
LOW-DIMENSIONAL SEMICONDUCTOR NANOSTRUCTURES: 
QUANTUM CONFINEMENT AND ITS EFFECT ON OPTICAL

PROPERTIES

The content of this chapter mentions about a low-dimensional semicon­

ductor nanostructures based on dimensional confinement and comparison of 

important intrinsic properties of nanostructures. These are reviewed to be useful for 

the interpretation of nanostructure characteristics. Effect of quantum confinement 

on optical properties nanostructures is also presented. เท another part of this 

chapter, self-assembled growth of the nanostructures is briefly introduced to 

provide basic of quantum dot formation from strain-releasing in lattice mismatch 

system included with shortly review about the fabrication of self-assembled aligned 

quantum dots. The next section, the fundamental concept of electric field on nano­

structures and discussion about this phenomena is presented. Finally, the theoretical 

studies of polarization on the quantum dots and information from several groups 

related with this work is provided.

2.1 BASIC CONCEPTS OF LOW-DIMENSIONAL NANOSTRUCTURES

One of the most noticeable characteristics of these semiconductor structures 

is delocalization of electrons that can spread their wave functions over a larger 

distance [1]. Over the past two decades, rapid progress in semiconductor fabrication 

technology, especially in the fabrication of nanostructures, has developed semi­

conductor materials to be constructed with a confined electron structure. Reducing 

the size or dimension of a material into a micrometer and then to a nanometer scale 

in order about the de Broglie wavelength of an electron, various changes in 

electronic and optical properties were observed in these structures [38]. We can
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roughly classify the kind of semiconductor structure by investigating the dimension. 

First, if one dimension of 3-D structure is reduced into a nano-scale while the other 

dimensions remain large, then this structure is called a quantum well [39]. 

Afterwards, if two dimensions are reduced while the other remains large, this 

structure is called a quantum wire [40]. The final case of this process is in which the 

size is reduced in all three dimensions into a nano-range, as a result, this structure is 

called a quantum dot (QDs) [41]. All of these structures have an enormous changes 

in electrical and optical properties of these after reducing their sizes arise from the 

quantum mechanical nature of physics as a result of the ultra small size.

Consideration the electronic structures, there are apparently different 

between bulk materials and atom-like nanostructures about the energy level [42- 

43], namely, the electronic structures in the case of atom-like nanostructures are 

characterized by discrete energy levels while those of bulk crystal structures are 

characterized by relation of bands. The density of states of bulk semiconductors and 

low-dimensional nanostructures may be calculated by using quantum mechanics to 

describe the number of states at each energy level that are available to be occupied. 

เท that case the band offset between the low-dimensional nanostructures and the 

surrounding materials provide the energy potential to confine carriers [44-46]. For 

calculating the electronic states of bulk materials and nanostructures, the effective- 

mass approximation [47] can efficiently be used, based on the assumption that the 

envelope wave function does not significantly change in the unit cell with a length 

scale of the nanostructure and this assumption can be applied to all low-dimensional 

nanostructures. By assuming the parabolic band dispersion, band-edge electron 

states of a semiconductor can then be demonstrated by the Schrodinger equation.
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2.1.1 Carrier Confinement and Energy Level Quantization

The band theory of crystals has been strictly developed from the quantum 

theory for atoms since the last century [48-49]. From the quantum theory, when we 

place atoms, which have discrete energy levels, together, this result in the 

interaction between each atom. The closer distance, the more interaction, then they 

become solid. The energy levels of solid crystal become energy bands which have 

continuity and more than one energy band. From the engineering point of view the 

most relevant bands are the conduction band and the valence band which are 

separated in energy by the band gap. At temperature is 0 K, the conduction band is 

absence of electrons, while the valence band is rich of electron. At T > OK, these 

two bands are intermixing with electrons and holes, which act as charge carriers in 

devices operations. Controlling the carrier transition between these two bands is 

the main of band gap engineering. Therefore, consider only these two bands. เท this 

section, the important properties of nanostructures are reviewed. Since nano­

structures with low-dimensional shapes provide the potential well resulted from 

difference of energy band gap (E g ) of two materials, the carriers (electrons and

holes) can be confined and results in a quantization of carrier energy. Therefore, the 

certain-energy photon would be emitted when nanostructures are stimulated.

เท low-dimensional nanostructures large carriers are confined in one or more 

directions and the length scale of confining direction is in the order of the de Broglie 

wavelength (carrier wavelength). The de Broglie wavelength, ^deB rogiie  ' depends on 

the carrier effective mass, m * ,  and temperature, T  [50]:

(2 .1)
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where h is Planck's constant, p  is carrier momentum, and k B is Boltzmann's 

constant. The de Broglie wavelength for electrons in lll-V semiconductor materials is 

in the order of 20 nm at 300 K. Several aspects of carrier confinement effects are 

useful for semiconductor device applications such as intersubband transition in 

crystals which is the important mechanism for photodetector in the range of far- 

infrared with wavelength over 9 micrometers.

Atom

Band structure —  —  —  —  Levels

Figure 2.1 Schematic comparison of bulk semiconductor, waveguide for visible 

light, QD, and atom [51].
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Figure 2.2 Comparison of electronic levels and spectral properties in atoms, bulk 

semiconductors and QDs [52].
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Figure 2.1 shows a schematic comparison between a bulk semiconductor, a 

waveguide for visible light, a QD, and an atom. The electronic structure of the bulk 

material and the atom are different. The electronic structure in the case of the atom 

is described by discrete energy levels, while in the case of the bulk-crystal structure, 

the band theory is used. Because the structural size is varied continuously, there 

exists a description between the two cases (discrete levels and continuum band 

structure). The densities of states of bulk semiconductor and low-dimensional 

nanostructures are illustrated in Figure 2.3. เท confining direction, the band offsets 

between the low-dimensional nanostructures and the surrounding material provide 

the energy potential or potential well in energy band to confine the carriers. 

Therefore, the carrier motion is limited in this direction and can move freely only in 

other dimensions, which exist no potential well. เท case of quantum well, electrons 

and holes can freely move in the x-y plane; those in a quantum wire can only move 

in X direction. เท  a QD, zero-dimensional-nanostructure, the charge carriers are 

completely localized which results in a quantization of the carrier energy and in a 

variation of the carrier density of states.

E n erg y
(b)

Energy
(c)

Quantum dots

L y

E n erg y
(d)

Figure 2.3 Schematic views and graphs of (a) bulk, (b) quantum wells, (c) 

quantum wires, and (d) QD and their density of states (D.o.s.)

[53]. L  is in macroscopic scale (~cm), while Lx, L y , L .  are in

nanoscale.
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The quantization phenomenon can be demonstrated by wave-like properties 

of electrons, since any substance would exhibit its wave properties of which de 

Broglie wave length can be calculated from Eq. (2.1). เท potential well, confined 

carriers are limited its motion, so they are looked-like stationary. The wave-like 

properties of the sta tionary  electron can be only de Broglie wavelengths which 

create standing wave within the width of the potential well, that is, the width of the 

nanostructures. The discrete-values of electron de Broglie wavelengths would be 

exhibited, and cause discrete energy levels in such 3-D confinement structures. 

Figure 2.4 represents the lowest three level of carrier's energy quantization 

appeared in potential well.

A Voltage

Figure 2.4 Schematic representation of the lowest three level of carrier's energy 

quantization in potential well with the width of L z (comparable to de 

Broglie wavelength) [53]. The picture shows examples of the three 

lowest-energy standing waves which can be happened in potential 

well (solid line) and the corresponding carrier's energy level of the de 

Broglie wavelength from the standing wave (dotted line), i.e. E V E 2 

and £ 3 . The energy of each level is given by E n : = h 2 (ท ท )2 /2 m *  โ}z 

, where ท is a integer number of the level.
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เท quantum wells structures, an effective-mass approximation is widely used 

for calculating the quantized energy levels as a function of the well width [51]. The 

main assumption of the effective-mass approximation is that the envelope wave 

function does not significantly vary in the unit cell with a length scale of sub­

nanometers, therefore this assumption is valid in all low-dimensional nano­

structures. Assuming parabolic band dispersion, band-edge electron states of 

semiconductors can be described by Schrodinger-like equation as

— — V 2 +  V ( r )  
2m*

F ( r )  =  E F ( r ) (2.2)

Where, m * is the effective mass; h is the reduced Planck's constant; r  = (x ,y , z ) is 

the carrier position vector; F ( r ) is  the confinement potential due to band offset. 

F ( r )  is the envelope wave function; and E  is the carrier energy. From Eq. (2.2), by 

assuming the barrier potentials with in fin ite  height, the carrier energy E  and density 

of states per unit volume (D .o .s .)  (the number of states between the energy E  and 

E  +  d E ,  of each quantum nanostructure) in case of bulk, quantum well (QW), 

quantum wire (QWR) and QD can be written as follows [59].

2.1.2 Bulk Material

เท bulk materials, the conduction electrons are delocalized in a volume and 

their wavefunctions spread in all dimensions. Considering the electrons in bulk as 

free electron gas, the electrons are free to wander around the crystal with 

unaffected by the core potential of the atomic nuclei. If a free electron has a velocity 

V  and a momentum p  = m v . Its energy consists entirely of kinetic energy, and the 

potential energy tends to be zero ( V  =  0 ). Therefore, the total energy ( E  ) of the 

bulk material can be considered as
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E b u lk = E (k )  =
ท 2 k 2

2m
(2.3)

Aw/t =
2 ท 2

) M (2.4)

where D  is the density of states and k  is electron wave number, k  =  ( k x,k y , k 2) 

defined by k 2 = k 2 + k 2v + k 2

2.1.3 Quantum Wells

Quantum wells are a type of structure in which a thin layer of smaller- 

bandgap semiconductor is sandwiched between two layers of wider-bandgap 

semiconductors. The hetero-junction between the smaller- and the wider-bandgap 

semiconductors constructs a potential well confining the electrons and holes within 

the รททaller-bandgap material region results in quantization of electrons in the 

direction of confinement, namely, the z direction, and this becomes the model of 

particles in a one-dimensional box which energy levels in the other two dimensions 

are not discrete. Assuming that the confinement potential barrier for the square 

QW has infinite height, obtaining the energy levels in other two dimensions given by 

the effective-mass approximation as

J ท,kx,k = E (c )  +
ท2ท

8~ in j\

2 + h 2( k 2x + k 2v)

2m. (2.5)

Where « = 1,2,3,... are the quantum numbers, the first term E (c )  in the right-hand 

side is the energy corresponding to the bottom of the conduction band, the second
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term is quantized energy, and the third term gives the kinetic energy of the electron 

in the x-y plane in which electrons are free to move. The density of states for a 

quantum-well structure is given by

where i  = 1,2,3,... and H ( E - £ 1) is the Heaviside's unit step function. It takes the 

value of zero when E  is less than E t , and value of 1 when E  is equal to or greater 

than E t . E i is the i th eigen-energy level within the quantum well.

2.1.4 Quantum Wires

Quantum wires represent two-dimensional confinements of carriers. Such 

confinement allows free-electron behavior in only one direction, along the length of 

the wire, says, the z direction then, the system of quantum wires may be described 

as one-dimensional electron gas, where electrons are present in the conduction 

band. A quantum wire can be cylindrical with a circular cross section as well as 

rectangular or square in the lateral x-y plane. A representative model of quantum 

wire in this thesis is a rectangular one with lateral dimensions l x and l y . Assuming

that the confinement potential barrier for the square quantum wires has infinite 

height, the electronic energy levels of a quantum wire are given by

(2.6)

(2.7)



20

The energy of the one-dimensional quantum wire consists of a sum of four 

parts. The first term is due to the continuous band value given by the effective-mass 

approximation. The second and the third terms mention the quantization of 

electrons in the confinement directions, and the last term gives the kinetic energy of 

the electron in the z direction where electron is freely move. For this case, the 

density of states is given by

where H ( E - E ' )  is the Heaviside's unit step function, and «, is the degeneracy

factor. For quantum structures with dimensions lower than 2, it is possible to find 

the same energy levels rather than one arrangement of confined states, therefore, a 

second factor n ^ E )  has been introduced for described about this.

2.1.5 Quantum Dots

When carriers are bounded in the three-dimensional confinement, which 

typical dimensions range between nanometers and tens of nanometers, a quantum - 

dot structures are represented . The electronic energy levels of the quantum dot are 

considered as

(2.9)

The density of states for the zero-dimensional quantum dot is
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■ ■■ฝ

D qjo,ร ( E )  = ^  Ô( E — E n ) (2.10)

where ร (E  - £ 1) ]ร the delta function (sharp peak) which is similar to discrete energy 

level of atoms and D (E )  always has discrete values. A discrete value of D (E ) 

produces a sharp peak in the absorption and the emission spectrum of quantum dots 

even at room temperature which leads to the changes of structure and electrical 

properties. This kind of behavior is for the ideal case, however, due to other side 

effects, broadening of spectrum is generally observed in reality.

The change of density of states for the low-dimensional nanostructures 

(Figure 2.1) considerably affects the fundamental properties of the devices, which 

use these nanostructures as an active layer [54]. The electronic properties for QD 

structure differ drastically from the bulk system due to the discrete energy levels and 

delta peak density of states, which are in different from the continuous spectrum of 

the bulk. Hence QD structure sometimes was name as artificial atom. เท case of QD 

structures, there are several theoretical and experimental proving that semi­

conductor lasers consisting of QD structures have the lowest threshold current 

density because of the delta-function-like density of states [55]. Figure 2.5 shows 

the historical evolution of the threshold current of semiconductor lasers [56].
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Years

Figure 2.5 Evolution of the threshold current of semiconductor lasers [56].

Utilizing QDs as an active layer for semiconductor lasers, there are two 

especially important considerations. First, the density of QDs must be high enough 

to achieve the lasing condition (gain overcomes the loss). Second, the QD size 

distribution should be narrow because the optical gain spectra depend on the size 

distribution. เท other words, QDs should have the same size in order to reduce the 

charge carriers needed for the population inversion condition. It is possible to 

increase the maximum optical gain by increasing the QD density and/or reducing the 

size distribution of the QD ensemble.

เท summary, the concept of low-dimensional nanostructures, i.e. QWs, 

QWRs, and QDs compared with bulk semiconductors was introduced. The general 

theoretical view of the size and the electronic properties, i.e., density of states was 

presented.
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2.2 Quantum Confinement effects on Optical Properties of Semi­
conductor Nanostructures

เท quantum dots structures, electrons are confined in all directions or being 

zero dimensional so important effects related with the electronic, physical, and 

optical properties of semiconductor nanostructures are interesting because these 

useful concepts lead to photonic device applications based on optical charac­

terizations of low-dimensional nanostructures. เท particular, quantum confinement 

effects are focused in this section since these are closely related with the optical 

properties [57-59] to describe some behaviors of them. The optical processes of 

nanostructures are summarized in the tree diagram as below.

Photoluminescence:
radiative recombination o f  electron-hole pairs creating an excited 
emission by injection o f  photons

Cathodoluminescence:
radiative recombination o f  electron-hole pairs creating by electron 
bombardment

T
Optical transitions

Intraband:
transition 
between 

quantized 
subbands of 

aband

Electroluminescence:
emission generated by radiative recombination following injection 
with p-n junction or similar devices

Interband:
transition between modified valence band 
and conduction band

Exciton Absorption:
Absorption of a photon of near bandgap 
energy by culomb interaction between 
electrons Mid holes in pure semiconductor

Donor-Acceptor and Impurity-Band 
Absorption:
Ionized impurities related with doping level 
for transition

Band to Band 
Absorption:
direct transition with no 
change in momentum

Indirect Intrinsic 
Transition:
Indirect transition involving 
phonons (absorbed or 
emitted)

Stark Effect:
absorption o f photons with photons 
energies less than the band gap 
energy by effect o f an electric field

Figure 2.6 Tree diagram of optical transition of quantum-confined

semiconductors.
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(a) (b)

Figure 2.7 Process of the optical transition: (a) direct bandgap transition 

(b) indirect bandgap transition (c) impurity-band transition and (d) 

Intraband transition.
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2.2.1 Optical Properties W ith Size Dependence

Quantum confinement is closely related to the bandgap of the nanostructure 

which optical characteristics depend on the size and shape of the individual crystal. 

By increasing the dimension of confinement bandgap is also increased (resulting in a 

blue shift) as well as appearance of discrete subbands corresponding to quantization 

along the direction of confinement. Therefore, quantum dots which smaller size 

have a larger bandgap with the greater the difference in energy between the highest 

valence band and the lowest conduction band becomes, more energy is needed to 

excite the dot, thus the interband transition shifts to the shorter wavelength or 

higher frequency (the structure of a certain size shows optical transition (absorption 

and emission) at a given frequency) and consequently, more energy is released when 

the carriers returns to its resting state. On the other hand, energy gap converges to 

the bulk value for a large size. These property is useful because of high level of 

control possible over the size of the crystals produced and allow for controlling the 

conductive properties of semiconductor materials.

2.2.2 Increase of Oscillator strength

Optical transition is an important process to describe optical properties of 

semiconductor. An atom or a molecule can absorb light and move from one 

quantum state to another. The oscillator strength is a dimensionless quantity to 

express the strength of the transition which indicates the probability of an electron 

being excited from ground state to an excited state. For quantum confinement, it 

produces a major modification in the density of states, both for the valence band 

and the conduction bands. Instead of continuous, smooth distribution of the density 

of states, the energy is squeezed in a narrow energy range. This packing of energy 

states near the bandgap becomes more explicitly as the dimensions of confinement 

increase from bulk to quantum dot. For the quantum dots, the density of states has 

non-zero values only at discrete energies. The oscillator strength of an optical 

transition for an interband transition depends on the joint density of states of energy
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levels in the conduction band and the valence band, between which the optical 

transition occurs. เท addition, it also depends on the overlap of the envelope 

wavefunctions of electrons and holes. Both these factors produce a large 

enhancement of oscillator strength with a quantum confinement. This effect is more 

pronounced in quantum wires and quantum dots which are more confined 

structures. The presence of external factor such as magnetic field is also affected on 

oscillator strength via the increase of the exciton binding energy and oscillator 

strength due to the shrinkage of the exciton wave-function when increase a 

magnetic field and then exhibits a populated oscillator strength.

