References

- Uchino, K.; and Poosanaas, P. PHOTOSTRICTION IN PLZT AND ITS APPLICATIONS. <u>CIMTEC' 98 Invited Paper</u>. (June 1998): 1-12.
- Tanimura, M.; and Uchino, K. Effect of Impurity Doping on Photostriction in Ferroelectric Ceramics. <u>Sensors and Materials</u>.1 (1988): 47-56.
- Poosanaas, P.; <u>Photovoltaic and Photostrictive Effects in Lanthanum-Modified Lead Zirconate Titanate Ceramics</u>. Doctor of Philosophy's Thesis, Intercollege Graduate Program in Materials, Graduate School, The Pennsylvania State University, May 1999.
- Pacchioli, D. <u>Light into Motion</u>. The Pennsylvania State University, 1996. Available from www.research.psu.edu/rps/jun96/light.html; INTERNET
- Kim, J. J.; Song, B. M.; Kim, D. Y.; and Yoon, D. N. Chemically Induced Grain Boundary Migration and Recrystallization in PLZT Ceramics. <u>Am. Ceram. Soc. Bull</u>. 65 (October 1986): 1390-1392.
- Okazaki, K.; and Nagata, K. Effects of Grain Size and Porosity on Electrical and Optical Properties of PLZT Ceramics. <u>J. Am.</u> <u>Ceram. Soc</u>. 56 (February 1973): 82-86.
- Heartling, G. H.; and Land, C. E. Hot-Pressed (Pb,La)(Zr,Ti)O₃ Ferroelectric Ceramics for Electrooptic Applications. <u>J. Am.</u> <u>Ceram. Soc</u>. 54 (January 1971): 1-11.
- Hardlt, K. H.; and Hennings, D. Distribution of A-Site and B-Site Vacancies in (Pb,La)(Zr,Ti)O₃ Ceramics. <u>J. Am. Ceram. Soc</u>. 55 (May 1972): 230-231.
- Ditoh, R.; Fukuda, K.; and Arimura, N. Method for Preparing PLZT Transparent Ceramic <u>United States Patent</u>. Number 5,595,677. (Jan 1997).
- Dimza, V. I. Dopant (Mn, Fe, Co and Cu) effects on the structure and dielectric dispersion mechanisms in relaxor PLZT ceramics. <u>J.</u> <u>Phys.: Condens. Matter</u>.8 (1996): 2887-2903.

- Park, H. B.; Park, C. Y.; Hong, Y. S.; Kim, K.; and Kim, S. J. Structural and Dielectric Properties of PLZT Ceramics Modified with Lanthanide Ions. J. Am. Ceram. Soc. 82 (January 1999): 94-102.Moulson, A. J.; and Herbert, J. M. <u>Electroceramics</u> <u>Material properties applications</u>. Cambridge university Press (1990): 10-11.
- 12. Shannon, R. D. Acta Crystallogr. (1974): 751
- Li, P.; Wang, Y.; and Chen, I. W. LOCAL ATOMIC STRUCTURE OF Pb(Zn_{1/3}Nb_{2/3})O₃ AND RELATED PEROVSKITES I. AN XANES STUDY OF IONICITY/COVALENCY. <u>Ferroelectrics</u>. 158 (1994): 229-234.
- 14. Li, P.; Wang, Y.; and Chen, I. W. LOCAL ATOMIC STRUCTURE OF Pb(Zn_{1/3}Nb_{2/3})O₃ AND RELATED PEROVSKITES II. AN EXAFS STUDY OF OF CATION DISTORTIONS. <u>Ferroelectrics</u>. 158 (1994): 235-240.
- 15. Randall, C. A.; Kim, N.; Kucera, J. P.; Cao, W.; and Shrout, T. R. Intrinsic and Extrinsic Size Effects in Fine-Grained Morphotropic-Phase-Boundary Lead Zirconate Titanate Ceramics. J. Am. Ceram. Soc. 81 (March 1998): 677-688.
- Yamashita, Y.; Hosono, Y.; Harada, K.; and Ichinose, N. Effect of Molecular Mass of B-site Ions on Electromechanical Coupling Factors of Lead-Based Perovskite Piezoelectric Materials. <u>Jpn. J.</u> <u>Appl. Phys</u>. Vol. 39, Part 1, No. 9B (September 2000): 5593-5596.
- Hansen, P.; Hennings, D.; and Schreinmacher, H. Dielectric Properties of Acceptor-Doped (Ba,Ca)(Ti,Zr)O₃ Ceramics. <u>Journal of Electroceramics</u>. 2:2 (1998): 85-94.
- Tsun, Y. F.; and Chou, C. C. Microstructural Evolution under Polarization Switching of Ferroelectric Tin-modified Lead Zirconate Titanate Ceramics. <u>Jpn. J. Appl. Phys</u>. 38:6A (June 1999): 3585-3588.
- Ellis, D. E.; and Gubanova, O. V. Theoretical Interpretation of Metal Substitution Effects in PZT and PSZT <u>Ferroelectrics</u>. 153 (1994): 61-66.

- 20. Tan, Q.; and Viehland, D. Influence of Thermal and Electrical Histories on Domain Structure and Polarization Switching in Potassium-Modified Lead Zirconate Titanate Ceramics . J. Am. <u>Ceram. Soc</u>. 81:2 (1998): 328-336.
- 21. Nonaka, K.; Akiyama, M.; Hagio, T.; and Takase, A. Bulk Photovoltaic Effect in Reduced/Oxydized Lead Lanthanum Titanate Zirconate Ceramics. Jpn. J. Appl. Phys. Vol. 34, Part 1, No. 5A (May 1995): 2344-2349.
- Nonaka, K.; Akiyama, M.; Takase, A.; Baba, T.; Yamamoto, K.; and Ito, H. Nonstoichiometry Effects and Their Additivity on Anormalous Photovoltaic Effection in Lead Lanthanum Zirconate Titanate Ceramics. Jpn. J. Appl. Phys. Vol. 34, Part 1, No. 9B (September 1995): 5380-5383.
- Nonaka, K.; Akiyama, M.; Xu, C. N.; Hagio, T.; Komatsu, M.; and Takase, A. Enhanced Photovoltaic Response in Lead Lanthanum Zirconate -Titanate Ceramics with A-Site Defficient Composition for Photostrictor Application. <u>Jpn. J. Appl. Phys.</u> Vol. 39, Part 1, No. 9A (September 2000): 5144-5145.
- 24. Koch, W. T. H.; Munser, R.; Ruppel, W.; and Wurfel, P. ANORMALOUS PHOTOVOLTAGE IN BaTiO₃. <u>Ferroelectrics</u>. 13 (1976): 305-307.
- 25. Poosanaas, P.; Prasadarao, A. V.; Komarneni, S.; and Uchino, K. Effect of Ceramic Processing Methods onPhotostrictive Ceramics. <u>Advanced Performance Materials</u>. 6 (1999): 57-69.
- 26. Nonaka, K.; et al. Photostriction in Lead Lanthanum Zirconate Titanate Ceramics Enhanced by the Additive Effect. <u>J. Ceram.</u> <u>Soc. Jpn</u>. Vol. 106, No. 7 (1998): 641-644.
- 27. Nonaka, K.; Takase, A.; Watanabe, T.; and Yoshida, H. EFFECTS OF HEAT TREATMENTS ON PHOTOSTRICTION IN PLZT CERAMICS. <u>Ceramic Transactions</u>. 43 (1994): 295-299.
- 28. Moreira, E. N.; and Eiras, J. A. INFLUENCE OF HETEROVALENT DOPING ON THE RELAXOR BEHAVIOR OF PLZT 9/65/35. <u>Ferroelectrics</u>. 158 (1994): 271-276.

