
CHAPTER III

CALCULATION DETAILS

เท this chapter, the thesis work is revealed thoroughly the theoretical 

calculation approach of QD structure via Matlab® programming language. This 

structure is modeled by using the mathematics concepts related to quantum 

mechanics theorem. เท addition, numerical method is introduced to simplify the 

computation with more accuracy. The calculation procedures are separated in two 

main parts. The first part is described about the investigation of self-assembled 

aligned QD structure by focusing on interdot coupling effects and correlation behind 

them. The second part represents an electric field on two-dimensional system taking 

into account to apply with the QD. Both parts are verified the results by utilizing 

another program, namely, COMSOL Multiphysics, to obtain the more precise results. 

Then, combines all of these parts for simulation the electric field effect on the optical 

polarization of self-assembled InAs aligned QDs. The calculation results will be shown 

and discussed in chapter 4.

3.1 SIMULATION OF THE SELF-ASSEMBLED ALIGNED QUANTUM DOTS

3.1.1 Mathematical Model

เท the structural characterization, the QDs model is developed base on the 

binary rectangular QDs reported in [207], then expansion to aligned QDs. The AFM 

images of this structure were used as a reference structure for building the aligned 

QD system as shown in Figure 3.1 (a). According to the top view of AFM image, The 

aligned InAs QDs with circular shape were embedded in the GaAs surrounding matrix 

(GaAs capping layer). เท the calculation, rectangular QD was used corresponding to 

the reasons mentioned in chapter 2.
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Figure 3.1 Schematic diagram of InAs/GaAs linearly aligned quantum dots shown 

by AFM image (top view) [208]. (b) The mathematical model corres­

ponding to AFM image and (c) band diagram related with.

It was assumed for simplicity that all the QDs had the same size with the same 

spacing between them, and confined in the periodic multiple quantum wells. Figure
3.1 (b) depicts the mathematical QDs model consists of InAs QDs and the potential 

barriers is the GaAs capping-layer material. Generally, the PL luminescence mostly 

emits form the recombination between electrons and heavy holes in the ground 

state, so only the ground-state eigen-energy levels will be focus for simplicity in 

calculation.
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The calculations were performed using a band diagram in Figure 3.1 (c). Each 

rectangular QD was embedded in the rectangular well width of size 2a, the barrier 

width b, and the barrier height Vo (potential) in Cartesian coordinate system. Since 

recombination of carriers is assumed to be occurred in the ground state, the 

calculation was focused only on the ground-state eigen-energies (£0). To investigate 

the carriers distribution, the eigen-energy (eigenvalue) and the eigen-function 

(wavefunction) of a single carrier in semiconductor linearly aligned QDs must be 

achieved by the time-independent Schrôdinger equation:

3.1.2 Theory

where i//(x )  is the wavefunction distribution of carrier. ทา* is the effective mass of the 

considered particles (electron or hole, depended on the band structure) and ใ) is the 

Planck's constant. V(x) is the difference between the bandgap energy between InAs 

quantum dots and the GaAs surrounding matrix. The corresponding values are 1.12 eV 

and 1.43 eV, respectively at room temperature [209-210] with the condition:

E is the eigen-energy of the system. Because the recombination of carriers occurs in 

the bound states, only the case for consideration is E < v0.

m*)=1-̂ T̂T+ n*)M*)= พ*)
2 เท ox

(3.1)

(3.2)
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3.1.3 Numerical Calculation เท Two-Dimensional Rectangular Aligned QDs

This thesis work presents the model of rectangular aligned QDs in two- 

dimensional case. There are many reasons why the structure mention above is 

introduced as follows:

- เท real QD structure, the complexity of calculation is described by the parameters, 

such as shape (many shape are designed) [70, 211], composition of substances 

[212, 213], and strain distribution [60, 162] which remain not clear in some 

information for deeply examination. This investigation allows for the research which 

highlight to the high accuracy in overall details as possible. On the other hand, it is 

not appropriate in the calculation which focuses only on the tendency of changing in 

some parameters roughly.

- เท the case of calculation, because the precise results are required, the QD should 

be modeled in form of three-dimensional shape. Though this model can reach the 

real structure, it is essential to take a long time for calculation (i.e., five times or 

more compared with the lower dimensional structure). Furthermore, high 

performance of computer is required for increasing a calculation's efficiency.

Table 3.1: Comparison of the modeling of QD structure for three different

dimensions.

Dimension

2D

Shape

Modeling

Data Details Calculating

Time

Computation

Performance

simple Not many Fast Low

V V V V
Realistic Many Slow High
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For the limitations described above, the two-dimensional model is the best choice to 

compensate between one-dimensional (short time calculation, but low accuracy) 

and three-dimensional model (high accuracy, but longtime calculation).

Figure 3.2 Illustration of (a) finite-difference approximation by different geo­

metric interpretations of the first-order finite difference 

approximation related to forward, backward, and central difference 

approximation, (b) Simple diagram of reduction from high order 

derivatives to lower order derivatives.

เท many quantum mechanics problem, the numerical methods were 

introduced for solving the solution which can't be evaluated by analytical methods. 

Here, one of the numerical technique used in thesis work is the finite difference 
method (FDM) [214-215] written in the Matlab® programming language. Because 

the time-independent Schrôdinger equation is a second-order differential equation 

that satisfies the appropriate boundary conditions, the FDM method is proper to 

approximate the solutions of differential equations by replacing derivative 

expressions with approximately equivalent difference quotients. FDM schemes for
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high order derivatives can be obtained from the formulas for lower order 

derivatives. Then, solving the problem with boundary condition to give information 

of carrier distribution. Moreover, the considered structure is two-dimensional, so 

the FDM method is more directly related than the finite-element method which is 

generally used in three-dimensional problem.

โ - '-1 , โ ' - 1 .
f t  * u

◄ — -— ►
h

X

Figure 3.3 The discretized mesh points for the two-dimensional Schrôdinger 

equation.

By using FDM method as reported in [207], The wavefunction and the potential 

were discretized into many small grid points such that the X  coordinates becomes X, =  

ih0, index / = 0, 1,2, 3 4, ..., ho is the distance between the adjacent grid points as 

shown in Figure 3.3. Thus, the two-dimensional Schrôdinger equation was changed 

into the two-dimensional finite-difference form:

1mV IV'-W +l'ฟ - ^'พ +K h + ^ .,) ]+ ^ .; =% , (3.3)
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Using different effective masses taking into account in the above equation leads to:

~ f t 2 (  V น - 1 1 r ij+ 1

K  น  m น ,  i + m l

พน พน พน

พ น , 1 + V̂  +

m'- u +mน m1,น + mน

พน

m'น,\ + ™น m'„น + ml  m *1,  + mh m น , x + m น
- )  + V]y/l =Ey/l] (3.4)

and the following matrix equation is

(4 i -E) -K u
H i (42--E) H i น

H i id^-E ) น

น (4 ,-£ )  H i น

น H t (d^-E ) H i น

น H i (d^-E ) H i น

น H i (4 เ -E )

น (dç-E ) H i

น H i (d^-E)

' พ ่

พ1

พ1

พ0 .

พท.

