HYDROGEN PRODUCTION FROM WATER SPLITTING UNDER VISIBLE LIGHT IRRADIATION USING SENSITIZED TiO₂-ZrO₂ MIXED OXIDE PHOTOCATALYSTS

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2010

530027

Thesis Title:	Hydrogen Production from Water Splitting under Visible Light		
	Irradiation Using Sensitized TiO ₂ -ZrO ₂ Mixed Oxide		
	Photocatalysts		
By:	Lawan Kokporka		
Program:	Petrochemical Technology		
Thesis Advisors:	Asst. Prof. Thammanoon Sreethawong		
	Assoc. Prof. Sumaeth Chavadej		

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

T-Suthay

Dean

(Asst. Prof. Thammanoon Sreethawong)

Sumaith Chravale

(Assoc. Prof. Sumaeth Chavadej)

Prawolh B/

(Assoc. Prof. Pramoch Rangsunvigit)

S. Sutter

(Dr. Singto Sakulkhaemaruethai)

ABSTRACT

5171006063: Petrochemical Technology Program

 Lawan Kokporka: Hydrogen Production from Water Splitting
 under Visible Light Irradiation Using Sensitized TiO₂-ZrO₂ Mixed
 Oxide Photocatalysts
 Thesis Advisors: Asst. Prof. Thammanoon Sreethawong and Assoc.
 Prof. Sumaeth Chavadej 101 pp.

 Keywords: Photocatalysis/ Water Splitting/ Hydrogen Production/

 Mesoporosity/ TiO₂-ZrO₂ Mixed Oxide/ Visible Light

Alternative energy resources, especially hydrogen, are now being considered as an ideal energy supplies. Photocatalytic water splitting is a promising process for producing hydrogen, by using solar light as an energy source and using water as a feedstock. This research was focused on the hydrogen production from the photocatalytic water splitting under visible light irradiation using Eosin Y-sensitized Pt-loaded mesoporous-assembled TiO₂-ZrO₂ mixed oxide photocatalysts, of which the mesoporous-assembled TiO₂-ZrO₂ with various Ti-to-Zr molar ratios were synthesized by a sol-gel process with the aid of a structure-directing surfactant. Various parameters affecting the photocatalytic activity, including calcination conditions, phase composition, and amount and method of Pt loading, were studied. The experimental results showed that without Pt loading, the TiO₂-ZrO₂ photocatalyst with a Ti-to-Zr molar ratio of 95:5 calcined at 800°C provided the maximum photocatalytic hydrogen production activity. Moreover, the Pt loading by a photochemical deposition method (PCD) was found to greatly enhance photocatalytic activity of the TiO₂-ZrO₂ photocatalyst more than that by a single-step sol-gel method (SSSG).

ลาวัณย์ ก๊กพ่อค้า: การผลิตไฮโครเจนจากการแตกโมเลกุลของน้ำภายใต้สภาวะที่มีแสง ในช่วงตามองเห็นโคยใช้ตัวเร่งปฏิกิริยาออกไซค์ผสมระหว่างไททาเนียมออกไซค์และเซอร์โค เนียมออกไซค์ที่เกาะตัวกันจนมีรูพรุนขนาคเมโซพอร์ที่ถูกกระตุ้น (Hydrogen Production from Water Splitting under Visible Light Irradiation Using Sensitized TiO₂-ZrO₂ Mixed Oxide Photocatalysts) อ. ที่ปรึกษา: ผศ. คร. ธรรมนูญ ศรีทะวงศ์ และ รศ. คร. สุเมธ ชว เดช 101 หน้า

