พอลิเมอร์ผสมของแป้งมันสำปะหลังและยางธรรมชาติเพื่อเป็นโฟมกันกระแทก

นางสาวปียวรรณ สุรัญชนาจิรสกุล

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาตรมหาบัณฑิต สาขาวิชาปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์ หลักสูตรปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2543
ISBN 974-346-593-6
ถิบสิทธ์ของจุฬาลงกรณ์มหาวิทยาลัย

CASSAVA STARCH-NATURAL RUBBER BLENDS AS SHOCK ABSORBING FOAM

Ms. Piyawan Surunchanajirasakul

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Petrochemistry and Polymer Science

Program of Petrochemistry and Polymer Science

Faculty of Science, Chulalongkorn University

Acadamic Year 2000

ISBN 974-346-593-6

Thesis Title	Cassava Starch-Natural Rubber Blend	s as Shock Absorbing
	Foam	
Ву	Ms. Piyawan Surunchanajirasakul	
Department	Petrochemistry and Polymer Science	
Thesis Advisor	Professor Suda Kiatkhamjornwong, I	Ph.D.
Thesis Co-advisor	Pienpak Tasakorn, Ph.D.	
•	Faculty of Science, Chulalongkorn Univ	versity in Partial
	equirements for the Master's Degree	
	Tofessor Wanchai Phothiphichitr, Ph.D.)	ean of Faculty of Science
Thesis Committee		
A	R DUL	Chairman
(Professo	r Pattarapan Prasassarakich, Ph.D.)	
Suda	or Suda Kiatkamjornwong, Ph.D.)	Thesis Advisor
(Profess		
1		Thesis Co-advisor
(P	rienpak Tasakorn, Ph.D.)	
	u trakanyonely	Member
(Associate	Professor Wimonrat Trakarnpruk, Ph.D.	0.)
E	Jan Collett	Member
(V	Vannee Chinsirikul, Ph.D.)	

ปียวรรณ สุรัญชนาจิรสกุล : พอลิเมอร์ผสมของแป้งมันสำปะหลังและยางธรรม ชาติเป็นโฟมกันกระแทก(CASSAVA STARCH-NATURAL RUBBER BLENDS AS SHOCK ABSORBING FOAM) อ. ที่ปรึกษา : ศ.คร. สุคา เกียรติกำจรวงศ์, อ. ที่ปรึกษาร่วม : อ. คร. เพียรพรรค ซัสคร, 84 หน้า. ISBN 974-346-593-6.

งานวิจัยนี้เป็นการศึกษาวิธีการขึ้นรูปพอลิเมอร์ผสมของแป้งมันสำปะหลังกับน้ำ และแป้งมันสำปะหลังกับยางธรรมชาติเป็นโฟม โคยใช้วิธีการอัคขึ้นรูปด้วยเครื่องอัดแบบ สภาวะ ที่เหมาะสมในการขึ้นรูปจะใช้อุณหภูมิในช่วง 130 – 180 องศาเซลเซียส และความคัน 50-110 kg, cm⁻² เวลา 2 นาที สำหรับการขึ้นรูปโฟมจากแป้งมันสำปะหลังและน้ำ พบว่าปริมาณน้ำในช่วง ร้อยละ 150-200 ของน้ำหนักแห้งของแป้งมันสำปะหลังทำให้สามารถขึ้นรูปได้ดี และได้โฟมที่มีรู พรุนแบบปิคค่อนข้างสม่ำเสมอ การผสมแป้งกับยางธรรมชาติที่อุณหภูมิประมาณ 70 องสาเซลเซียส นั้นจำเป็นต้องมีการเติมสารถคแรงตึงผิวแบบไม่มีประจุ (nonidet P40) เข้าไปในของผสมค้วยเพื่อ ช่วยให้ยางมีความเสถียรและ ไม่จับตัวเป็นก้อนในระหว่างขั้นตอนการผสม พบว่าปริมาณที่เหมาะ สมของ nonidet P40 เป็นร้อยละ 1.5 ของน้ำหนักน้ำยาง โฟมจากพอลิเมอร์ผสมของแป้งมัน สำปะหลังและยางธรรมชาติมีค่าความแข็งแรงต่อแรงอัดและค่ามอดูลัสมากกว่าโฟมจากแป้งเพียง อย่างเดียว และความแข็งแรงของโฟมที่ได้จะมีค่าเพิ่มขึ้นตามปริมาณยางธรรมชาติที่เพิ่มขึ้นด้วย ทั้ง นี้เนื่องมาจากขางธรรมชาติมีความยืดหยุ่นสูงได้ช่วยเสริมความแข็งแรงให้กับแป้ง ปริมาณยางธรรม ชาติที่สามารถผสมกับแป้งมันสำปะหลังได้อยู่ในช่วงร้อยละ 10-50 ของน้ำหนักแห้งของแป้งมัน สำปะหลัง และเมื่อมีการเติมสารเบนโซอิลเพอร์ออกไซค์ปริมาณร้อยละ 2-5 โคยน้ำหนักน้ำยาง เข้าไปในของผสม ได้โฟมที่มีความแข็งแรงเพิ่มมากขึ้น เพราะโมเลกุลของยางเกิดการวัลคาไนซ์ นอกจากนี้ยังได้ศึกษาผลของการเติมสารแคลเซียมคาร์บอเนตปริมาณร้อยละ 5-30 ของน้ำหนักแป้ง มันสำปะหลังลงไปในของผสมด้วย ซึ่งพบว่าโฟมที่ได้มีค่าความแข็งแรงต่อแรงอัคและค่ามอดูลัส เพิ่มขึ้นตามปริมาณแคลเซียมคาร์บอเนตที่เติมเข้าไปเมื่อมีปริมาณแคลเซียมคาร์บอเนตสูงกว่าร้อยละ 5 แต่ขณะเคียวกัน โฟมนั้นก็มีความแข็งเปราะเพิ่มขึ้นค้วย

