REFERENCES

- Lee, H. and Neville, K. <u>Handbook of Epoxy Resin</u>. New York : McGraw-Hill, 1967.
- Clayton, A. and May, I. <u>Epoxy Resins. Chemistry and Technology.</u> New York : Marcel Dekker, 1988.
- George Odian. <u>Principles of Polymerization</u>. New York : John Wiley & Sons, 1981.
- Malcom. P. Stevens. <u>Polymer Chemistry.</u> New York : Oxford University Press, Inc., 1990.
- Kurnoskin, A.V. <u>Handbook of Applied Polymer Processing Technology</u>. New York : Marcel Dekker, 1996.
- Gary, C. "Cure Kinetics of a Low Epoxide/Hydroxyl Group Ratio Bisphenol-A Epoxy Resin Anhydride System by Infrared Absorption Spectroscopy," J. Appl. Polym. Sci. 1981, 26, 4259-4278.
- Steinmann, B. "Anhydride-Cured Epoxies via Chain Reaction. 1. The Phenyl Glycidyl Ether/ Phthalic Acid Anhydride System," *Macromolecules*. 1991, 24, 4738-4744.
- Kurnoskin, A.V. "Epoxy Chelate Copper-Containing Polymers : Their Chemistry and Production," *Polym.-Plast. Technol. Eng.* 1992, 31(5&6), 505-525.
- Lin, K.F.; Shu, W.Y.; and Wey, T.L. "Organotransition Metal Complexes as Additives for Epoxy Resins. 1. Their Effects on Toughness and Morphology of Epoxy Resins," *Polymer*. 1993, 34(2), 277-279.
- Lin, K.F.; Shu, W.Y.; and Wey, T.L. "Organotransition Metal Complexes as Additives for Epoxy Resins. 2. Interaction with Epoxy Resins," *Polymer*. 1993, 34(10), 2162-2168.

- Anand, M. and Srivastava, A.K. "Synthesis and Characterization of Epoxy Resins Containing Transition Metals," *Polymer.* 1993, 34, 2860-2864.
- Anand, M. and Srivastava, A.K. "Synthesis and Characterization of Epoxy Resins Containing Arsenic Acrylate," *Polym. Eng. Sci.* 1997, 37(1), 183-187.
- Kurnoskin, A.V. "Thermal Oxidative Destruction of Epoxy Polymer," J.M.S. REV. Macromol. Chem. Phys. 1995, 35, 419.
- Kurnoskin, A.V. "The Influence of Intracomplex Compounds of Copper and Cadmium on the Properties of Epoxy Amine System," *Polym. Eng. Sci.* 1992, 32(14), 956-963.
- Kurnoskin, A.V. "Metalliferous Epoxy-Chelate Polymers," J.M.S.-REV. Macromol. Chem. Phys. 1996, 36(3), 457-599.
- Kurnoskin, A.V. "Metalliferous Epoxy-Chelate Polymers. 1. Synthesis and Properties," *Polymer*. 1993, 34(5), 1060-1067.
- Kurnoskin, A.V. "Polymer Based on Epoxy Oligomers and Hardeners. Chelates of Metals with Aromatic and Heterocyclic Amine," *Ind. Eng. Chem. Res.* 1992, 31, 524-529.
- Kurnoskin, A.V. "Heat Resistant of Metal-Containing Epoxy Chelate Polymer," *Polym. Degrad. Stab.* 1992, 37, 51-59.
- Kurnoskin, A.V. "Diane Oligomer : Heat Resistant Increase by Metal Ions," *Polym.-Plast. Technol. Eng.* 1991, 30(7), 737-750.
- Kurnoskin, A.V. "Metal Salicyraldimines as Modifiers of Epoxy Polymers," *Polym.-Plast. Technol. Eng.* 1992, 31(5&6), 441-450.
- Kurnoskin, A.V. "Epoxy Polymer Modification with Metals," *Polymer Composites*. 1993, 14(6), 481-490.
- 22. Tongraung, P. Synthesis of Metal Containing Epoxy Polymer. Master's Thesis, Department of Chemistry, Graduate School, Chulalongkorn University, 1997.