- Yoon, S. J. Effect of Additives on the Electromechanical Properties of Pb(Zr,Ti)O₃-Pb(Y_{2/3}W_{1/3})O₃ Ceramics. <u>J. Am. Ceram. Soc</u>. 80 (April 1997): 1035-1039.
- 30. Kobune, M.; Mineshige, A.; Fujii, S.; and Maeda, Y. Preparation and Pyroelectric Properties of Mn-Modified (Pb,La)(Zr,Ti)O₃ (PLZT) Ceramics. <u>Jpn. J. Appl. Phys</u>. Vol. 36, Part 1, No. 9B (September 1997): 5976-5980.
- 31. Buchanan, R. C. <u>Ceramic Materials for Electronics</u>. New York: Marcel Dekker, Inc. (1991): 129-205.
- 32. Toyota, S.; Takata, M.; Kitano, H.; and Saitoh, I. SYNTHESIS OF PLAT ADJUSTED IN COMPOSITION TO THE APPLICATION FOR OPTICAL MICROGATES. Ferroelectrics. 156 (1994): 55-60.
- Akiyama, Y.; and Hayashi, T. Electric-Field-Induced Strain in Lead Lanthanum Zirconate Titanate Ceramics. <u>Jpn. J. Appl. Phys.</u> Vol. 37, Part 1, No. 9B (September 1998): 5297-5300.
- 34. Kobune, M.; Ishito, H.; Mineshige, A.; Fujii, S.; Takayama, R.; and Tomozawa, A. Relationship between Pyroelectric Properties and Electrode Sizes in (Pb,La)(Zr,Ti)O₃ (PLZT) Thin Films. Jpn. J. <u>Appl. Phys.</u> Vol. 37, Part 1, No. 9B (September 1998): 5154-5157.
- Nagata, K.; and Furuno, M. Composition Dependence of Electrooptic Effects in (Pb,La)(Zr,Ti)O₃ Ceramics. <u>Jpn. J. Appl. Phys</u>. Vol. 32, Part 1, No. 9B (September 1993): 4292-4295.
- 36. Gupta, S. M.; Li, J. F.; and Viehland, D. Coexistence of Relaxor and Normal Ferroelectric Phases in Morphotropic Phase Boundary Compositions of Lanthanum-Modified Lead Zirconate Titanate. J. Am. Ceram. Soc. 81 (March 1998): 557-564.
- Markowski, K.; Park, S. E.; Yoshikawa, S.; and Cross, L. E. Effect of Compositional Variations in the Lead Zirconate Stannate Titanate System on Electrical Properties. J. Am. Ceram. Soc. 79 (December 1996): 3297-3304.
- 38. Yoshikawa, Y.; and Tsuzuki, K. Fabrication of Transparent Lead Lanthanum Zirconate Titanate Ceramics from Fine Powders by

÷

Two-Stage Sintering. J. Am. Ceram. Soc. 75 (November 1992): 2520-2528.

- 39. Kingery <u>Introduction to Ceramics 2nd edition</u>. Singapore: John Wiley & Sons. (1991).
- 40. Maged, A. F.; Sanad, A. M.; El-Fouly, M. F.; and Amin, G. A. M. A study of optical and photo-induced effects in Ge-Se-Te amorphous system. <u>J. Mater. Res</u>. 13:05 (May 1998): 1128-1131.
- 41. Pearnall, T. P.; et al. Spectroscopy of band-to-band optical transitions in Si-Ge alloys and superlattices. <u>Physical Review B</u>. Vol. 33, Part 1, No. 9B (April 1998): 9128-9140.
- 42. Oyoshi, K.; Sumi, N.; Umezu, I.; Yamazaki, A. Haneda, H.; and Mitsuhashi, T. STRUCTURE AND OPTICAL ABSORPTION OF Cr⁺, Fe⁺ AND Zn⁺ ION IMPLANTED AND SUBSEQUENTLY ANNEALED SOL-GEL ANATASE TiO₂ FILMS. <u>The 18th Symposium on Materials Science and Engineering Research Center of Ion Beam Technology</u>. Hosei University, Tokyo (December 1999): 1-6.
- 43. Cassagneau, T.; Fendler, J. H.; and Mallouk, T. E. Optical and Electrical Characterizations of Ultrathin Films Self-Assembled from 11-Aminoundecanoic Acid Capped TiO₂ Nanoparticals and Polyallylamine Hydrochloride. <u>Langmuir.</u> 16 (2000): 241-246.
- 44. Uchino, K. <u>Piezoelectric Actuators and Ultrasonic Motors</u>. Massachusetts: Kluwer Academic Publishers, (1997).
- 45. Golego, N.; Studenikin, S. A.; and Cocivera, M. Properties of Dielectric BaTiO₃ Thin Films Prepared by Spray Pyrolysis. <u>Chem. Matter</u>. 10 (1998): 2000-2005.
- 46. Matsuda. H.; and Kuwabara, M. Optical Absorption in Sol-Gel-Derived Crystalline Barium Titanate Fine Particles. <u>J. Am.</u> Ceram. Soc. 81 (November 1998): 3010-3012.
- 47. Sternberg, A.; et al. RADIATION DAMAGE OF PLZT AND PSN CERAMICS. Ferroelectrics. 153 (1994): 309-314.

.