ภาควิชา -สาขาวิชา ปีโตรเคมีและวิทยาศาสตร์พอลิเมอร์ ปีการศึกษา 2543 ## C417323

: MAJOR PETROCHEMISTRY AND POLYMER SCIENCE

KEY WORD:

CASSAVA STARCH / NATURAL RUBBER / SHOCK ABSORBING FOAM
PIYAWAN SURUNCHANAJIRASAKUL : CASSAVA STARCH-NATURAL
RUBBER BLENDS AS SHOCK ABSORBING FOAM. THESIS ADVISOR :
PROF. SUDA KIATKAMJORNWONG, THESIS CO-ADVISOR : PIENPAK

TASAKORN, Ph.D. 84 pp. ISBN 974-346-593-6.

The foaming process of the mixtures of cassava starch-water and cassava starch-natural rubber latex blends was carried out by compression molding. The appropriate condition to produce an expanded-foam is as follows: a temperature within a range of 130-150°C, 50-110 kgf cm⁻² pressure and the 2 min molding time. For the foam from the cassava starch and water it was found that the level of water in the range of 150-200% by weight of the dry starch could give a good condition of foaming. The resulting foamed material has a uniform closed cell structure. Considering the blending of cassava starch-natural rubber, the natural rubber could not be dispersed in the gelatinized starch when blending at the temperature 70°C. To stabilize and prevent the coagulation of natural rubber in the blending process, Nonidet P40, a non-ionic surfactant, was used. The suitable amount of Nonidet P40 was 1.5% by weight of natural rubber latex. The compressive strength and the storage modulus of the foam obtained increased with increasing natural rubber content due to the high elasticity of the natural rubber and its promotion of more elasticity to the foams. When 2-5% of benzoyl peroxide by weight of natural rubber is added to the rubber latex, the compressive strength of the foam are further increased due to the vulcanization of the rubber. Furthermore, addition of 5-30% calcium carbonate by weight of the dry starch of the blends are also study. It was found that the compressive strength and storage modulus of the foams increased with increasing content of calcium carbonate when its content was higher than 5%. Likewise, the hardness and brittleness of the foams also increased.

ภาควิชา -สาขาวิชา ปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์ ปีการศึกษา 2543 ลายมือชื่อฉิสิต *Piyavan Svruncha* ลายมือชื่ออาจารย์ที่ปรึกษา *Sula Katkam* ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

ACKNOWLEDGMENTS

During the time that it has taken to complete this thesis, many people have assisted throughout this study. The author always appreciate their understanding and helpful advise. She would like to extend her sincerest thanks to the following people:

Professor Dr. Suda Kiatkamjornwong, her advisor, for her valuable guidance and encouragement during the research work and reviewing the thesis. Her kindness will always be remembered Dr Pienpak Tasakorn, her co-advisor, Professor Dr. Pattarapan Prasassarakich, Assistant Professor Dr. Wimonrat Trakarnpruk, and Dr. Wannee Chinsirikul, for their helpful suggestions in the completion of this thesis.

In addition, she wishes to thank National Metal and Material Technology Center (MTEC) for supporting various instruments and raw materials throughout this research work. Special thank is extended to Chulalongkorn University and Mahidol University for library facilities.