- Matejka, L.; Lovy, J.; Pokorny, K.; Bouchal, K. and Dusek, K. "Curing Epoxy Resins with Anhydrides. Model Reactions and Reaction Mechanism," J. Appl. Polym. Sci. 1983, 21, 2873-2885.
- Boschel, D. and Fedtke, M. "Reaction Behavior of Resol and Novolac Model Compounds with Acid Anhydrides," Angew. Makromol. Chem. 1994, 220, 163-176.
- 25. Boschel, D. and Fedtke, M. "Zur Hartung von Diandiglycidylether mit anhydridmodifizierten phenolischen Hartern und zu vergleichbaren in situ-Reaktionen," Angew. Makromol. Chem. 1996, 239, 201.
- 26. Boschel, D.; Fedtke, M. and Geyer, W. "Investigation of Modified Phenolic Hardeners and Curing of An Epoxy Resin by TG-FTIR," *Polymer.* 1997, 38 (6), 1291-1296.

APPENDICES

.

.

.

Figure A. 3.1 Isothermal (150 °C) DSC thermogram of CuL : MA : DGEBA at the mole ratio of 0.2 : 0.2 : 1

Figure A. 3.2 Isothermal (150 °C) DSC thermogram of CuL : MA : DGEBA at the mole ratio of 0.3 : 0.3 : 1

Figure A. 3.3 Isothermal (150 °C) DSC thermogram of CoL : MA : DGEBA at the mole ratio of 0.2 : 0.2 : 1

Figure A. 3.4 Isothermal (150 °C) DSC thermogram of CoL : MA : DGEBA at the mole ratio of 0.3 : 0.3 : 1

Figure A. 3.5 Isothermal (180 °C) DSC thermogram of NiL : MA : DGEBA at the mole ratio of 0.2 : 0.2 : 1

Figure A. 3.6 Isothermal (180 °C) DSC thermogram of NiL : MA : DGEBA at the mole ratio of 0.3 : 0.3 : 1

Figure A. 3.7 Isothermal (190 °C) DSC thermogram of ZnL : MA : DGEBA at the mole ratio of 0.2 : 0.2 : 1

Figure A. 3.8 Isothermal (190 °C) DSC thermogram of ZnL : MA : DGEBA at the mole ratio of 0.3 : 0.3 : 1

Figure A. 3.9 Isothermal (150 °C) DSC thermogram of CuL : MA : DGEBA at the mole ratio of 0.2 : 0.2 : 1 and Bu₄NOH was employed as a catalyst

Figure A. 3.10 Isothermal (150 °C) DSC thermogram of DGEBA : MA at the mole ratio of 1 : 2.8 and BDMA was employed as a catalyst

Figure A. 3.11 Isothermal (150 °C) DSC thermogram of CoL : MA : DGEBA at the mole ratio of 0.2 : 0.2 : 1 and Bu₄NOH was employed as a catalyst

Figure A. 3.12 Isothermal (180 °C) DSC thermogram of NiL : MA : DGEBA at the mole ratio of 0.2 : 0.2 : 1 and Bu₄NOH was employed as a catalyst

Figure A. 3.13 Isothermal (190 °C) DSC thermogram of ZnL : MA : DGEBA at the mole ratio of 0.2 : 0.2 : 1 and Bu₄NOH was employed as a catalyst

Figure A. 3.14 DMA thermogram of Cu-containing epoxy polymer at the mole ratio of CuL : MA : DGEBA 0.1 : 0.1 : 1

Figure A. 3.15 DMA thermogram of Cu-containing epoxy polymer at the mole ratio of CuL : MA : DGEBA 0.3 : 0.3 : 1

Figure A. 3.16 DMA thermogram of Cu-containing epoxy polymer at the mole ratio of CuL : MA : DGEBA 0.4 : 0.4 : 1

Figure A. 3.17 DMA thermogram of Co-containing epoxy polymer at the mole ratio of CoL : MA : DGEBA 0.1 : 0.1 : 1

Figure A. 3.18 DMA thermogram of Co-containing epoxy polymer at the mole ratio of CoL : MA : DGEBA 0.2 : 0.2 : 1

Figure A. 3.19 DMA thermogram of Co-containing epoxy polymer at the mole ratio of CoL : MA : DGEBA 0.3 : 0.3 : 1

Figure A. 3.20 DMA thermogram of Co-containing epoxy polymer at the mole ratio of CoL : MA : DGEBA 0.4 : 0.4 : 1