พ2

พa
พท

พ ุ& _

=0 (3.5)

The FDM method provides a good approximation to the partial derivatives 

but not so small that the approximation consist only of round-off error or 

discretization error [216]. This numerical technique is convenient and generally 

satisfactory, but sometimes slower than analytical method if the equation can be 

solved directly. However, some complex equations, especially in quantum mechanics 

circumstance, the solution can be done by using FDM method. The accuracy of this 

method was shown in [207] for good acceptable agreement compared with the 

analytical method. To increase the accuracy, the number of higher node points is 

required for convergence of two adjacent nodes, the better results are obtained. The 

details about FDM will be deeply discussed again in the topic of calculation of two- 

dimensional electric field system.
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3.1.4 Results and Discussion

3.1.4.1 Comparison and verification the results calculated between two programs

Calculations were performed using Matlab® programming language to 

numerically solve the two-dimensional Schrôdinger equation by FDM method with 

appropriate boundary conditions, results in wavefunction (eigen-functions) and 

corresponding eigen-energy value of the system. Because a band structure in the 

system composes of conduction band valence band, different effective mass values 

(electron and hole) were used to give both electron and hole wavefunctions for 

calculating the optical intensity of carrier recombination. This will be applied to 

estimate a polarization degree, which was demonstrated on next section. The 

effective mass values were shown in Table 3.2. To get close a real band structure, 

we used the ratio between conduction band (AE) and valence band (A£■,) offset 

(height of total potential difference) is proportional 70% to AEC and 30% to AEç 1 as 

shown in Figure 3.4 [217],

C o n d u c tio n  B an d

Figure 3.4 llustration of the band gaps in the QD material InAs and the embed­

ding material GaAs with ratio between AEand AẐ , is 0.7 ะ 0.3.
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Table 3.2: The effective electron and heavy hole mass parameters (ทาe is

electron mass) [218-219].

This computer program is quite flexible because it allows to make fine 

adjustment of some considerable parameters, such as size of QDs (horizontal and 

vertical), distance between adjacent QDs, number of QDs, particularly the number of 

mesh points in the system. Checking an accuracy of numerical method, we found 

that the maximum number of available mesh points before program displays a "out 

of memory" message [220] when calculating the Schrôdinger equation was the 

square matrix with dimension of 3481x3481. Since the values of matrix elements in 

wavefunction solved from Schrôdinger equation are great number of zero values, so 

it is called "sparse matrix". Fortuitously, Matlab® programming language has a 

"sparse matrix algorithm" [221] which aims to reduce a memory usage from the 

operating system when it is calculating. Applying the sparse function to each 

submatrix of Eq. (3.5), then combine these matrixes again and solve the equation in 

order to obtain wavefunction and corresponding eigen-energy value of the system. 

This technique can extend the number of mesh points reaching to 9801x9801 square 

matrix due to the limitation of optimization in Matlab® programming resource. 

Therefore, the maximum number of available QDs which can be calculated are 12 

QDs. For simplicity in calculation, only even number of QDs was computed which is 

so accurately that can estimate the tendency of calculation results.

Figure 3.5 manifest the shape of the wavefunctions resulting from the 

solution in Eq. (3.5) of four coupled QDs with three difference dot separation values. 

The size of each QD is 12x12 nm2 (square-shaped QDs). The uniform mesh was used 

in the X and y directions and 2 nm was equivalent to 1 mesh ( h  value in Figure 3.3).
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W a v e f u n c t io n  o f  f o u r  Q D s  w ith  6  n m  s e p e r a t i o n

W a v e fu n c t io n  o f  fo u r  Q D s  w ith  2  n m  s e p a ra t io n

120

W a v e fu n c tio n  o f  fo u r  Q D s  w ith  0  n m  s e p e r a t io n

Figure ร.5 Schematic diagram of coupling behavior of four coupled QDs with dot

separation (a) 6 nm, (b) 2 nm, and (c) 0 nm (calculated by Matlab®).
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We used "eigen-function" [222] in Matlab® command with the FDM method to 

solve the Schrôdinger equation. As a result, we got the eigen-energy value and the 

corresponding eigen-functions. Note that this eigen-energy value is the ground-state 

eigen-energies as mentioned previously. เท these cases, the coupling behavior of QDs 

can be clearly seen from the shape of the wavefunctions. When the dot separation 

is 6 nm, QDs are close enough to each other so that coupling between them already 

seen, as in the Figure 3.5 (a). When the dot separation becomes smaller (2 nm, as 

shown in Figure 3.5 (b)), coupling between the dots becomes more pronounced. 

เท case distance between QDs is 0 nm or the barrier width of each QD is zero (no 

barrier), all the quantum wells coalesce and become a single long potential well, and 

QD system looks like a quantum wire. เท other words, the wavefunction of each QD 

completely fuses together and becomes a one larger Gaussian distribution curve, as 

depicted in Figure 3.5 (c).

Comparison with COMSOL results

As we introduce briefly at the beginning part of this chapter, COMSOL 
Multiphysics was introduced to make an expression, which can be compared with 

some numerically calculated results from Matlab® programming language. COMSOL 

Multiphysics is an excellent software for the solution of many types of partial 

differential equations (PDEs), both stationary and time-dependent, by numerical 

techniques based on the finite element method for the spatial discretization. It 

facilitates all steps in the modeling process - defining a geometry, meshing, 

specifying physics, solving, and visualizing the results. Furthermore, its versatility, 

flexibility and usability can easily be extended with its add-on modules.

COMSOL Multiphysics was applied to compare and test how precise about 

wave functions generated in Matlab® programming mentioned above. We used PDE 

(Partial Differential Equation), coefficient form model in PDE module to investigate 

the wave functions of four QDs. This was done by first drawing the four rectangular 

InAs QDs (12x12 nm2) with distance between them are 0, 2, and 6 nm (same as the
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separation (a) 6 nm, (b) 2 nm, and (c) 0 ททา (calculated by COMSOL).
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Table 3.3: Comparison of ground-state eigen energy of four coupled QDs calculated 

by Matlab® programming and COMSOL Multiphysics.

Programming Ground-state eigen-energy (E0) of four QDs with separation of

0 nm (eV) 2 nm (eV) 6 nm (eV)

Matlab® 0.0288 0.0742 0.0838

COMSOL 0.028776 0.073919 0.08378

previous cases calculated by Matlab® programming) surrounded by a larger two- 

dimensional square (GaAs region). The next step is to make a function by modifying 

some parameters of PDE, coefficient form changed to Eq. (3.1). The PDE, coefficient 

form can be written as:

\'-(-cV u-au+ y)+ au+ b-'V u= daA u -e i1/l2w (3.6)

Comparing with Eq. (3.5), we see that น = H ,  A = 1/ / ,  da =  1, c = h2l{2 m *) 

(m *  values are difference for InAs QDs and GaAs region, see Table 3.3), a = 0(lnAs 

QDs region) and 0.31 (GaAs region), and other parameters are set to zero value. Then 

inserting these into subdomains settings. With an appropriate boundary conditions, 

solving the problem by numerical calculation to obtain wavefunction and the 

corresponding eigen-energies. The results were shown in Figure 3.6. It was observed 

that the wavefunction distribution in each case of Figure 3.6 was similar to the 

results calculated in Figure 3.5. This was confirmed by comparison of ground-state 

eigen-energies calculated by two programs (see Table 3.3), which were slightly 

different (approximately < 0.002 %) indicating the exactitude of program computed 

by Matlab® programming language.

Some interesting aspect about the calculations and the results obtained above 

is the coupling effects which depend on separation between quantum dots. 

Especially the case of dot separation is zero (maximum coupling) the structure 

manifest a single long potential well implying that the increment of transition
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probability of carriers in some certainly direction. This is interesting for the 

polarization properties related to the energy splitting and coupling among aligned 

quantum dots which is delicately concentrated on next section.

3.1.4.2 Coupling effect on the linear optical polarization property

As mentioned previously in Chapter 2, polarization studies are a useful tool in 

giving some important information about the optical behavior of charge carriers in 

the QDs. A thorough understanding of this mechanism that can be used especially 

for measuring the direction of the intensity profile of emitted light. Thus, 

polarization plays an important role revealing an interesting optical property that 

require in many photonic devices. Polarization may be determined via optical 

intensity, which is directly related to transition probability of recombination 

phenomenon of carrier dynamics in emission process. For two-dimensional system, 

the optical intensity due to carrier transitions of the system may be found from the 

expression [223]:

i f 9) 00 J V i (*. y )พ , f  (x , y )d x d y  (3.7)

where r  stands for the coordinate of the optical transition, 0  stands for either the X 

or the y direction of polarization of light (considered in Cartesian coordinate system), 

^  is the ground-state electron wavefunction (initially, electron carriers were excited 

by external photons, absorb them, and change state to conduction band 

momentarily), and ysf  is the ground-state hole wavefunction (occurring from their

electron pairs). By using the above equation, the degree of optical polarization 

anisotropy, or the "polarization degree" (PD) for two-dimensional systems may be 

determined as:

t  ท cโ ท 0\ W
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P D = h ~ h

h + h
(3.8)

where 7r and 7เ are the emission optical intensity in xand y direction, respectively.