2.2.3 New Intraband Transition

The intraband transition involves the promotion of electrons from one state 

to another in the conduction band or hole from one state to another in the valence 

band as known in the name "free carrier absorption" in bulk semiconductor. These 

mechanism corresponding to absorption of a photon by the interaction with a free 

carrier within a band, which is consequently raised to a higher energy. เท real bulk 

semiconductor, the valence band consists of three subbands; the light-hole band 

(LH), the heavy-hole band (HH) and the split-off band (SO) which are separated by 

the spin-orbit interaction and each band is different by curvature (effective masses 

of the corresponding holes). The absorption of photons with the right energy can 

result in transition from LH-to-HH, SO-to-HH, or SO-to-LH band, depending on the 

impurity doping (excess electron or hole) and temperature of the sample or charge 

injection by a bias field (photoinjection). เท bulk semiconductor, transition from one 

level to another level within the same valley must conserve momentum. This 

momentum change is provided by optical or acoustic phonons, or by impurity 

scattering. The probability for an intraband transition in bulk semiconductor to 

occur is low compared with an interband transition because it is no requirement to 

change k  value. Free carrier absorption usually manifests in the long wavelength 

region of the spectrum as a monotonie increase in absorption which depends on the
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nature of the momentum-conserving scattering (ex. the involvement of acoustic 

phonons, optical phonons, or ionized impurities).

เท quantum-confined nanostructures, there are subbands characterized by the 

different quantum numbers (ท = 1, 2, 3,...) corresponding to quantization along the 

direction of confinement (growth). Therefore, in the conduction band, the electron 

can move from one sublevel to another without changing its momentum. These 

new transitions are in IR and have been utilized to produce some devices such as 

inter-subband detectors and lasers, and still require the presence of a carrier in the 

conduction band (electron) or in the valence band (hole). The absorption coefficient 

of intraband transition increases rapidly with decreasing the size of the nanos­

tructure. However, as size becomes small, the electronic states are no longer 

confined within the well, which produces a leveling off of the absorption coefficient.

2.2.4 Increased Exciton Binding Energy

Quantum confinement of electrons and holes also leads to enhanced binding 

energy between them and produces increased exciton binding energy compared 

with the exciton binding energy for bulk materials. However, actual binding energy 

is smaller than in the bulk because the wavefunction of the carriers penetrates into 

the barrier nearby. This binding produces the excitonic state just below the bandgap, 

giving rise to the sharp excitonic peaks at temperatures where the exciton binding 

energy is higher than the thermal energy. Thus, excitonic resonances are very 

pronounced in quantum confined structures and, in the strong confinement 

condition, can be seen even at room temperature.
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2.2.5 Dielectric Confinement Effect

Quantum-confined structures also exhibit the dielectric confinement effect 

produced by the difference in the dielectric constant of the confined semiconductor 

region and the confining potential around it. However, each confined structure 

(quantum wells, quantum wires and quantum dots), depending on the method of 

fabricating and processing, may be embedded in the different semiconductor or a 

dielectric such as glass or polymer. If the dielectric constant of the surrounding 

medium is significantly lower than that of the confined semiconductor region, there 

will be important manifestations derived from different dielectric confinements as 

follows:

- Enhancement of Coulomb interaction between quantum confined states by 

virtue of the polarization charges which form at the dielectrically mismatched 

interfaces.

- Enhancement of the local field inside the quantum structure when 

illuminated by light.

2.2.6 Increase of Transition Probability in Indirect-Bandgap Semiconductors

เท direct bandgap semiconductor, optical transition conveniently occurs 

because the valence band maximum lies at the zone center of E - k  diagram ( k  =0) 

and directly above the conduction band minimum so an upward or downward 

transitions of electrons are able to make transitions without a change in momentum, 

consistent with the selection rules. Examples of these substances are GaAs, InSb and 

other lll-V and ll-VI compounds which are widely used in semiconductor industry for 

optical devices. Unlike an indirect bandgap semiconductor such as silicon 

germanium, the process are quite different because the bottom of the conduction 

band and the top of the valence band do not lie at the origin of E - k  diagram (not
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the same wave vector k  ) and transition of carriers require a change in momentum, 

or the involvement of a phonon to satisfy conservation of energy and momentum. 

Therefore, transition of electrons from the conduction band to the valence band is 

extremely weak, consequently, emission is not probable in the bulk form, for 

example, in bulk silicon. However, in a quantum-confined structure, confinement of 

the electrons produces a reduced uncertainty Ax and increased uncertainty A k  in its 

quasi-momentum. Confinement will relaxes the quasi-momentum A k  selection rule, 

and thus allowing the enhanced emission to be observed in porous silicon and silicon 

nano-particles. Making use some semiconductor materials, particularly silicon 

materials, having a benefit in case of available substance and low cost material so 

improvement them to the low-dimensional structure of these may allow for 

increasing an efficiency and be one of the interested choices for photonic devices.

2.2.7 Nonlinear Optical Properties Caused by the Quantum Confinement Effect

เท materials which have quantum-confined structures also exhibit enhanced 

nonlinear optical effects, compared to the corresponding bulk materials. The two 

types of these, corresponding as follows:

- Electro-optic Effect. This effect is described as a change in optical properties 

by application of electric field which is derived from the Stark effect, that is, change 

of energy states by electric field as it is introduced in chapter 1.

- Optically Induced Refractive Index change. This is an effective third-order 

nonlinear optical effect, namely, Kerr effect.

Both of these effects in quantum confined structure can be described as 

dynamic nonlinearities that are derived from a change in the optical absorption 

( A a  ) and this change is related to Kramers-Kronig equation, the change, A a  , in the
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absorption to the corresponding change, Aท , in the real part of refractive index by 

following equation mentioned in [59], The change of these two variables can be used 

for all optical switching, gathering and signal processing. Some of the main 

mechanisms producing Aท are briefly discussed below:

- Phase-space filling. This effect arises from the intensity-dependent changes in 

optical absorption, derived from a number of processes such as phase-space filling 

and bandgap renormalization. These processes are manifested at high excitation 

intensities.

- Bandgap Renormalization. There is an effective bandgap shrinkage that 

results from the many body interactions. The main effect is due to a combination of 

screened electron-hole interaction and exchange. As a result, the combination of 

these energy gives an effective energy gap that decreases with the carrier density 

(excitation density).

- Formation of Biexcitons [59]. A new optical transition is manifested on 

binding of excitons to produce bi-excitons. Pronounced changes in optical spectra 

are observed by applying an electric field along the confinement direction. This is 

called the "quantum-confined Stark effect" and can be utilized in electro-optic 

modulator.

The interesting effect of optical properties on quantum confinement regime is 

"Quantum-Confined stark effect" considered deeply as a main topic in this thesis, 

particularly, in the quantum dot structure and extend to linearly aligned structure. 

The basic concepts will be discussed in section 2.5.
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2.3 Quantum  dots ะ Fundamentals, Physics, and  Q uantum  Theoretical 
Concepts

2.3.1 Energy Levels

This section is introduced basic concepts of theoretical calculations because 

the thesis is focused on computational mathematics by using quantum mechanics 

theory, so the concepts related with this topic is moderately proposed to understand 

about the basic model used in this thesis work and prepare for deeply analysis on 

next chapter.

เท theoretical studies about quantum dots many calculations both analytical or 

numerical approach are highlighted on the energy levels because it is important like 

a doorway to describe the information such as its electronic structures, carriers 

behavior, density of states, wavefunctions etc. Though perception about theoretical 

calculations an atomic structure of quantum dots remain inexplicit and need more 

development, many researchers attempt to modify the mathematical models to 

become more accuracy so that these models expect for represent as realistic models 

as possible. The complicated model related with numerical models are applied that 

include various parameters such as realistic shapes, effects of strain [60-62], 

temperature dependent, effective mass, internal and external electric field, quantum 

spin.... etc. These parameters are strongly affect the result of the energy levels of 

the quantum dots, but to understand qualitative analysis, energy levels are often 

calculated by using the effective-mass approximation [63] by assuming a single 

electron in the conduction band of a periodic semiconductor and ignoring its spin for 

simplicity. For a plane wave with momentum k , its wavefunction can be written as
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(2.11)

where นe เ (r ) is periodic: นe 11 ( r  + R) =  นek (r ) ,  where R is any lattice vector.

For a periodic potential, the electronic band structure and wavefunction can 

be derived from the Hamiltonian, which satisfies the symmetry of the semiconductor 

crystal following the Bloch theorem [63]. The framework of study focuses about 

near the band edges of direct-bandgap semiconductors, where the wave vector k 

(momentum of the particles) deviates by a small amount from a vector k0 where a 

local minimum or maximum occurs. เท the effective-mass approximation, the 

wavefunction of an electron that experiences a slowly varying potential in a direct- 

bandgap semiconductor is approximated as

where / ( r )  is the envelope function, which satisfies the Schrôdinger equation:

where ท)* is the effective mass, related to the curvature of the conduction band

at k = 0, V (r) is effective potential coming from different band offsets of different

materials, and E is the energy of the state. Since K (r)is  periodic, all observable

Ve(r ) = f ( r )ue, o(r) (2.12)

— r V 2 + V ( r )  f  ( r )  = £ / ( r )  
2m

(2.13)
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quantities associated with the particle also be periodic and electron probability 

| ^ ( r ) | ’  must also be periodic following the condition on f i r )

| / ( r  + / î ) H / M | 2 <2-M)

เท buried QDs (quantum-confined tiny region which is surrounded by another 

semiconductor material), the confining barrier V  is of finite height as defined by the 

band offset of two different materials. Let assume that self assembled quantum 

dots are highly flattened in the growth direction (in z direction) comparing with 

lateral dimensions (x and y direction). It has been reported that the energy level 

spacing in the z direction can be fairly constant [64]. The lateral confinement of 

carriers by chosen potential for this kind of structure can be described in two 

dimensional potential

V { r )  =  \ ^ m * 0) l i x 2 + y 2)  for |z |< ! (2.15)

V ( r )  =  +CO for |z| >  y  (2.16)

where L  defines the height of the quantum dots. The energy levels resulting from 

this Hamiltonian are [65]

E  =  (พ, + ny + l) f t®0 + ๙ ^  (2.17)
2m L

where ทX = ทy= 0, 1, 2,..., and ท2 is an integer > 1. Usually, L is assumed to be small, 

so that only the ท2 = 1 states are considered. For InAs quantum dots, the spacing 

tiû)0 between the lowest two electron energy levels is typically in the range of 30-80 

meV. The relevant wavefunctions that satisfy Eq. (2.13) are:
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f { R )  =  H n { x ) H  ( y ) e
1 m‘a>0 

~2 h ๙+;*'ฯ
c o s ( y ) (2.18)

where H n are the Hermite polynomials [66].

Generally, transition of electrons in the conduction band, the atomic orbital 

functions contained in ue,o(r) have s-like symmetry, and there is a spin degeneracy in 

the conduction band because the corresponding atomic orbital functions have p-like 

symmetry in the valence band. There are three subbands (heavy-hole, light-hole, 

split-off) having interaction with the conduction band [63]. The interesting will focus 

near the valence band edge and the conduction band edge mentioned above for 

simplicity ,so only the heavy holes in the valence band have been taken into account 

in calculation. It is assumed that the highest valence-band state (the hole "ground 

state") has a heavy-hole nature when the quantization axis is taken to be z, the axis 

of symmetry. It is often further assumed that the splitting between the first heavy- 

hole state and the first light-hole state is large, so that the light-hole states can be 

neglected in the perturbation-theory calculations.

2.3.2 Size Quantization in Quantum Dots

เท calculation of electronic states in quantum dots, they are strongly depend 

on the dot shape and size which are determined by the growth conditions [67]. 

Theoretically, the shape of a dot was modelled in various types: lenses [68], cones 

[69], pyramidals [70], disks or cylinders [71], rectangular and spheres [71]. 

Moreover, types of fabrication process are also produce the different types of 

quantum dots. Recently, a rapid progress in nanofabrication techniques allowed 

researchers to use lateral structures fabricated using different growth techniques in 

order to create artificial quantum dots. Example of such technology is x-ray
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nanolithography, e-beam lithography, nanoprinting, particularly, metalorganic 

vapour phase epitaxy (MOCVD) and molecular beam epitaxy (MBE) [72] which 

widely used over the past two decades. MOCVD grown quantum dots usually have 

pyramidal shape [73]. MBE grown quantum dots produce more shapes as 

mentioned above which is more precisely in case of controlling the substrate 

thickness and purely crystal.

The simplest models are rectangular and spherical quantum dots with infinite 

barriers treated in the isotropic-effective mass approximation. For such geometry, 

the Schrôdinger equation in the effective mass approximation has to be solved 

numerically. This is another important difference between the reality and a simple 

model of a quantum dot. The model used in this thesis work is rectangular quantum 

dots which extend to finite barrier. However, this simple approach does not fully 

account for the physics of quantum dots, but sometimes it is an interesting choice in 

case of saving time for calculation and prediction the behaviors approximately to 

find the direct way before investigate intensively. The details of quantum dots 

model will be represented again in chapter 3 so this topic give a fundamental 

concept only rectangular and spherical quantum dots, corresponding all of the 

reasons mentioned above.

เท heterostructures the space dependence of the effective mass lead to a 

strong interdependence of the longitudinal and transverse motion in systems with 

heterointerfaces [74-75]. Such interdependence results in additional non- 

parabolicity of the longitudinal, at large energies, the effective mass changes sign 

and the longitudinal two-dimensional spectrum terminates at a certain critical value 

of the longitudinal momentum. The space dependence of the effective mass also 

strongly increases the transmission through a potential barrier for electrons with 

large incidence angles. These effects have important consequences for impact 

ionization and tunneling phenomena in heterostructures.

Ï  พ 0 w o
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The simple rectangular quantum dots model was described in Ivchenko e t al 

[76], The envelope function of electron confined in a a x x a y x  a 2 rectangular 

quantum dots, or a quantum box is a product of this three envelopes below

พ (r) = <Pv1 (*> ax)<PVy (y> ay)<Pv2 (z>a ะ ) (2.19)

where

<Pv(x;a) =
cos(v;rx / a) 
sin(v7Tx / a )

for odd V 

for even V
(2.20)

which describes the size-quantization in one particular direction, respectively X or y  

o rz  . The electron energy levels are

2fc2ท h
e m  2m,

( .. \

\ a x J
+

\ a y )
+

\ a ะ )
(2.21)

where mA is the electron's effective mass in the material A.

The electron states in a spherical quantum dots radius R are characterized by the 

electron orbital angular momentum / by the value of / = 0 when reaches the lowest 

energy electron state. For an infinitely high barrier, the ground state electron wave 

function has the form

^ ( r )  = f ( r )  \ s ) , f ( r )  =
1 sin(^r / R)

V2IcR r
(2.22)
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where spin index ร assumes the values ± 1 /2  and the Bloch function |.s) = csร, by 

cs ( 5  = ± 1 /2 ) are spin-up and spin-down states. The confinement energy is

E  =
ท 2ท2 

2 m AR 2 (2.23)

Refining the procedure by finite barriers, then for the ground state

c j s i n ( * r )  for r  <  R
~ r  jg-KO--*) sin (kR ) for r  >  R (2.24)

where N = , j(
2 m A( V - E \ ' K 2)  + kz and kz is plane wave vector in z direction, c is a

normalizing factor. By taking kz -  0 the eigen-energies satisfy the equation

1 -  kR cot kR = (m A / m H )(1 + K/?) (2.25)

One can present the spin or wave function u (r ) in general form as

u ,( r )  =  [ f ( r )  +  i<raha ( r ) ] c t (2.26)

where i is imaginary term, for kz =0, f ( r ) , h a { r ) are real functions. Symmetry of 

nanostructures impose restrictions on coordinate dependence of these functions. เท

particular, in rectangular structure, / ( r )  = y j x 2 + y 2 + z 2 while the three functions 

ha ( r )  o r(h x(r ) ,h y (r ) ,h z ( r )) are identically equal to zero.
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For the ground state of electron in rectangular box, all functions in Eq. (2.26) 

are nonzero and allow presentation

f ( r )  = f ( x 2, y 2, z 2 ) hx ( r )  = y z M x ( X2 , y 2, z 2 )
(2.27)

hy (A-) = x z M y ( x 2, y 2, z 2) hz ( r )  = x y M 2 (X2, y 2, z 2 )

w h e re /a n d M a are arbitrary functions of x 2, y 2and z2.

A confined-hole state formed the four-fold spin degenerate band cannot be 

characterized by any definite value of the hole orbital angular momentum L . เท 

the spherical approximation for the Luttinger Hamiltonian [77], this is the total hole 

angular momentum F  - J  + L by J  is original angular-momentum which serves as 

a good quantum number. Therefore the hole state is (2F  + 1) - fold degenerate due 

to the projection F_ of the angular momentum F  along the z axis.

For the ground state F  = 3 / 2 ,  F,  =  ± 1 / 2 , ± 3 / 2 .  Orbital states with 

L  =  0 ,2  are involved in the formation of this four-degenerate state and the hole 
w ave functions at the ground level are

พ {h)Fz ( r )  = ( r ) l 3 /  2’ m> (2-28)

As a function of rand  J  1, the matrix 9 f(r)m ust be a spherical invariant. There are 

only two linearly independent invariants, rA2/a n d (J A.rA)2, which can be obtained 

from products of the bilinear function rn r j and the 4x4 matrices presented in [77].