Finally, she would like to express her gratitude to her family for encouragement and moral supports. Many thanks should go to her best friends, especially Ms. Chaveewan Rakdee, and everyone, whose names are not mentioned here, who contribute suggestions and supports during the course of research.

CONTENTS

	PA	GE
ABSTRACT (IN T	THAI)	iv
ABSTRACT (IN E	ENGLISH)	V
ACKNOWLEDGN	MENTS	vi
CONTENTS		vii
LIST OF TABLES	S	X i
LIST OF FIGURE	S	xii
ABBREVIATIONS	S	xiv
CHAPTER I INTI	RODUCTION	
1.1 Introduct	tion	I
1.2 Objective	e	2
1.3 Scope of	the Research	2
CHAPTER II THE	EORECTICAL BACKGROUND	
2.1 General (Consideration of Starch	5
2.1.1	Starch Properties.	7
2.1.2	Starch-Plastic Composite.	8
2.2 Natural F	Rubber (NR) Latex	9
2.2.1	Stabilisation of NR Latex	10
2.2.2	Destabilisation of NR Latex.	10
	2.2.2.1 Gelation by Acids	11
	2.2.2.2 Gelation by Salts	11

2.3 Stability of	of Natural Rubber Latex Dispersion in the Blend	11
2.3.1	Theory of Stability of Lyophobic Colloids	12
2.3.2	Adsorption of Surfactant on Spherical Colloids	14
2.3.3	Adsorption of Non-ionic Surfactant on Natural Rubber Lan	tex
	Particle	15
2.4 Peroxide	Vulcanisation	17
2.4.1	Characteristics of Peroxide Vulcanisation	17
2.5 Blending	Process	18
2.6 Plastic Fo	am	19
2.6.1	Methods of Foaming	20
2.6.2	Properties of Foam.	21
2.7 Literature	Reviews	21
CHAPTER III EX	PERIMENTAL	
3.1 Materials	· · · · · · · · · · · · · · · · · · ·	27
3.2 Instrumen	ts	27
3.3 Character	isation of Raw Materials	28
3,3,1	Starch Powder	28
	3.3.1.1 Thermal Property Measurement	29
	3.3.1.2 Particle Size Measurement.	29
3.3.2	Natural Rubber (NR) Latex	29
	3.3.2.1 Total Solid Content (%TSC)	30
	3.3.2.2 Dry Rubber Content (%DRC)	30
	3.3.2.3 Particle Size Measurement	31

3.4 Blending	g Studies	31
3.4.1	Foam from Starch and Water	32
3.4.2	Preparation of NR Dispersed in the Gelatinized Starch	33
3.4.3	Preparation of Starch and Natural Rubber Blended	33
3.4.4	Peroxide Curing of Natural Rubber Latex	34
3.5 Dispersi	on of natural rubber latex in gelatinized starch	35
3.5.1	Polarizing Microscope	35
3.6 Preparat	ion of the Expanded-Foam Material	36
3.7 Morpho	logy of Expanded-Foam Materials	36
3.7.1	Scanning Electron Microscope (SEM) Measurement	36
3.7.2	Reflected Light Microscope	36
3.8 Mechani	cal Properties of Expanded-Foam Materials	37
3.8.1	Determination of Compressive strength	37
3.8.2	Dynamic Mechanical Analysis (DMA)	37
3.9 Effect of	f Calcium Carbonate	38
CHAPTER IV R	ESULTS AND DISCUSSION	
4.1 Starch P	owder Analysis	39
4.2 General	Characteristics of Natural Rubber Latex	41
4.3 Foam fro	om Starch and Water	42
4.3.1	Foaming Process of Starch and Water	42
4.3.2	Cell Structure of Foam from Starch and Water	45
4.4 Stability	of NR Latex Dispersed in the Gelatinized Starch	51
4.5 Effec of	NR Content on the Blending and Foaming Process	53
4.6 Phase M	orphology of the Blend	53

	4.7 M	orpholog	gy of the Foams	. 56
	4.8 Cc	ompressi	ive Strength of the Foams	.59
	4.9 Dy	ynamic l	Mechanical Properties of the Foams	.63
		4.9.1	Effect of NR.	64
		4.9.2	Effect of Benzoyl Peroxide	65
	4.10	Effect	of Calcium Carbonate	.69
CHAI	PTER V	V CON	NCLUTION AND SUGGESTION	
	5.1 Cc	onclusio	n	.74
	5.2 Su	ggestion	n for Further Work	.76
REFE	CRENC	ES		.77
APPE	NDICE	E S		.80
	APPE	NDIX	A	.81
	APPE	NDIX	B	.83
VITA				Q 1