- Li, H.; et al. Optical Properties of Lead Lanthanum Zirconate Titanate Amorphous Ferroelectric-Like Thin Films. <u>Jpn. J. Appl. Phys.</u> Vol. 39, Part 1, No. 3A (March 2000): 1180-1183.
- 49. Northrop, D. A. Vaporization of Lead Zirconate-Lead Titanate Materials. J. Am. Ceram. Soc. 50:9 (September 1967): 441-445.
- 50. Kingon, A. I.; Clark, J. B. Sintering of PZT Ceramics: I, Atmosphere Control. J. Am. Ceram. Soc. 66:2 (1983): 253-260.
- 51. Hammer, M.; and Hoffmann, M. J. Detailed X-ray Diffraction Analyses and Correlation of Microstructural and Electromechanical Properties of La-doped PZT Ceramics. <u>Journal of</u> <u>Electroceramics</u>. 2:2, (1998): 75-84.
- 52. Dai, X.; and Viehland, D. Tetragonal-Structured PLZT Relaxor Ferroelectrics. <u>Ferroelectrics</u>. 158 (1994): 375-379.
- 53. Yin, Z. W. OPTICAL EFFECTS OF GRAIN BOUNDARIES IN PLZT CERAMICS. <u>ISAF '86: Proceedings of the Sixth IEEE</u> <u>International Symposium on Applications of Ferroelectrics</u>. (1986): 727-737.
- 54. Bryknar, Z.; et al. ESR and optical spectroscopy of copper-doped PLZT electro-optic ceramics. <u>Appl. Phys. A</u>. 66 (1998): 555-559.

Appendices

JCPDF cards

Pb) - Fad Oxide	20	I	11	h	ı		- 1		-			
i ead Oxide					~		20		Int	h	k	1
	15 02	21+	6	0	0	1	80.83	36+	3	-1	2	0
	29.09	2010	0	1	3	1	82.00)5-	4	٤	.3	1
	30.31	13*3	1	0	0	2	85.10) n *	2	2	2	4
Massicot, syn	32 60)4*2	8	2	0	0	86.90	00+	2	1	1	5
Rad CuKab: 1.5405 Filter N. Beta TM deep:	35.99	94*<	1	2	0	1	88.68	37-	4	4	2	2
Read Contains 1.5465 Times for Detailsford-ap	37.81	15*2	0	2	1	0	89.82	21*	2	2	4	0
Cut off. Int. Diffract I/lcor. 6.60	39.52	25*<	1	1	1 .	2						
Ref: Swanson, Fuyat, Natl. Bur. Stand. (U.S.), Circ. 539, 2, 32	40.93	30*<	1	2	1	1						
(1953)	45 11	13+1	2	2	Ο.	2						
	46.20	06*	2	0	0	3						
	49.20	199	4	0	2	Z						
Sys Orthorhombie S.G. Pbina (57)	50.70		4	2	2	0						
a 5.489 b. 4.755 c: 5.891 A: 1.1544 C: 1.2389	53.01	/5~1	2	1	L .	3						
a	57 71	2011	 1	\$	1	2						
$\alpha = \beta$: γ : Z.: 4 mp	57.71	2-<	6	2	0.	<i></i>						
Ref. Kay, Acta Crystallogr., 14, 80 (1961)	61 16	51.4	2 1	5	5	~ 7						
	63.00	10+1	2 '		2. 2	ב ו						
	66 33			2	3	1						
Dx: 9.642 Dm. 9.642 SS/FOM ₃ [=29(.0157, 66)	68 30	6.	1	1	ñ,	0						
	68.82	0.4 <	1	i	ĭ	4						
Color: Yellow	71.08	37*	1 3	2	2 :	3						
X-ray pattern at 27 C. Sample from National Lead	72.86	54+	2	2	ñ i	1						
Company CAS #: 1317-36-8. Spectroscopic analysis:	73.39	*0*	3	3	ĩ	3						
<0.01% Bi, Fe; <0.001% Al, Ag, Cu, Mg, Si, Ca. Other	75 93	5*	2 0	5	2	4						
form, litharge. O Pb type. C.D. Cell: a=5.489, b=5.891,	76 51	1 *	2 :	2	з :	2						
2=4.755, $a/b=0.9318$, $c/b=0.8072$, S.G.=Pcam(57). PSC 5P8. Deleted by 38-1477. Mwt: 223.20. Volume[CD]: 157-76.	79.62	25*	4	I	з :	3						

05-0602					Way	clengtli≈ 1.5	405			
La203	20	Int	h	k	1	2 0	hu	h	k	1
Lanthanum Oxide	26 109*	34	1	0	0	130.547	2	1	o	7
	29 129	31	0	0	2	131 649	1	4	0	1
	29.959*	100	1	0	1	136.844	2	2	2	4
	39.525*	58	1	0	2	146.207	1	3	1	-1
ad Culka1 1 1 5405 Filter Ni Beta M d-sir	46.082*	63	1	1	0	148 296	2	2	1	ű
	52.130*	52	1	0	15					
Aut offer Int Diffract. I/lcor	53.713*	-4	2	0	17					
Ref. Swanson, Fuvat, Natl. Bur, Stand. (U.S.), Circ. 539, III.	55.437*	24	1	1	2					
33 (1954)	55.951*	17	2	0	1					
	00.357	- 5		0	4					
See Havendonial S.C. (Prov) (164)	02.200 66.8671	12	1	0	4					
So treagenal So train (rost	72.091*	7	÷	0						
(-3.9373 b c:6.1299 A C.1.5560	73.390	14	2	1	0					
α β γ. Ζ μαρ	75 298*	12	2	1	T					
	79.151*	10	1	1	4					
(e) juid	80.841	4	2	1	22					
	83 761	4	1	0	5					
Se (57.) Due Se (€034) - 17(0160 (0)	85.047*	2	2	0	-1					
7C 0.324 100 00 400	85 316*	-1	5	0	C					
our Colubes	ья 9 16*	12	2	1	3					
Sattern taken at 26.C. Sample from Farmount Chement Commens	92.5551		-3	60	24					
Sumple was aurealed at 1200 C for one hour and monified to	97 813	$= N_{-}$	1	4.7	44					
petrolations to prevent reabsorption of C O2 + H2 Q. Spectroscop-	.01.423		4	47	* <u>x</u> .					
matistics = 0.01% Ca. Mg. St. < 0.001% Al. Ca. Fe. Pb. Merck audex	103.030		-	3	10					
80 £d (p. 608) Opaque nimeral optical data on specimen from	103.855		1	11	1.					
Conseile Uganda, R3R%=14/2/Disp.+S(d. VHN)(00=752-813/Ref	109 0.35	100	1	1.	1					
MA Commission on Ore Microscopy QDF. Pattern reviewed by	111 3 - 1	-	1	1	-					
folzer, J., McCarthy, G., North Dakota State Univ., Fargo, ND, USA	11.023	1	1	1						
CDD Grant in Aid (1990. Validated by calculated pattern except for	116.268	4		1	91					
he following: 2,278 23 102, 1,963 28 110, ± 753 23 103. Calculated	120.230	5	3	1	S					
nation indicates that the following reflections might be observable	122 967		2	ŵ.	1.					
i 130 <1 001 2 043 <1 003; 1 8744 <1 111 i 4177 <1 113 i 2260	122.10		1							

_ _

2 1996 JCPDS International Centre for Diffraction Data. All rights reserved.