ในปัจจุบันแหล่งพลังงานทางเลือกใหม่ โดยเฉพาะอย่างยิ่งไฮโครเจน ถูกพิจารณาว่าเป็น แหล่งพลังงานในอุคมคติ ปฏิกิริยาการแตกโมเลกุลของน้ำโคยใช้ตัวเร่งปฏิกิริยาแบบใช้แสงร่วม เป็นกระบวนการที่น่าสนใจในการผลิตไฮโครเจน โคยการใช้แสงเป็นแหล่งพลังงานและใช้น้ำเป็น สารตั้งต้น งานวิจัยนี้มุ่งเน้นการผลิตไฮโครเจนจากกระบวนการแตกโมเลกุลของน้ำค้วยปฏิกิริยา แบบใช้แสงร่วมภายใต้สภาวะที่มีแสงในช่วงที่ตามองเห็น โคยใช้ตัวเร่งปฏิกิริยาแบบใช้แสงร่วม ชนิดออกไซด์ผสมระหว่างไททาเนียมออกไซด์และเซอร์โคเนียมออกไซด์ที่มีการเติมตัวเร่ง ้ปฏิกิริยาร่วมแพลทินัมและมีการกระตุ้นด้วยสีย้อม โดยตัวเร่งปฏิกิริยาแบบใช้แสงร่วมชนิด ้ออกไซด์ผสมตั้งกล่าวที่มีอัตราส่วนโดยโมลของไททาเนียมออกไซด์ต่อเซอร์โกเนียมออกไซด์ที่ ้ ค่าต่างๆนี้ได้ถูกสังเคราะห์ขึ้นโดยกระบวนการโซลเจลควบคู่กับการใช้สารลดแรงตึงผิวเป็นสาร ด้นแบบ โดยได้ศึกษาถึงตัวแปรต่างๆที่มีผลต่อประสิทธิภาพในการเร่งปฏิกิริยาเชิงแสงของตัวเร่ง ้ปฏิกิริยา ได้แก่ สภาวะในการแคลไซน์ องค์ประกอบเฟสของตัวเร่งปฏิกิริยาและปริมาณและ วิธีการเติมแพลทินัม จากผลการทดลองพบว่าในกรณีที่ไม่มีการเติมแพลทินัม ตัวเร่งปฏิกิริยาแบบ ใช้แสงร่วมที่มีก่าอัตราส่วน โดยโมลของไททาเนียมต่อเซอร์ โกเนียม ที่ก่า 95 ต่อ 5 และแกลไซน์ที่ อุณหภูมิ 800 องศาเซลเซียสนั้น มีประสิทธิภาพในการผลิตไฮโครเจนมากที่สุด นอกจากนี้การเติม แพลทินัมลงบนพื้นผิวของตัวเร่งปฏิกิริยาแบบใช้แสงร่วมด้วยวิธีการยึดเกาะด้วยกระบวนการเคมี โดยใช้แสงร่วม (Photochemical deposition method: PCD) ถูกพบว่าช่วยเพิ่มประสิทธิภาพ การผลิตไฮโครเจนของตัวเร่งปฏิกิริยาแบบใช้แสงร่วมชนิคออกไซค์ผสมระหว่างไททาเนียม ออกไซค์และเซอร์โคเนียมออกไซค์ได้มากกว่าการเติมแพลทินัมด้วยวิธีการโซลเจลแบบขั้นตอน เดียวกับการสังเคราะห์ตัวเร่งปฏิกิริยาออกไซค์ผสม (Single-step sol-gel method: SSSG)

ACKNOWLEDGEMENTS

The author was grateful for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College; by the Center for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University Thailand; and by the Thailand Research Fund (TRF) and the Commission on Higher Education.

The author would like to express her sincere gratitude to Asst. Prof. Thammanoon Sreethawong and Assoc. Prof. Sumaeth Chavadej for their invaluable guidance, understanding, and constant encouragement throughout the course of this research.

She would like to express special thanks to Assoc. Prof. Pramoch Rangsunvigit and Dr. Singto Sakulkhaemaruethai for kindly serving on her thesis committee. Their sincere suggestions are definitely imperative for accomplishing her thesis.

Her gratitude is absolutely extended to all staffs of the Petroleum and Petrochemical College, Chulalongkorn University, for all their kind assistance and cooperation.

Furthermore, she would like to take this important opportunity to thank all of her graduate friends for their unforgettable friendship.

Finally, she really would like to express her sincere gratitude to her parents and family for the love, understanding, and cheering.

