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The simulation of two-dimensional externally applied electric field system was
introduced to implement with self-assembled InAs aligned quantum dots (QDs) in order to
investigate the optical polarization property of those QDs. The methodology was based on
the numerical finite-difference (FDM) method related to number of grid points, which
determines the accuracy of the calculation. From the study, it was found that the linear
polarization degree (PD) of the aligned QDs under applied electric filed significantly depends
on number of QDs in the system, the field strength, the interdot spacing, and the size of the
QDs. The electric filed applied parallel to the alignment of QDs has stronger effect on the
degree of optical polarization than that applied in the direction perpendicular to alignment.
The aligned QDs manifest good response with an increase of applied field by a larger
polarization anisotropy, but turns to decrease in circumstance of strong field. A higher PD
value from higher number of QDs was observed and eventually lead to a shift of applied
voltage to lower potential, corresponding to maximum PD value. Moreover, very close
separation between adjacent QDs also produces a strong polarization. By contrast, the
calculation shows a reduction of PDvalue as enlargement of QDs. From these results, it may
be concluded that closer spacing, smaller dot size, more number of QDs in the alignment,
and/or suitable magnitude of applied electric field gives rise to a higher polarization degree
of aligned QDs structure. The synthesis of results connected to the physics behind them
render better understanding and broaden the horizon in the intellectual aspect of thought
process, as well. This interesting knowledge would lead to a development in high-efficiency

semiconductor optoelectronic devices in the short run.
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