2:02	20		Int	h	k	1	20		hπ	h	
Zirconium Oxide	17	419	- 3	0	ο	1	65 :	884-	4	1	
	24.	048	14	1	1	0	68.9	912*	1	2	
	24	441	10	0	1	l	69.0	520*	<1	3	
Baddeleyite, syn	28	175	100	1	1	1	70	190*	<1	3	
Rad CuKall: 1.5405 Filter: Graph Monodisp: Diffractometer	31.	468	68	1	1	1	71.0	071*	2	2	
(here a 2) 17 7 194 (12) (from the second se	34.	160	21	2	0	0	71.2	300*	4	4	
Cutoff 47.7 Int. Diffract. 1/1cor. 2.6	34	383	- 1 1	0	2	0	71 9	250-	1	4	
Ref. McMurdie, H et al., Powder Diffraction, 1, 275 (1986)	32.	303	- 13	2	2	2	72.	104-	1	2	
	30.	306	1	1 2	~	01	72 -	130-	<1	0	
	38	541.	- 4	1	2	0	72.0	580*	~1	2	
Svs Monoclinic S.G P21/a (14)	39	411	<1	ô	ĩ	2	74 6	582*	2	ň	
	39.	990	<1	2	i	ĩ	75.0)46*	4	ĩ	
a 5 3129(4) 6. 5.2125(4) 6: 5.1471(5) A: 1.0193 C 0.9875	40.	725	12	ī	I	2	76 4	110*	1	1	
α β: 99.218(8) γ Z. 4 mp.	41.	150	5	2	0	1	77.3	92*	<]	з	
Ref: Ibid	41.3	374	5	ī	2	1	78.0)79-	< 1	4	
	44.1	826	• 7	2	1	3	78 8	866*	1	0	
	45.	522	6	2	0	2					
Dx: 5.817 Dm: SS/FOM ₃ E-111(.0073, 37)	48.	949	2	2	1	2					
30	49.	200	18	2	2	0					
Color: Colorless	50.	110.	22	0	2	2					
Peak height intensity. The mean temperature of the data	50	1034	13	ź	2	2					
collection was 25.5° Sample was obtained from	54	1044		ó	ő	ž.					
Titanium Alloy Manufacturing Co. (1990) and was	54.0	580*	<1	2	ž	1					
heated to 1300° for 48 hours. CAS #: 1314-23-4.	55.3	270	11	۲ī.	2	21					
Spectrographic analysis showed that this sample	55.4	4004	11	3	1	ō'					
between ()) and () () 1% each of Eq. Si and Ti Dettern	55 :	570*	9	3	1	1					
reviewed by Holzer I. McCarthy G. North Dakota State	55 8	883*	6	0	з	1					
Univ Fargo ND USA ICDD Grant-in-Aid (1990)	57.	168	7	1	1	3					
Agrees well with experimental and calculated natients	57.8	8614	4	1	3	1					
Additional weak reflections [indicated by brackets] were	58.2	268	3	2	2	2					
observed. o(I ob)= ±1. There are a number of	59.1	775*	8	1	3	1					
polymorphic forms of Zr O2 stable at different	60.0	122.	7	2	0	3					
temperatures and pressures. The structure of Zr O2	61 2	567*	2	3	1	1					
(baddeleyite) was determined by McCullough and	61.5	284	2	3	1	2					
Trueblood (1) and confirmed by Smith and Newkirk (2).	64.0	170+	1	2	2	3					
O2 Zr type. Also called: zirconium dioxide.Also called	64.0	250*	2	2	2	0					
zirkite.Silver, fluorophlogopite used as an internal	64 9	266*	<1	á	7	2					
stands. PSC mP12. To replace 13-307 and 36-420 and	65.3	84-	2	2	3	ĩ					
validated by calculated pattern 24-1165. Mwt: 123.22	65 7	700*	6	õ	2	3					
Volume[CD]: 140-70.					-						

04-0477						W.	velength	1 5-1	050	,	
TiO2		20	Int	11	k	1	20	Int	h	ŀ	1
Titanium Oxide		25.3541	00	1	υ	1	120.39	1 2	2	2	я
		36.883=	9	1	0	3	135.88	2 <1	3	2	7
		37 784-	22	0	Ó	4	137.38	4 .3	4	1	5
Anatase, syn		38 506-	2	1	1	2	143 96	5 ł	3	()	5
Rad CuKall: 1 \$405	Eilter Ni Beta DM dash Differentemente	48.076*	33	2	-0	0	149.18	\$ 3			
		53 921-	21	1	0	5					
Cut off Int Diff	raet. I/Icor	55114*	19	2	1	1					
Ref Swanson, Fatre F	rivate Communication (1950)	62.073*	4	2	1	3					
		62.726*	13	2	0	4					
		68 594*	5	1	1	0					
		70 357-	5	-2	3	0					
Sys Tetragonal	S.G 14 ₁ /amd (141)	75 092-	10	2	1	5					
15785 b	e. 9 51 A C 2 5139	76.082*	1		0	1					
		82 204*	2	1	<u> </u>	5					
ta D	$\gamma = 2 + m_{\rm P}$	611.38*		1		4					
Rei Ibid		- 20 258*		~	7						
		92.170*			4	- I					
		107 5 25	4	5	0	ž					
Dx 3 899 Dm	SSA OM25 8(062, 48)	107.323	- 14	4	in	CV .					
		113 914		3	2	4					
		11111111111	4	1	~	-					

