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CHAPTER V

CONCLUSION AND DISCUSSION

By using the first - order semiclassical approximation in the 
Baker - Hausdorff lemma, one can get the propagator for the potential
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It IS reduced to the well known propagator for the SHO. in eq.

(4.3.33)
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when b IS zero

' J (5.1.3)

which corresponds to the free - particle propagator in eq. (4.3,25 ). Obviously 
we can see how the arbitrary constant b in eq. (5.1.1) affects anharmonic 
pan o f the propagator.
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From equations o f motion (3.2.11) and (3.2.14). one can show 
the first - order approximation should give the second harmonic behavior . I f  
the anharmonic part is rearranged to get the expected result as following:
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It is an interesting to expect in general that the ท,1' order 
approximation w ill give the (ท1-1) th harmonic term ((ท! 1 )® 0 . This means

that the exact propagator w ill be composed o f all harmonic. This IS the 
answer why the propagator is very complicated, too complicated to be solved 
by the path integral technique.
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