Note that we concentrate on the case of linear polarization of two-dimensional 

system. To demonstrate and analyze the results, single QDs case will be described 

first, then extend to aligned QDs case, and finally give an overall conclusion.

3.1.4.2.1 Single quantum dots

Increase of polarization degree with elongated QD

First of all, the ground-state wavefunctions of electron (^/;) and hole

were calculated by solving Schrôdinger equation with the same method described in 

previous section. After that, using relation in (3.7) to find I x 1 I y and taking them to

Eq. (3.8) that yields the polarization degree of two-dimensional system. We 

considered a polarization degree of single isotropic shape QD (12x12 nm2) compared 

with elongated QD by size in the y direction was fixed to 12 nm and that in the X 

direction varied from 24 nm to 144 nm were investigated. The calculated electron 

wavefunction for isotropic QD and elongated QDs are shown in Figure 3.7. The 

results show that when the QD size is isotropic (dimension in the X and y directions 

are the same), the transition probability of both directions are the same. This result 

in producing an identity of polarization in all directions, that is, degree of 

polarization is zero. When the QD size is elongated in the X direction, now the 

transition probability in the X and the y direction are not the same. This allows 

carriers to moving mostly in the X direction causes to increasing I x more than I y .

Thus, elongated QDs exhibit a certain degree of linear polarization (PD *0).

Moreover, the larger size of elongated QD in the certain direction, the higher

polarization degree gives.
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G roun d  s ta te  w a ve  fu n c tio n  o f  th e  e lec tron

(a)

G roun d  s ta te  w a v e  fu n c tio n  o f  th e  e lec tron

0.6 .
0 . 5  . .  

0 . 4 . . .

s ize -ya x is  (nm ) in terdot spacing-xaxis  (nm )

(b)

Figure 3.7 The ground-state electron wavefunction of (a) isotropic single QD 

whose size is 12x12 nm2 and (b) elongated QD (in X direction) with 

size of 12x108 nm2.
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PD FOR SINGLE ISOTROPIC AND ELONGATED DOT

Figure 3.8 The polarization degree of single QD whose size in the X direction was 

elongated from 12 to 144 nm while that in the y direction was 

maintained at 12 nm.

Comparison of aspect ratio on QD size with polarization degree

Next, the elongated QDs were considered with different sizes but the same 

aspect ratio. The amount of aspect ratio equal to 2, 3, 4, and 5 were calculated for 

analysis of polarization degree, as shown in Figure 3.9. For aspect ratio =2, as the 

size of QDs increase (both X and y direction), the PD also increase. เท addition, 

degree of polarization goes up rapidly at the beginning until it slowly increases when 

the QD size is much larger than the primitive size. These were attributed to 

enlargement of wavefunction in both directions that enhances more and more 

transition probability in the X direction, and also enhances an optical intensity, result 

in PD increment. However, if the QD size is large enough at the one size, transition 

probability in the y direction begins dominant that will decelerate the increasing PD 

until its value saturates at the end. The results of other aspect ratios give a similar 

trend, as well.
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PD (%) Aspect Ratio = 2 PD (%) Aspect Ratio = 3

(a)

PD (%) Aspect Ratio = 4 PD (%)

(b)

Aspect Ratio = 5

(c) (d)

Figure 3.9 The polarization degree of elongated QDs with different aspect ratio 

of (a) 2, (b) 3, (c) 4, and (d) 5, respectively.

The polarization degree values of QDs with other various sizes and aspect 

ratios were also calculated by using the parameters shown in Table 3.4 separated 

into four groups. Each group consists of elongated QDs with aspect ratio varied from

2 to 7. The result is shown in Figure 3.10 that agrees with the previous results.
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Table 3.4: Comparison of polarization degree of QDs with various sizes and aspect

ratios.

เทผแ’•แ เท?!! I-M เท?!แ•แ:เ เท ? !!ท เ I
size (nm1) PO (96) Size (nm2) PD (96) Size (nm2) PD (96) Size (nm2) PD(%)

8x16 24.28 12x24 26 16x32 27.06 24x48 28.4

8x24 38.59 12x36 40.88 16x48 42.29 24x72 44.03

8x32 48.18 12x48 50.66 16x64 52.17 24x96 54.01

8x40 55.12 12x60 57.62 16x80 59.13 24x120 60.96

8x48 60.38 12x72 62.84 16x96 64.31 24x144 66.07

8x56 64.52 12x84 66.9 16x112 68.25 24x168 70

P D (%) 70

Group 1 Group 2 Group 3 Group 4

aspect ratio=2 I  aspect ratio=3 aspect ratio=4 ■  aspect ratio=S aspect ratio=6 aspect ratio=7

Figure 3.10 Bar chart for PD values of QDs with various sizes and aspect ratios.
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3.1.4.2.2 Aligned quantum dots

เท this section, we represent the calculation of polarization degree for linearly 

aligned QDs extended from the former case. The two-dimensional aligned QDs 

system was modeled, as depicted in Figure 3.11. The identically rectangular QDs 

whose width and size are ท and a ททา, respectively. Here, d is the spatial separation 

of QDs that is the same range for all adjacent QDs. It was observed that there were 

some barriers between QDs and needed to be taken into account in the calculation 

which was more complicated. The separation of QDs by the barrier thickness 

strongly affects the "overlap integral" r ,  which measures the amount of total 

coupling both interdot overlapping (between electron-electron wavefunctions and 

hole-hole wavefunctions in the adjacent QDs) and intradot overlapping (between 

electron and hole wavefunctions in the same QD or refers as Coulomb interaction) of 

carriers, and is defined as:

Figure 3.11 Schematic diagram of two-dimensional aligned QD system. Each QD 

size is ท X a nm2 and interdot spacing d nm.
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_ M id  + L e ft + R ight (3.9)

1=1 1 ร  I d

(3.10)

(3.11)

(3.12)

where Ige and y*h are the ground-state wavefunction of electron and hole, 

respectively. K -  (half number of QDs) - 1. M id  , L eft, and R ight are overlapping 

region in the central, left side, and the right side of aligned QDs system , respectively. 

By summation of integrating the dot product of electron-electron, hole-hole, and 

electron-hole wavefuctions overall coupling space, the overlap integral of aligned 

QDs system was obtained. Note that since the dimension of each overlapping region 

was the same, therefore the normalization factor in Eq. (3.9) was the same in all 

overlapping regions. เท other words, the normalization factor in all overlapping

barrier region for each adjacent QDs. Additionally, we neglect the cross-coupling 

effect [223] since it is very small compared with the coupling effect from the two 

neighboring QDs. For example, if the number of QDs equal to 4, K =(4/2) - 1  = 1. 

The M id , L e ft, and Right are calculated by overlapping of wavefunctions in the 

region 1, 2, and 3, as shown in Figure 3.11, respectively.

Finally, the total polarization degree of aligned QDs system may be calculated by

regions can be calculated by using the formula j  J dxdy = d xa  nm2 or the area of
.ร . Id 2 2
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P D  101a1 = T x -  r  X  RawPD (3.13)

It was observed that Eq. (3.13) was modified from Eq. (3.8) by the 

multiplicative factor r ,  which is important factor to be taken into account for any 

coupled QDs systems. Furthermore, RawPD  means the original polarization degree 

before combining the factor r ,  result in the total polarization degree PDlola1 of the 

aligned QDs system.

Increase of polarization degree with number of QDs

Next, we will examine the effect of number of QDs on the polarization 

degree. The even number of QDs was increased in the X direction which was varied 

from two to twelve QDs, while for the y direction, only one QD was maintained. 