@1996.JCPDS-International Centre for Diffraction Data. All rights reserved

	05					20	[111]	h	k	I.	2 u	Int		k	1
Lead Zueomun	Fitam	um C)sade			21.4	32* 9	0	0	1	78 37	0+ 0			F
		u				22.0	23412	1	ä	ò	85.09	ó* a		- 24	÷.
						30.9	42100	1	0	1	86.03	a* a	4	0	,
						31.3	87100	1	1	Ó	86.99	2+ 4	3	5	ā
						382	83*15	1	1	1	88.98	5*15	1		3
Rad CuKa X 1 5	>418	Pilte	er Nillse	ta∪M d-s	p. Diffractomet	^{or} 43.6	63* 9	0	0	2	90.02	3+15	1.1	1	2
Cutoff Int	Diff	fract	1	lcor.		44 9	17*16	2	0	0	91.08	9715	.3	1	1
Def K. Lever and K.		1 6	1	· · · · · · · · ·	34 360 0025	494	24* 5	1	0	2	96.09	2*-11	0	0	đ
Kel Karegawa, R		1., 50	na state	Commun.	, 24, 709 (1977	50.4	17* 6	2	0	1	- 29 621	7*~1	1	0	(\cdot)
						50.4	17* 6	2	1	0	100.31	$9 \ll 1$	1	\odot	4
	-	-				53.3	90* 5				101.88	1 ~ 1	2	2	4
Svs Tetragonal			S.G.			54.7	34*12	1	1	2	102.99	n i	- R	- 2	- 2
. 4.036 b			4 146	~	C: 1.027	55.5	24*24	2	1	1	104.60	2 2	1	1	-1
						64.4	34* 9	0	2	2	106.18	35 2	.3	()	3
Ω.		Ŷ		Z. 1	mp	65.3	98* 5	2	2	0	107.98	11 4	-1	1	1
Ref Ibid.						67.8	10* 2	0	O	3	108.31	3 4	3	.3	0
						69.0	02* 6	2	1	2	110.59	5 1	1	3	3
						69.6	45 6	2	2	1	112.47	3 <1		.3	1
D., 9 006 D.	m		SS/FO	Ma #=15(.	060, 34)	69.6	45* 6	د	0	0	113.44	6 2	2	0	4
DX: 8.000 DI			~~~~~				257 6		0	3	116.41	1 6	- 4	0	- 2
178- 8.006 Di				30		72.2	(F = 1)	~	~		110.41				
Color: Light yellc						74.0	65* 9	3	0	1	117.23	5 6	4	2	0
Color: Light yells No composition f	w luctua	ation.	Silicon	used as an	internal	74.0	65* 9 65* 9	3	0	1	117.23	5 6 6 6	4	22	040
Color: Light yelle No composition f stand, Mwt. 325.6	iuctua 52. Ve	ation. olume	Silicon 2[CD]: 67	used as an 7.54.	internal	74.00	65* 9 65* 9 88* 2	3 3 1	0 1 1	1 0 3	117.23 118.07 121.16	5 6 6 6 7 1	4	2 2 1	0 4 2
26 26 121.862 121.862 124.798 126.131	Int 1 3 2	ation. plume h k 4 2 2 3 3 3	Silicon s[CD]: 67 1 3 2	used as an 7.54.	internal	74.0	65* 9 65* 9 88* 2	3 3 1	0 1 1	1 0 3	117.23 118.07 121.16	15 6 26 6 17 1	4	2 2 1	0 4 2
26 26 121.862 124.798 126.131 133.607	Int Int Int Int Int	ation. olume h k 4 2 2 3 3 3 2 2	Silicon ={CD]: 6 ⁻¹ 1 3 2 4	used as an	internal	74.0	65* 9 65* 9 88* 2	3 3 1	0 1 1	1 0 3	117.23 118.07 121.16	5 6 76 6 77 1	4	2 2 1	0 4 2
26 26 121.862 123.862 124.798 126.131 133.607	Int 1 2 1 5	ation. olume b k 4 2 2 3 3 3 2 2 0 0	: Silicon ={CD]: 67 1 3 2 4 5	used as an 7.54.	internal	74.00 74.00 76.51	65* 9 65* 9 88* 2	3 1	0 1 1	1 0 3	117.23 118.07 121.16	5 6 76 6 7 1	4 1 1	2 2 1	0 4 2
20 20 121.862 124.862 124.862 124.798 126.131 133.607 136.843 137.195	Int 1 1 1 5 5	ation. plume 4 2 2 3 3 3 2 2 0 0 4 2	Silicon ={CD]: 6' 1 3 2 4 5 2	used as an 7.54.	internal	74.00	65* 9 65* 9 88* 2	31	01	1 0 3	117.23 118.07 121.16	5 6 6 7 1	4	2 2 1	0 4 2

2015-0-2020												_	-
PETICI				2.6	Int	31	1c	1	-* U	lat	ы	١c	
Lead Titamum Ox	iste-			14.330*	2.2	2	0	0	57.530*	<2	,	2	
				22.760-	55	د	ı.	Ú	37.610-	2	5	•	
				24.460=	к	2	1	3	59.620*	2	6	4	
				24.460*	ы	o	ø	4					
				28.910-	22	-1	ο	0					
Rad.: CuKa A: U.S	418 Filter	d-	≅P:	30,710	00	3	3	Ó					
Cut off int		1/1× or.:		32,000*	45	3	2	3					
			0.14	32.400*	12	4	>	0					
Ref Cedana, is r	P 186,199, Eur. P	at Appl. ((230)	35,200*	34	4	3	3					
				37.080*	2	5	I.	U U					
				38,200*	Ó	4	0	4					
iss. Lenapoint	5.4.4)		41.310*	2	-1	-4	0					
a 1 . 15 / 40 (1).		-1(**) A	5 1 1 701	42.690*	<1	\$	٢	0					
				41.650*	15	- 5-	3	4					
u p	1	Z.	11.11	43.950*	10	6	U.	0					
Boot Strict				46,450*	-1	¢,	,	0					
				47.750*	0	-1	0	6					
				30 150*	×.:	-4	1	ť>					
134. 131	n	OM	0197 10/1	50,150	< 2	- 10	0	15					
				50,930-	0	- 2	1						
				32.360*			1						
Contraction pe	menated by finant of	er in cetto	ernent	34 1705		0	Ĩ.	~					
Spide arron man-	9 5111017316 R.	eference (en	1017 -	55.400*		,	0	4					
$a_{-}(1, -5, 3) = -1, 3 = -1$		to Volum	et (1)1	56 (10*	1	,	č	0					
2.2.1.92 (0.2								·					

5 0730			-	_	Wa	velengthe i	. 540:	598	1	_
4.2.4.25	3.8	Int	h	*		2.0	Int	6	ke	1
and Zucommin Oside	10.825*	2	0		1	54.016*	30	2		1
	21 325-		0	2	1	54.502-	18	4	i)	1
	21.559-	>	è.	ø	0	55.001*	1	-1	4	12
	27.261=		0	3	1	57 026*	2	2		4
	27 498*	- 14	2		1	37.490-	-1	1	r.	4
Cat + uKa12 1.5405 Filter: Oraph Monout-sp: Diffrectometer	30 332*	66	o	4	0	59.650*	~1	4		3
most 22.1 Int Diffiant	30.519	00	2	2		61.490*	-1	10	6.	5
	31.335=	- 4	0	.1	.2	63 101*		1		÷.
Cer Piatt Bur Stend (U.S.) Monogi 25, 21, 74 (1984)	34 059-	~1	0	2	3	03.530-	v	- 4		0
	35.041*	~1	1			65.96%-	4	1	-	÷,
	35.751*	~1	1	-4		00.301-	ι.		1	.,
es Genarhannin G.G. P2c6 (32)	47.52.5=	2.4	2		0	61.473-		43	6	- 3
a second of the back of the second of the second	38 201*	2	- 62	.4		01.851-		-4	3	3
(5 (1) ST (1) (1 / / 64(1) 2) SK (6(/) A (0.6990) (0.4994	.5 16 5 .5 16 *		2		2	68,084-	1	1	1	0
β p Z, κ mp	40.678-	-1	2	3	2	ou.34#*	2	-4	5	2
	43.458-	24	0	-4	2	68.541*	-1	1	•	5
Cet. Daid.	43.962*	1-4	-1	o	0					
	44.298-	2	2		ż.					
	46.937=	2	0	1	3					
5k # 871 Dm: 55/FOM 3(-44(.0093, 73)	47.820*		- 5	-4						
	48.883*	2	0	6	1					
ulor Gray vellow	49.005-	2	2	-4	2					
'eak height intensity. CAS #: 12060-01-4. The sample was	49.372*	2	4	2						
nade by heating PbO and Zr O2 together at 900 C overnight	50 249-	<1		2	3					
the temperature of data collection was approximately 25.0 C.	51.09K*	-1	3		2					
(1 ob)= 1. Above about 150 C Pb Zr O3 is cubic,	51.548*	-1	2	6	0					
erovskite type, Earlier this phase was considered tetragonal.	52.111-	3	•	3	4					
Distorted perovskite, Ca O3 Ti type, Silicon used as an internal stand, PSC; oP40, Mwt: 346,42, Volume(CD): 570.17.	52.224-	4	2	٠	3					