LIST OF TABLES

TAE	TABLES PAGE		
3.1	Formulation of starch and water	32	
3.2	Effect of the amount of non-ionic surfactant on the blend of starch and NR.	33	
3.3	Formulation of starch and natural rubber latex	34	
3.4	Formulation for varies amount of benzoyl peroxide in the mixture	35	
4.1	Solid contents of NR latex used in this study	41	
4.2	The compositions and the characteristics of the foams.	.48	
4.3	Effect of the amount of Nonidet P40 used for dispersing NR latex in the		
	gelatinized starch	52	
4.4	Compressive strength of the foams	61	
4.5	The percentage increase in compressive strength of the foams with varies		
	NR content	.62	
4.6	The percentage increase in compressive strength of the foams with varies		
	benzoyl peroxide content	62	
4.7	The storage moduli (E'), loss moduli (E"), T_g , and $\tan \delta$ of starch/NR foams	66	
4.8	Compressive strength of the starch/NR foams with and without calcium		
	carbonate	71	
4.9	The storage moduli(E'), loss moduli(E"), T_g , and tan δ of starch/NR foams		
	with and without calcium carbonate.	.71	
4.10	The percentage increase in compressive strength of the foams with varies		
	CaCO ₃ content	.73	

LIST OF FIGURES

rigu	RES	C.
2.1	Components of normal cornstarch	6
2.2	Potential energy of interaction as a function of distance between two	
	spherical particles 1	3
2.3	Potential energy curves of interaction against distance for interaction between	en
	two spherical particles adsorbed with non-ionic surfactant: (a) witout potential	al
	energy for repulsion and (b) with potential energy of repulsion.	l 6
2.4	The simple representation of structure of peroxide vulcanisated	7
2.5	Classification of polymer blends	9
3.1	Diagram of apparatus used for the blend preparation	1
4.1	TGA thermogram of the starch powder)
4.2	Particle size distribution of the starch powder in water	0
4.3	Particle size distribution of concentrated NR latex used in this study4	.2
4.4	Photograph of gelatinized starch observed under plane polarized light at	
	20x magnification	5
4.5	Morphology of the foamed showed closed and open cell.	5
4.6	Appearance of the starch foam with increasing the water content4	9
4.7	The cell structure of the foam from starch and water in various water	
	content)
4.8	A proposed model of starch and NR blend: (a) homogeneous, and	
	(b) heterogeneous appearance5	2

4.9	Photograph of starch granules from the starch powder observed under a plane
	polarized light at a 20x magnification
4.10	Optical photographs (a) gelatinized starch, and (b) gelatinized starch/NR blend
	observed under a plane of the polarized light microscope at 20x
	magnification
4.11	Scanning electron micrograph of cross sections of foams at 20x
	magnification: (a) starch; (b) NR 10%; (c) NR 20%; (d) NR 30%; (e) NR 40%;
	(f) NR 50% 57
4.12	Scanning electron micrograph of cross sections of (a) starch and,
	(b) Starch/NR 30%; at 75x magnification. 58
4.13	Compressive strength of the starch/NR foams without Benzoyl Peroxide60
4.14	Compressive strength of the starch/NR foams with Benzoyl Peroxide61
4.15	The storage moduli of the starch and starch/NR foams
4.16	Tan δ and T_g of the starch and starch/NR foams
4_17	The storage moduli of the starch/NR foams with various concentrations of
	benzoyl peroxide
4.18	Tan δ and T_g of the starch/NR foams with various concentrations of benzoyl
	peroxide
4.19	Storage modulus, Tan δ and T_g of the NR latex
4.20	The storage moduli of the starch/NR foams: (a) 0% CaCO ₃ ; (b) 5% CaCO ₃ ;
	(c) 15% CaCO ₃ , (d) 30% CaCO ₃
4.21	Tan δ and T_g of the starch/NR foams: (a) 0% CaCO ₃ ; (b) 5% CaCO ₃ ;
	(c) 15% CaCO ₃ ; (d) 30% CaCO ₃

4.22	Scanning electron micrographs of cross sections of starch/NR/CaCO3 foams
	(a) : (a) 0% CaCO ₃ ; (b) 5% CaCO ₃ ; (c) 15% CaCO ₃ ; (d) 30% CaCO ₃ at 50x
	magnification 73

ABBREVIATIONS

NR Natural rubber

S Starch

W Water

 T_g glass transition temperature

SEM Scanning electron microscopy

DMA Dynamic mechnical analysis

G' storage modulas

G" loss modulus

Tan δ loss tangent