Thus, matrix $R(r) inside the dot is
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k r )  =
Æ æ3/2

0  s l Ï - 4
r - r  4

(2.29)

The radial functions y j(x ) are defined as

/ ; ( * )  = c (2.30)

w here ÿ,(;c)are the spherical Bessel functions, c is determ ined by the normalization 

condition

J [ / o 2 W  + / 22W > 2^  = 1 (2.31)

/? is the light-to-heavy hole m ass ratio, (เ) is the dim ensionless param eter according 
to  the hole-quantum -confinem ent energy at the ground state with energy

E h h 2<f>2

2m hhR 2 (2.32)

For the infinite barrier potential the envelope function vanishes at r  =  R  and leads 
to simple equation

jo  (0 )  h  (yffi'4>) + i l  ( 4 ) h  (>/ พ ิ =  0 (2.33)

which the spherical Bessel functions

Ji(x ) — y~2x'^,+I/2 x̂ ^ (2.34)
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and the first three term s are

. sin X .
Jo =  ~ ’ J\ =

sinx cosx
3 h  =

'_3__ p
y x 3 X 11

sin x- 3cosx
(2.35)

For / ? —> 1, the light and heavy-hole subbands in a bulk sem iconductor m erge to  
form one four-fold degenerate band. เท this hypothetic limit the envelope function is 
spin-independent and, for the ground state, coincides with the electron envelope.

Additionally, it has been reported in other research as rectangular quantum  
dots [78-80] included this thesis work. The details about modification of rectangular 
quantum dots will be discussed in chapter 3.

2.3.3 Spontaneous Emission of Quantum Dots

The topic described in this section is related to the effect of spontaneous 
em ission of quantum dots by electron-hole pairs interaction. Scull e t  al [81] used the  
Hamiltonian corresponding equation with dipole approximation to  explain the  
optical properties of the quantum dot under the electrom agnetic field. The 
spontaneous em ission m entioned in this topic is focused on the low est-energy  
electron-hole state. There are tw o cases for describing about lum inescence from the  
quantum dots. Firstly, in the low excitation state, carriers (electron-hole pairs) are 
slowly injected into a quantum dot. Both electrons and holes relax their energy 
from the higher excited state to  the low est state quickly in the sam e band (intraband 
transition) via releasing phonon, after that, electrons from the low est state in 
conduction band is moving to the valence band to  m anifest the radiative 
recombination with small transition lifetim e (about 1 ทร). The second is in 
circumstance with high excitation (rapidly carriers injected), em ission from higher
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excited states becom es prom inent so the ground-state recom bination is faster than 
the carrier injection, therefore, th e  quantum dots begin to  be filled with carriers.

To extend the effect m entioned above more obviously, electronic density of 
states the optical properties of quantum dots are related to, in particular, optical 
transitions are allowed only at discrete energies due to the zero-dim ensional density  
of states. Photolum inescence from a single QD is shown in Figure 2.8. The <5-like 
sharp transition is strictly true only in the limit of small carrier numbers (1 exciton  
per dot on average) since many-body effects [82] com e into play that can include the  
recom bination from charged excitons or m ultiexcitons. At very low excitation 
density the recombination spectrum consists only of the one-exciton ( X  ) line. With 
increasing excitation density small satellites on either side of the X-line develop that 
are attributed to  charged excitons (trions) [83] x + and x~. On the low-energy side, 
the biexciton ( X X )  appears. M oreover, the excited states are populated and a 
m ultitude of states contribute with rich fine structure. The charging state of the  
exciton can be controlled in a field-effect structure. The recom bination energy is 
modified due to  Coulomb and exchange effects with the additional carriers.

Figure 2.8 Optical em ission spectra of a single InGaAs/GaAs QD at different 
laser excitation levels [35].
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The size of quantum dots is also affected to the emission of light because of 

some important factor such as degree of confinement, size-dependent with 

bandgap, carriers interaction etc. Scull e t a l represented this phenomena by 

assuming the transition occurs between conduction electrons and heavy holes. The 

effective-mass approximation were used with conserve in a dipole transition and 

consider of total angular momentum with spin values corresponding to the exciton 

state of electron and hole wavefunction. Manipulating these condition so the result 

indicates that the spontaneous emission rate by emitted photon depends on the 

dipole moment which depends on the material parameter and especially on the 

overlap between the electron and hole envelope functions or transition strength. 

For the large quantum dot, the spontaneous emission rate is higher than the 

miniature quantum dot which non-interacting-particle approximation is often used 

in this case. To explain the effect of emission from the large quantum dot, the 

electron and the hole become correlated, due to the electrostatic interaction

between them and the natural exciton Bohr radius Ofl*  is smaller than the quantum 

dot radius o, the overlap integral of two particle envelope function is strengthen so 

this electron-hole overlap term can increase by (a /a B*) 3/2 larger than the smaller 

quantum dot. เท a quantum dot ensemble, optical transitions are inhomogeneously 

broadened because of fluctuations in the quantum dot size and the size dependence 

of the confinement energies. Interband transitions involving electrons and holes 

suffer from the variation of the electron and hole energies. The confinement effect 

leads to an increase of the recombination energy with decreasing quantum dot size. 

เท addition, when the dot size is closed to the wavelength of light in the crystal, the 

lifetime does not decrease further, but rather the emission becomes directional. The 

center-of-mass angular momentum of the exciton is transferred into the momentum 

of the emitted photon, as in quantum-well structures.

The information about spontaneous emission of quantum dots have been 

extended by many research groups in case of the theoretical calculations go along 

with the experimental to investigate the absolutely effects under this crucial
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phenomena. Many theoretical calculations have been attempted to explain the 

optical properties which expect for good agreement with the experimental results 

for describing these results in form of the definitive concepts and physical meanings. 

Some interesting theoretical calculations were appeared in Zora e t al [84] which is 

related to the effect of spontaneous emission of quantum dots by electron-hole 

pairs in linear regime. Zora et a l developed a quantum mechanical theory inter­

action of light and electron-hole excitations in semiconductor quantum dots for 

estimating even in the realistic structures. Zora e t a l demonstrated a theory for the 

spontaneous emission of individual quantum dots or quantum dot molecules, taking 

into account the interaction of the electron-hole excitations with light. To overview 

the method, first, assuming that the total Hamiltonian of the system consists of the 

single-particle Hamiltonian, the free-photon Hamiltonian, the electron-hole inter­

action Hamiltonian, and the Hamiltonian that expresses the interaction of carriers 

with the light. Then, utilizing the Heisenberg equation of motion to the photon 

number expectation values, to the carrier distribution functions 1 f vh and to the 

correlation term between the photon generation or destruction and electron-hole 

pair destruction or generation to obtain a set of luminescence equations. Finally, 

solving these equations under incoherent [85] and quasi-equilibrium conditions in 

the linear regime (1 -  f Me -  f vh ระ 1) for solution of the photoluminescence intensity.

2.3.3.1 The physical system

To begin with, the physical system can be described by the following 

Hamiltonian:

H  =  H S13+ H r + H c c + H c r (2.36)
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H sp describes the single-particle system in the presence of an external electric or

magnetic static field. The second term, H y refers to the free-photon system. H cc is

the carrier-carrier interaction and H cy stands for the interaction of the carrier

under the photon field. Next, the usual second-quantization field operators were 

introduced for explicit form in quantum dots as follows:

and O l/! are are the single-particle envelope functions [86]. f.ie{vh) denotes

the different electron (hole) states, c f1 and d 'v are the electron and hole operators

respectively. The Hamiltonian of the non-interacting carriers confined in the 

quantum dot and subjected to an external magnetic field is given by [87]

where V ( r ) is the three-dimensional quantum dot confining potential. A ( r ,0  and 

<j>{r,t) are the vector and scalar potentials of the external magnetic field 

respectively. Inserting the second-quantization field operators to the single-particle 

Hamiltonian, then,

¥ ( r , 0  = I  c „ ( r ) + z  d \ ( t w ih'  ( r )
(2.37)

H W r - - A ( r , 0 ) 2

(2.39)

where the matrix elements Æ ^.and E hvv, are
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E V = J d W > " V )

E \ v. =

( - m V , - ^ A ( r , r ) ) !
----------- -----------------+ É ^ (r,0  + ^ ( r )

2m

( - 1พ , - *  A ( r ,0 ) ’

ช )" ', ( r )

2m
■ +  e<f>(r,t) +  V ( r )

(2.40)

® ‘ A(r )

Since single-particle eigenfunctions are assumed to be orthonormal, the single­

particle Hamiltonian is finally written as

H „  = I  E - c \  ( 0 < v «  + E  £ - V  „ ( I )d ,  ( 0  = H „  + H *  (2.41)

E^e, E vh are electron and hole eigenenergies. The free-photon Hamiltonian is given 

by

H  r = ^ h œ qa \ { t ) a q{ t )  (2.42)

where £?*(/) and a q( t) are the creation and destruction nonlocal photon operator 

respectively, and hcoq is the photon energy.

The carrier-carrier interaction is described by the two-body Hamiltonian [87] 

by

H cc=  ] - \ d r \ d r 4  ( r , t ) i  ( r \ t ) V cc( r - r ' ) ^ ( r \ t ) W ( r , t )  (2.43)

Inserting the second-quantization field operators and neglecting terms that do not 

conserve the number of electron-hole pairs (such as Auger recombination and 

impact ionization or terms that refer to interband exchange interaction [88], the 

result is
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แ\M7v\vl

(2.44)

The Coulomb matrix elements have been determined in [86] by

J d r  J d r  ’ 0 *' * ( r  )0  v  ( r  })V CC ( r  -  r  ')0 *3* ( r  ' ) 0 V  ( r )  (2.45)

The Hamiltonian H cr is obtained when the light field is treated quantum 

mechanically [89-90] expressed by

where = e j 0 ^  ( r ) r O yh* ( r )  are the total dipole matrix elements [91] and A 0 is

the amplitude of the vector potential of the photon field. The kinetic description 

is based on the density matrix formalism by considering the operator 

p  11 v(0  = d v( t ) c ^ ( t ) . The expectation value which gives the microscopic (optical)

polarization of the system. The intraband electron and hole single-particle density 

matrices are also considered below

H c r = A i/2i i < 2 [ m ; x

พ l (0 + M* (0๔, (f)c„ (/)]
(2.46)

««๙ = 

n w  = ๔1!๔ 1,.

(2.47)

where the expectation values of the diagonal elements correspond to electron and 

hole distribution functions / '" a n d  f vh.
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23.3.2 The luminescence equations

เท this case the Heisenberg equation of motion is applied to the photon 

number expectation values (aqa ,) , and to the field-m atter correlations of the type

( altP Mv) -  {a l^ v cn)> so the set ° f  luminescence equations are obtained. The

combinations of four-carrier operators due to the Coulomb interaction as well as by 

a mixture of one-photon and two-carrier operators as a result of the quantized light- 

matter interaction. For the decoupling of the above combinations we use the 

semiclassical Hartree-Fock scheme [85] which does not anticipate the influence of 

dephasing and this effect will included through a small damping constant Y > which 

in the relaxation time approximation is related to the dephasing time T =  h /  Y . The 

main point is focused on the theoretical analysis of incoherent luminescence, where 

shortly after an optical excitation of the carriers high above the dot discrete states 

non-resonant with the bound excitonic states, all coherent polarizations dephase. เท

the specific case of very small electron and hole distribution functions f vh (in the 

linear regime where 1 -  f ^ e -  f vh « 1 ), the renormalization term of the single­

particle energies can be neglected [89], and the three luminescence equations 

become

dynamics for the expectation values of p A1 v,r in n '{p r H v v ' )  is partly determined by

= h{coq, -c o q){a qaq,) +
(2.47)

(2.48)
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ih ~ ai~~ = 2,'A ®2 5 ^ 2 Im[_/M̂ ^ ^ ^ ]  (2’49)

For given carrier densities, i.e., under quasi-equilibrium conditions, the above set of 

equations is restricted to the closed set of equations Eq. (2.47) and Eq. (2.48).

23.3 .3  The QD photoluminescence intensity

To reduce some complicated calculation, making the assumption that the 

pure stimulated term analogous to {a^a 11.) is artificially switched off. Using the 

notation l  = //V  equation Eq. (2.48) becomes

m̂(a> 1 (f)> = I (S r  - » ® /„ .)  (a>,.>  + i r / X ' X ’M 1 (2.50)

where ร,,. ^ T „ .ô „ .- V ,e1!' is the excitonic matrix [8 6 ], and T , = E fje+ E vh is the 

summation of the single-particle energies. Finally, solving analytically the closed set 

of equations Eq. (2.47) and Eq. (2.50) and find an approximate solution of the

A
photoluminescence intensity ( I em( ® a ) - —  (al aท))dt

oc Im X
1

( E  - h c o - i y ) J d r V \ r ,  r )  J d r  X  ( r  ( r ) f ^ ef vh (2.51)

where vF /l( r , r )  is the excitonic eigenfunction which is expanded in terms of the 

single-particle states [8 6 ]. เท the high-temperature regime the carrier occupation 

probabilities are given by the Fermi-Dirac distribution functions [51]. The above
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formula for the PL intensity can be applied to single or double quantum dots of any 

given geometry and under a magnetic field of any magnitude and orientation.

Lens-shaped
QD

Figure 2.9 Cross-sectional view of an ideal lens-shaped QD. (AB) = Po I (MN) = ร 

the radius at the base, and (GN) = h the height of the dot.

The theoretical results were used to interpret the experimental findings 

reported by Matsuda et a l [93]. However, Zora et a l approximate the specific 

lno.5 6 ao.5As self-assembled quantum dot with a lens-shaped potential (Figure 2.9). 
ร is the radius at the base and h = (GN) the height of the quantum dot. The thickness 

of the wetting layer (WL) is tw = 4 ML [93], which equals to 1.1 nm according to the 

values reported in [94]. As shown in Figure 2.9, a quantum well of thickness 

/0 = h  + t iV can become a lens-shaped quantum dot of similar total thickness at the

_ 7 L ร 2 -  h 2 - l t wh
center and radius p 0 = '0  J 1 + --------โไ “  •

Y «0

เท the III—V semiconductor material system, the SK process allows for the 

dislocation free and strained coherently with the formation of InAs islands on GaAs, 

so the bulk GaAs effective mass value can be used approximate the strained 

lno.5Gao.5As material in the dot [94]. Furthermore, for strained lnxGai-xAs one
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expects the mixing between light and heavy holes to be small, therefore, 

approximate the hole energy levels in the same way as for an electron [6 8 ] (i.e., one 

band approximation [95]) but with a different effective mass and depth of confining 

potential. The electron (hole) effective mass is 0.063me (0.11 me) [96], where me is 

the electron mass. For the conduction-band and valence-band offsets the potential 

energy takes a value of AVCB =224m eV and AVyg =180, respectively. Zora e t al 

also calculate the single-particle eigenstates of electrons and holes within the 

effective mass and envelope function approximations [8 6 ] by using an expansion 

within a periodicity box of the electron (or hole) envelope functions into the 

orthonormal plane-wave basis [8 6 ], then, the eigenenergies is obtained by full three- 

dimensional (3D) numerical diagonalization following eigenvalue problem:

I P1
2m

T +  V ( r ) k ' ) - E » S kX (Æ'I = 0 (2.52)

The 3D confining potential is zero inside the wetting layer and the self-assembled 

dot, and AVCB(or AVvb) inside the barrier. The single-particle eigenfunctions have 

cylindrical symmetry and resemble the Darwin-Fock states [97].

Zora et a l also presented the theoretical results for the PL intensity which is 

as good agreement as reported both in experimental [98-99] and in theoretical 

studies [100], where the dephasing of optical transitions in QDs has been attributed 

to secondorder elastic (i.e., without changing the populations of the carrier energy 

levels) interaction with LO phonons. Their theoretical approach for the emission 

spectra of quantum dots explains satisfactorily the experimental data reported for 

the PL spectra collected with a high spatial resolution nearfield microscope. 

Additionally, it allows the determination of the inter-level spacing as well as the LO 

phonon dephasing time.
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2.4 GROWTH OF THE QUANTUM DOT

เท this section, the short review of fabrication technique is nominally 

described for representation the roughly growth process. It consists of two main 

parts. The first one is molecular beam epitaxy (MBE) which is highlighted to the 

equipment included some measurement tools and shown the advantages for this 

technique. The second one is the growth of self-assembled aligned quantum dot in 

order to provide some basic understanding of growth method and its structure 

which is used as a mathematical model for theoretical calculation.

2.4.1 Molecular Beam Epitaxy (MBE)

Molecular beam epitaxy (MBE) is a process for growing thin, epitaxial films of 

a wide variety of materials, ranging from oxides to semiconductors to metals. It was 

applied to the growth of compound semiconductors [101]. It is an interesting 

process because of the high technological value of such materials to the electronics 

industry. MBE has widely used in the last two decades recently as a popular 

technique for growing lll-V compound semiconductors. เท this process beams of 

atoms or molecules in an ultra-high vacuum environment are incident upon a heated 

crystal that has previously been processed to produce a nearly atomically clean 

surface. The arriving constituent atoms form a crystalline layer with the substrate 

(i.e., an epitaxial film). These films are special because the composition can be 

rapidly changed, producing crystalline interfaces. Thus, it has been possible to 

produce a unique structure, including quantum dot structure and superlattices 

structure. เท solid-source MBE, different material source cells in separate crucibles 

are heated with separate heaters. They are evaporated and condensed on a wafer, 

where they react with each other, forming a crystal. With clean and ultra high 

vacuum (UHV) environment, It produce high-quality layers to form a perfect crystal.
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(a) (b)

sample heating and drive 
with variable speed

cryopannels cooled 
by liquid nitrogen electron gun

gauge for beam flow

desk valve

fluorescent J 1 1 rotating sample
quadrupole mass holder

spectrometer

(c)

Figure 2.10 (a) and (b) Picture of MBE system, (c) Schematic diagram of the

growth chamber [102-104],

The remarkable advantage of MBE compared to other growth techniques is a 

controlled shutter in front of each cell allows precise control of layer thickness, 

doping, and composition via the powerful control of beam fluxes and growth 

conditions. The temperatures of the sources can be accurately controlled. เท 

addition, it enables to study the surface structure all time during the growth (real­

time monitoring) by reflection high energy electron diffraction (RHEED) [105] tool
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which allows directly measurement of surface structure of the sample and the 

already grown epilayer. Since MBE is able to fabricate the atomic structure, 

quantum devices can be achieved following quantum effect with high efficiency, high 

speed and high performance. From the reason mentioned above, MBE structures 

closely approximate the idealized models used in solid state theory.