1996 ICPDS International Centre for Diffraction Data: Att ghts reserved.

	deo						Peak searc	ch	
No	2-theta	d-value	INT.	1/lo	No	2-theta	d-value	INT	1/io
1	14.960	5.91704	895	28	21	53.120	1.72270	421	13
2	17.560	5.04636	465	14	22	54.640	1.67832	340	11
3	24.000	3 70485	269	8	23	55 960	164182	319	10
4	25.240	3.52557	359	11	24	59.720	154711	354	n
5	26 4 4 0	3.36822	312	10	25	63.080	147255	383	12
6	28 160	3.16628	680	21					
7	28.560	3.12284	828	26					
8	29 0 4 0	3.07230	1057	33					
9	30.280	2.94925	3213	100					
10	31.360	2.85010	368	11					
11	31.800	2.81166	585	18					
12	32.480	2.75433	324	10					
13	32.560	2.74775	379	12					
14	34 120	2.62560	300	9					
15	35.680	2.51430	812	25					
16	37.840	2.37559	333	10 f					
17	45 120	2.00777	325	10					
18	46.160	196492	349	11					
19	48.520	187472	486	15					
20	49,200	1.85039	316	10					

XRD data of raw oxide mixture of PLZT (3/52/48)

. .

XRD of PLZT calcined at 850 °C

XRD of undoped	PLZT	powder	calcined
at 950 °C			

	JEC								
No	2-theta	d-value	INT	I/lo	No	2-theta	d value	INŤ	I/lo
1	21.500	4 12966	346	39	1	21.520	4.12587	477	
2	22.700	3.91399	236	27	2	22.060	4.02608	622	
3	30.600	2 91913	879	100	3	31040	287875	2443	
4	31500	283775	447	51	4	31340	2.85188	1410	
5	32.299	276935	250	28	5	38.360	2.34458	650	
6	39,200	2.29625	250	28	6	43.800	2 06516	348	
7	43.900	2 06069	313	36	7	44.900	2.01709	558	
8	54.500	1.68230	310	35	8	49740	1.83156	314	
9	57 200	1.60914	218	25	9	50 540	1.80443	302	
					10	54 960	166930	464	
					11	55 500	165433	609	
					L			ĺ	

XRD of undoped PLZT ceramic sintered at 1250 $^{\rm o}{\rm C}$

XRD of B ₂ O ₃	doped]	PLZT	ceramics	sintered
at 1250 °C				

	JEC			
No	2-theta	d-value	INT	I/lo
1	21 480	4 13346	390	22
2	22 040	4.02969	180	10
3	30 920	288965	1791	100
4	31.320	2.85365	555	31
5	38.280	2.34929	501	28
6	43760	2.06696	363	20
7	44.880	2.01794	345	19
б	49520	1.83918	282	16
9	50 4 4 0	1.80777	189	11
10	54 720	1.67605	35 3	20
11	55 520	165378	482	27

	deo	ÌL		
No.	2-theta	d-value	INT	I/lo
1	21.480	4 13346	387	22
2	21960	4 0 4 4 1 6	189	1
3	30 920	2 88965	1743	100
4	31240	2.86078	595	34
5	38.240	2.35166	441	25
6	43760	2 06696	338	1ġ
7	44 520	203342	204	12
8	44720	202479	298	1
9	49.640	183501	243	14
10	50.240	1.81449	204	1
n	54 720	1.67605	311	1
12	55 4 4 0	1.65598	434	2

XRD of Bi ₂ O ₃ doped PLZT	ceramics
sintered at 1250 °C	

	dec					dec			
No	2-theta	d-value	IN⊺	I/lo	No.	2-theta	d-value	INT	1/ło
1	21 480	4.13346	346	20	1	21479	4 13365	424	24
2	21.920	4.05147	207	12	2	21920	4 05147	182	10
3	30.920	2.88965	1758	100	3	30 920	2 88965	1781	100
4	31.240	2.86077	634	36	4	31.280	2 857 2 1	608	34
5	38.280	2.34929	478	27	5	38.280	2 34929	484	27
6	43.840	2.06337	371	21	6	43760	2 06696	399	22
7	44.800	2.02136	376	21	7	44 840	2 01965	351	20
8	49.520	1.83918	287	16	8	49.560	1.83779	289	16
9	50.360	1.81045	182	10	9	50.440	1.80777	198	11
10	54.800	1.67380	399	23	10	54.800	167380	424	24
n	55.480	1.65488	454	26	11	55.480	1.65488	467	26
12	64.520	1.44312	273	16	12	64.560	1.44232	267	15
10 11 12	54.800 55.480 64.520	1.67380 1.65488 1.44312	399 454 273	23 26 16	10 11 12	54.800 55.480 64.560	167380 1.65488 1.44232	424 467 267	

XRD of CoO doped PLZT ceramics sintered at 1250 °C

XRD of Cr ₂ O ₃ doped PLZT ceramics
sintered at 1250 °C

	JEC			
No	2 theta	d-vaiue	INT	i/!o
1	21440	4 14 108	383	24
2	21960	4.04418	197	12
3	30 880	2.89330	1612	100
4	51,24Q	2.86078	535	33
5	38.740	2.35166	446	28
6	43760	2 06696	36.3	23
7	44 840	2.01965	338	21
8	43 440	1.84197	2 82	17
9	54 720	1.67605	423	26
10	55 480	165488	443	27
11	64 440	144471	258	16

.

