CA-5 – CA-9124
Figure 90	The IR spectrum of PR pellets125
Figure 91	The IR spectrum of CP pellets126
Figure 92	The IR spectrum of GL pellets127

xv

Page

xvi

Page
Figure 93 The IR spectrum of TS pellets
Figure 94 The DSC thermograms of DS-lactose-GMS pellets
Figure 95 The DSC thermograms of DS-dbcp-GMS and pellets
Figure 96 The DSC thermograms of PR pellets
Figure 97 The DSC thermograms of CP pellets
Figure 98 The DSC thermograms of GL pellets
Figure 99 The DSC thermograms of TS pellets
Figure 100 Effect of mixing speed on the %RSD of DS-GMS pellets
Figure 101 Effect of mixing temperature on the %RSD of DS-GMS pellets138
Figure 102 Effect of mixing time on the %RSD of DS-GMS pellets
Figure 103 Effect of the melting point on the %RSD of DS-lactose pellets
Figure 104 Effect of viscosity, at 5°C above the melting point of binder on the
%RSD of DS-lactose pellets
Figure 105 Dissolution profiles of DS-lactose-GMS pellets
Figure 106 Dissolution profiles of DS-dbcp-GMS pellets
Figure 107 Dissolution profiles of DS-lactose-GMS and DS-dbcp-GMS pellets
prepared with mixing speed of 200 rpm145
Figure 108 Dissolution profiles of DS-lactose-GMS and DS-dbcp-GMS pellets
prepared with mixing speed of 100 rpm144
Figure 109 Dissolution profiles of DS-lactose-GMS and DS-dbcp-GMS pellets
prepared with mixing temperature of 25°C above the melting point
of GMS145
Figure 110 Dissolution profiles of DS-lactose-GMS and DS-dbcp-GMS pellets
prepared with mixing temperature of 5°C above the melting point
of GMS146
Figure 111 Dissolution profiles of DS-lactose-GMS and DS-dbcp-GMS pellets
prepared with mixing time of 15 min146
Figure 112 Dissolution profiles of DS-lactose-GMS and DS-lactose-GMS pellets
prepared with mixing time of 10 min147

Page
Figure 113 Dissolution profiles of the DS-lactose-pellets prepared with other
binders, using mixing speed of 100 rpm, temperature of 5°C and
time of 10 min148
Figure 114 Effect of mixing speed on the area under the curve of DS-GMS
pellets148
Figure 115 Effect of mixing temperature on the area under the curve of
DS-GMS pellets150
Figure 116 Effect of mixing time on the area under the curve of DS-GMS pellets. 150
Figure 117 Effect of the melting point of binders on the area under the curve of
DS-lactose pellets
Figure 118 Effect of viscosity of binder, at 5°C above the melting point of binder,
on the area under the curve of DS-lactose pellets
Figure 119 Relationship between % assay and time
Figure 120 Calibration curve of diclofenac sodium in 0.1 N HCl at a maximum
wavelength of 275 nm167
Figure 121 Calibration curve of diclofenac sodium in pH 6.8 phosphate buffer
at a maximum wavelength of 275 nm
Figure 122 The chromatogram in presence of diclofenac sodium170
Figure 123 The chromatogram in presence of diclofenac related compound A170
Figure 124 The chromatogram in presence of diclofenac related compound A
and diclofenac sodium
Figure 125 The chromatogram in presence of LA-5 formulation 171
Figure 126 The chromatogram in presence of CA-5 formulation 171
Figure 127 The chromatogram in presence of PR formulation
Figure 128 The chromatogram in presence of CP formulation
Figure 129 The chromatogram in presence of GL formulation172
Figure 130 The chromatogram in presence of TS formulation 172
Figure 131 Calibration curve showing linearity between area and diclofenac
sodium concentrations177
Figure 132 Calibration curve showing linearity between area and diclofenac
related compound A concentrations177

LIST OF ABBREVIATIONS

%	percentage
#	number
μg	mic.ogram (s)
μm	micrometer
0	degree
° C	degree celcius (centrigrade)
CA	dibasic calcium phosphate
	formulation
СР	Compritol formulation
DS	diclofenac sodium
dbcp	dibasic calcium phosphate
dg	geometric weight mean
g	gram (s)
GMS	glyceryl monostearate
GL	Gelucire50/02 formulation
HCl	hydrochloric acid
hr	hour (s)
IR	infrared
LA	lactose formulation
mg	milligram (s)
min	minute (s)
ml	milliliter (s)
MP	melting point
mPa.s	millipascal.second
PEGs	polyethylene glycols
pН	the negative logarithm of the
	hydrogen ion concentration
PR	Precirol formulation
q.s.	make to volume
rpm	round per minute

RSD	relative standard deviation
sec.	second
Sg	geometric standard deviation
SEM	scanning electron microscopy
TS	Tristearin formulation
UV	ultraviolet