เท this case, each QD size was maintained at 12x l2nm 2 and the thickness of barrier 

(spacing between aligned QDs) was fixed at 2 nm. The degree of linear polarization 

of the aligned QDs system was calculated

Figure 3.12 The ground-state electron wavefunction of twelve QDs (highest

Ground state wave function of the electron

®•6
I
ËT(0

-100  -100

number of QDs that can be calculated), each of size 12x12 nm2 with 

interdot spacing of 12 nm.
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2 4 6 8 10 12
0verlap(xl00%) 20 36.83 48.66 52.85 54.53 55.35

■  RawPD(%) 46.73 62.48 71.52 77.13 80.91 83.61
^ ^ “ Total PD (%) 9.34 23.01 34.8 40.76 44.11 46.28
-■ ^“  PD of elongated QD 26 50.66 62.84 70.16 75.06 78.57

Figure 3.13 Comparison of overlap integral (pink line), RawPD (red line), and total 
PD (blue line) vs. the number of QDs aligned in the X direction. The 
dot size was maintained at 12x12 nm 2 (isotropic shape), and the  
interdot spacing b etw een  adjacent QDs was fixed at 2 nm. The 
number of QDs increased in the X direction. The PD of elongated  
single QD (violet line) was also plotted for comparison.

by using Eq. (3.13). It was found that when the number of QDs increased, the total 
polarization degree also increased, as shown in Figure 3.13, and slowly increased  
when reached to  the higher number of QDs. The overlap integral and RawPD values 
also show  a similar trend, com pared with the total PD. N ote that the overlap integral 
w ere multiplied by 100 in order to  plot in the sam e scale with polarization degree  
values (generally, the overlap integral is b etw een  0 and 1). Explanation of the results 
can be interpreted both energy splitting and QDs coupling. The energy splitting of 
any coupled QD system  is significant in the direction of the dot alignm ent [20 7 ,2 2 4 ].
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As the number of dots increases, the am ount of energy splitting also increases. เท 
tw o-dim ensional system , if the QDs align, for exam ple, in the X direction, then the  
splitting of energy levels is significant in the X direction, there is virtually not much 
energy splitting in the y  direction. The major contribution to  the optical transition is 
the X com ponent of the w avefunctions. Consequently, significant energy splitting in 
the X direction implies dom inant linear polarization in the X direction.

เท the view  of QDs coupling m echanism , when the QDs interact with each  
other, they form a coupled system . As the number of dots increases, the overlapping 
region also increases corresponding to strongly mutual coupling from the additional 
carriers. This becom es important for QDs coupling, since the coupling betw een  the 
states of QDs is determ ined by the overlap of corresponding wavefunctions. 
Therefore, the QDs coupling exhibits a large optical intensity spreading in the  
direction of aligned QDs and becom es sensitive to the polarization with the sam e 
direction too.

Ground state wave function of the electron

Figure 3.14 The ground-state electron wavefunction of binary QDs, each of size 
12x12 nm 2 with interdot spacing of 22 nm.
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integral of aligned QDs vs. their interdot spacing (dot size was fixed at 
1 2 x l2 n m 2 and the interdot spacing was varied from 0 to  18 nm).
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Variation of polarization degree with spacing between the QDs

One of the considerable cases of aligned QDs behavior is to  understand about 
the polarization degree of for different interdot distances. Figure 3.15 (a) illustrates 
the polarization degree of two, four, and six aligned QDs for various interdot 
distances varied from 0 to 18 nm, each QD is isotropic with the dim ension of 12x12  
nm2. The thickness of the barrier betw een  the QDs in their alignm ent direction plays 
important role to determ ine the polarization degree of them . The polarization 
degree tends to  decrease when the spatial separation b etw een  the QDs increases. 
For the overlap integral of aligned QDs, the results show s US that the wavefunction  
coupling also strongly depends on the mutual distance betw een  the QDs, seen  in 
Figure 3.15 (b). The tendency of the overlap integral, when varying the interdot 
spacing is inversely proportional to  the increasing distance which is similar to  
exponential variation. Increasing the interdot distance, the ground levels of QDs 
should expect a very small coupling. At the large distance, for exam ple, 22 nm, the  
electron wavefunction is shown in Figure 3.14. The wavefunction decouples and no 
coupling region appears indicating the all energy levels are nearly degenerate state  
when the QDs are far enough from each other. These imply that overlap integral 
becom es very sensitive to the spacing b etw een  QDs.

According to  the results m entioned above, w e see  that the approach for 
increasing the degree of polarization is decreasing the interdot spacing betw een  QDs 
which is close enough so that coupling b etw een  them  m anifests. W hen the thickness 
of the barrier is sm allest, the highest PD is obtained and the band structure of the  
system  may be seen  as the single longer potential well, as previously discussed in 
section 3.1.4.1. เท Figure 3.13, w e see  that all of the polarization degree values of 
elongated QDs (violet line) are greater than the polarization degree in case the 
distance betw een  QDs is 2 nm (pink line). This may be estim ated that each case of 
polarization degree of elongated QD is approximately equivalent to  the highest PD of 
aligned QDs which the distance betw een  them  is zero (com pletely attachm ent or
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บ 12x12 16x16 20x20 24x24 28x28 32x32 36x36 40x40 44x44 48x48
2 nm 0.2 0.1947 0.1785 0.1621 0.1458 0.1307 0.1171 0.1051 0.0946 0.0854
6 nm 0.0807 0.0657 0.0538 0.0444 0.037 0.0312 0.0266 0.0229 0.0199 0.0174

■  10 nm 0.0459 0.0374 0.0306 0.0252 0.021 0.0177 0.0151 0.013 0.0112 0.0098

(b)
Figure 3.16 (a) The polarization degree of tw o isotropic QDs, and (b) the overlap

integral of aligned QDs with various dot sizes varied from 12x12 ททา2 
to  4 8 x 4 8 ททา2. The interdot spacing was also plotted at 2, 6, and 10 
nm, respectively.
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PD IF° m  4 QDS
25

บ 12x12 16x16 20x20 24x24 28x28 32x32 36x36 40x40
» 2 nm (%) 23.01 21.66 19.81 17.82 16.04 14.38 12.9 11.61
■  ■ 6 nm (%) 11.26 9.09 7.38 6.09 5.07 4.27 3.63 3.12

10 nm (%) 7.02 5.61 4.11 3.098 2.9 2.38 2 1.26

(a)

Figure 3.17 (a) The polarization degree of tw o isotropic QDs, and (b) the overlap
integral o f aligned QDs with various dot sizes varied from 1 2 x l2 n m 2 
to 40  x 4 0 nm2. The interdot spacing was also plotted at 2, 6, and 10 
nm, respectively.
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overlap integral = 1). เท practice, it is impossible to grow the large elongated QD 

structure since it is high probably to form an amount of long strips structure on the 

substrate. Nevertheless, we have an option by growing the aligned QDs instead and 

controlling the interdot spacing to become as close as possible.

Influence of increasing the QD size on the linear polarization degree

The effect of dot sizes on the polarization degree was also investigated by 

increasing the size altogether both X and y direction. Figure 3.16 (a) shows the 

polarization degree of two isotropic QDs, sizes varied from 12x12 ททา2 to 48x48 
nm2. The data clearly shows the decreasing of PD while increasing the size of the 

dots and the overlap integral also shows a similar trend, as seen in Figure 3.16 (b). 
เท addition, the polarization degree will highly decreases when increases the 

distance between QDs. The PD and overlap integral results for four aligned QDs (see 

Figure 3.17) were the same as in the case of two aligned QDs. Though, enlargement 

of QD size produces a large carrier wavefuntions, the dimension of each quantum 

well is also large enough to confine their wavefunctions that can decrease the 

probability to find the partial wavefunctions outside quantum wells. Hence, with 

increasing the dot size, the ground-state wavefunctions of carriers in aligned QDs 

should expect very small coupling and the PD then should decrease, corresponding 

to [224].
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3.2 CALCULATION OF TWO-DIMENSIONAL ELECTRIC FIELD SYSTEM

Following to the topic, this section will be discussed the most important 

calculation part, which is directly related to the thesis work. The simulation of two- 

dimensional electric field system is demonstrated. Many research have determined 

the electric field as a specific value, so the electric filed was applied in one direction. 