JEOL							
No	2 theta	d-value	INT.	I/lo			
1	21520	4 12587	355	22			
2	22 000	4 0.3692	180	Н			
3	31000	288237	1646	601			
4	320	2 85365	548	33			
5	38 320	2 34693	441	27			
6	43800	2 06516	336	20 -			
/	44 920	2 01624	320	19			
č	49520	183918	226	14			
g	50 480	180643	175	11			
10	54 880	167155	422	26			
11	55 560	165269	414	25			
12	64 6 3 9	144075	247	14			

XRD of CuO doped PLZT ceramics sintered at 1250 °C

red	XRD of Fe ₂ O ₃ doped PLZT ceramics
	sintered at 1250 °C

JEOL						
No	2-theta	d-value	IN I	I/lo		No
1	21430	4.13346	388	22		1
2	21.920	4.05147	218	12		2
3	30.920	2.88965	1789	100		3
4	31.240	2.86078	687	38		4
5	38.240	2.35166	482	27		5
6	43.720	2.06876	331	19		6
7	44.840	2.01965	353	20		7
8	49.520	1.83918	257	14		8
9	50.280	1.81314	171	10		9
10	54.800	1.67380	395	22		10
11	55.480	1.65488	442	25		11
12	64.480	1.44392	274	15		

	deol						
No	2-theta	d-value	IN7	I/1o			
1	21.440	4 14 108	416	24			
2	21.920	4 05147	204	12			
3	30. 880	2 89330	1739	100			
4	31.200	286435	536	31			
5	38.240	2.35166	464	27			
6	43720	2 06876	342	20			
7	44.760	2.02307	315	18			
8	49.440	1.84197	261	15			
9	54.680	1.67719	368	21			
10	55.400	1.65708	407	23			
11	64.520	1 4 4 3 1 2	271	16			
-							

XRD of Gd₂O₃ doped PLZT ceramics sintered at 1250 °C

XRD of K ₂ O doped	PLZT	ceramics	sintered
at 1250 °C			

	JEOL							
No	2-theta	d-value	INT.	1/10				
ì	21480	4.13346	365	20				
2	21.960	4.04418	203	11				
3	30 920	2.88965	1806	100				
4	31240	286078	599	33				
5	38.240	2.35166	460	25				
6	43800	2 06516	350	19				
7	44.800	2.02136	350	19				
5	49 520	183918	250	14				
ĝ	50.36 0	1.81045	202	n				
10	54 760	1.67492	355	20				
11	55.440	1.65598	469	26				

	JEC			
No	2-theta	d-value	INT.	1/10
1	21440	4.14108	432	23
2	21960	4.04418	234	13
3	30 920	2 88965	1862	100
4	31280	2 85721	630	34
5	38 320	2 34693	436	23
6	43720	2 06876	347	19
7	44.840	2.01965	369	20
8	49520	183918	277	15
9	50 240	181449	204	11
10	54 760	1.67492	334	21
11	55 480	1.65488	448	24

XRD of Li_2O doped PLZT ceramics sintered at 1250 °C

XRD of Mn ₂ O ₃ doped PLZT ceramics	S
sintered at 1250 °C	

deol								
No.	2-theta	d-value	INT	I/lo				
1	21440	4 14108	357	22				
2	21.920	4 05147	179	11				
3	30 880	2.89330	1619	100				
4	31.240	2.86078	577	36				
5	38.240	2.35166	461	28				
6	43.720	2.06876	351	22				
7	44.800	2.02136	362	22				
8	49.440	1.84197	274	17				
9	50.280	181314	172	11				
10	54.760	1.67492	376	23				
11	55.400	1.65708	439	27				

	JEOL									
No	2-theta	d-value	INŤ	I/lo						
1	21480	4 13346	336	21						
S	22.000	4.03692	205	13						
3	30 960	2 88601	1638	100						
4	31.240	2 86078	574	35						
5	38.320	2.34693	424	26						
6	43.840	2.06337	313	19						
7	44.880	2.01794	317	19						
8	49.480	1.84057	221	13						
9	50 280	1.81314	161	10						
10	54.880	1.67155	374	23						
11	55.520	1.65378	424	26						
12	64.639	1.44075	231	14						

XRD of Nb2O5 doped PLZT ceramicsXRD of NiO doped PLZTsintered at 1250 °Cat 1250 °C

XRD of NiO doped	PLZT	ceramics	sintered
at 1250 °C			

	deol								
No.	2-theta	d~value	INT	1/10					
١	21440	4 14 108	299	18					
2	21,760	4.08090	228	14					
3	30 880	2 89330	1646	100					
4	38.240	2 35166	435	26					
5	43760	2 06696	288	17					
6	44 480	2.03516	296	18					
1	49 400	184336	205	12					
8	50.060	181992	232	14					
ĝ	54.720	167605	320	19					
10	55 400	1.65708	370	22					
1.1	64,560	144232	225	14					
12	64.800	143756	214	13					

deol								
No.	2-ihela	d-value	INT	I/lo				
1	21,440	4 14 108	366	22				
2	21.920	4.05147	210	12				
3	30 880	2.89330	1697	100				
4	31 200	286435	631	37				
5	38 200	2.35403	437	26				
6	43800	2 06516	316	19				
7	44.760	2.02307	355	21				
8	49 520	1.83918	239	14				
9	50.280	1.81314	173	10				
10	54 760	1.67492	358	21				
11	55 440	165598	446	26				
12	64.600	1.44152	239	14				

1.5

deol						deo	L	5	
No	2-lhela	d-value	INŤ	1/10	No.	2-theta	d-value	INT	I/lo
1	21.440	4 14 108	406	22	1	21,480	4 13346	352	20
2	21920	4 05147	232	12	2	21920	4 05147	241	14
3	30 880	2 89330	1887	100	3	30 920	2.88965	1729	100
4	31.240	2.86078	648	34	4	31200	286435	669	39
5	38.280	2.34929	479	25	5	38,240	2.35166	4/4	27
6	43720	2 06876	339	18	6	43800	2 06516	300	17
7	44.760	2.02307	339	18	7	44760	2 02307	355	21
8	48 360	1.88055	147	8	8	49 480	1.84057	238	14
9	49.520	1.83918	255	14	9	50.240	1.81449	200	12
10	54 800	1.67380	391	21	10	54.760	1.67492	351	20
11	55.440	1.65598	449	24	11	55.480	1.65488	456	26

XRD of SeO₂ doped PLZT ceramics sintered XRD of SnO₂ doped PLZT ceramics sintered at 1250 $^{\circ}$ C at 1250 $^{\circ}$ C