Figure 2.11 Overall process of fabrication semiconductor structure included

measurement and data analysis.
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The overall process of fabrication semiconductor structure is shown in Figure 
2.11. Firstly, sample is grown on substrates in a solid-source MBE system. เท sample 

preparation, the substrates need to be preheated by heaters in introduction 

chamber to eliminate contaminated substance. After that, the fabrication is started 

by growing buffer layer to flatten the surface. Then, opening the shutter of effusion 

cells (containing with different type of substances) for deposition the molecular 

beam of substance which desires to grow on the substrate at appropriate 

temperature and pressure in the growth chamber. During the growth, we can 

observe the surface structure by using RHEED system in terms of RHEED pattern, 

which gives an information of the dynamics of MBE growth. The RHEED system 

allows observing and measuring important parameters such as growth rates. As a 

result, the perfect crystal is done. For optical measurement, however, the sample 

needs to be capped with a thin layer (mostly by GaAs capping layer because of its 

bandgap properties). เท case of studying the surface morphology of samples. Atomic 

force microscopy (AFM) is a powerful microscope for the observation of matter at 

nanoscale [106]. The AFM provides a 3D surface profile and can analyze heights at 

the sub-nm level. เท optical measurement, Photoluminescence (PL) spectroscopy is a 

tool for sample luminescence characterization [107]. The sample was excited by 

laser beam by photon absorption, then, the sample releases the absorbed energy in 

form of emitted light which energy equals to its bandgap energy. The resolved light 

is finally detected by a detector for interpretation of PL data and analyzing the 

information to estimate the electronic structure of the sample. เท addition, other 

measurement such as, electric field measurement (Stark effect) or magnetic field 

measurement are available by adding the electrode on the sample for preparation in 

experimental of their effects.
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2.4.2 Self-Assembled Growth Modes

Following a bottom-up technology, the self-assembled growth has attracted 

increased interest as a means for fabricating epitaxial nano-scale structures, 

especially in QD structure, as mentioned in chapter 1. The self-assembled quantum 

dots growth is the the growth of epitaxial (homo or hetero) thin films with a lattice 

mismatched structure on a single crystal substrate, the lattice constant of the first 

few monolayers (MLs) [108] of the deposited material is forced to match that of the 

substrate which depends critically on the interaction strength between adatoms and 

the surface. The change from the desired lattice constant creates strain in the 

deposited layer. After a few MLs, the strain in the epilayer builds up and the strain 

energy is released, in some circumstances, by forming small islands. These islands 

are zero-dimensional, consequently, the self-assembled quantum dots (SAQDs) are 

formed. Mostly epitaxial growth occurs via a vapor phase technique. Molecular 

beam epitaxy (MBE) technique is also create an epitaxial growth with high a quality 

crystal.

Epitaxial Growth 
Modes

deposition time

Figure 2.12 Schematic representation of the three important growth modes of a 

film: Frank van der Merwe (FM), Stranski Krastanow (SK), and Volmer 

Weber (VM) modes [109-110].
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There are three primary growth modes can occur when a strained epilayer is 

grown on a substrate under near equilibrium conditions as shown in Figure 2.12. 
Volmer-Weber (VW) growth mode is a growth mode which adatom-adatom 

interactions are stronger than those of the adatom with the surface, leading to the 

formation of three-dimensional adatom clusters or islands. Growth of these clusters, 

along with coarsening, will cause rough multi-layer films to grow on the substrate 

surface. Antithetically, during Frank-van der Merwe (FM) growth mode, adatoms 

attach preferentially to surface sites resulting in atomically smooth, fully formed 

layers. This layer-by-layer growth is two dimensional, indicating that complete films 

form prior to growth of subsequent layers. Stranski-Krastanov growth mode is an 

intermediary transition from the "layer-by-layer" to island-based growth occurs at a 

critical layer thickness which is highly dependent on the chemical and physical 

properties, such as surface energies and lattice parameters of the substrate and film.

Figure 2.13 Illustration of island formation during epitaxial growth of a semicon­

ductor material on top of another semiconductor with a smaller 

lattice constant in Stranski-Krastanow mode to form the QD.
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Stranski-Krastanow (SK) growth mode is widely used to fabricate defect-free 

self-assembled QD structures in the case of lattice-mismatched system (lattice 

mismatch ะ £q < 7% ). This mismatch complicates the free-energy and favors the 

growth of three-dimensional islands to compensate for the strain and thereby 

minimize the energy. The process is thin films grow epitaxially at a crystal surface or 

interface, known as "layer-plus-island growth" based on the thermodynamic 

instability during the deposition of an epitaxial film on a lattice mismatched 

substrate. The SK mode follows a two step process (sees Figure 2.13). เท the first 

stage of growth, initially, complete films of adsorbates, up to several monolayers 

thick with a lower band gap and a larger constant is grown in a layer-by-layer fashion 

on top of a crystal substrate with a higher band gap and smaller lattice constant. 

Below a critical thickness, a pseudomorphic layer with the lateral lattice constant of 

the substrate is formed. During the growth, the elastic energy stored in this layer 

increases. With increasing thickness, the accumulated compressive strain can no 

longer be accommodated in a two-dimensional arrangement and the total film 

energy relax through the formation of coherently strain islands on top of the 

remaining part of the two-dimensional layer or the "wetting layer" [111]. Beyond a 

critical layer thickness, which depends on strain and the chemical potential of the 

deposited film, growth continues through the nucléation and coalescence of 

adsorbate islands. This nanoscale islands formed in this mode can be used to confine 

carrier in three dimensions or to form the QD structure.

Although the SK QDs grown is an excellent growth mode to fabricate the 

nano-structure. However, there are still some disadvantages of this technique. First, 

the QDs grown by SK mode exhibit wide size distribution which response to varying 

of energy level in the energy band, resulting in luminescence peak boarding [ 1 1 2 ]. 

Furthermore, the non-uniform strain distribution from lattice-mismatched formation 

would effect on the band structure of QD [113]. Both effects are undesirable for 

laser applications and essential to improve for better performance of semiconductor 

electronic devices.
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2.4.3 Self-Assembled Aligned QDs

(a)

Figure 2.14 Schematic diagram of (a) 3-D self-assembled aligned QD model [114] 
and (b) the AFM images related with self-assembled aligned QD 

structure [115-117].

As described in chapter 1, one of the QD structures which have attracted 

particular interest due to their many possible applications in optoelectronic devices, 

is self-assembled aligned QD structure. Because uniformity of QDs can be an 

important factor in order to determine all structural parameters of a QD such as size, 

shape, chemical composition and position which are subject to its random 

fluctuations, even in the presence of ordering mechanisms, so the control of self- 

assembled properties in QDs is of great importance for their device applications. 

Selective positioning of QDs can be performed through the misfit dislocation having
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strain fields affects the formation of QDs since it becomes a strong source of elastic 

strain. The use of misfit dislocation can be a useful technique for the alignment of 

self-assembled QDs since any complicated pre-processes are not required as in 

lithographic processes. The techniques which have widely used for the growth of this 

structure are the superlattice template [117] and the InGaAs induction layer [118] 
technique. The example of timeline process about the two methods is depict in 

Figure 2.15. Both of two methods related with the building of anisotropic strain 

distribution area linearly aligned with parallel to each other in the certain direction 

as an induction layer, giving rise to the selective formation of self-assembled QD 

ordering on this region. Moreover, it is important to control some parameters, such 

as strain layer thickness, composition of the substance, temperature, and deposition 

time which strongly affect to the structure of QD alignment.

i U p e r l a t t i c Q  

t e m p l a t e

I - 6 1 0 ; c  Rate

________I c .~10 m in s  * .  3 0 ‘ c /  m ln

5 8 0 - c  /  V i 0 ' c 15 m in s

O pen  RHEED o * * ■ ■ ■ • ■

\  /  580- c

5 0 0 -C  
Rate o

30*c /  m in  •

300° c 
( O M )

■ ■ ■ ■

Substrate Substrate

5 2 0 ”  c

150  nm (a) B u ffe r

Substrate

X Cycles E E E 3
1 I

Substrate

610° c
+ 3 0 *  c __**!*.

• 10 m in s  30*c /  m ln

580° c .• % -30 *c
O pen  RHEED Q

5 0 0 - c /  580” c

Rate p

15 m in s

3 0 0 - c  

( O M  ) Substrate

B u tte  I 

S u b s tid te

5 2 0 - c

( b )
1 5 0  nm

เก  ะ 6 a  f  
1 :9  \

300 nm

เท, Cidj-jAs In.O d! .As

B u tte r B u tte r R u tte r

S u b s tid te S u b s tid te S u b s tra te

Figure 2.15 The example of timeline process of (a) the superlattice template 

structure and (b) the InGaAs induction layer structure.
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The other interesting application of aligned for QDs in terms of low­

dimensional electronic devices is single electron transistor (SET). Positioning of a 

single QD formed in channel between source and drain is a difficult processing 

technique due to the random distribution of self-assembled QDs. However, using the 

artificial array of QDs, narrow tip-shaped electrode is not necessary for positioning 

single QD in the channel. One can fabricate the SET structure with a simple process 

step because the electrode is not needed to be as narrow as in a conventional way, 

but only if the same width of electrode as the average distance of the aligned QDs. 

This leads to one line of aligned QDs could exist and single QD in channel can be 

easily obtained through the regulation of channel length for producing an efficiently 

electronic chip with high speed operation and low consumption an energy.

The overall review about the growth of QD is presented. Next section, the 

effect of the electric field on nanostructures will be discussed.
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2.5 Effect of the electric field on nanostructures

Figure 2.16 Schematic diagram of absorption process in semiconductor structure.

เท the operation of some semiconductor devices such as electronic and 

optical devices, in particular, modulator devices which usually work under electric 

field by the energy levels, its optical and electronic properties depend on external 

electric field. These give evidence for new states of matter in many-body systems 

and that is why it is very important to study this effect on the materials. The effect of 

an applied electric field on the energy levels and, therefore, on the optical spectra is 

called the "Stark effect" [119]. The Stark effect refers an additional potential is 

produced when the semiconductor is under applied electric field. The shift of the 

atomic energy with respect to its normal state is proportional to the magnitude of 

the electric field, thus the results are splitting of energy levels of atoms and energy 

shift of the interband optical spectra is occurred related to "electroabsorption" 
[120]. The application used this concept, an electroabsorption modulator [121], is a 

semiconductor device which can be used for controlling the intensity of a laser beam 

via an electric voltage. Its principle of operation is based on an applied electric field,
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which changes the bandgap energy or photon energy of an absorption edge but 

usually does not involve the excitation of carriers by the electric field. The 

electroabsorption modulators are mostly made in the form of a waveguide with 

electrodes for applying an electric field in a direction perpendicular to the modulated 

light beam. Using bulk materials may restrict the performance since electro­

absorption modulators of bulk materials require a large electric field. เท order to 

increase an efficiency the concept of quantum-confined structures were used 

because, for modulators in telecommunications, small size and modulation voltages 

are desired. The quantum-confined structures such as quantum well materials can 

be achieved since these can operate with much lower voltages and also at very high 

speed (large bandwidth) [ 1 2 2 ]. เท addition, their smaller sizes allow for integrating 

with other devices such as distributed feedback laser diode on form of photonic 

integrated circuit so a higher bandwidth and reduced chirp can be obtained. 

Recently, advances in crystal growth have triggered the study of self organized 
quantum dots which are possible to be used to enhance the electro-absorption 

coefficients and extinction ratio because of their smaller size and stronger 

confinement than quantum well structures which produce lower modulation 

voltages. Moreover, quantum dot materials with a high bandwidth (THz) can 

generated a coherent quantum superposition of an absorbing and a nonabsorbing 

exciton which may yield new applications for optical communications [123]. This 

section will be described about electric field effect on bulk materials first, then, 

extended to quantum well material, and finally hammer to the point on quantum - 

dot structures.

2.5.1 Electric Field on Bulk Structure: The Franz-Keldysh Effect

The fundamental concept of electric field on materials are started with the 

effect of applied field on bulk structures, so called "The Franz-Keldysh effect". The 

Franz-Keldysh effect is a change in optical absorption by a semiconductor when an 

"strong" electric field is applied cause in the absorption of photons with energies less 

than the bandgap energy of the semiconductor.
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Let consider the case of a uniform applied electric field [124] by disregard the  
Coulomb effects altogether, the stationary Schrodinger equation of the relative 
m otion of the e lectron -h ole  pair in the presence of an electric field F  (parallel to  
the z-axis) with the potential energy V ( r )  =  e F z  can be written as

( - ^ - - eFz- £ > , ( r )  = 0 (2.53)Zm *

w here If/n, E n are eigenfunctions and energy eigenvalues of the e lectron -h ole  pair, 

respectively ( En includes with the band-gap energy E g ). To solve this equation, 
definition an eigenfunctions by

^ ) = { « ‘‘ ■ " ‘ ' ’V . w (2.54)

w here L = v m is the linear extension of the system . The energy eigenvalue are

E  =
2m

~\K\ + K n ) - En^ (2.55)

by £1j2 = k]  + k 2v . Inserting Eq. (2.54) and (2.55) into Eq. (2.53), the result is

( ^ T  + ^  + ^  K  (z ) = 0 (2.56)

w here /  =  g F ■—2- =  1- '  . £ 0 and a 0 are the usual excitonic units [124] shown
E0a0

that f a l  is the ratio b etw een  the dipole energy in the field and the exciton Ryberg
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energy, ea0F  /  E 0. Introducing the dimensionless variable z by z = / 1/3Z and 

substituting

ร. 2/3

c , = z + * i  r 2,3= z + (a0Kny
OoeF .

(2.57)

The solution of this equation is

y/n(z )  =  anA i{ - C n) (2.58)

where A i (x) is the Airy function [124],

A i{x )  = —  Jo du  c o s( ( m3 /  3) + ux) (2.59)

and an is a normalization constant. A i( x )  decays exponentially for positive 

arguments and oscillates for negative arguments [124]. Expressing the accelerating 

action of the field. The normalization constant an is determined by

aท2 = 1 dZ\A i(< n ) \ (2.60)

Using Eq. (2.57) with partial equation and different equation technique, then

< 2 ฯ ™ -
L  1

7
1/3 (2.61)
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where we used the fact that A i ( x ) and vanishs fo r *  — > 0 0  . For A i ( - x ) ,  using the 

asymptotic expressions [124] and boundary condition i//n( z  =  L )  = 0 as

2
3 f )

(2.62)

Solving Eq. (2.62) for K n  and inserting the result in Eq. (2.55) yields

2m* ^ - L f  + 3 n f —12/3 \

( n - 1 /4 ) (2.63)

Using all the ingredients needed to compute the semiconductor 

band-edge absorption spectrum for directly allowed optical transitions

a(co) = a h z | y/n( r  =  0 ) | 2 ร ( £ 11 -h c o ) ,  which can be written as

a(oy) = ร ( E . ^ E g - h m )

A i
V  V

2 m *  E.
"A " ไ 2

> J

(2.64)

Manipulating this equation intensively as described in [124], the total absorption 

spectrum (electroabsorption for free carriers) is

«(®) =  ^ -  * j.{ { - e  A i 2( e )  +  ( A i '(ร))2) (2.65)
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where €=
{ E g - h c o ) (  £ 0 f 3

£ 0 Vea0F j

Figure 2.17 Absorption spectrum for free carriers in an electric field according to

Figure 2.17 shows the resulting absorption as function of e . The oscillatory 

character of the Airy functions for negative arguments leads to oscillations in the 

absorption spectrum above the band gap. The amplitude of these oscillations 

decreases with increasing energy. The absorption has a tail below the gap, i.e., for 

ha> < E g or e>  0 . Using the asymptotic form [124], then the below-gap absorption 

or "Franz-Keldysh effect" is

Eq. (2.66) describes the exponential low energy absorption tail which is 

caused by electric field /  (because f  =  e F ^ r -  =  — 7  ). As conceived evidently,
ท £ 0๔0

the Franz-Keldysh effect is the result of wavefunctions leaking into the band gap. 

When an electric field is applied, the wavefunctions of electron and hole become

Eq. (2.65).
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Airy functions rather than plane waves. The Airy function includes a tail which 

extends into the classically-forbidden band gap. The frequency range of this tail 

increases with /. The effect of overlapping between the wavefunctions of a free 

electron and a hole is proportional with the optical absorption, that is, the more 

overlapping, the stronger the optical absorption will be, corresponding to Fermi's 

Golden Rule. The Airy tails slightly overlap even if the electron and hole are at 

slightly different potentials (or slightly different physical locations along the field). 

The absorption spectrum now includes a tail at energies below the band gap and 

some oscillations above it. One may understand the appearance of the absorption 

tail as a photon assisted field-induced tunneling of an electron from the valence 

band into the conduction band, according to Figure 2.18. Figure 2.18 (a) displays the 

band structure of semiconductor when electric field is applied. Both the conduction 

band and the valence band tilt linearly to the one side, following the effect of 

electric field. เท this case there is no photon so the valence electron has no tunnel 

through a triangular barrier of height E g and thickness d , given by E g /  e F . When

the photon of energy ha> <  E g is coming (Figure 2.18 (b)), with the assistance of 

electric field the tunneling barrier is reduce to d '  =  (E g - t i û ) ) / e F , the valence

electron now can easily tunnel to the conduction band, that is why the photons with 

energies less than the bandgap energy can be absorbed. The absorption spectrum 

far above the band edge, hco »  E g or e «  0 , can be estimated to

or the free-carrier absorption. The Franz-Keldysh effect occurs in uniform, bulk 

semiconductors which used for Electro-absorption modulators. The Franz-Keldysh 

effect usually requires hundreds of volts and will be small unless E g >10 5 v/cm, 

limiting its usefulness with conventional electronics.

(2.67)
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Figure 2.18 Band structure of semiconductor when electric field is applied with (a) 

no photon and (b) the photon of energy h û ) < E g .

Figure 2.19 เท an electric field, the band edges become tilted. The wavefunctions 

therefore become airy-functions and penetrate into bandgap region. 