TABLE OF CONTENTS

			•			PAGE
	Title I	age				i
	P Title Page Abstract (in English) Abstract (in Thai) Acknowledgements Table of Contents List of Tables List of Figures CHAPTER 1 INTRODUCTION I LITERATURE REVIEW 2.1 Hydrogen: Fuel of the Future 2.2 Water Splitting: Hydrogen Generation Using Solar Energy 2.2.1 Efficiency 2.2.2 Semiconductor 2.2.3 Types of Semiconductor Systems Proposed for Solar Water Splitting 2.2.3.1 Semiconductor Solid State Photovoltaic Based Systems 2.2.3.2 Semiconductor Flectrode (Liquid Junction) Systems 2.2.3.3 Semiconductor Particle Systems 2.3.1 Photocatalysis and Photocatalysts for Hydrogen Generation 2.3.1 Photocatalytic Reactions 2.3.2 Photocatalytic Water Splitting Process 2.3.3 Photocatalysts 2.4 Titanium Oxide Photocatalyst	iii				
	Abstr	act (in Thai)				iv
	Ackno	wledgements				v
	Table	of Contents				vi
	List o	f Tables				ix
	List o	f Figures				xi
CHA	APTER					
	I	INTRODUCT	ION			1
	II	LITERATUR	E REVIEW			4
		2.1 Hydrogen	: Fuel of the F	uture		4
		2.2 Water Spl	itting: Hydrog	en Generation Usi	ng Solar Energy	5
		2.2.1 Eff	ficiency			7
		2.2.2 Set	miconductor			8
		2.2.3 Ty	pes of Semico	nductor Systems P	roposed for	
		So	lar Water Spli	tting		9
		2	.2.3.1 Semico	nductor Solid State	e Photovoltaic	
			Based S	Systems		9
		2.	2.3.2 Semico	nductor Electrode	(Liquid Junction))
			System	S		10
		2.	2.3.3 Semico	nductor Particle Sy	stems	11
		2.3 Photocatal	ysis and Photo	ocatalysts for Hydr	ogen Generation	12
		2.3.1 Ph	otocatalytic R	eactions		12
		2.3.2 Ph	otocatalytic W	ater Splitting Proc	ess	13
		2.3.3 Ph	otocatalysts			15
		2.4 Titanium (Oxide Photoca	talyst		17
		2.4.1 Ge	neral Remarks	5		17

CHAPTER		PAGE
	2.4.2 Crystal.Structure and Properties	17
	2.4.3 Semiconductor Characteristic and Photocatalytic	
	Activity	19
	2.5 Nano-Photocatalysts	21
	2.5.1 General Remarks	21
	2.5.2 Activity of Nano-Photocatalysts	22
	2.6 Chemical Additive for Enhancement of Photocatalytic H ₂	
	Production	23
	2.7 Dye Sensitization	25
	2.8 Composite Semiconductors	27
	2.9 Mixed Oxide System	29
	2.9.1 Preparation of TiO ₂ -ZrO ₂ Mixed Oxides	31
	2.9.2 Structural Characteristics	32
	2.9.3 Acid-Base Properties	34
	2.10 Porous Material	35
III	EXPERIMENTAL	37
	3.1 Materials	37
	3.2 Equipments	37
	3.3 Methodology	38
	3.4 Photocatalyst Characterizations	41
	3.5 Photocatalytic H ₂ Production System	42
IV	RESULTS AND DISCUSSION	44
	4.1 Photocatalyst Characterizations	44
	4.1.1 TG-DTG Results	45
	4.1.2 N ₂ Adsorption-Desorption Results	46
	4.1.3 XRD Results	53
	4.1.4 UV-Visible Spectroscopy Results	62
	4.1.5 SEM-EDX Results	69
	4.1.6 TEM-EDX Results	73

CHAPTER		PAGE
	4.1.7 TPR Results	76
	4.2 Sensitized Photocatalytic Hydrogen Production Activity	80
	4.2.1 Effect of TiO ₂ -to-ZrO ₂ Molar Ratio in Mixed	
	Oxide Photocatalysts	80
	4.2.2 Effect of Calcination Conditions	82
	4.2.3 Effect of Pt Loading	86
	4.2.4 Effect of Photochemical Deposition Conditions	88
	4.2.5 Photocatalyst Durability	90
V	CONCLUSIONS AND RECOMMENDATIONS	92
	5.1 Conclusions	92
	5.2 Recommendations	93
	REFERENCES	94
	CURRICULUM VITAE	101

