องค์ประกอบทางเคมีของเปลือกต้นเปล้าใหญ่ จากชัยนาท

นางสาว ดวงเพ็ญ ปัทมดิลก

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต สาขาวิชาเภสัชเวท ภาควิชาเภสัชเวท บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2541 ISBN 974-331-966-2 ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

I1890256X

CHEMICAL CONSTITUENTS OF

CROTON OBLONGIFOLIUS STEM BARK FROM CHAINAT

Miss Duangpen Pattamadilok

A Thesis Submitted in Partial Fullfillment of the Requirements for the Degree of Master of Science in Pharmacy Department of Pharmacognosy Graduate School Chulalongkorn University Academic Year 1998 ISBN 974-331-966-2

Thesis Title	Chemical Constituents of Croton oblongifolius Stem Bark
	from Chainat
Ву	Miss Duangpen Pattamadilok
Department	Pharmacognosy
Thesis Advisor	Associate Professor Chaiyo Chaichantipyuth

Accepted by the Graduate School, Chulalongkorn University in Partial Fullfillment of the Requirements for the Master's Degree.

munt chulize Dean of Graduate School

(Professor Supawat Chutivongse, M.D.)

Thesis committee

Kittisak likhit Chairman

(Associate Professor Kittisak Likhitwitayawuid, Ph.D.)

Chargo Chriebentipyuth Thesis Advisor

(Associate Professor Chaiyo Chaichantipyuth, M.Sc.)

(Khanit Suwanborirux, Ph.D.)

.....Member

(Associate Professor Amorn Petsom, Ph.D.)

ดวงเพ็ญ ปัทมดิลก : องค์ประกอบทางเคมีของเปลือกต้นเปล้าใหญ่ จากซัยนาท (CHEMICAL CONSTITUENTS OF *CROTON OBLONGIFOLIUS* STEM BARK FROM CHAINAT) อาจารย์ที่ ปรึกษา : รศ. ซัยโย ซัยชาญทิพยุทธ, 138 หน้า. ISBN 974-331-966-2

การศึกษาองค์ประกอบทางเคมีของเปลือกต้นเปล้าใหญ่ (วงศ์ Euphorbiaceae) สามารถสกัดแยก ัสารบริสุทธิ์ได้ 3 ชนิด เป็นสารในกลุ่มแลบเดนไดเทอปีน 2 ชนิด คือ ent-8(17),12E,14-labdatrien-18-oic acid และสารใหม่ 12,15-epoxy-8(17), 12, 14-triene เป็นสารในกลุ่มเคอเรนไดเทอปีน 1 ชนิด คือ entkaur-16-en-19-oic acid นอกจากนี้ของผสมอีก 2 ชนิดที่แยกได้ เป็นของผสมสเตียรอยด์ซึ่งประกอบด้วย βsitosterol, stigmasterol และ campesterol และของผสมแอลกอฮอล์สายยาวซึ่งมีจำนวนธาตุคาร์บอนดั้ง แต่ 19-26 อะตอมเป็นองค์ประกอบ การพิสูจน์เอกลักษณ์และหาสูตรโครงสร้างทางเคมีของสารสกัดที่แยก ได้ ทำโดยการวิเคราะห์ข้อมูลทางสเปกโทรสโคปีชนิดต่างๆ ร่วมกับการเปรียบเทียบข้อมูลกับสารอื่นที่มี สูตรโครงสร้างทางเคมีที่สัมพันธ์กัน

ลายมือชื่อนิสิต
ลายมือชื่ออาจารย์ที่ปรึกษา 2419 ยีนชายงพยุนช
้ สายมือชื่ออาจารย์ที่ปรึกษาร่วม

- ī

 ## 4076509933 : MAJOR PHARMACOGNOSY
CROTON OBLONGIFOLIUS / LABDANE / KAURANE / DITERPENE / EUPHORBIACEAE
DUANGPEN PATTAMADILOK : CHEMICAL CONSTITUENTS OF CROTON
OBLONGIFOLIUS STEM BARK FORM CHAINAT. THESIS ADVISOR : ASSOCIATE PROFESSOR CHAIYO CHAICHANTIPYUTH, M. Sc. in Pharm. 138 pp. ISBN 974-331-966-2

Three pure compounds were isolated from the stem bark of *Croton oblongifolius* Roxb. Two of them were identified as the known labdane *ent*-8(17),12*E*,14-labdatrien-18-oic acid and a new labdane named 12,15-epoxy-8(17),12,14-labdatriene. The remainder was a kaurane, *ent*-kaur-16-en-19-oic acid. Furthermore, a mixture of steroids consisting of β -sitosterol, stigmasterol and campesterol, and a mixtrue of C₁₉₋₂₆ long chain alcohols were obtained. The identification and structure elucidation of the isolated compound were established by analysis of the spectroscopic data, as well as comparison with the data of other related compounds.