This enables absorption of photons with energies below the band gap 

energy and to an oscillating absorption above the bandgap [125].
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2.5.2 Electric Field on Quantum Well Structure ะ The Quantum-Confined stark 
Effect (QCSE)

เท the bulk semiconductors, because the exciton lifetime is very short (about 

a few hundred of femtoseconds) after it is created and hardly detected about the 

absorption spectra at room temperature, except in very pure samples, (in bulk 

semiconductors, exciton is mostly observed at low temperature [126]). This effect 

limits for designing high performance semiconductor devices, particularly 

electroabsorption modulator, and interband photon-assisted tunneling or Franz- 

Keldysh effects which is insufficient to compensate the drawback mentioned above. 

This situation is drastically different in semiconductor with quantum well structure. 

เท a single quantum well (SQW) or multiple quantum well (MQW) with thick barriers 

(> 1 0 0 Â), the carriers (electron and hole) are confined in two dimensional especially 

in the well width which restricts a tunneling of carriers and increase the overlap of 

their wavefunctions. These results in an increase the oscillator strength of interband 

transitions between discrete electron-hole energy bound states. Furthermore, strong 

resonances corresponding to the heavy-hole and light-hole transitions are seen near 

band edge of quantum well material even at room temperature [126]. These charac­

teristics show the advantages over the bulk semiconductors.

IOUO IKK) 12IK) 1300 1400 I MM) INK) 1700

Wavelength Onto

Figure 2.20 Illustration of the exciton resonances in QW structure, which are 

clearly seen in the absorption spectra even at room temperature 

[126],
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Since the recent development of research in semiconductor quantum-well 

structures, optical absorptions in quantum wells have been shown to exhibit a 

drastic change by an applied electric field [127-129]. The sharp excitonic absorption 

spectra in quantum wells have been observed at room temperature as mentioned 

above. These are so-called "quantum-confined Stark effects (QCSE)" [127-129]. 
The quantum-confined Stark effect describes the effect of an external electric field 

upon the light absorption spectrum of a quantum well structure. เท the absence of 

an external electric field, electrons and holes within the quantum well may only 

occupy states within a discrete set of energy subbands. Consequently, only a 

discrete set of frequencies of light may be absorbed, but when an external electric 

field is applied, the electron states shift to lower energies, while the hole states shift 

to higher energies. This reduces the permitted light absorption frequencies. 

Additionally, the external electric field shifts electrons and holes to opposite sides of 

the well. This effect shows a significant amount of change of the absorption 

coefficient with an applied voltage bias due to the enhanced exciton binding energy 

in a quasi-two-dimensional structure. Since quantum-well barriers confine both the 

electrons and holes within the wells, therefore, the exciton binding energy is 

increased and the exciton is more difficult to ionize, results in the reduction of the 

absorption coefficient of the system. The separation between the electrons and 

holes is limited by the presence of the potential barriers around the quantum well, 

that is, excitons are able to exist in the system even under the influence of an 

electric field.

Broadening the horizon in intellectual aspect to understand obviously, 

quantum theory of electroabsorption can be achieved [124]. If the electric field is 

applied by perpendicular to the layer of a quantum well, the situation is 

quantitatively different from that in bulk material. Because the carriers are opposite 

charges, the field pushes electron and hole toward the opposite walls of the well. 

Hence, the overlap between the corresponding their wavefunctions is drastically 

modified. To investigate this effect, the time being the modifications caused by the 

electron-hole Coulomb interaction is disregard for simplicity calculation. เท a
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spatially inhomogeneous situation, such as in a quantum well, one has to use a two- 

point susceptibility function in real space representation z ( R , R \ a > )  which connects 

non-locally the polarization and the field according to

P ( R ,  <o) = J d 3R 'x ( R , R to )E (R  to) (2.68)

The optical susceptibility is given by a generalization of optical transitions

a(co)  = ahI , IพS r  = 0)|2 S ( E n - hco)as

X ( R ,R ' ,0 ) )  =  Xo
1  ^ ; ( ^ r  = 0 ^ ( i ? ' , r '  = 0) 
แ h(a> + i<5) -  Ef1 (2.69)

y/ ( R , r )  is the wavefunction of an electron-hole pair and R, r is the center-of-mass 

and relative coordinates, respectively. เท spatially homogeneous situations, X  
depends only on R -  R '. The Fourier transform with respect to the difference of the 

center-of-mass coordinates yields the spatial dispersion (i.e., the wave-vector 

dependence of the susceptibility). However, due to the spatially inhomogeneous 

situation in a quantum well has X R 0)) ะt  x(R - R \ ( o ) .

The light wave length in the visible range is of the order of 10"4 cm. This 

value is much larger than the typical quantum-well width (for GaAs is around 10”6 

cm. Therefore, utilizing a susceptibility which is averaged over volume of the 

quantum well structure,

Z  =  y f d ’ R f d , R ' z ( l t , R ' , < » ) (2.70)
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This averaged susceptibility locally connects the optical polarization and the 

electromagnetic field. For simplicity in the calculation, assuming that a potential well 

has infinite depth extending over - L I 2 < Z < L I 2 .  The pair wave function of a 

narrow quantum well can be taken as the product of particle-in-a-box wavefunctions 

for the electron and hole multiply with the function describing the relative motion in 

the plane of the layer

¥ 11 (R’ r ) = ¥  ท' (ze )¥ ท, (z* M i ('ll ) (2.71)

Electron and hole wavefunctions in the z direction obey the equation

(2.72)

where the + ( - )  sign is linked to i = e{h) . The boundary conditions are

If/  ̂(z = ± L  / 2) = 0 (2.73)

Using the simple trigonometric functions with even and odd parity

The absorption spectrum resulting from Eq. (2.69) - (2.74) or "Quantum Confined 
Franz-Keldysh spectrum" is
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/ \ V  E g - E h - E n - E „ h)
a ( a > )  =  ะf -  I  ------------- — j --------------

L  *j|
ท, ทเ, (2.75)

£ > * « * «

with E . = ( h k ^ 2 U r n  and the normalization An1 =  I  dz^f/111 (z)| . Solving

Eq. (2.75) by using linear combination of Airy functions mentioned in [124]. The 

complete absorption spectra in quantum well structure is

Figure 2.21 Illustration of (a) calculated wave functions and energy levels for a

150 Â thick GaAs-like quantum well structure a to  and 105 v/cm and

(b) calculated absorption of a 150 Â thick GaAs-like quantum well at 

105 V/cm. The individual transitions are labeled (ท v, ทc) where ทv{ท 0) 

is the valence (conduction) subband number. The smooth line is the 

calculated Franz-Keldysh effect for bulk material (Figure 2.17) [124].
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w here I eh is the square of normalized overlap integral betw een  electron and hole 
wavefunctions

An Aท ' ท h

(2.77)

Figure 2.21 (a) show s the calculated wave functions in the potential well with 
and w ithout an electric field. The picture of the wavefunctions gives the information 
how  the overlap integral Ieh changes due to the field for the various inter-subband  
transitions. Figure 2.21 (b) show s plot of the calculated absorption spectrum for a 
GaAs quantum well with L = 100Â width in the presence of an electric field of 10”5 
v/cm. It is observe that the transition b etw een  the second valence subband and the  
first conduction subband, which was forbidden w ithout field, obtains a large 
oscillator strength in the field. For the limit L - »  00, the inter-subband transitions 
approach the modulation of the bulk Franz-Keldysh spectrum.

Figure 2.22 Impact of an electric field on (a) bulk material (tilt o f bands) and (b)
a quantum well (QCSE) [35].
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Figure 2.23 Impact o f electric fields on the absorption spectrum  of a AIGaAs/GaAs 
quantum well, (a): Electric field along the [001] growth direction, (i) -  
(v): E = 0, 0.6, 1.1, 1.5, and 2 x l0 5 v /cm . (b): Electric field within the  
interface plane, (i, ii, iii): E = 0 ,1 .1 , and 2 x l0 5 v /cm  [35].

Figure 2.22 show s the impact of electric field of bulk and quantum well 
material. เท bulk material, the bands are tilted by the effect of electric field (Figure
2.22 (a)), i.e. there is no longer an overall bandgap. Accordingly, the w avefunctions 
are m odified and have exponential tails in th e  energy gap. เท a quantum well 
structure (Figure 2.22 (b)), an electric field along the confinem ent direction 
(z direction) causes electrons and holes to  shift their m ean position to  opposite  
Interfaces. However, excitons are not ionized due to  the electric field. With 
increasing field (for both field directions) the energy position of the absorption edge  
and the recom bination energy is reduced.

Corresponding experim ental data are shown in Figure 2.23 (a) ( (i) - (v) ) [35]. 
The shift depends quadratically on the electric field since the exciton has no 
perm anent dipole m om ent (mirror sym m etry of the quantum well). Thus, only the  
second-order Stark effect is present in which the field first induces a dipole p - a s .
This dipole interacts with the field with an energy E  =  - p . s  =  - a s 2 . If the field is 
within the quantum -well interface plane, the field leads to  the ionization of excitons.
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The loss of the excitonic peak is visualized in the spectra in Figure 2.23 (b). Note that 
the effect of an electric field along th e  transverse direction is o f significant interest 
since in the case of a quantum well, the applied electric field can be either in the  
plane of the well (longitudinal), w here it behaves as a delocalized tw o dimensional 
electrons, or in the direction of confinem ent (transverse) [59].

Figure 2.24  Schem atic diagram of the QW structure when (a) no applied electric 
field and (b) the electric field is applied in perpendicular to the layers.
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The longitudinal field effect is similar to the bulk problem; the exciton dissociation 
occurs at a fairly low field (disappearance of excitonic absorption), and the  
absorption edge shifts to  lower energy. Because of the confinem ent effect, the  
excitons are not ionized even at applied fields greater than 100 kv/cm .

Again and Again, the major m anifestations of the quantum -confined Stark 
effect produced by the application of an electric field along the confinem ent 
direction are summarized as follows.

- The interband separation changes in the electron and the hole wavefunctions as 
depict in Figure 2.24. เท the absence of applied field, the ground-state wavefunctions 
of electron and hole subbands are distributed symmetrically in form of Gaussian 
function. W hen the transverse electric field is applied, both w avefunctions are 
distorted and tilted to opposite sides because of different Coulomb effect betw een  
them , consequently, it separates the electron and the hole w avefunctions and 
pushes them  to  opposite sides of the quantum -confined region.

- Due to  the separation of the electron and hole w avefunctions (reducing overlap 
b etw een  them ), the binding energy of the exciton decreases or reduction in 
absorption and in lum inescence peaks. This effect is also show n by the spectral 
changes at various field strength for a AIGaAs/GaAs quantum well [128]. เท addition, 
the probability of carriers tunneling out of the well also increases, resulting in a 
decrease in carrier lifetim es and a broadening o f the excitonic peaks. These 
behaviors lead to  shift o f the absorption spectrum  to  lower energies or red shift, and 
the shift is much larger than the Stark shift in bulk materials. However, the shift of 
the excitonic peak is larger than the broadening.

- The electric field can also mix different quantized states and lead to  redistribution 
of oscillator strength betw een  optically allowed and optically forbidden excited  
states. For exam ple, in the absence of an electric field, only An  =  0 transitions
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betw een  the quantized levels of the conduction and the valence bands (such as 
ท = 1 ->• ท =  1 ) are allowed for a symmetric quantum well (potential barrier on both 
sides are the sam e). N evertheless, in the presence of an electric field, An  = ±1 can 
also becom e optically allowed.

- A major consequence of all th ese  m anifestations is a large change in the optical 
absorption corresponding to excitonic transitions, as a function of applied electric 
field in the confinem ent direction. This effect, also called electroabsorption as 
m entioned repeatedly, which leads to  a change An in the real part of the refractive 
index and can be used to  m odulate the propagation o f light by the application of an 
electric field.

Figure 2.25 Schematic diagram of the absorption spectra versus energy in the  
presence of applied electric filed on QW structure. The decreasing  
and broadening of absorption peak is larger when electric field is 
increased, consistence with the results of both theoretically and 
experimentally [130].
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The quantum -confined Stark effect is used in a major application of the  
quantum well devices is in electro-optic m odulators which can operate at room  
tem perature and allow optical com m unications signals to  be switched on and off 
rapidly, so  this effect can be used for the design and realization of very efficient light 
modulators. Extensive investigations of electro-absorption in quantum dots have 
also been carried out [131-132]. Another structure used to  enhance the  
m anifestation of electric field is an asymmetric quantum well w here the potential 
barriers on both sides of the quantum well are not the sam e. This feature can be 
assum ed by using com positional variation ( x  ) o f the wider bandgap sem iconductor  
regions AlxGaUxAs  such that X has one value on on e side of the quantum well GaAs 
and has another value on the other side. เท an asymmetric quantum well, a linear 
Stark effect on the energy levels can be realized.

2.5.3 Electric Field on Quantum Dot Structure

เท previous section, th e  overall substantial is described th e  effect of electric 
field on quantum well material that is a low-dim ensional structure. This reveals that 
confined structures inhibiting the exciton field ionization can produce the strength  
nonlinear optical properties, therefore, an opportunity to  bring a significant progress 
in optical device applications. To top up a discussion, the quantum confined Stark 
Effect of extrem ely confined in all three spatial directions structure or quantum dots 
is considered as the highlighted topic having been investigated both theoretically  
[133-134] and experim entally [135-136]. The zero-dim ensional sem iconductor  
structures, such as ll-VI com pound and lll-V com pound sem iconductors quantum  
dots are widely used especially InAs/GaAs self-assem bled quantum dots [137] which 
have attracted considerable attention because of the new  physics [138] of a few  
electron system s and potential applications in optoelectronic devices [139]. Both 
from the pure and applied point of view  purpose to  clarify the electronic properties 
of zero-dim ensional sem iconductor system s [140-141] and be able to controlling the
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band structure of the system s with high degree of freedom  in controlling the band 
structure and electro-optical properties by both external and built-in internal electric 
fields. A recent theoretical studies has dem onstrated thoroughly by taking som e  
important factors corresponding to the nanostrcutures; strain-induced effect 
(piezoelectric included), tem perature dependent, point defects, interaction of carrier 
with perturbation, size and shape dependent and the existence of other factors to  
becom e precisely as possible [142-145]. These effort desire a consistence with 
experim ental which is also modified many equipm ents o f fabrication for producing 
substrates closely the perfect crystals in order to  making an accurately results in 
m easurem ent, that is, quantum theory and experim ental m ust be concurrently 
investigated for valuable information that leads to  new  sem iconductor device in the  
future.

2.5.3.1 Theoretical concept of electric field on semiconductor quantum dot

The theoretical studies of quantum dot in the presence of applied field are 
introduced in order to  create a visualization via m athem atical m odel for perception. 
Many theoretical approach based on quantum theory have been achieved [65, 133- 
134, 142-145]. One of the interesting information was given by G. พ . Wen e t  al 
[146], G. พ . Wen e t  al explained the quantum -confined stark effect on excitons 
with a uniform electric field in sem iconductor quantum dot, having been studied by 
using a numerical matrix diagonalization schem e. The schem atic diagram of 
confined exciton in a spherical quantum dot (for simplicity) with radius R

surrounding by the glass matrix and under the applied electric field E a is shown in 

Figure 2.26. e d ( e g ) is  the dielectric constant for the quantum dot (glass matrix).

The z  axis is chosen to  be antiparallel to the applied field direction. r(,(r/l)an d  

6  1. ( 0  11) are the position vector in the spherical coordinate and polar angle of the
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Figure 2.26 Schematic diagram of a confined exciton in a QD o f a radius Æ under

the uniform applied electric field E a . e d and e g are the dielectric 

constants of the QD and the glass matrix, respectively. The z axis is

along the direction opposite to the applied electric field Ea . E d is the  
electric field inside the QD [146].

-* ->
electron (hole). The electric field inside the quantum dot, E d , is different from Ea

since the different of dielectric constant ( e d and e g ). With a uniform Ea , the  

electric field inside the quantum dot is reduced to

E d = - - 3̂ - - £ 11 (2.78)

By using the formalism adopted by Hu e t  al [147], the effective-m ass approximation 
was used to  assum e that the quantum dots size has been assum ed to  be much larger 
than the lattice constants of the bulk sem iconductor. The Hamiltonian of tim e- 
independent Schrodinger equation in exciton states are

H =  H .+ H l + K _ h + W e + W h (2.79)
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w here the conduction band minimum of bulk material has been chosen as the  
energy reference point. The first tw o term s of Eq. (2.79) represent the kinetic energy

of electron (hole) with effective m ass m ( m h) ,  H , = - - — V f  ( i  =  e , h ) .  Ve_h is the
2m.

A

Coulomb interaction betw een  the electron and hole, Ve_h =  - e 2 /  e d re- r h . The last

tw o term s are the Stark energy of electron (- sign, i =  e ) and hole (+ sign, i =  h )

under the applied field, พ. =  ± e E drl cos 6, ( i - e , h ) .  The interaction betw een  
electron (hole) and its image charge has been neglected since such an interaction 
d oes not contribute to  the energy of confined excitons inside quantum dot [147).

A

The total angular m om entum  of an exciton L2 (with have not considered the spin 
variable since photonexcitation and recom bination of excitons do not changes of 
spin so only the spin singlet states of the exciton can be excited by the absorption of

photons) that com m utes with the Hamiltonian of Eq. (2.79) is Û  =  (Le + Lh)2, where

L, =  r1X(- ih V 1) is the angular m om entum  operator for electron ( i  = e )  or hole
( i =  h ). The eigenfunctions of Hamiltonian of Eq. (2.79) can be classified according 
to their symmetry. Under the electric field, the system  has azimuthal symmetry 
about the z  axis. The total angular m om entum  L  is no longer a conservative 
quantity. However, for a weak electric field, L is still used to  label states

approximately. The exciton wavefunction 0 (r;,rA)is  determ ined by the Schrodinger 
equation from Eq. (2.79):

*  I v2m. 2m,

( \
e 2 '  ( e . r e ~ r h )V /

-eEdre c o s 0 e + e E drh c o s 0 h <Wre,rh) = E<I>(?e,?k)

(2.80)
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where E is the energy of the confined exciton related to the minimum of conduction 

band of bulk materials. Solving Eq. (2.80) numerically by the method of dia-

gonalization, expanding the exciton wavefunction ® (/;,/;) on the appropriate basis. 