As a result, both the conduction band and the valence band in QDs structure was 

linearly tilted down to the electric filed direction. Expansion the electric field 

modeling to become more flexible, two-dimensional electric field system was 

produced.

The intention of this point is to improve an accuracy of the system from one­

dimensional model. The in-plane electric field system allows for adjusting the applied 

field which may occurred of both directions (i.e., X  and y )  in the plane. Because 

electric field is a vector quantity, the total electric field is the component of electric 

field in X  and y  direction which can define the scalar values of them for the 

different cases. If electric filed is applied only in the X  direction, the total electric 

filed vector is shown in the X  direction. When electric filed is applied in both X  and 

y  direction, the total electric field manifests in the direction making arbitrary angle 

on the plane, corresponding to their scalar values. This is capable for fine-tuning the 

direction of electric field to point in the required direction.



152

Figure 3.18 Schematic diagram of (a) self-aligned QDs structure and (b) the 

configuration of two-dimensional electric field system.

3.2.1 Mathematical Model

The schematic diagram of self-aligned QDs was depicted in Figure 3.18 (a). 
Since the calculation of electric field model was add to the previous model, QDs 

structure was considered to InAs/GaAs QDs structure, same as discussed in section
3.1. The configuration of two-dimensional electric field system was shown in Figure
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3.18 (b), the InAs/GaAs QDs structure was modeled by rectangular InAs QDs were 

aligned themselves on the horizontal direction (x )  and embedded in rectangular 

GaAs capping layer. Two pairs of electrode were attached on the GaAs surface both 

horizontal (x )  and vertical direction (y )  which were perpendicular to the growth 

direction. It was assumed that the thickness of all electrodes were neglected, so the 

electric field component was appeared only with paralleling along the GaAs surface. 

Moreover, the voltage value in each electrode was constant through the width of 

electrode for simplicity in calculation.

It was observed that the structure in this case was related with the 

electrostatics problem with boundary conditions. Because the problem was two- 

dimensional area, it is not easy to calculate by using analytical method, especially by 

superposition. The reason is not only there are more elements which are not a blank 

area, but also induce the additional internal boundary conditions, causing the 

problem with more complexity. Therefore, numerical calculation regime will be used 

again to manage in this situation. The solution of this electric field structure will be 

explained by means of numerical approach in the next topic.

3.2.2 Simulation of Two-Dimensional Electric Field System by Numerical Approach

Many problems in electrostatics involve boundaries that do not coincide with 

the coordinate surfaces of rectangular, cylindrical, or spherical coordinate systems. 

Analytical methods may not be useful in these cases, and numerical methods must 

be employed. A powerful method for solving Poisson's or Laplace's equation subject 

to conditions on boundary surfaces of arbitrary shapes is the FDM method, which 

makes use of finite difference approximations. Following the electric field model 

mentioned in this thesis work is within the scope of Laplace's equation, so the FDM 

method can be used to investigate the electric field value absolutely [225]. The FDM 

method may be summarized as follows:
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- The partial differential equation - V 20  = - —  is replaced by its finite difference
ร

approximation on a regularly-spaced grid of points covering the region of interest. 

This approximation expresses the potential at grid points interior to the region in 

terms of weighted averages of potential at neighboring points of the grid. Potential 

at grid points on the region's semiconductor boundaries are fixed by the boundary 

conditions.

- The system of finite difference equations constitutes a linear system that may be 

solved either by standard methods, such as Gaussian elimination, or by iterative 

methods. Finite Difference -  Explicit Method
vy

(voltage applied along the y direction) Node
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J i \1 1

น I I

i  \ 1 ท f I |  น

- h tf 1
r t  nn L_
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Fixed Node 

( O V )
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Vx (voltage applied along 

the X direction)

0 ( x , j  + A)
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น (a)

m * ,y )
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(b)

0  0 #  Electrode 

o  GaAs capping layer

0  0  0  InAsQDs

Figure 3.19 Geometry of a rectangular grid used to approximate a 2D electro­

statics problem, and (b) expansion view of the "computational 

molecule" used to solve the finite difference problem.
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เท two-dimensional electric field system, first, the overall area must be 

mapped to the group of nodes on the rectangular grid with spacing A on each node 

illustrated in Figure 3.19. The GaAs capping layer region is the component of red 

nodes. The InAs QDs regions are the component of yellow, pink, and violet nodes. 

The electrode regions are the component of blue, brown, and green nodes. Each 

node is the voltage value or solution region <3>(x,.y) that can be classified in three 

groups:

- Fixed node: a node which is specified a voltage value initially or fixed boundary 

condition (blue, brown, and green nodes).

- Free node: a node which its voltage (or potential) value is unknown and depended 

on the surrounding nodes with the same material region (red and yellow nodes).

- Free node with interface area: a node which is located between two different 

material regions (pink and violet nodes).

Consider finding a solution for the potential 0 ( x , j ) in  a two-dimensional, 

charge-free ( /7V= 0 )  region bounded by electrodes on which the potential is 

specified. Hence, Poisson's equation reduces to Laplace's equation,

v2o a2o a2o
~ dS + ~d/

= 0 (3.14)

Since the values on the boundary are known, the potential is to be estimated 

at all interior node points of the grid. From Eq. (3.14), using finite difference 

approximations to the derivatives that appear there, the second order derivatives in 

Laplace's equation are approximated by "differences of difference" approximations. 

That is, the second derivatives are approximated by finite (central) difference 

approximations of first derivatives,
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( A ไ a o f A ไ
r ^ J x - - , y  V 1 Jô Q (x ,j)  _ _____ dx

dx

which are in turn also approximated as finite differences,

dx
0 ( x  + A ,>>)-0(x,,y) 

A

Ô0
f  A

x - ^ , y
V 2 

dx
Q (;r ,> > ) -0 (x -A ,y )

Combining the two approximations (2) and (3) yields

d2q>(x,,y) 0 ( x  + A,-y ) -2 0 (x ,> ')  + q>(x-A,>')
dx2 A2

Similarly, we have

d2Q(s,,y) ป้) (x ,^  + A )-2 Q (x ,^ )  + <D(x,^-A)
dy2 aF

and hence the finite difference approximation to Laplace's equation becomes

d2 <p(ร, y ) 1 d2<b{x,y) 
dx2 dy2

0 ( x + A, j )  -  20(x , y) + 0 (  X, y +A) + 0 (x  -  A, J/) + 0 (x , y  -  A) -  40(x , y)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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Solving for (I>(x,y ) ,  it is shown that at any node is simply the average of its
four nearest neighbors which was shown in Figure 3.19 (b) and its value is:

0(x,.y) =
0 ( x + A, >>) + 0 (x , + A)+ <p(x -  A, y )+ 0 (x , y -  A)

4
(3.20)

By applying Eq. (3.20) at every interior node, the system of linear equations 

can be generated. To solve the problem, iterative procedure was given by assigning 

arbitrary initial values (0, for example, is a possible choice), and then applying the 

averaging condition of Eq. (3.20) to update each interior value successively. After 

each updating of the interior nodes, the process is repeated until the nodal potential 

converges. However, this method shows some disadvantages as follows:

- If the arbitrary initial value is assigned far away from the real value, the calculation 

will take a long time which decreases the calculating performance.

- เท case of the large matrix, the number of iterative calculation is rather high. This 

may cause an error during the calculation.