LIST OF TABLES

TABLE	P	AGE
2 1	Definitions about norous solids	36
4 1	Thermal decomposition results of the dried synthesized pure TiO_2	50
1.1	and $0.95 \text{Ti}\Omega_{2}$ -0.057 Ω_{2} mixed oxide photocatalysts from TG-DTG	
	analysis	46
42	Summary of N ₂ adsorption-desorption results of the synthesized	40
7.2	mesonorous-assembled $TiQ_{a-}ZrQ_{a}$ mixed oxide photocatalysts	50
13	Summary of N- adsorption desorption results of the synthesized	50
т.Ј	Pt-loaded mesonorous assembled $0.95TiO_{2}$ $0.057rO_{2}$ mixed oxide	
	photocatalysts calcined at 800 °C for 4 h and prepared by SSSG and	1
	PCD methods	52
ΔΔ	Summary of N ₂ adsorption desorption results of the synthesized	52
7.7	0.5 wt % Pt loaded mesonorous assembled 0.95TiO. 0.057rO.	
	mixed oxide photocatalysts calcined at 800 °C for 4 h and prepared	
	by PCD method under various conditions	52
15	Summary of XPD results of the sunthesized mesonorous assembled	55
4.5	TiO. 7.0. mixed exide photoestalusta	50
4.6	Summary of VDD results of the sumtherized Dt loaded measurements	28
4.0	summary of XRD results of the synthesized Pt-loaded mesoporous-	
	assembled 0.95110_2 - 0.05210_2 mixed oxide photocatalysis calcined	(2)
47	at 800 °C for 4 n and prepared by SSSG and PCD methods	62
4./	Summary of absorption onset wavelength and band gap energy	
	results of the synthesized mesoporous-assembled I_1O_2 -ZrO ₂ mixed	(0)
4.0	oxide photocatalysts	68
4.8	Elemental composition from SEM-EDX analysis of the mesoporous	;-
	assembled $0.95 I_1O_2$ - $0.05 ZrO_2$ mixed oxide photocatalysts calcined	-
	at 800 °C for 4 h and without and with 0.5 wt.% Pt loading by SSSC	j co
	and PCD methods	72

ix

4.9 Summary of Pt dispersion results of the Pt-loaded mesoporousassembled 0.95TiO₂-0.05ZrO₂ mixed oxide photocatalysts calcined at 800 °C for 4 h and prepared by both SSSG and PCD methods 79

.

4.10 Summary of Pt dispersion results of the synthesized 0.5 wt.%
 Pt-loaded mesoporous-assembled 0.95TiO₂-0.05ZrO₂ mixed oxide
 photocatalysts calcined at 800 °C for 4 h and prepared by PCD
 method under various conditions

80

х

LIST OF FIGURES

FIGUI	RE	PAGE
2.1	Relative emissions of greenhouse gases (expressed in carbon	
	units per km) for vehicles powered by today's internal combustion	_
	engine using gasoline compared to vehicles powered by fuel cells.	5
2.2	Electrochemical cell in which the TiO_2 electrode is connected with	
	a Pt electrode.	7
2.3	The structure of band gap energy.	9
2.4	Schematic of (a) solid state photovoltaic cell driving a water	
	electrolyzer and (b) cell with immersed semiconductor p/n junction	
	(or metal/semiconductor Schottky junction) as one electrode.	10
2.5	Schematic of liquid junction semiconductor electrode cell.	11
2.6	Representation of semiconductor particulate systems for	
	heterogeneous Photocatalysis.	12
2.7	Types of photocatalytic reactions: (a) photoinduced reaction and (b))
	photon energy conversion reaction.	13
2.8	Reaction schematic for water spitting reaction over semiconductor	
	photocatalysts.	14
2.9	Processes occurring in semiconductor photocatalyst under	
	photoexcitation for water splitting reaction.	15
2.10	Band gap energy of the photocatalyst.	16
2.11	Crystal structures of (a) anatase, (b) rutile, and (c) brookite.	18
2.12	Photocatalytic hydrogen production over anatase/rutile TiO ₂	
	under the mediation of I/IO_3^- .	24
2.13	Mechanism of dye-sensitized photocatalytic hydrogen production	
	under visible light irradiation.	25
2.14	Electron injection in composite semiconductors.	27
2.15	AFM images of pure and mixed TiO ₂ films.	33