ภาควิชา	เกสัชเวท	ลายมือชื่อนิสิต <i>BA</i>
สาขาวิชา	เภสัชเวท	ลายมือชื่ออาจารย์ที่ปรึกษา ^{จะเป} ็ะ จ๊ะ ทำหาพบทะ
ปีการศึกษา	2541	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

ACKNOWLEDGEMENTS

The author wishes to express her deepest gratitude to her thesis advisor, Associate Professor Chaiyo Chaichantipyuth of the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for his advice, guidance, constant help and encouragement throughout the course of this study.

The author would like to express her grateful thanks to Assistant Professor Dr. Rutt Sutthisri, Department of Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University for his valuable suggestion, helpful assistance in spectroscopic discussion.

The author would also like to thank the members of her thesis examination committee, for their critical perusal and for serving on her examination committee.

The author would like to thank the Graduate School of Chulalongkorn University for granting partial financial support to conduct this investigation.

The author wishes to express her sincere thanks to all her colleagues, especially at the Institute of Medicinal Plant Research, Department of Medical Sciences, Public Health Ministry, for their kindness and facilities.

The author would like to express her appreciation and thanks to all staff members of the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for their contribution and unforgettable friendships.

Finally, the author wishes to express her infinite gratitude to her family for their love, understanding and encouragement.

CONTENTS

	Page
ABSTRACT (Thai)	ĪV
ABSTRACT (English)	V
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF FIGURES	ix
LIST OF TABLES	xii
LIST OF SCHEMES	xiii
ABBREVIATIONS	xiv
CHAPTER	
I INTRODUCTION	l
II HISTORICAL	5
Characteristics of the genus Croton	5
Characteristics of Croton oblongifolius Roxb	7
Chemical constituents of the genus Croton	7
Biogenesis of labdane and kaurane diterpenes	35
Pharmacology of diterpenes	35
III EXPERIMENTAL	39
Source of plant material	39
General techniques	39
Extraction	43
Isolation	44
Characterization of isolated compounds	47
IV RESULTS AND DISCUSSION	51
Structure elucidation of isolated compounds	
from Croton oblongifolius stem bark	
1. structure determination of compound COY4	51
2. structure determination of compound COY11	56
3. structure determination of compound COY10	. 62

	4. structure determination of isolate COY6	67
	5. structure determination of isolate COY8	68
	V CONCLUSION	71
	REFERENCES	72
-	APPENDIX	80
	VITA	138