Fortunately, we had done by creating the special matrix pattern of linear 

equations set for potential 0 (x ,y )  system. The linear equations were written in 

form of the linearly matrix equation A X  = B ; A  is the special matrix investigating 

by inspection method, X  is the matrix of potential <t>(x,jy) system, and B  is the 

matrix of manipulated real number. Because all values in the matrix A was known, 

the solution of this problem or X  was then solved by inverse matrix approach, that 

is, X  = A ~ 'B . As a result, the all potential 0 (x , values were achieved. To describe 

this process thoroughly, the linearly matrix equation was shown in Figure 3.20. This 

equation was considered to the three components as follows:
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Set of Linear Equations ®(*,}>) in Matrix Form

Figure 3.20 Schematic diagram of linearly matrix equation of potential

which stands for all free nodes in the two-dimensional potential 

system. The specification matrix (matrix A ) shows a sparse matrix 

with diagonal form.

1. Potential $>(x,j) matrix (or matrix X )  is a ท2 x l matrix (matrix with ท2 rows and 

one column, ท is the dimension of free nodes) which all matrix elements are 

potential c>(x,jy) of "free nodes" arranged subsequently in the one column 

(vertically arrangement). เท this thesis work, the matrix A was considered to the 

square matrix for simplicity. Consequently, the matrix of free nodes must be a 

square matrix with dimension of ท x n  . Figure 3.21 (a) depicts the example of the 

6 x 6  two-dimensional potential grid points. The potential was applied both X (green 

nodes) and y direction (pink nodes) about 5 and 10 volts, respectively. The red nodes 

are reference voltage (ground), and the yellow nodes are free nodes. The potential 

0(x,j>) of free nodes were orderly arranged in the matrix X to  create a 16x1 

matrix, corresponding to the product of dimension of free nodes (4 x 4  ).
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Figure 3.21 Schematic diagram of (a) 6x6  two-dimensional potential system 

composed of the dimension of free nodes with the dimension of 4 X 4 

and the applied voltage along both X and y  direction, (b) The linearly 

matrix equation corresponding to the system, in form of A X  - B .  The 

matrix A  is a square matrix, corresponding to the square of free 

nodes's dimension.



1 6 0

2. Specification matrix (or matrix A )  is a sparse matrix with five non-zero diagonal 

lines parallel to each other. These lines was separated in three groups as below,

- The main diagonal line (red stripe), or matrix elem ents ay (i and j are row and 

column of matrix position, respectively) with i = j and their values are -4. Note that 
the dim ension of matrix A  is equal to  ท2 X  ท2

- The diagonal lines which are adjacent to the main diagonal line (yellow stripes), or 
matrix e lem ents a  11 with i = j+1 and j = i+1. Their elem ent values are 1, except in the
elem ent with j (in case of j = i+1) or i (in case of i = j+1) are divisible by ท (dimension  
of free nodes). The previous values are replaced by 0. From Figure 3.21 (b), the  
elem en ts a  11 with i = j+1 and j = i+1 (green stripe) w ere given the value of 1 (i.e.,

a 21,a 32, a12,a 23 ), and the conditional e lem ents m ention above (pink circles) are taken 

0 value (i.e., tf54 which i = 5, j=4, and i = j+1, because j is divisible by 4 (dimension of 

free nodes), .'. a54 = 0 ). These diagonal lines are shown by tw o green stripes.

- The off-diagonal line (blue stripes), or matrix elem ents a y with |i - j | = ท.

The elem ent values corresponding to  are 1. For instance, a51,a 73, a26, aA8 in Figure
3.21 (b) are the sam e elem ent value of 1 since |i - j| =4, following to  their 
dim ension. The off-diagonal line is shown by tw o violet stripes.

Note that the matrix A  is a square matrix with its dimensional relates to the 

square of free nodes's dimension. For example, if dimension of free nodes is 4 x 4 ,  

the dimension of matrix A  is (4)2 x (4 )2 =16x16. Since matrix A  is a sparse matrix, 

it can be easy to find the inverse matrix of A  and take it to multiply with the matrix 

B  for solving the .
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3. Boundary matrix (or matrix B )  is ท2 x l  matrix (same dimension as matrix X )  

which each matrix element by is related to the potential <$11 of free nodes. The

value of by is determined by by = -(summation of the boundary values which its

branches link to the fixed nodes). To illustrate, consider Figure 3.21 (b), showing an 

applied voltage on the X (green nodes) and y (pink nodes) direction with the value of 

5 and 10 volts, respectively (the red nodes are ground nodes). Investigating the value 

of btj, for example, bu . The value of bu is given by ® 14, because its branches link to

both green and pink fixed node, bu \ร then equal to -(5+10) = -15 V. The another 

example is b2A, because its branches link only green pink fixed node, the value of b2A 

is equal to -(10) = -10 V. For the free node which links only the neighboring free 

nodes, their values are set to 0.

เท the two-dimensional electric field system of the thesis work (Figure 3.19), 

this electrostatics problem is more complicated than the general electrostatics 

problems. The main reason is appearance of the internal boundary condition related 

to the difference dielectric constant between two semiconductor materials (InAs and 

GaAs) [226-227]. Figure 3.19 shows the two sets of internal boundary condition at 

the interface between InAs QDs and GaAs capping layer; top and bottom InAs QDs 

regions (pink nodes) which are parallel to X direction, and lateral InAs QDs regions 

(violet nodes) which is parallel to y direction. The corner regions of InAs QDs are 

assumed to free node with occupied the InAs QDs condition (yellow nodes), having a 

dielectric constant of InAs QDs. The GaAs capping layer region is then specified by 

free node (red nodes) with the dielectric constant of GaAs material.

For simplicity to understand, the example of 5x5 two-dimensional potential 

system was shown in Figure 3.22. The system composes of two materials with 

different dielectric constant; material A (yellow nodes) with dielectric constant £•1, 

and material B (red nodes) with dielectric constant £2. The dimension of corres­

ponding free nodes is 3x3,  and the voltage was applied in the fifth column of all 

potential nodes (the first column of all nodes was a reference voltage). เท many
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Interface between two materials

ov Applied Voltage E x

o  Material A (£•1) 
o  Material B (£•2)

Figure3.22 Illustration of 5x5 two-dimensional potential system. The electric 

field is applied along X direction. The interface between two materials 

is considered at $ 12, $ 22, and $ 32 (green frame).

electromagnetic problems, the analysis often involves media with different physical 

properties and requires the knowledge of the relations of the field quantities at an 

interface between two media. This boundary condition must be satisfied with the 

continuity of electric flux density D . The relation between the normal component 

of the fields at a boundary is "the normal component of D  fields is continuous 

across an interface when no free charges appear [ p s =  0)", which leads to the 

equation [228]

or

4, = A. (3-21)

S\E\ท ~ s2̂ 2n (3.22)
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where EXn,E 2n is the electric field component which normal to the interface in the 

material A side and material B side, respectively. The electric field was then 

estimated as

E d<£ . <£(x + A ,y)-<£(x,y) E d o  ^ <£(x, y + A) -  <£(x, y) .3 2 3 J
ÔX A y d y  A

Consider the interface between two materials (green frame) in Figure 3.22. 
Because electric field was applied along X direction, the horizontal electric field Ex 

was concerned. Substituting Exfrom Eq. (3.23) into Eq. (3.22), the equation 

becomes

at <£12, £ 1 (0 ,2 - O u) = £ 2 (<£1 3 — fl>12)

3t <£22, f | ( 0 22 — 0 21) = £2 ( 0 23 — <£22) (3.24)

at <£32, £•1 ({£32- ( £ 31) = £ 2 (0 33-<£32)

Manipulating Eq. (3.24) with the simple form, the results was then obtained

at <£j2 ’ (^1 + £2 ) ^ 1 2  = ^1 ^ 1 1  T £2 ^ 1 3

3t <£22? (£'1 + £2 )<£22 = ฯ̂^21 ^2^23 (3.25)