3.1

3.2

4.1

4.2

4.3

4.4

4.5

E	PAGE
Synthesis procedure for mesoporous-assembled TiO_2 -ZrO ₂	
photocatalysts: (a) TiO_2 -ZrO ₂ , and Pt-loaded TiO_2 -ZrO ₂ by	
(b) SSSG and (c) PCD.	40
Setup of photocatalytic H ₂ evolution system.	42
TG-DTG curves of the dried synthesized pure TiO_2 photocatalyst.	45
TG-DTG curves of the dried synthesized $0.95TiO_2$ - $0.05ZrO_2$	
photocatalyst.	45
N_2 adsorption-desorption isotherms and pore size distribution	
of the synthesized pure TiO_2 calcined at 500 °C for 4 h	
(Inset: pore size distribution).	48
N_2 adsorption-desorption isotherms and pore size distribution	
of the synthesized $0.95 TiO_2$ - $0.05 ZrO_2$ mixed oxide calcined at	
800 °C for 4 h (Inset: pore size distribution).	48
N_2 adsorption-desorption isotherms and pore size distributions	
of the synthesized 0.5 wt.% Pt-loaded $0.95TiO_2$ - $0.05ZrO_2$	
mixed oxide calcined at 800 °C for 4 h and prepared by (a) SSSG	

4.6 XRD patterns of the mesoporous-assembled TiO₂-ZrO₂ mixed oxide photocatalysts calcined at 500 °C for 4 h (A = Anatase TiO_2 , $T = Tetragonal ZrO_2$). 53

method and (b) PCD method (Inset: pore size distribution).

- 4.7 XRD patterns of the mesoporous-assembled (a) TiO₂ and (b) 0.95TiO₂-0.05ZrO₂ mixed oxide photocatalysts calcined at various temperatures for 4 h (A = Anatase TiO_2 , R = Rutile TiO_2). 55
- 4.8 XRD patterns of the mesoporous-assembled 0.95TiO₂-0.05ZrO₂ mixed oxide photocatalysts calcined at 500 °C at various calcination time ($A = Anatase TiO_2$). 56
- 4.9 XRD patterns of the Pt-loaded mesoporous-assembled 0.95TiO₂ -0.05ZrO₂ mixed oxide photocatalysts with various Pt loadings calcined at 800 °C and prepared by (a) SSSG and (b) PCD methods $(A = Anatase TiO_2).$

49

58

4.10	XRD patterns of the 0.5 wt.% Pt-loaded mesoporous-assembled	
	0.95TiO ₂ -0.05ZrO ₂ mixed oxide photocatalysts calcined at 800 °C	
	and prepared by PCD method under various UV light irradiation t	
	imes at the UV light intensity of 44 W (A = Anatase TiO ₂)	60
4.11	XRD patterns of the 0.5 wt.% Pt-loaded mesoporous-assembled	
	0.95TiO ₂ - 0.05 ZrO ₂ mixed oxide photocatalysts calcined at 800 °C	
	and prepared by PCD method under various UV light intensities	
	at the UV light irradiation time of 2 h (A = A patase TiO ₂)	61
4 12	UV-visible spectra of the mesonorous-assembled (a) pure TiO ₂	01
1.12	(b)-(f) TiO ₂ -ZrO ₂ mixed oxide and (g) pure ZrO ₂ photocatalysts	
	calcined at 500 °C	65
4 13	UV-visible spectra of the mesonorous-assembled (a) pure TiO ₂	05
1.15	and (b) $0.95Ti\Omega_{2}$ -0.05Zr Ω_{2} mixed oxide photocatalysts calcined	
	at various temperatures	66
4 14	$UV_{\rm visible spectra of (a) the mesonorous assembled TiO_{\rm visible spectra of (b) the mesonorous assemble spec$	00
7.17	0° visible spectra of (a) the mesoporous-assembled 110_2	
	Pt loaded mesonorous assembled 0.05TiO 0.057rO mixed oxide	
	photocatalysts calcined at 800 °C and prepared by SSSG and PCD	
	methods, respectively	67
1 15	IV visible spectrum of Fosin V solution	67
4.15	SEM images of the surthesized measurements occur had	07
4.10	The toget of the synthesized mesoporous-assembled	
	photocatalysts: (a) 0.95110_2 - $0.052r0_2$ mixed oxide calcined at	
	800 °C and (b) 0.5 wt.% Pt-loaded 0.95110_2 - $0.052rO_2$ mixed oxide	(0)
4 17	prepared by SSSG method and calcined at 800 °C.	69
4.17	SEM image and EDX elemental area mappings of the 0.5 wt.%	
	Pt-loaded 0.95110_2 - $0.052r0_2$ mixed oxide photocatalyst prepared	-
4.10	by SSSG method and calcined at 800 °C.	70
4.18	SEIVI image and EDX elemental area mappings of 0.5 wt.%	
	Pt-loaded $0.95 I_1O_2$ - $0.05 ZrO_2$ mixed oxide photocatalyst prepared	
	by PCD method and calcined at 800 °C.	71