Figure A. 3.21 DMA thermogram of Ni-containing epoxy polymer at the mole ratio of NiL : MA : DGEBA 0.1 : 0.1 : 1

Figure A. 3.22 DMA thermogram of Ni-containing epoxy polymer at the mole ratio of NiL : MA : DGEBA 0.2 : 0.2 : 1

Figure A. 3.23 DMA thermogram of Ni-containing epoxy polymer at the mole ratio of NiL : MA : DGEBA 0.3 : 0.3 : 1

62

Figure A. 3.25 DMA thermogram of Zn-containing epoxy polymer at the mole ratio of ZnL : MA : DGEBA 0.1 : 0.1 : 1

Figure A. 3.26 DMA thermogram of Zn-containing epoxy polymer at the mole ratio of ZnL : MA : DGEBA 0.2 : 0.2 : 1

Figure A. 3.27 DMA thermogram of Zn-containing epoxy polymer at the mole ratio of ZnL : MA : DGEBA 0.3 : 0.3 : 1

Figure A. 3.28 DMA thermogram of Zn-containing epoxy polymer at the mole ratio of ZnL : MA : DGEBA 0.4 : 0.4 : 1

Figure A. 3.29 DMA thermogram of Cu-containing epoxy polymer at the mole ratio of CuL : MA : DGEBA 0.1 : 0.1 : 1 and Bu₄NOH was employed as a catalyst

Figure A. 3.30 DMA thermogram of Cu-containing epoxy polymer at the mole ratio of CuL : MA : DGEBA 0.2 : 0.2 : 1 and Bu₄NOH was employed as a catalyst

Figure A. 3.31 DMA thermogram of Cu-containing epoxy polymer at the mole ratio of CuL : MA : DGEBA 0.3 : 0.3 : 1 and Bu₄NOH was employed as a catalyst

Figure A. 3.32 DMA thermogram of Co-containing epoxy polymer at the mole ratio of CoL : MA : DGEBA 0.1 : 0.1 : 1 and Bu₄NOH was employed as a catalyst

Figure A. 3.33 DMA thermogram of Co-containing epoxy polymer at the mole ratio of CoL : MA : DGEBA 0.2 : 0.2 : 1 and Bu₄NOH was employed as a catalyst

Figure A. 3.34 DMA thermogram of Co-containing epoxy polymer at the mole ratio of CoL : MA : DGEBA 0.3 : 0.3 : 1 and Bu₄NOH was employed as a catalyst

Figure A. 3.35 DMA thermogram of Ni-containing epoxy polymer at the mole ratio of NiL : MA : DGEBA 0.1 : 0.1 : 1 and Bu₄NOH was employed as a catalyst

Figure A. 3.36 DMA thermogram of Ni-containing epoxy polymer at the mole ratio of NiL : MA : DGEBA 0.2 : 0.2 : 1 and Bu₄NOH was employed as a catalyst

Figure A. 3.37 DMA thermogram of Ni-containing epoxy polymer at the mole ratio of NiL : MA : DGEBA 0.3 : 0.3 : 1 and Bu₄NOH was employed as a catalyst

Figure A. 3.38 DMA thermogram of Zn-containing epoxy polymer at the mole ratio of ZnL : MA : DGEBA 0.1 : 0.1 : 1 and Bu₄NOH was employed as a catalyst

Figure A. 3.39 DMA thermogram of Zn-containing epoxy polymer at the mole ratio of ZnL : MA : DGEBA 0.2 : 0.2 : 1 and Bu₂NOH was employed as a catalyst

Figure A. 3.40 DMA thermogram of Zn-containing epoxy polymer at the mole ratio of ZnL : MA : DGEBA 0.3 : 0.3 : 1 and Bu₄NOH was employed as a catalyst

Figure A. 3.41 DMA thermogram of DGEBA-MA system at DGEBA : MA ratio of 1 : 2.8 and BDMA was employed as a catalyst

Figure A. 3.42 DMA thermogram of DGEBA-DETA system at DGEBA : DETA

VITA

Nongnuch Sutivisedsak was born on February 21, 1975 in Bangkok, Thailand. She received Bachelor Degree of Science in Chemistry, Chulalongkorn University, in 1996. In the same year, she was a student in graduate school at Chulalongkorn University studying in Chemistry and has been studying science since then. She graduated with Master Degree of Science in 1999.