3t <£32 » (£] + ร2 )<̂>32 = f i®31 + 2̂*̂ 33

comparison with the Eq. (3.20) in the form of summation of surrounding nodes

4<£(x, y )  -  <£(x + A, y )  +  <£(x,y  + a ) + <£(* -  A,y )  + <£(jc, y  -  a ) , given by
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<D(x,>> + A)

0 (x -A ,_ v ) 0 (x  + A ,j;)
0 — — 0 ------- 0

m x , y )

<&(x ,y-A)

0 (x  -  A, J>) 0 (x  + A, y)

& (x ,y )

$(x,.y  + A)

เ ^  (x ,y )  

0 ( x , . y - A )

0(x,.y) = i ( 0 ( x  + A,j>) + 0(.x,>> + A) E _ Q(x + A, y) - Q(x,y) E _ Q(x,y +A )-Q (x,y) 
+ 0 (x -A , v) + 0 (x , y -A )) A

(a) (b)

Figure 3.23 Comparison of the formula between potential element and electric 

field element. The potential 0 (x ,> ’)was obtained from four

surrounding nodes, but the electric field was obtained from two 

adjacent node in the horizontal line for Ex and vertical line for E  .

at 0 12, 4<D12 = 0 , , + 0 B + 0 22+ Vy(boundary)

at 0 22, 4 0 22 = 0 12 + 0 21 + o  23 + 0 32 (3.26)

at 0 32, 4 0 32 = 0 31 + 0 33 + o 22 + ov(boundary)

เท the case of electric field system in this thesis work (Figure 3.19), one 

material with dielectric constant £1 was embedded in larger material with dielectric

constant ร21 two materials have rectangular shapes. All boundary conditions 

of embedded materials must be calculated (top, bottom, left, and right edge).
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Figure 3.24 Schematic diagram of (a) 6 x6  two-dimensional potential system of 

material a with dielectric constant £1 embedded in the larger material 

with dielectric constant ร2. The voltages are applied at top and right 

edge of potential system, (b) The linearly matrix equation corres­

ponding to the system, in form of A X  ะ= B .
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Some matrix element in the specification matrix A corresponding to these regions 

will be adjusted, which is classified in two groups as follows:

1. Top edge and left edge case

- replacing the value -4 in the element a y , i = j with the summation of dielectric 

constant of two materials (£•1 +£•2)

- replacing the value 1 in the element a y , i = j-1 with the dielectric constant - £ 2

- replacing the value 1 in the element a 11, i = j+1 with the dielectric constant -£•1

2. Bottom edge and right edge case

- replacing the value -4 in the element dy, i = j with the summation of dielectric 

constant of two materials (ร 1 +£•2)

- replacing the value 1 in the element a y , i = j-1 with the dielectric constant -£•1

- replacing the value 1 in the element a 11, i = j+1 with the dielectric constant - £ 2

Note that the above condition is satisfied when the potential at the top and right 

edge are higher than the potential at the bottom and left edge, respectively.

Figure 3.24 depicts the example of 6x6  two-dimensional potential system. 

The dimension of free nodes is 4 x4  which represents as a material A with dielectric 

constant £1. The boundary conditions of material A is separated to four groups by 

different colors (top edge -  pink nodes, bottom edge -  green nodes, left edge -  

yellow nodes , and right edge -  blue nodes). For nodes at the corner (O n , 0 ]4, 

<D41, and cb44 ), the boundary condition is neglected and considered as a general free 

nodes (brown nodes), and red nodes are material B with dielectric constant £2. 

The voltages are applied at top and right edge of potential system, bottom and left
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edge are reference potential (0 V). According to the specification matrix A, some 

matrix element values are changed. For top edge ( O l2 and 0,3 ) and left edge nodes 

( 0 21 and 0 31), the matrix element values of atJ at i = j, i = j-1, and i = j+1 are 

changed from 1, -4, 1 to (£■1+ ร2), - £ 2, and -£■1, respectively (grey frames). For 

bottom edge ( 0 42 and 0 41) and right edge nodes ( 0 24 and 0 34), the matrix 

element values of a 11 at i = j, i = j-1, and i = j+1 are changed from 1, -4,1 to (£•1 + £ 2), 

- £ 1, and -£ 2, respectively (red frames).

Following to these processes, both the specification matrix A and the 

boundary matrix B are successfully investigated. The linearly matrix equation 

A X  =  B  of two-dimensional electric field system can be solve by inverse matrix 

method, X  = A~'B. Thus, the potential 0 (x ,^ )w a s  then obtained all over regions

of the system. Finally, the desired electrical parameters were determined from Eq. 

(3.23) to give an electric field distribution throughout the surface area of QDs 

structure.

3.2.3 Results and Discussion

The Matlab® programming language was used again to numerically solve the 

potential 0 (x ,^ )b y  FDM method with boundary conditions, which leads to the

information of electric field distribution over the two-dimensional electric field 

system. For testing the results, two-dimensional electric field system like Figure 3.18 

was estimated by two rectangular QDs with the same size (8x8 mesh elements) and 

spacing between them (18 mesh elements) embedded in GaAs capping layer 

following to Figure 3.19. The dimension of mesh for calculation is 9801 x9801 which 

gets close the limitation of program before an error is occurred about the "out of 

memory" situation. Remind that an accuracy of the calculation depends on the 

number of mesh, the high number of mesh is used, the precisely results are given. 

The dielectric constant of two materials were chosen which were different from
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0 ว

Figure 3.25 Three-dimensional contour of potential distribution of two QDs 

embedded in GaAs capping layer corresponding to the two- 

dimensional system by Matlab® programming.

their original values to clearly observe, especially at the edge of InAs QDs region. 

Therefore, the dielectric constant value of one material should be much larger than 

another material, so the dielectric constant of InAs QDs and GaAs capping layer was 

assumed to ร r = 5000 and 10, respectively. The magnitude of electric field was

adjustable via voltage controlling in the X and y direction, which were applied at top 

and right edge of potential system, bottom and left edge are reference potential (0 

V). This allows controlling an electric field for the desired direction.
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To get the results, Eq. (3.20) and Eq. (3.23) have solved in Cartesian 

coordinate. This was done by using the double symmetry of the geometric shape and 

then taking into account of both external (GaAs's edge) and internal (InAs's edge) 

boundary conditions. เท Matlab® it is possible to plot this solution in form of the 

contour regions, so the potential distribution was shown instead of electric 

distribution since it is easier to observe and compare the results with the COMSOL 

programming. The result was shown in Figure 3.25 as the 3-D potential distribution 

of the system. The convex regions represent two QDs and other regions are GaAs 

capping layer area. The reason for distinguished QDs regions is because dielectric 

constant of QDs is higher than the GaAs capping layer, electric filed was permitted 

passing in QDs greater than GaAs region. Thus, the different of electric field values 

were explicitly appeared at the interface between two materials.

For checking the exactness of this method, three different cases of applied 

voltage were demonstrated covering at all possible situations as follows;

- Case 1: voltage was applied only in the X direction with the magnitude of 10 V.

- Case 2: voltage was applied only in the y direction with the magnitude of 10 V.

- Case 3: voltage was applied both X and y direction with the magnitude of 10 and 

5 V, respectively.

The results were shown in Figure 3.26 - 3.28, and analysation will be discussed 

concurrently with the COMSOL's results for comparison in the next article.