Since the Hamiltonian of Eq. (2.79) cannot be diagonalized with the basis formed by

the single particle wavefunctions because of Ve_h and พ 1 terms so choosing the 

couple electron-hole pair states as the basis for expanding the exciton wavefunction

T (/;,rA). Therefore, the eigenfunction of the confined exciton in the absence of 

electric field, neglecting the coulomb interaction is

^ n Mli ^ ( r e,rh)= 2 \L M ).^ 1 (0 < M > V ) (2.81)

where (/,/w,/2/w21 LM ) is the Clebsch-Gordan coefficient in the Condon-Shortley

convention [148], with subscript 1(2) standing for the quantum number of the 

electron (hole). L and M  are the quantum numbers of the total angular momentum

and it z component, respectively. ®(;•) stands for single particle wavefunction of 

electron (/ - e )  or hole (i = h) which is the solution of Hamiltonian with the

boundary condition ^(>1) = 0(>; > R,i = e,h) corresponding to the assumption of an

infinitiely deep potential between the quantum dot and the glass matrix [146]. 

เท order to calculate the quantum-confined stark effect of exciton inside quantum 

dot by including the Coulomb interaction on the electron and hole with the applied 

field, the exciton wavefunctions are axpanded as a superposition of wavefunction of 

Eq.(2.81) with different quantum number sets เท1 /1 ท 112LM] as

^ ) = . 1 Jr, J  («1 พ 2 x ท212LM(Z>o  (2 .8 2)
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(c) (d)

Figure 2.27 Illustration of (a) the energy levels of exciton as a functions of applied 

electric field in a CdS QD of radius R , (b) energy shifts of the ground 

state exciton as a functions of applied electric field for QD sizes of 

R =9nm  (solid line) and R =5nm  (dotted line), (c) energy shifts of 

the ground state (solid line) and the first (dotted line) and the second 

(dashed line) of the confined exciton as a functions of QD size with 

electric field 1.25 X104 v/cm, and (d) energy shifts of the ground state 

exciton in QD as a functions of R for two representative electric filed 

5 x i o 4 (dotted line) and 1 .5x l05 (solid line) [146].

where V(ท1!1ท212LM) are the expansion coefficients determined from the dia- 

gonalization the Hamiltonian of Eq. (2.79) with the basis of Eq. (2.81). Manipulating
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all the equation above with the method mentioned in [146] so the Hamiltonian of 

Eq. (2.79) is diagonal respect to M , then, diagonalize the total Hamiltonian which is 

obtained the eigenvalues and wavefunctions for states with different M . The 

theoretical interpretation by discussion an energy level, energy shift, electron-hole 

distribution functions and radiative decay rate of the confined exciton in a quantum 

dot under an applied electric field are concluded as follows:

A. The Stark shift of the exciton energy level

Figure 2.27 (a) shows many interesting features. First, there are many 

"anticrossover" regions for different states which manifest the anticrossover at 

dissimilar electric field values. Secondly, the effect of Coulomb interaction between 

electron and hole in this case (R = 9 nm) is stronger than the quantum confinement 

effect because the energy of the ground state 15 is negative or below the bandgap. 

Third, as energy level shift toward the low energies, the applied electric field 

increase. The amount of shifting is more for the lower energy level, the same 

meaning as the quantum confined stark effect in quantum well structure which is 

already discussed.

Figure 2.27 (b) depicts the Stark shift of the ground state of an CdS quantum 

dot of size /? = 9nm (solid line) and 5 nm (dotted line). The higher order 

perturbation between the electric field and excitons are important for determing the 

energy of the exciton which cannot described with a simple E2. The amount of 

Stark shift is much larger for large quantum dot. Note that it is very difficult to 

observe this shift experimentally if the broad quantum dots size distribution exists 

(in this case, the Stark shift of quantum dot with R = 5 nm is only a few meV at 

applied field about 105 v/cm).
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Figure 2.27 (c) shows the energy shift of the three lowest states of the 

exciton functions of the quantum dot for various R under the electric field. The 

energy shift of the ground state energy is much larger than other two excited states. 

The results agree very well with those calculation in [149]. For a quantum dot with a 

large radius, the Coulomb interaction between electron and hole become important 

and the actual eigenstate is a mixture of single particle states with different angular 

momentum.

Figure 2.27 (d) shows plot of the quantum dot size dependence of the ground 

state energy of the exciton for two different applied electric field; 5 x io 4 (dotted 

line) and 1.5xl05 (solid line). The amount of shift is much larger for larger quantum 

dot corresponding to the results in Figure 2.27 (c). The quantum confined stark 

effect on excitons in quantum dot depends on the included effective electric dipole 

moment of the exciton, which is related to the product of E0 and R by the exciton 

in the larger quantum dot also have larger quantum dot included effective electric 

dipole moment.

B. Electron and hole distributions inside quantum dot

Figure 2.28 (a) displays the plot of the distribution functions of electron (a) 

and hole (b) of the CdS quantum dot for different sizes; R = 2 nm (solid line), R = 5 

nm (dotted line) and Æ = 8nm (dashed line) in the absence of electric field. The 

widths of the electron and hole distribution functions increase with decreasing

(
radius of quantum dot. This is due to the fact that kinetic energies

H ' - | r v '

of electron and hole are larger for smaller quantum dot because of the stronger 

confinement, which enables them to move farther away from the center.
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Figure 2.28 Representation of (a) electron and hole distribution functions in the 

absence of an applied electric field in QD for three different sizes of 

R = 2 ททก (solid line), 5 nm (dotted line) and R = 8 nm (dashed line) 

in the absence of electric field, (b) in the presence of an applied 

electric field 1 .5x l05v/cm [146].

When electric field is applied in the same condition illustrated in Figure 2.28
(b), the positions of the distribution maxima of electron and hole shift away from the 

center and the electron (hole) shifts toward the positive (negative) z direction, so 

excitions in quantum dot are "polarized" by the applied electric field. The width of 

the distribution function for the electron under the electric field is larger than hole 

since the smaller effective mass (larger kinetic energy) of the electron than that hole, 

which causes the electron to distribute farther away from the center than the hole. 

Furthermore, the distribution functions for both the electron and hole become 

narrower as the quantum dot radius increase. For R = 2 nm, the electric field does 

not significantly change their distributions that consistent with the results as shown 

in Figure 2.27 (a) - (d).
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Figure 2.29 The electron (a) and hole (b) distribution functions in Q.D for three 

different magnitudes of E = 0 (solid line), 105 v/cm (dotted line), and 

2 x l0 5v/cm (dashed line) with R = 9 nm [146].

Figure 2.29 plots the electron (a) and hole (b) distribution functions under 

three representative applied electric fields for fixed quantum dot size at R - 9  nm. 

The distribution maxima move toward the + z (-z ) direction for electron (hole) as 

the electric field increases. Both the electron and hole tend to distribute near the 

surface under a strong electric field by hole distribution function is narrower than 

that of the electron as discussed in Figure 2.28 (a).

Figure 2.30 is a plot of effective electric dipole moment for the ground state 

of an exciton in a CdS quantum dot of radius R = 9 nm as a function of applied field. 

The averaged distance between the electron and hole in the z direction (or induced 

electric dipole moment of the exciton) increases as the electric field increases. Note 

that the induced electric dipole moment of the exciton is determined by the 

competition between the Coulomb interaction of excitons and the Stark effect.
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Figure 2.30 The induced electric dipole moment as a function of applied 

electric field for a QD of size R = 9 nm [146].

Three different regions can be observed in Figure 2.30. At the lower field region, the 

Stark effect is weaker and the electron and hole behave more like a pair which 

induces a small effective electric dipole moment. At the intermediate field region 

(8 x l0 4 to 2 x l0 5 v/cm), the induced electric dipole moment increase more rapidly. 

At the high field region (above 2 x l0 5 v/cm), the induced electric dipole moment of 

exciton tends to be saturated due to the confinement of the quantum dot.

c. Exciton decay rate

Figure 2.31 shows the applied electric field dependence of the radiative 

recombination rate can be calculated from [146] for CdS quantum dot of R =9nm  

(solid line) and 5 nm (dotted line). For a larger quantum dot, the recombination rate 

decreases slowly initially. It decreases very fast when the applied electric field 

strength is in the range between 0.8 and 1.8xl05 v/cm and becomes flat again 

when the field is above 2 X1 o5 v/cm. The exciton lifetime under the electric field of

2.5 X105 V/cm is about six times that under zero field for the same quantum dot size 

(R = 9nm). The recombination rate for the smaller quantum dot is much weaker 

than that, which is consistent with the fact that a smaller quantum dot is less
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Figure 2.31 The relative decay rate of exciton as a function of the applied electric 

field for the ground state exciton in QD of size R = 9 ททา (solid line), 5 

nm (dotted line) [146J.

influenced by the electric field due to a stronger confinement.

These theoretical results can make a short summary as follows: the electron 

and hole wavefunction overlap decreases under an applied field, which implies an 

increased exciton recombination lifetime due to the quantum confined stark effect. 

The energy level redshift and the enhancement of the exciton recombination 

lifetime are due to the polarization of the electron-hole pair under the applied 

electric field. The calculated results are consistent with electroabsorption and 

photoluminescence experiments on the quantum confined stark effect in quantum 

dot [149-150].
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2.5.3.2 Theoretical studies of vertical and parallel electric field on semiconductor 
quantum dot

Recently, because of experimental in many groups have been focused on 

InAs/GaAs self-assembled quantum dot since attractively optical properties [65,137- 
138, 141, 143, 151], therefore, theoretical studies related with were also 

investigated for characterization some behaviors and development to the novel 

optoelectronic devices based on quantum dot. Grundman et al studied the strain 

distribution, optical phonons, and electronic structures of InAs/GaAs quantum dot 

[70]. Taking into account the effect of valence band mixing and strain, Cusack et al 
studied the electronic structure of InAs/GaAs self-assembled quantum dot [151]. 
เท case of electric field effect on the direction dependence were achieved by Shen น 

et al [152], who theoretically study the electron and hole energy level structures and 

optical transition energy of InAs self-assembled quantum dot in different direction 

of electric field; the perpendicular electric field and the parallel electric field. Shen น 

et al gave a theoretical model for calculating the electronic structures of an InAs self- 

assembled quantum dot in the presence of an electric field by choosing the growth 

direction (100) as the z  direction of coordinate system, and assuming the InAs self- 

assembled quantum dot as a cylinder with radius R in the parallel direction and 

height L in the z  direction. The time-independent Schrôdinger equation with 

Hamiltonian of electrons by Burt and Foreman's effective mass envelope function 

theory [153-154] neglecting the second and higher order terms in the presence of 

electric field F  in the z  direction is

H e =  p — -  p + V ( r  ) -  eFz  (2.83)2 m *  (r )

where p is the electron momentum operator and

m * ( r ) - f o r  \ z \<  L /  2 a n d  X 2 + y 2 <  R 2
e ls e w h e r e

(2.84)
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K ( r )  =
0 for \z\< L/2  and X2 + y 2 < R2 
Ve 0 e ls e w h e r e

(2.85)

where m, * and m2 * are the electron effective masses เท InAs and GaAs materials, 

respectively. For the electron envelope function equation Hex¥ e = Ee'¥6, solving the 

eigenvalues and eigenfunctions of the system by using period boundary conditions, 

and expanding ¥ 1, in terms of normalized plane-wave states, and diagonalizing the 

resultant matrix [151]. Then, the electron wave functions have the following forms

with Ki -2 n lL i (i = x ,y  or z ), Lt is normalized lengths along the corresponding 

direction. For a cylindrical quantum dot, LX=LV and ท,m,l = 0,±1,±2,....

For the hole wave functions, using the normalized plane-wave expansion 

method [151], the formula is the same as Eq. (2.86), but replaced Cnm1 terms with

[anm1 1cnm1 dnm1 f  . Calculating the matrix element with parameters included with

the effect of finite offset, valence band mixing, and strain are all taken into account 

given in [152,155], the results was shown in Figure 2.32 and Figure 2.33.

Figure 2.32 (a) and (b) give the first two energy levels of electrons as a 

function of electric fields along the growth direction and along the parallel direction, 

respectively. Figure 2.32 (a), the electronic ground state energy level is weakly 

affected by the vertical electric field when the electric field is lower than 3 x l 0 5 

v /c m  because the quantum dots have a small height (3 nm). Along the parallel 

direction, the quantum dot have a large diameter (10 nm), and strongly affected by

V J /  ( %1. \  ________ ^ ________ ^  ^ i [ ( k x + nK x )x + (k y + n K y )y + (k z + n K 2 ) ZJ  g g j
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(a) (b)

(c) (d)

Figure 2.32 The ground state energy level (solid lines) and the first excited state 

energy level (dotted lines) of electron as a function of electric fields 

along the growth direction (a) and along the parallel direction (b) 

with the diameter and height of the Q.D are 10 and 3 nm, respectively. 

The first four energy levels of the hole as functions of electric fields 

along the growth direction (c) and along the parallel direction (d) with 

the same diameter of the QD. The solid lines, dotted lines, dashed 

lines, and short-dashed lines in (c) and (d) correspond to the first 

heavy-hole, the first light-hole, the second heavy-hole, and the third 

heavyhole energy levels, respectively [152].
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Vertical Electric Field (loV/çm)

Figure 2.33 The transition energies of the first electron energy level to the first 
heavy-hole energy level along the growth direction. The diam eter and 
height of the QD are 5 nm [152]. The black circles are experim ental 
results [156-157].

the parallel electric field, corresponding to Figure 2.32 (b). From Figure 2.32 (a) and

(b), the two energy levels decrease when the electric field increase by the first 

excited state energy levels (dotted line) are affected by an electric field stronger than 

the ground state energy levels (solid lines). The energy difference between the 

ground state and the first excited state decreases as the electric field increases. 

Figure 2.32 (c) and (d) show the first four energy levels of the hole as a function of 

electric fields along the growth direction and along the parallel direction, 

respectively. The hole energy levels have complicated structures due to the 

"valence band mixing" between the heavy hole and light hole. Figure 2.33 depicts 

the transition energies of the first electron energy level to the first heavy-hole 

energy levels along the growth direction under the perpendicular electric filed. 

The optical transition energies (solid line) have clear redshifts in the vertical electric 

filed. This theoretical result is very close to the experimental data (black circle) 

studied by Fry et al [156-157] in the research of the electronic states as a function of 

applied vertical electric field in InAs/GaAs self-assembled quantum dot using 

photocurrent spectroscopy. The quantum dot in the different direction of electric 

field are very interesting for both theory and application.
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Studying the electronic structure properties of quantum dot can provide 
useful information on the potential application of them . เท application, a quantum  
controlled logic gate may be realized by quantum dot under an external static 
electric field [158]. A single-electron quantum dot em bedded in a sem iconductor is 
a candidate for the solid-state qubit, which is used in solid state quantum com puting 
[159]. Others are useful for the application of quantum dot to  photoelectric devices.

2.5.3.3 Experimental investigation of electric field on quantum dot structure

Some experimental of electric field on quantum dot structure will be 

discussed in this topic tentatively though it is not relate to a scope in this thesis, but 

the purpose is to illustrate of the real system for comparison with the theoretical 

studies, then build up overall point of view later. The interesting experimental 

mentioned above was published by Peng Jin et al [160] about quantum-confined 

stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dot. 

Peng Jin et al introduced by the fact that the theoretical studies of electronic 

structure in เท(Ga)As quantum dot have shown that spatial separation of the 

electron and hole wave functions (i.e., interband built-in dipole moment) exists in 

the dots, which results in asymmetric Stark shift in an applied electric field [70,151]. 
For pure InAs or InGaAs quantum dot with homogeneous composition profile, the 

electron wave function should locate above that of the hole, which tends toward 

localizing closer to the base of the dot [162-163]. The electron-hole alignment can 

be inverted in the dot with graded InGaAs composition [[161-163] and this effect has 

been experimentally observed in many researches [163-163] which is related to the 

temperature. At such temperatures, In-Ga interdiffusion and เท segregation of 

substances are believed to produce the nonuniform composition distribution in 

quantum dot. The built-in dipole moment induced by intersubband electron- 

electron transition has been studied in [164] which is affected on lasing properties of 

quantum dot laser diodes [167] Peng Jin et al investigated the interband transition 

energy of InAs self-assembled quantum dot embedded in GaAs p -i-n  structure
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Figure 2.34 Schematic of sample structure (a) and the AFM image of the 

Reference sample (b). The quantum dots exhibit bimodal size 

distributions. QD1 and QD2 are assigned to denote the 

small and the large quantum dots, respectively [160].

by electroreflectance (ER) [170] as a function of the applied electric field.

Figure 2.34 (a) represents the sample structure. The five stacks of quantum 

dot were grown by molecular beam epitaxy system at relatively low temperature 

( 460°c ) so that In-Ga interdiffusion and เท segregation can be weakened during the 

growth. The electric field in the undoped GaAs layer as a function of the bias voltage 

is determined by Franz-Keldysh oscillations (FKOs) [168] above the GaAs band gap. 

Two indium contacts were formed on the p-type GaAs contact layer and the ก-type 

GaAs buffer. The reference sample for atomic force microscopy (AFM) measure­

ment, which left the top layer of quantum dot stacks uncapped, was grown with the 

same growth parameters shown in Figure 2.34 (b). It was found that quantum dot 

with bimodal size distributions were formed: smaller (QD 1) and larger (QD2) 

quantum dot. ER measurements have been performed under various bias voltages 

at 77 K in the photon energy range of 1.24-2.5 eV. Figure 2.35 is an ER spectrum 

under zero bias voltage. The results are separated in two conditions:
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Figure 2.35 The ER spectrum in the photon energy range of 1.24-2.4 eV of the 

investigated sample under zero bias voltage at 77 K. Integers are FKO 

extremum indices. The bias voltage dependence of the built-in electric 

field in the undoped GaAs layer is presented in the inset by closed 

squares. The solid line is intended as visual guides. [160].

- Above the GaAs band gap, a large number of FKOs from the undoped GaAs layer of 

the p -i-ก  structure have been observed.