XRD of SrO doped PLZT ceramics sintered at 1250 $^{\circ}$ C

XRD of V ₂ O ₅ doped PLZT ceramics sintered
at 1250 °C

deol								
No.	2-theta	d-value	INŤ	I/lo				
1	21440	4 14 108	443	24				
2	21920	4 05147	206	11				
3	30.880	2 89330	1831	100				
4	31240	2.86078	623	34				
5	38 240	2 35166	458	25				
6	43760	2 06696	362	20				
7	44 800	2.02136	362	20				
8	49.560	1.83779	252	14				
9	54 720	167605	340	19				
10	55 360	1.65818	401	22				

-

	JEC)(
No	2 thela	d-value	INT	i/lo
•	21440	4 14108	424	23
2	21920	4 05147	200	11
3	30 920	2.88965	1830	100
4	31 159	2 86803	624	34
IJ	38.280	2.34929	483	26
6	43760	2 0 669 6	371	20
7	44 800	2.02136	330	18
8	49 560	1.83779	279	15
9	50.280	1.81314	204	11
10	54.760	167493	428	23
11	55 4 4 0	165598	429	23
12	64 560	144232	261	14

deol				dec					
No	2-theta	d-value	INT	I/lo	No	2-theta	d-value	IN⊺	I/lo
1	21520	4 12587	301	20	1	21440	4 14 108	456	23
2	21799	4 07 369	258	17	2	21.960	4.04418	211	n
3	30 840	2 89696	1499	100	3	30 880	2.89330	1999	100
4	38.280	2.34929	467	31	4	31240	2.86078	662	33
5	44.000	2.05624	298	20	5	38.240	2.35166	461	23
6	44 520	2 0 3 3 4 2	356	24	6	43.800	2 06516	366	18
7	49.520	1.83918	209	14	7	44.800	2.02136	360	18
8	50.080	1.81992	221	15	8	49.440	1.84197	284	14
9	54.760	1.67492	333	22	9	50.200	1.81585	199	10
10	55.200	1.66261	502	33	10	54.880	1.67155	409	20
11	64.720	1 4 3 9 1 4	265	18	11	55.440	165598	454	23
-					12	63 920	145521	166	8

XRD of WO₃ doped PLZT ceramics sintered XRD of Y₂O₃ doped PLZT ceramics sintered at 1250 °C ______

XRD of ZnO doped PLZT ceramics sintered at 1250 °C

	deol								
No	2-theta	d value	INT	I/Io					
1	21.400	4 14873	385	21					
2	21880	4.05879	208	11					
3	30 88 0	289330	1856	100					
.1	31200	286435	608	33					
5	38.240	2 35166	463	25					
6	43720	206876	386	21					
7	44.800	2 02136	333	18					
8	49.440	184197	271	15					
9	50 400	180911	170	9					
10	54.720	1.67605	407	22					
11	55 440	1.65598	454	24					
12	64 440	144471	261	14					

XRD pattern of sintered PLZT (3/52/48)

XRD pattern of 0.5 at% Nb_2O_5 doped PLZT (3/52/48)

XRD pattern of 0.5 at% WO₃ doped PLZT (3/52/48)

Ions	Formula	Molecular Weight
Ba ²⁺	(Pb _{0.965} La _{0.03} Ba _{0.005})(Zr _{0.5161} Ti _{0.4764})O ₃	322.84
Bi ³⁺	$(Pb_{0.965}La_{0.03}Bi_{0.005})(Zr_{0.51545}Ti_{0.4758})O_{3}$	322.70
Gd ³⁺	$(Pb_{0.965}La_{0.03}Gd_{0.005})(Zr_{0.51545}Ti_{0.4758})O_{3}$	322.97
K⁺	$(Pb_{0.965}La_{0.03}K_{0.005})(Zr_{0.51675}Ti_{0.477})O_3$	323.17
Sr ²⁺	$(Pb_{0.965}La_{0.03}Sr_{0.005})(Zr_{0.5161}Ti_{0.4764})O_{3}$	323.05
Y ³⁺	$(Pb_{0.965}La_{0.03}Y_{0.005})(Zr_{0.51545}Ti_{0.4758})O_3$	323.19
Undoped	$(Pb_{0.97}La_{0.03})(Zr_{0.5161}Ti_{0.4764})O_3$	323.05
B ³⁺	$(Pb_{0.97}La_{0.03})(Zr_{0.51415}Ti_{0.4746}B_{0.005})O_3$	323.06
Co ²⁺	$(Pb_{0.97}La_{0.03})(Zr_{0.5148}Ti_{0.4752}Co_{0.005})O_{3}$	322.71
Cr ³⁺	$(Pb_{097}La_{003})(Zr_{051415}Ti_{04746}Cr_{0005})O_3$	322.30
Cu ²⁺	$(Pb_{0.97}La_{0.03})(Zr_{0.5148}Ti_{0.4752}Cu_{0.005})O_{3}$	323.00
Fe ³⁺	$(Pb_{0.97}La_{0.03})(Zr_{0.51415}Ti_{0.4746}Fe_{0.005})O_3$	323.06
Li ⁺	$(Pb_{0.97}La_{0.03})(Zr_{0.51545}Ti_{0.4758}Li_{0.005})O_3$	323.07
Mn ³⁺	$(Pb_{0.97}La_{0.03})(Zr_{0.51415}Ti_{0.4746}Mn_{0.005})O_3$	323.17
Nb ⁵⁺	$(Pb_{0.97}La_{0.03})(Zr_{0.51285}Ti_{0.4734}Nb_{0.005})O_{3}$	323.09
Ni ²⁺	$(Pb_{0.97}La_{0.03})(Zr_{0.5148}Ti_{0.4752}Ni_{0.005})O_{3}$	323.29
Se ⁴⁺	$(Pb_{0.97}La_{0.03})(Zr_{0.5135}Ti_{0.474}Se_{0.005})O_3$	322.45
Sn ⁴⁺	$(Pb_{0.97}La_{0.03})(Zr_{0.5135}Ti_{0.474}Sn_{0.005})O_{3}$	322.86
V ⁵⁺	$(Pb_{0.97}La_{0.03})(Zr_{0.51285}Ti_{0.4734}V_{0.005})O_{3}$	323.44
W ⁶⁺	$(Pb_{0.97}La_{0.03})(Zr_{0.5122}Ti_{0.4728}W_{0.005})O_3$	322.37
Zn ²⁺	$(Pb_{0.97}La_{0.03})(Zr_{0.5148}Ti_{0.4752}Zn_{0.005})O_{3}$	323.20

Formula and molecular weight of 0.5 at% doped PLZT (3/52/48)

Vita

Mr. Thanakorn Wasanapiarnpong was born on Thursday 9th of May 1974. He was in Samutsakorn. After graduating with a Bachelor Degree in Materials Science from Faculty of Science, Chulalongkorn University in 1998, he worked in Raw Material Preparation division of Siam Sanitary Ware Industry Co. Ltd., for 3 years. He continued a further study in Master Degree in the field of Ceramic Technology at Chulalongkorn University in 1999 and graduated in April 2001.