LIST OF FIGURES

Figure		Page
1.	Croton oblongitolius Roxb	4
2.	El-mass spectrum of compound COY4	81
3.	IR spectrum of compound COY4	82
4.	500 MHz ⁻¹ H NMR spectrum of compound COY4 (in CDCl ₃)	83
5.	500 MHz ⁻¹ H NMR spectrum of compound COY4 (in CDCl ₃)	
	(expanded)	. 84
6.	125 MHz ¹³ C NMR spectrum of compound COY4 (in CDCl ₃)	. 85
7.	125 MHz DEPT-90 spectrum of compound COY4 (in CDCl ₃)	86
8.	125 MHz DEPT-135 spectrum of compound COY4 (in CDCl ₃)	. 87
9.	¹ H- ¹³ C HMQC spectrum of compound COY4 (in CDCl ₃)	. 88
10.	¹ H- ¹³ C HMQC spectrum of compound COY4 (in CDCl ₃)	
	(expanded in the range of δ 1H 0-2.5 ppm and δ ^{13}C 0-60 ppm)	89
11.	¹ H- ¹³ C HMQC spectrum of compound COY4 (in CDCl ₃)	
	(expanded in the range of δ 1H 4.4-6.9 ppm and δ ^{13}C 106-135 ppm)	90
12.	¹ H- ¹³ C HMBC spectrum of compound COY4 (in CDCl ₃)	. 91
13.	¹ H- ¹³ C HMBC spectrum of compound COY4 (in CDCl ₃)	
	(expanded in the range of δ 1H 0.6-6.8 ppm and δ ^{13}C 12-60 ppm)	. 92
14.	¹ H- ¹³ C HMBC spectrum of compound COY4 (in CDCl ₃)	
	(expanded in the range of δ 1H 0.6-6.8 ppm and δ ^{13}C 124-188 ppm)	. 93
15.	¹ H- ¹³ C HMBC spectrum of compound COY4 (in CDCl ₃)	
	(expanded in the range of δ 1H 0.6-5 ppm and δ ^{13}C 33-60 ppm)	. 94
16.	¹ H- ¹³ C HMBC spectrum of compound COY4 (in CDCl ₃)	
	(expanded in the range of δ 1H 1.15-2.45 ppm and δ ^{13}C 15-50 ppm).	. 95
17.	¹ H- ¹ H COSY spectrum of compound COY4 (in CDCl ₃)	. 96
18.	EI-mass spectrum of compound COY11	. 97
19.	IR spectrum of compound COY11	. 98
20.	500 MHz ¹ H NMR spectrum of compound COY11 (in CDCl ₃)	. 99
21.	500 MHz ¹ H NMR spectrum of compound COY11(in CDCl ₃)	
	(expanded in the range of $\delta^{-1}H$ 0.75-2 ppm)	100

Figure

gure		'age
22.	500 MHz ⁻¹ H NMR spectrum of compound COY11(in CDCIs)	
	(expanded in the range of δ^{-1} H 2.74-7.2 ppm)	101
23.	125 MHz ⁻¹³ C NMR spectrum of compound COY11 (in CDCl ₃)	102
24.	75 MHz DEPT-90 spectrum of compound COY11 (in CDCl ₃)	103
25.	75 MHz DEPT-135 spectrum of compound COY11 (in CDCl ₃)	104
26.	¹ H- ¹³ C HMQC spectrum of compound COY11 (in CDCl ₃)	105
27.	¹ H- ¹³ C HMQC spectrum of compound COY11 (in CDCl ₃)	
	(expanded in the range of δ ^{1}H 0.6-2.9 ppm and δ ^{13}C 6-58 ppm)	106
28.	¹ H- ¹³ C HMBC spectrum of compound COY11 (in CDCl ₃)	107
29.	¹ H- ¹³ C HMBC spectrum of compound COY11 (in CDCl ₃)	
	(expanded in the range of $\delta^{-1}H$ 0.6-4.8 ppm and $\delta^{-13}C$ 8-58 ppm)	108
30.	¹ H- ¹³ C HMBC spectrum of compound COY11 (in CDCl ₃)	
	(expanded in the range of δ 1H 0.5-7.5 ppm and δ ^{13}C 105-155 ppm).	109
31.	¹ H- ¹ H COSY spectrum of compound COY11 (in CDCl ₃)	110
32.	¹ H- ¹ H COSY spectrum of compound COY11 (in CDCl ₃)	
	(expanded in the range of δ ¹ H 0.6-4.8 ppm and δ ¹ H 0.6-4.8 ppm)	111
33.	¹ H- ¹ H COSY spectrum of compound COY11 (in CDCl ₃)	
	(expanded in the range of $\delta^{1}H$ 0.6-2.8 ppm and $\delta^{1}H$ 0.6-2.8 ppm)	112
34.	EI-mass spectrum of compound COY10	113
35.	IR spectrum of compound COY10	114
36.	500 MHz ¹ H NMR spectrum of compound COY10 (in CDCl ₃)	115
37.	500 MHz ⁻¹ H NMR spectrum of compound COY10 (in CDCl ₃)	
	(expanded)	116
38.	125 MHz ¹³ C NMR spectrum of compound COY10 (in CDCl ₃)	117
39.	75 MHz DEPT-90 spectrum of compound COY10 (in CDCl ₃)	118
40.	75 MHz DEPT-135 spectrum of compound COY10 (in CDCl ₃)	119
41.	¹ H- ¹³ C HMQC spectrum of compound COY10 (in CDCl ₃)	120
42.	¹ H- ¹³ C HMQC spectrum of compound COY10 (in CDCl ₃)	
	(expanded in the range of δ 1H 0.6-2.9 ppm and δ ^{13}C 12-58 ppm)	121
43.	¹ H- ¹³ C HMBC spectrum of compound COY10 (in CDCl ₃)	122
44.	¹ H- ¹³ C HMBC spectrum of compound COY10 (in CDCl ₃)	
	(expanded in the range of δ 1H 0.6-2.9 ppm and δ ^{13}C 12-58 ppm)	123