- 4.19 TEM images of the synthesized mesoporous-assembled photocatalysts: (a) pure TiO₂ calcined at 500 °C, (b) 0.95TiO₂
 -0.05ZrO₂ mixed oxide calcined at 500 °C, and (c) 0.95TiO₂0.05ZrO₂ mixed oxide calcined at 800 °C.
- 4.20 TEM images and EDX elemental point mappings of the 0.5 wt.%
 Pt-loaded mesoporous-assembled 0.95TiO₂-0.05ZrO₂ mixed oxide photocatalysts calcined at 800 °C and prepared by (a) SSSG and (b) PCD methods.
- 4.21 TPR profiles of (a) the mesoporous-assembled 0.95TiO₂-0.05ZrO₂ mixed oxide photocatalyst calcined at 800 °C, and (b) and (c) the 0.5 wt.% Pt-loaded mesoporous-assembled 0.95TiO₂-0.05ZrO₂ mixed oxide photocatalysts calcined at 800 °C and prepared by SSSG and PCD methods, respectively.
 78
- 4.22 Effect of TiO₂-to-ZrO₂ molar ratio on specific H₂ production rate over the mesoporous-assembled TiO₂-ZrO₂ mixed oxide photocatalysts calcined at 500 °C for 4 h (Photocatalyst, 0.2 g; total volume, 150 ml; DEA concentration, 15 vol.%; E.Y. concentration, 0.1 mM; irradiation time, 5 h).
- 4.23 Effect of calcination time on specific H₂ production rate over the mesoporous-assembled 0.95TiO₂-0.05ZrO₂ mixed oxide photocatalyst calcined at 500 °C (Photocatalyst, 0.2 g; total volume, 150 ml; DEA concentration, 15 vol.%; E.Y. concentration, 0.1 mM; irradiation time, 5 h).
- 4.24 Effect of calcination temperature on (a) specific H₂ production rate over the mesoporous-assembled pure TiO₂ and 0.95TiO₂-0.05ZrO₂ photocatalysts (b) specific H₂ production rate enhancement (Photocatalyst, 0.2 g; total volume, 150 ml; DEA concentration, 15 vol.%; E.Y. concentration, 0.1 mM; irradiation time, 5 h).

74

75

82

85

Effect of Pt loading on specific H₂ production rate over the 4.25 mesoporous-assembled 0.95TiO₂-0.05ZrO₂ photocatalysts calcined at 800 °C for 4 h and prepared by SSSG and PCD methods (Photocatalyst, 0.2 g; total volume, 150 ml; DEA concentration, 15 vol.%; E.Y. concentration, 0.1 mM; irradiation time, 5 h). 88 4.26 Effect of UV light irradiation time at the UV light source intensity of 44 W on specific H₂ production rate over the 0.5 wt.% Pt-loaded 0.95TiO₂-0.05ZrO₂ photocatalyst prepared by PCD method (Photocatalyst, 0.2 g; total volume, 150 ml; DEA concentration, 1 5 vol.%; E.Y. concentration, 0.1 mM; irradiation time, 5 h). 89 4.27 Effect of intensity of UV light source at the UV light irradiation time • • of 2 h on specific H₂ production rate over the 0.5 wt.% Pt-loaded 0.95TiO₂-0.05ZrO₂ photocatalyst prepared by PCD method (Photocatalyst, 0.2 g; total volume, 150 ml; DEA concentration, 15 vol.%; E.Y. concentration, 0.1 mM; irradiation time, 5 h). 90 4.28 Durability of the 0.5 wt.% Pt-loaded 0.95TiO₂-0.05ZrO₂ photocatalyst prepared by PCD method calcined at 800 °C in the sensitized hydrogen production system for 3 consecutive runs (Photocatalyst, 0.2 g; total volume, 150 ml; DEA concentration, 91 15 vol.%; E.Y. concentration, 0.1 mM; irradiation time, 5 h).

PAGE