- Below the GaAs band gap, which overlap the ER signal from GaAs below the band 

gap, come from InAs wetting layer. The electric field F  in the undoped GaAs layer 

of the sample can be determined quantitatively by the relationship between the 

energy position En of FKO extrema and the extremum index ท

J  [ ( E „ - E g) / ( h Û ) J 2 +ç> = n7T (2.87)

The explanation of the equation is the same as that in [169]. Eq. (2.87)

shows that (Er1 -  EgŸ'2 versus ท should be a straight line with a slope of — —  (h û )3 2

from which one can obtain the electric field F  . The inset in Figure 2.35 shows the 

dependence of the electric field on the bias voltage. The applied voltage
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(x coordinate) is taken as positive when the external potential of the p-type contact 

layer is higher than that of the n-type buffer layer. The electric field F  is positive 

when the field lines point from the n-type buffer to the p-type layer. The nonlinear 

relation between the electric field and the bias voltage is probably caused by the 

formation of nonohmic contacts between เท electrodes and doped GaAs layers.

Figure 2.36 The ER spectra for QD1 under various bias voltages at 77 K (shifted 

vertically for clarity). The dashed line is a guide for the eyes. [160].

Figure 2.36 shows an ER feature in the energy range of 1.1-1.2 eV under 

various bias voltages. By comparing the ER spectra with the photoluminescence 

spectrum, in which the ground-state interband transitions for QD1 and QD2 are at 

1.143 and 1.079 eV, respectively. It was found that the ER signal moved to the 

higher energy when the bias voltage increased. The tilting of the ER spectra is 

probably caused by the superposition of the ER signal from GaAs below the band gap 

and/or of the signal from InAs wetting layer. เท the ER measurement in the energy 

range of 1.1-1.2 eV, the second-order diffractive light in the range of 2.2-2.4 eV 

from the monochromator was filtered by a long-wavelength-pass filter with the 

cutoff wavelength of 700 nm, so that ER signals from GaAs in the energy range of 

2.2-2.4 eV could not produce any influence on the ER line shape of quantum dot.
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Figure 2.37 The electric field dependence of the ground-state interband transition 

energy of QD1. The solid parabola is a least-squares fit to Eq. (2.88). 
When the electric field is 43.0 kv/cm, the parabola reaches its top. 

[160].

The experimental dependence of the transition energy on the electric field is 

plotted in Figure 2.37 by closed squares. When the electric field increases from 105 

to 308 kv/cm, "redshift" of 34 meV is observed because of the quantum confined 

stark effect. It is obtained by theoretical studies and confirmed by some experiments 

that quantum dot should exhibit a quadratical dependence of the interband 

transition energy E j on the applied field F  [161-163],

E t = E t (0) +  p F  +  J3F2 (2.88)

where E T(0 ) is the zero-field transition energy, p  is the built-in dipole moment in 

quantum dot, and p  is a measure of the polarizability of the electron and hole wave 

functions (i.e., the quantum confined stark effect). A least-squares fit to Eq. (2.88). 
for the experimental field dependence of the transition energy is displayed by the 

solid curve in Figure 2.37. The fitting curve exhibits obvious asymmetry about the 

zero electric field. When the electric field is equal to 43.0 kv/cm, the parabola 

reaches its top. This implies that the electron wave function lies above that of the 

hole at zero electric field, with the dipole pointing from the dot apex to the base and 

the resulting dipolar direction is the same as that predicted by theoretical 

calculations [70, 151] for ideal pyramidal InAs quantum dot. However, most 

experiments for เท(Ga)As quantum dot [163-165] have observed a dipole moment
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which is opposite from that in ideal quantum dot. The inverse dipole direction is 

considered to be due to nonuniform InGaAs composition in those dots. เท this work, 

since the sample were grown at relatively low temperature, at which In-Ga 

interdiffusion and เท segregation can be weakened and nearly pure InAs quantums 

are expected to be formed. As a result, the sign of the dipole in the dots is 

consistent with that in ideal InAs quantum dot predicted by theoretical calculations. 

The existence of built-in dipole moment in quantum dot is "unfavorable" for 

quantum dot laser devices because it would reduce the ground-state electron-hole 

overlap [167]. เท the above, the sign of the dipole moment in InAs/GaAs quantum 

dot ร grown at low substrate temperature can be reversed as compared with that in 

quantum dot grown at relatively high temperature reported in [163-164]. It is 

expected that InAs/GaAs quantum dot with zero dipole moment can be obtained at 

a moderate substrate temperature.

เท conclusion, there are other important theoretical models about electric 

field on quantum dot, particularly the size and shape dependence [69,171] which is 

related to the effect of strain distribution for calculation in the refinement results. 

Nevertheless, in the framework of this thesis overemphasizes the prediction of 

quantum electronic phenomena so the non-complicated quantum dot structure was 

used. The structure of quantum dot presented in thesis work is "Rectangular 

Quantum Dot" for simplicity, and it was reported about the research of this quantum 

dot shape in electric field as follows: "Dynamical localization of a square quantum 

dot molecule under magnetic and electric fields" [172], "Dynamical control of 

correlated states in a square quantum dot" [173]. Especially the research topic "DC 

Electric Field Effects on the Electron Dynamics in Double Rectangular Quantum Dots" 

[174] that our thesis work will be presented in the same idea (in case of shape), but 

in the different way investigating and extending the model to the "Aligned 

Rectangular Quantum Dots" with the more precisely than the ones. Furthermore, 

the calculation will manifest some interesting results that were not appeared in the 

reference paper [172-174] under the scope of thesis work.
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2.6 POLARIZATION STUDIES OF THE QUANTUM DOT

More and more interest, th e  subject m atter had progressed to  the main point 
of thesis work, that is, "theoretical studies of polarization effect on the quantum 
dots structure". Basically, polarization is a property of certain types of w aves that 
describes the orientation of their oscillations. Electromagnetic w ave is a transverse 
wave which has both an electric and a m agnetic com ponent. เท other words, the  
transverse nature of an electrom agnetic w ave is closely related to  the light. เท term s 
of light, a light wave is an electrom agnetic wave which are produced by vibrating 
electric charges. เท general, the oscillation of electric field in electrom agnetic waves 
is not specify a certain direction. A light w ave which is vibrating in more than one  
plane is referred to  as unpolarized light such as light em itted by the รนท. Such light 
w aves are created by electric charges which vibrate in a variety of directions, thus 
creating an electrom agnetic w ave which vibrates in a variety of directions. 
To transform unpolarized light into polarized light, the process of removal of 
undesired com ponent of light is called "polarization of light waves". By convention, 
the polarization of light is described by specifying the orientation of the wave's 
electric field at a point in space over one period of the oscillation. Som etim e the  
undesired com ponents from th e light w ave is necessary to  rem ove in order to  
reduce its intensity for utilizing in som e purposes.

The phenom ena of polarization is significant in areas of science and 
technology dealing with wave propagation, such as science, seism ology, 
telecom m unications and optics. The application from polarization effects also deal 
with everyday life, for exam ple, biology, geology, chemistry, com m unication, 
electronics,...etc [175*176]. เท the application of optical sem iconductor devices 
(especially modulator devices and optical fiber), which refer the knowledge of 
electronics branch, is a com plex issue since som e com plicated concepts are 
investigated such as Pockets effect, non-linear effect (Kerr effect), electrooptic
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effect, electrorefraction (biréfringent), photon polarization, and other effects related 
with them  [177].

2.6.1 Polarization Anisotropy in Quantum Dot structure

Recently, self-assem bled quantum dots have been intensively studied during 
the past decade from the viewpoint of fundam ental physics and optoelectronic  
device applications because the atomic-like electronic characteristics are expected to  
bring significant progress in applications [54]. Polarization properties of self- 
assem bled quantum dots are of interest from fundam ental and device point of view, 
not only waveguide structures [54], but also for the application of QDs in quantum  
spintronics (i.e. processing of quantum information with spin states in quantum  
dots) [178]. For optoelectronic devices, the carriers dynamic betw een  the  
conduction band and valence band is important to  investigate obviously for applying 
their performance, which is linked to  the optical transitions. The optical transitions 
are very sensitive to  the symmetry of the confinem ent structure. This m eans that 
shape anisotropy, com position gradients, strain, etc, can induce polarization 
asymmetry and non-parabolic bands [179-180]. The polarization anisotropy in 
photolum inescence has been investigated theoretically as well as experim entally by 
many groups. It has been reported that a strong polarization dependence in the  
photolum inescence spectrum was appeared in asymmetric shaped quantum dots 
[179-180] and has been used to improve optical device perform ance [181].

To extending th e  meaning of "polarization anisotropy", on e may described  
in term s of "linear polarization" for clearly understanding. The linear polarization 
or plane polarization of electrom agnetic radiation is a confinem ent of the electric 
field vector or m agnetic field vector to  a given plane along the direction of 
propagation. Consider the quantum dots, assuming that the intensity of light em itted
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from the dots has com ponent in X ( I x ) and y direction ( / v ). Consequently, the  

"linear polarization degree" ( L P D )  o f tw o-d im ension  is introduced by [182]

L P D  is a quantity used to  describe the portion o f an electrom agnetic wave 
which is polarized. If I x larger than Iy , so L P D  >  0 .  The increasing of L P D  value
indicated that lum inescence from the dots is partially polarized, and therefore can 
be represented by a superposition of a polarized and unpolarized com ponent. This 
value is b etw een  0 and 100%. เท case of I x K I y , L P D & O  or th e  light is

unpolarized. The another case when I  11 » I y 1 L P D  æ 1 or the light is perfectly
polarized and em itted m ostly in the X direction. The physical interpretation m eans 
that the transition probability of carrier in X direction is higher than one, so optical 
transition in the X axis is dom inant. On the other hand, the quantum dots shape is 
elongated in X direction which increase the transition probability, then Ix is 
increased. Now, the transition in the X and the y direction are not the sam e, thus 
quantum dot with non-isotropic shape show  a certain linear polarization degree as 
was reported in [180].

L P D  = (2.89)

Figure 2.38 Different polarization states of laser em ission, illustrated for a few  
cycle pulse propagating from left to  right [183].
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The exam ple of device following this effect, although not all, in case of the  
output of laser, is polarized. This normally m eans a linear polarization state, where  
the electric field oscillates in a certain direction perpendicular to  the propagation  
direction of th e  laser beam. There are cases (occurring i.e. with fiber lasers) where a 
different, i.e. elliptical but also more or less stable polarization state is generated, 
which can be transformed into a linearly polarized beam  by using an appropriate 
com bination of waveplates. Polarized laser em ission is important for a range of 
applications such as, nonlinear frequency conversion (where phase matching in a 
nonlinear crystal is normally obtained only for one polarization direction), 
polarization-coupled (or polarization beam combining), processing of laser beam s in 
polarization-dependent devices (i.e. interferom eters, sem iconductor optical 
amplifiers, and optical modulators). However, som e lasers (in many fiber lasers) do 
not generate a polarized output. This does not necessarily m ean that the laser 
output is truly unpolarized, containing equal optical powers in tw o polarization 
com ponents at any tim e ( I x « /  ), w ithout any correlation of the corresponding
am plitudes. The polarization state may simply be unstable due to  tem perature drifts, 
or randomly switch betw een  different directions.

The degree of linear polarization is often  quantified with the polarization 
extinction ratio (PER) [184], defined as the ratio of optical powers in the tw o  
polarization directions, often specified in decibels, and m easured by recording the  
orientation-dependent pow er transmission of a polarizer. Note that the polarization 
state of the laser output can be disturbed e.g. by random (and tem perature- 
dependent) birefringence, such as occurs e.g. in optical fibers (if they are not 
polarization-maintaining or single-polarization fibers) and also in laser crystals or 
glasses as a result o f thermal effects (or depolarization loss). If the laser gain is 
isotropic, small drifts o f the birefringence may lead to large changes of the  
polarization state, and also a significant variation in the polarization state across the  
beam  profile.
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The optical anisotropy in case of quantum dots structure is discussed in terms 

of asymmetric strain in the surrounding matrix of quantum dots. The polarization of 

the photoluminescence is related to the strain in a material by way of the given 

material's photoelasticity tensor. Generally, the fabrication of quantum dots does not 

give an exactly uniform size (with the length in all direction are equivalent or isotropic 

shape). The light emitted from this ideal quantum dots are nearly unpolarized or 

randomly distributed in all direction (same as LED) [185]. เท fact, the effect of strain 

field is mainly significant to push the real quantum dots shape away from the 

isotropic case, that is, optical anisotropy in real quantum dots are probably occurred.

Investigation the effect of optical anisotropy in the realistic quantum dots has 

been achieved exterimentally. Nakaoka et al [186] studied the optical anisotropy of 

self-assembled InGaAs quantum dots embedded in wall-shaped and air-bridge 

structure. The observation from photoluminescence spectra in quantum dots 

structure found that that large optical anisotropy in the quantum dots is induced by 

lateral patterning of the matrix of the dots, although the anisotropy is absent in the 

as-grown dots the quantum dots (in which originally isotropic). This is due to the fact 

that the strain effect on optical anisotropy of quantum dots having been investigated 

by changing the surrounding matrix of the dots. A reduction of the optical 

anisotropy is observed by changing the laterally patterned structure into a free­

standing structure or an air bridge as depicted in Figure 2.39 (b). The anisotropy in 

the wall-shaped structure can be reduced in the air bridges which is mainly 

attributed to the strain relaxation in the air bridge (strain asymmetry in the 

fabricated structures). The presence of the strain asymmetry is confirmed by the 

observation of spectrally resolved photoluminescence in single quantum dot 

structure. This is consistent with the combined effect of strong electron-hole 

exchange interaction in the presence of the asymmetric strain, and its relaxation.
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Figure 2.39 Schematic illustrations and SEM images of (a) a wall-shaped structure 

and (b) an air bridge, both with a length of 10 mm and a width of 400 

nm. The thickness of the air bridge is 50 nm. (c) Polarization degrees 

in wall-shaped structure (solid squares) and air bridges (open circles). 

The ratios of the polarization degree in the wall-shaped structure to 

that in the air bridge, measured at the same positions, are shown by 

triangles [186].

The experimental mentioned above manifests briefly in the appearance of 

the optical anisotropy for quantum dot structure. Now, the theoretical studies will 

be discussed because the scope of thesis work focuses to this point. Again and 

again, the quantum mechanics are used to describe the theoretical interpretation. 

To analysis the polarization properties, utilizing the electron and the hole 

wavefunctions, the polarization property for each transition can be theoretically 

calculated. The polarization property is determined with the localization of the 

wavefunctions of carriers. เท bulk materials, the electrons and holes can move 

around in every direction without any restriction (their wavefunctions distribute 

uniformly), and thus the dipole moment which is determined by the overlap integral 

of the wavefunctions of electrons and holes has no directional dependence. 

Therefore, the emission PL spectrum has no polarization property. The situation is 

different by the introduction of the quantum-confined structures which restrict the



107

movement of electrons and holes, the wavefunctions tend to localize. Especially, the 

quantum dot structure produces the complete localization of wavefunctions, which 

leads to the polarization of the luminescence for each transition [187].

(> 7  X  0  1C  I 12

11 c i  £  l i t  o f  « f o l  ( .  >

(g)

Figure 2.40 Illustration of degree of linear polarization of interband transitions

(a) , and (b) polarization of envelope functions of p x a n d p y orbitals 

calculated as a function of aspect ratio. The probability density of a 

valence-band electron occupying the p x orbital (a) and p y orbital

(b) and schematic distribution of p x [c) and p y (d). (g) Plot an optical 

anisotropy calculated as a function the height of the QDs [188].
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Some of the interesting theoretical studies will be discussed as follows: 

Sheng e t al [188] represented the optical anisotropy in quantum dots. Sheng e t al 

modeled the "elongated" InAs/GaAs self-assembled quantum dot, as shown in the 

inset of Figure 2.40 (b). This lens shaped quantum dot can be varied the degree of 

elongation via aspect ratio p  =  dx /  dy where dx and dy are the dimension along

the long ( *  = [110]) and short (jy = [110]) axes of the elongated structure, 

respectively. The degree of linear polarization of interband transitions is defined by

0*น/น **>2

( 'V ' lP y l 'V J

A 2 A  20*น/น **> +0î'jp,|vï',,>

where e and x¥ h are the ground states of electrons and holes, respectively. The 

electron and hole states are calculated by an empirical sp3 tight-binding method 

[189-190]. The p x and p y orbitals are chosen to align along the long and short axes 

of the dots, respectively. Figure 2.40 (a) plots the degree of linear polarization of 

interband transitions/^ calculated as a function of the aspect ratio p . When the 

aspect ratio is small ( P  <  1.2), the strain field is found to play a more important role. 

While for the dots of larger aspect ratio, the elongated geometry becomes 

dominant. เท both cases, Peh increases with almost linearly. เท order to achieve

nonzero optical anisotropy Peh, it is clear that the occupation probabilities of 

electrons in the p x and p y orbitals must be different, i.e., the envelope functions 

must be polarized. Figure 2.40 (b) plots the polarization of envelope functions [188] 
calculated in terms of Pef( P ) .  It is seen that the envelope functions become more 

polarized as p  increases, i.e., the more the dot elongates along the X direction, the 

greater the possibility to find valence-band electrons in the p x orbitals. Comparison 

between the results shown in Figure 2.40 reveals a close correlation between peh 
and PeJท. For the dots of small p , Pehand Pef are almost identical. For the large
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aspect ratio, Peh becomes a little larger than Pef. Hence, it is evident that it is this 

selective occupancy that directly leads to the optical anisotropy.