QDs



171

3 - d  p o t e ( l t i a l 

ช Istrlb***10"

QDs

(c)

>----ST-
V

V

^  V

V
V

V
V V

V
V

พ
V V

'V

V
V

2  z  ? D :

"  fi fi '  f i r
r  r  ^  ^  ^  *■ * ■ * ■ - “  '*“ ^-

““' ■ r  fif fi *  r' fi* r  r~ r  Y

p i t  c -c \iv li v l  l i k - â \ k V v i ^  '  '1 r , ' ,  ' ,  "r ~ t

(d)

Figure 3.26 Comparison of two-dimensional potential distribution between (a) 

Matlab® and (b) COMSOL programming in case of voltage was applied 

only in the X direction with the magnitude of 10 V. (c) Three- 

dimensional contour of potential distribution and (d) distribution of 

electric field's direction represented as the red arrows with 

normalized magnitude.
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(c)

Figure 3.27 Comparison of two-dimensional potential distribution between (a) 

Matlab® and (b) COMSOL programming in case of voltage was applied 

only in the y direction with the magnitude of 10 V. (c) Three- 

dimensional contour of potential distribution and (d) distribution of 

electric field's direction represented as the red arrows with 

normalized magnitude.
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Figure 3.28 Comparison of two-dimensional potential distribution between (a) 

Matlab® and (b) COMSOL programming in case of voltage was applied 

both X and y direction with the magnitude of 10 and 5 V, respectively,

(c) Three-dimensional contour of potential distribution and (d) 

distribution of electric field's direction represented as the red arrows 

with normalized magnitude.
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Comparison with COMSOL results

To examine an accuracy of the results, COMSOL programming was utilized 

again for comparison with the Matlab®'s results. เท COMSOL programming, we used 

electrostatics model in AC/DC module to investigate the potential distribution. 

The two-dimensional structure was drawn with the same as simulation in Matlab® 

programming. For subdomains settings, the dielectric constants of two materials 

were used with the same parameters as discussion before. Similar to boundary 

settings, the conditions were the same as mentioned in Eq. (3.22) for continuity of 

electric flux density D  and the same applied voltage in three different cases. 

The method investigated for solving the problem was using Lagrange quadratic 

solver [229], with 60 mesh elements in the FDM solution.

The simulation results were revealed in Figure 3.26 -  3.28, showing the 

comparison of two-dimensional potential distribution between Matlab® and 

COMSOL programming in different three cases of applied voltage. เท the first case, 

voltage was applied along the X direction with magnitude of 1 ^= 10  V, and the 

electric potential distribution calculated from Matlab® programming was depicted in 

Figure 3.26 (a). Note that this figure displays two-dimensional plane (x-y) of three- 

dimensional potential distribution contour in order to be easy for comparison. The 

electric potential intensity was spreading from the parabolic region closed to voltage 

source which potential intensity was high in this region (red color) to other parabolic 

regions which potential intensity was decreased when distance between any 

potential point <I>(x,y), and voltage source was increased (yellow and green color,

respectively). The remnant region was mostly occupied a low intensity of cE>(x,>>)

represent by a blue color. This result was similar to the COMSOL's result as shown in 

Figure 3.26 (b), the brown square represented QDs region. Concentration to QD in 

the green region, electrical potential at the end of this region closed to the edge of 

QD was extended into the end of neighboring regions (yellow and blue region). 

Because the difference of dielectric constant between two materials which is
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remarkable at the interface between them, so changing of (b (x ,y )a t QDs's edge

obviously affected to their neighborhood, same as QD in the blue region (but this 

case is hardly observed due to low contradiction of color). Figure 3.26 (c) displays 

three-dimensional potential distribution contour from COMSOL programming, the 

brown circles was two convex regions represented two QDs, same as the results 

simulated by Matlab® (Figure 3.25). Figure 3.26 (d) shows distribution of electric 

field's direction in two-dimensional plane (x-y), red arrows represent the normalized 

magnitude of electric field, and the blue frames are two QDs region. Electric field 

was broadening from voltage source to the three boundaries which are reference 

voltage, following to the transfusion of electrical potential. The electric field at the 

edge of QDs region was a little different from other region since the effect of 

dielectric constant, which is same reason as described previously in Figure 3.26 (a).

เท the second case, voltage was applied along the y direction with magnitude 

of Vy =10 V. The result of two-dimensional potential distribution were depicted in

Figure 3.27 (a) and (b), which were similar to the first case shown in Figure 3.26 (a) 
and (b) by rotating their pictures to 90° counterclockwise. The three-dimensional 

potential distribution contour in Figure 3.27 (c) was also the same as Figure 3.26 (c), 
but changing the voltage distribution into y axis. The distribution of electric field's 

direction in two-dimensional plane (Figure 3.27 (d)) was nearly in Figure 3.26 (d). 
Nevertheless, a little difference was appeared at the QDs region by electric field's 

direction in both QDs was opposite as a reflected image of each other from a mirror 

(or image charges arrangement [228]), but in Figure 3.27 (d) the electric field's 

direction in two QDs was the same alignment. This implied that the different 

direction of applied voltage caused the different of electric field's distribution in 

aligned QDs, which probably influenced to the inside carriers, following to QCSE. 

Moreover, the effect was more explicit by increasing the number of QDs to become 

a long chain QDs in order to compare between the effect of electric field along the 

QDs alignment and other directions. The reasons for all results in this case can be 

described in the same way with the first case.
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เท the last case, voltage was applied both X and y direction with the 

magnitude of 10 and 5 V, respectively, and the results were shown in Figure 3.28. 
The potential distribution contour shown in Figure 3.28 (a) was different from two 

previous cases. There was a cross section of one dimensional vortex prominently 

appeared in three regions (green, yellow, and blue colors), same as the COMSOL's 

results shown in Figure 3.28 (b). Figure 3.28 (d) shows distribution of two- 

dimensional electric field's direction, the result was more complicated than two 

previous cases since there are two voltage sources applied in different direction. 

The electric field distribution in this case was mostly influenced from the voltage 

source in the X direction because its voltage was higher than the voltage source in 

the y direction. The electric field distribution at nearly voltage source in the X 

direction were three different forms; the electric field was broadening to the 

reference voltage at -X  and -y  direction, and moving up to the voltage source in the 

y direction because of higher potential energy. The electric field distribution from 

voltage source in the y direction mostly was broadening to the reference voltage at 

-X  direction. เท QD region, the electric field distribution was similar to the first case 

though some of it was scribbled, but overall distribution was moved toward the -X  

direction.
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3.3 CONCLUSION

เท the first part of this chapter, we have demonstrated the degree of linear 

polarization (PD) emitted from the two-dimensional aligned QD system which were 

theoretically calculated by using the Schrôdinger equation implemented with the 

finite-difference method (FDM). The results were summarized as follows:

- เท case of single QD, an isotropic QD shape exhibits a zero degree of polarization. A 

certain degree of polarization anisotropy is obtained when the dot is elongated in 

one direction and can be enhanced by increasing its aspect ratio.

- For aligned QDs system, the higher number of QDs gives an enhanced polarization 

degree due to the stronger coupling effect of their wavefunctions (exchange 

interactions during the recombination process determines whether or not the 

polarization of the light gives rise to a larger value). The polarization strength 

strongly depends on spatial separation between adjacent dots. When the interdot 

spacing is smallest (completely QDs attachment), the highest degree of polarization 

is manifested. เท addition, the size of the individual quantum dots also affects the 

degree of polarization, i.e., reducing the QD size give a large degree of coupling, 

thus, a large degree of polarization. Absolutely, a large number of QDs linearly 

aligned with a small dot size and a very close spacing between adjacent dots are able 

to eliminate of all other polarization components and produce more an emission 

light in a one certainly direction.

เท the second part, the two-dimensional electric field system was modeled in 

order to apply for the aligned QDs system. Improvement of electric field by solving 

numerically the 2-D Laplace's equation with FDM method provides more realistically



180

potential distribution, as a result, the precisely electric field distribution is obtained. 

This enables to adjust the electric field distribution in preferred direction via such an 

axially applied voltage.

The results of calculation from two parts mentioned above were confirmed 

the validity by means of comparison the calculated results between Matlab® 

programming language and COMSOL Multiphysics. Combining the aligned QDs 

system with the applied electric field system allows US to study QCSE on polarization 

degree. This is critical for describing how electric field affects the behavior of carrier 

interaction and subsequently the change in coupling strength has on polarization 

degree. A clear understanding of the polarization characteristics of coupled quantum 

dots is a crucial step toward controlling of the emission light in the operation of 

optoelectronic devices. เท chapter 4 the all calculation results of applied electric field 

on aligned QDs system will be discussed in great details.
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