The effect of elongated geometry of the dots on the occupancy of electrons 

in the individual orbitals is shown in Figure 2.40 (c) -  (f). Figure 2.40 (c) and Figure
2.40 (d) plot the probability density of a valence-band electron in the p x and p y

orbitals, respectively. The result confirms that the total probability of the electron 

(corresponds to the area that the isosurface plot occupies) in the p x is larger than

that in the p v. Especially, the probability of finding the electron in the p x in the 

center of the dot is larger than in the p y . Figure 2.40 (e) and Figure 2.40 (f), 
respectively, plot the distribution of the p x and p v orbitals. It is seen that the orbitals 

inside the dot interact sequentially to those outside ones with higher on-site 

energies (filled with dark color). The p t and p y orbitals in the center of the dot are

in a very different confinement: the p x is mainly confined along the X direction while 

the p  is confined along the y direction. As y being the short axis of the elongated 

structure, the p vorbital is seen to be confined more strongly than the p x .The 

different confinement for the p x and p y orbitals induced by the anisotropic structure 

explains why the valence-band electrons prefer to occupy the the p x orbitals. The

effect of structural confinement on the internal orbitals sometimes is referred as the 

quantum confinement effect. It is known that the quantum confinement effect has 

sensitive dependence on the dimensions of the structure (its influence becomes 

dramatically weaker as the dimensions increase). Figure 2.40 (g) plots the calculated 

optical anisotropy as a function of the dimensions of the dots. The result shows that 

Peh decreases rapidly as the dimensions of the dots increase, which verifies that the 

optical anisotropy originates from the quantum confinement effect.

Sheng et a l 'ร studies show that the mechanisms how shape anisotropy lead 

to optical anisotropy are identified by an empirical tight-binding approach. The 

anisotropic structure of quantum dots is shown to impose stronger confinement for
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Figure 2.41 (a) For an InAs/GaAs self-assembled QD elongated along the [110]

direction, the intensity of the emission, respectively, polarized along

the [110] (thin lines) and [110] (thick lines) directions calculated for 

single exciton, biexciton, and triexciton. (b) For a non-interacting of 

electron-hole pair, single exciton, biexciton and triexciton, calculated 

linear polarization as a function of the aspect ratio of the QD. Inset: a 

schematic view of an elongated QD [191].

the localized p  orbitals aligning along the short axis due to their directional

coupling. เท self-assembled quantum dots, these orbitals are also seen in a higher 

potential produced by the strain field. As a result, the valence-band electrons prefer 

to occupy the orbitals aligning along the long axis, which leads to stronger optical 

emission polarized along that direction, then the optical anisotropy is occurred.

These studies had extended the results to the linear polarization in the 

emission spectra of multiexciton states in InAs/GaAs self-assembled quantum dots 

[191], To identify the origins of optical anisotropy in the emission spectrum requires 

the understanding of not only the composition of electron and hole states, but also 

the role of the excitonic effect in the optical transitions. Sheng e t a l adopted a 

theoretical study of the optical anisotropy in the emission spectra by adding the 

multiexciton complexes effect in InAs/GaAs self-assembled quantum dots via 

empirical tight-binding and configuration-interaction approach to investigate the
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role of Coulomb interaction in the optical anisotropy in quantum dots. Then, 

applying the configuration interaction approach of electron and hole states to 

obtain the multiexciton states [192]. The linear polarization in the multiexciton 

emission is also calculated as a function of the aspect ratio of the structures, same as 

the previous studies [188]. The results were shown that the Coulomb interaction 

does not play an important role in the optical anisotropy in elongated self-assembled 

quantum dots. The linear polarization defined for non-interacting electron-hole 

pairs ( Peh ) well reflects the optical properties of multiexciton states. Furthermore, 

the optical anisotropy in the emission spectra of multiexciton states is found to rely 

only on the geometry of the quantum dots structures, which is almost independent 

of carrier-carrier interactions as mentioned above.

2.6.2 Effect of Electric Field on the Polarization in Quantum Dots

The previous discussions about the optical anisotropy for quantum dots were 

shown the important of this subject having been extensive studied for utilizing in the 

optoelectronics applications. The other interesting studies of anisotropy in quantum 

dots has remained investigating both theoretically (i.e., optical anisotropy in 

nonspherical quantum dots [193], dephasing processes and carrier dynamics in 

(เท,Ga)As quantum dots [194]) and experimentally (i.e., polarization anisotropy of 

photoluminescence from multilayer InAs/GaAs quantum dots [195], polarization 

anisotropy in self-assembled quantum dots within transient absorption bleaching 

[196]). เท order to adopt these to produce the semiconductor optoelectronics 

devices. One considerable question is "how about polarization in quantum dots 

when the electric field is applied ?". This reflects that in the operation of some 

semiconductor devices (particularly in the polarization modulator), the external 

electric field is essential for driving these devices to be usable (corresponding 

electro-phenomena related with) and controlling them appropriately.
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The outstanding research about polarization in quantum dots with applied 

electric field (which is also an important motivation in this thesis work) was 

appeared in Gotoh et a l [197]. The author reported on the anisotropic excitonic 

optical properties (polarization dependent photoemission and photoabsorption) 

induced by applying a lateral electric field in a single semiconductor quantum dot. 

The excitonic optical polarization characteristics are examined using theoretical 

calculation which was numerically analyzed taking into account the quantum dot 

potential, electric field, and electron-hole Coulomb interaction. The properties of 

these quantum dot based light sources depend strongly on their optical polarization 

properties, which are determined by the spatial shape of the dots [198-199].

เท general, the main characteristics of both conventional and quantum optical 

devices reflect the near "band edge" optical transitions properties. The optical 

polarization properties of the optical transitions near the band edge of direct band- 

gap semiconductors are determined from the spatial symmetry of the hole wave 

function, following the k.p theory [63, 187]. It is necessary to change the shape of 

the hole wave function in order to control the optical polarization properties. Gotoh 

et a l proposed a thin quantum dot structure with a lateral electric field, as shown in 

Figure 2.42, for controlling polarization properties with an electric field. เท this 

configuration, an electron and a hole are strongly confined in the z direction and 

weakly confined in X and y directions. When an electric field is applied in the X 

direction, the electron and the hole move in opposite directions along the X direction 

and the spatial shape of the wave functions becomes asymmetric in the X and y 

directions, corresponding to the quantum confined stark effect. Moreover, optical 

responses such as photoemission and photoabsorption remain strong even in an 

electric field due to large Coulomb interaction caused by strong confinement along z 

direction. This large optical anisotropy while maintaining a strong optical response 

has not yet been observed in other structures such as bulk and quantum wells.
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Figure 2.42 Thin quantum dot considered in theoretical calculation. The electric 

field is applied along the X direction. Both electron and a hole are 

confined in the quantum dot by an infinitely high confinement 

potential. [197].

Consider an electron and a hole confined in a GaAs thin quantum dot with an 

infinitely high potential barrier where the electric field is applied in the X direction 

(as shown in Figure 2.42). The calculation method was reported the theory in [200- 
201] and will be mentioned briefly as follows. For the Schrôdinger equation 

แ * ¥  =  £ ' ¥ 1 Hamiltonian H for this system is H  =  H hn + Ve_h +  eE wxc -  eE wx h , 

where H km denotes kinetic energy, Ve_h is the electron-hole Coulomb potential and 

E w is the electric field. Therefore, the exciton wave function 'F (the electron and 

hole combine to form an exciton) and energy E are determined by the Schrôdinger 

equation. เท thin quantum dots, ¥  can be expressed as a product of the envelope 

part and Bloch part. Expanding the envelope part of the wave function using 

orthogonal functions for the electron and hole. Since the electron and hole to be 

confined by the infinite potential, orthogonal sinusoidal functions were used, which 

are eigenfunctions of the quantum dot when there is no Coulomb interaction. Then, 

manipulate them and utilize the optical matrix elements as described in [63, 200- 
201], the optical matrix elements for the free electron-hole transition can be 

analytically expressed using kx 1 ky and k , , which are elements of the wave vector
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for the hole wave function and the probability of a transition between Bloch

functions. Consequently, the optical matrix element |A/|2 is

k f + k f  3, 12 1 1 2 . k f + k f  3

1 เ  = k f  + k f  + k f  2 1 a| ' 1 = k f  + k f  +  k f  2
(2.91)

where £ '^  = (;rZ,( /  )1/2 are wave numbers with effective dot size i f  and \M a|2

is a bulk matrix element. Finally, degree of optical polarization was defined as

D  K - H  k f - k f

=  \M fy + \M \2x =  2 k  f  + k f  + k f
(2.92)

Figure 2.43 Calculated hole wave functions for a L x = L y = 30 nm QD. Wave

functions as a function of the (a) y position, and (b) X position. เท (a), 

the wavefunctons are plotted for the y position with the X position 

set at the maximum wave function. เท (b), the y position is fixed at 15 

nm, which is the center of the QD. [197],

For spatially isotropic quantum dots where L x is equal to L y , the optical 

polarization is also isotropic ( D  =  0 ) because k f  = k f  . When an electric field is 

applied to quantum dots, ^ b e c o m e s  larger than k f ,  leading to a polarized
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optical matrix element in the y direction ( D >  0 ). The polarization properties of the 

excitonic optical transition were analyzed using Eq. (2.92).

Figure 2.43 shows the calculated envelope part of the hole wave functions in 

a quantum dot of L x = L y = 30  nm and L : was fixed at 10 nm. The hole wave

functions was plotted because it is easier to observed about the change at the 

presence of applied electric field than the electron wave functions. Since the exciton 

wave functions are linear combinations of free electrons and hole wave functions, 

the electron (hole) part of an exciton can be shown by integrating the hole (electron) 

part [200-201]. The wave functions are plotted as a function of the y position 

(Figure 2.43 (a)) and X position (Figure 2.43(b)) for different electric fields obtained 

by integration in the z direction. With an increase in electric field, the wave functions 

simply increase along the y direction but maintain their spatial symmetry, as shown 

in Figure 2.43 (a), and the wave functions concentrate along the X direction and 

move to the maximum position seen in Figure 2.43 (b). Although the hole wave 

functions are changed by the electric field in the X direction, these wave functions 

are oppositely attracted by electrons via electron-hole Coulomb interaction.

L = 1 0  nm 

50 - L, = L,  =

0 10 20 30 40 50
E lectric Field (kv /cm )

Figure 2.44 Effective dot sizes plotted as functions of the electric field. They are 

obtained from calculated wave functions by fitting them to sinusoidal 

functions. [197],
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Due to this Coulomb interaction, the shapes of the wave functions in the X direction 

remain nearly spatially symmetric with respect to the maximum points of the wave 

functions even in a strong electric field. If there is no Coulomb interaction, the 

shapes of the wave functions become highly asymmetric in the X direction.

Figure 2.44 shown the effective dot sizes L f  (obtained from Figure 2.43 by 

fitting the wave functions to sinusoidal functions) as a function of the electric field 

for quantum dots with different lateral sizes. Note that in a zero electric field, the

L f  values are not the same as the actual lateral sizes of the quantum dots because 

the Coulomb interaction leads to a concentration of electrons and holes at the 

center of the quantum dot, resulting in a L f  that is smaller than the lateral size. 

เท Figure 2.44, because the spatially isotropic quantum dots were consider, so 

i f  = L f  in a zero electric field. When an electric field is applied, L f  becomes

smaller than L f  . The electric field pushes electrons and holes in opposite

directions along the X axis and the spatial expansion of the electron wave function 

and hole wave function is spatially localized. This effect is prominent in "larger 

quantum dots" because electron and hole wave functions can greatly change inside 

the quantum dot and because the Coulomb interaction is small. The differences

between L f  and L f  leading to differences in effective wave vectors and induces 

optical anisotropy.

The degree of optical polarization calculated using Eq. (2.92) was shown in 

Figure 2.45 (a). เท a zero electric field, L f  =  L f  and k f  =  k f  , leading to a zero 

degree of optical polarization, meaning that the optical polarization is completely 

spatially isotropic. When an electric field is applied, L f  becomes smaller and

k f  becomes larger than k f  , which results in a finite value for the degree of 

polarization, and spatially polarized optical absorption and photoemission.
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Figure 2.45 (a) Electric-field dependence of the calculated degree of polarization.

The degree of polarization has a positive value for polarized optical 

emission and absorption in y direction, (b) Calculated wave functions 

of electrons and holes for quantum dots with different lateral sizes. 

The electric field is 30 kv/cm [197].

This electric-field-induced optical anisotropy increases with increases in the 

electric field and in the lateral size of the quantum dot. To understand these 

dependences, Figure 2.45 (b) shown the electron and hole wave functions in an 

electric field of 30 kv/cm for quantum dots with different lateral sizes. เท all QDs, 

the electrons and holes are separated along the X  direction and spatial expansion of 

the hole wave function is smaller than that of the electron wave function. เท smaller 

quantum dots, there are electrons and holes nearly all over the quantum dot and the

spatial shapes of the wave functions are almost isotropic ( L f  » L f  ), leading to a

small degree of polarization. Whereas in larger quantum dots, the electrons and 

holes are spatially localized and the wave functions become spatially asymmetric

(L f  « L f  ). This large asymmetry leads to the large positive degree of 

polarization seen in Figure 2.45 (a).



118

As described above, optical properties such as optical absorption and 

photoemission depends on optical matrix elements. Thus, their polarization 

properties directly reflect the spatial symmetry of the hole wave function. With the 

larger quantum dots in a strong electric field, the hole wave function is largely 

localized and large optical anisotropy appears. As seen in Figure 2.45 (a), optical 

anisotropy is clearly prominent in larger quantum dots. เท thin quantum dots, large 

optical responses are achieved due to the large Coulomb interaction. However, the 

optical responses become weaker in the larger quantum dots when a strong electric 

field is applied. เท larger quantum dots, the spatial symmetry of hole wave functions 

greatly changes, and this causes large optical anisotropy. Simultaneously, the 

electrons and holes are widely separated from one another inside the quantum dot, 

leading to a small spatial overlap between the electron wave functions and the hole 

wave functions. This results in lower oscillator strength and weaker optical response. 

Specifically, when the electric-field potential is larger than the exciton binding 

energy, the field overcomes Coulomb interaction and the optical responses decrease 

greatly. When designing optical devices using thin quantum dots, the dot size and 

electric field should be determined by taking both the polarization characteristics 

and optical response properties into consideration.

To verify the calculated results, Gotoh et al also manifested experimentally 

examined the effect of an electric field on the optical properties in a quantum dot. 

For the measurement, two quantum dots located in the center of an electrode 

connected to a voltage source were chosen which have different lateral size. The 

structure of their energy was evaluated by the photoluminescence excitation 

technique [202], which was measured the polarization resolved low excitation PL at 

different bias voltages for the two quantum dots. Figure 2.46 shown the photo­

luminescence spectra of the larger dot and the smaller dot taken at 10 K and 0° and 

90° indicate that the polarizations are parallel and perpendicular to the electric field, 

respectively. R is the ratio of the 0 V PL intensity to the 4 V PL intensity. For both 

polarizations, the photoluminescence intensity decreases with the application of bias
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Figure 2.46 (a) Schematic diagram of the sample used in the measurement. Two

QDs positioned centrally between the electrodes were detected in 

The measurement, (b) Polarization resolved PL with application of 

the electric field for the larger dot. 0° means that the PL polarization 

is parallel to the electric field. R represents the PL ratios between 

0 and 4 V. The excitation intensity is 2 mW, which is under a low 

excitation condition, (c) Polarization resolved PL with application of 

the electric field for the smaller dot [197],

voltage. เท Figure 2.46, 0° PL, which is the same polarization as the electric field, 

decreases more (R = 0.35) than 90° PL (R = 0.63). But in a small dot, the ratio of 0 V 

PL to 10 V PL for 0° (0.44) is almost the same as that for 90° (0.39) as shown in Figure 
2.46 (c), corresponding to the quantum confined stark effect. The measured result 

shows that the PL polarization changes when an electric field is applied, and this 

change become prominent for larger quantum dots. เท the calculated results, the 

electric-field-induced optical anisotropy becomes larger with increases in the lateral 

size of the quantum dot. Therefore, the measured results agree qualitatively with 

the theoretical results.
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Briefing the main point again, the polarization properties strongly depended 

on the electric field and the lateral size of the dots as follows:

- Large anisotropy appeared in the large quantum dots, but when a strong electric 

field is applied so that an electric-field potential energy is created larger than the 

exciton binding energy, the Coulomb interaction is defeated causing a lower 

oscillator strength, which results in decreasing of the optical responses.

- เท thin quantum dots with large lateral size (non-isotropic shape), the electrons and 

holes are widely separated and both wave functions have spatially asymmetric 

shapes. A large spatially asymmetric shape in a hole wave function causes large 

optical anisotropy. Moreover, due to strong confinement in the z direction, the 

electrons and holes attract each other, leading to a large overlap of the electron and 

hole wave functions. This results in a quantum dot with a large optical response as 

well as large optical anisotropy.

These effects have not yet been observed in other structures such as bulk 

and quantum well structures. Optical anisotropy is induced simply by the application 

of an electric field in spatially isotropic quantum dots. The anisotropy can be 

controlled by controlling the electric field. This tunable anisotropy will provide 

optical devices with novel functions such as polarization light switching and 

polarization fixed surface emitting laser operation. Moreover, optical polarization 

tunability can be used to compensate for the undesirable optical anisotropy in 

quantum dots.

เท the discussion above, phenomena of electric field on the polarization in 

single quantum dot is attractive and interested in extending these results to 

complicated models, following the fabrication of the new quantum dot structure. 

Despite the development of this study has seldom appeared in the publication at the 

present, some interesting research related with have found which were mostly
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focused on the coupling effect of two quantum dots [203-206]. These exhibit an 

important information like the small jigsaws combining as the key that manifests an 

interesting phenomenon, leading to completely overall image.

However, many investigation about this topic has been remained enigmatic, 

so the main objective of thesis work is to examine the optical properties by 

improving quantum dots model to become different from the previous models. This 

thesis work is expansion the InAs binary quantum dots model to the InAs aligned 

quantum dots which pay attention to the coupling effect in adjacent dots. The effect 

of applied electric field on this aligned quantum dots were also investigated, then 

extending to the polarization dependence literally. Following this thesis, the analysis 

will take place with integration of many useful data to increase an intensive 

estimation. Researching of polarization with electric field dependence on the self- 

assembled aligned quantum dot is a novel idea since polarization anisotropy was 

appeared on the single dot with applied electric field. Therefore, the assumption 

about a strong polarization anisotropy on the ordered dots with applied electric field 

may be probable by aiming to the coupling influence, so it is essential to verify this 

prediction straightforwardly and correctly. The procedure of theoretical investigation 

for examine probability in the assumption will be thoroughly explained in chapter ร.
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