Figure Figure 45. ¹H-¹³C HMBC spectrum of compound COY10 (in CDCl₃) (expanded in the range of $\delta^{-1}H$ 0.6-2.9 ppm and $\delta^{-13}C$ 152-188 ppm) 124 46. ¹H-¹H COSY spectrum of compound COY10 (in CDCl₃)..... 125 47. ¹H-¹H COSY spectrum of compound COY10 (in CDCl₃) (expanded in the range of $\delta^{-1}H$ 0.6-2.8 ppm and $\delta^{1}H$ 0.6-2.8 ppm)... 126 48. ¹H-¹H COSY spectrum of compound COY10 (in CDCl₃) (expanded in the range of $\delta^{-1}H$ 4.1-5.4 ppm and $\delta^{-1}H$ 0.8-2.8 ppm)... 127 49. El-mass spectrum of isolate COY6..... 128 50. IR spectrum of isolate COY6..... 129 51. 300 MHz ¹H NMR spectrum of isolate COY6 (in CDCl₃)..... 130 52. GC chromatogram of isolate COY6..... 131 53. EI-mass spectrum of isolate COY8..... 132 54. IR spectrum of isolate COY8..... 133 55. 300 MHz ¹H NMR spectrum of isolate COY8 (in CDCl₃)..... 134 57. GC chromatogram of isolate COY8..... 136 58. Relationship between log Rt and the number of carbons of authentic long chain alcohols and isolate COY8..... 137

XĒ

LIST OF TABLES

Table		Page
1.	Distribution of di- and higher terpenoids from the genus Croton	8
2.	The IR absorption band assignments of compound COY4	51
3.	The HMQC, HMBC and COSY spectral data of compound COY4	53
4.	Carbon chemical shift assignments of compound COY4 and	
	12,13E-ozic acid methyl ester	55
5.	The IR absorption band assignments of compound COY11	56
6.	The HMQC, HMBC and COSY spectral data of compound COY11	58
7.	Proton chemical shift assignments of compound COY11 and	
	7β-hydroxypumiloxide	59
8.	The IR absorption band assignments of compound COY10	62
9.	The HMQC, HMBC and COSY spectral data of compound COY10	64
10.	Carbon chemical shift assignments of compound COY10 and	
	ent-kaur-16-en-19-oic acid	66
11.	The IR absorption band assignments of isolate COY6	67
12.	The retention time of isolate COY6	68
13.	The IR absorption band assignments of isolate COY8	68
14.	The relationship between retention time and the number of carbon	
	atoms of the authentic long chain alcohols and isolate COY8	70

LIST OF SCHEMES

Scheme		Page
1.	Extraction of Croton oblongifolius stem bark	43
2.	Isolation of hexane extract of Croton oblongifolms	. 46
3.	Proposed mass fragmentation of compound COY11	61

ABBREVIATIONS

$[\alpha]_D^{20}$	=	Specific rotation at 20°C and sodium D line (589 nm)
br	=	Broad (for NMR spectra)
С	=	Concentration
°C	-	Degree Celsius
CDCl ₃	=	Deuterated chloroform
CHCl ₃	=	Chloroform
cm	=	Centimeter
¹³ C NMR	(\pm)	Carbon-13 nuclear magnetic resonance
H-H COSY	=	Homonuclear (Proton-Proton) Correlation Spectroscopy
1D	=	One dimensional
2D	-	Two dimensional
d	=	Doublet
dd	=	Doublet of doublets
ddd	=	Doublet of doublets
DBE	=	Double bond equivalent
DEPT	-	Distortionless Enhancement by Polarization Transfer
δ	=	Chemical shift
EI	=	Electron Impact
EtOAc	-	Ethyl acetate
g	=	Gram
¹ H NMR	=	Proton nuclear magnetic resonance
HMBC	=	¹ H-detected Heteronuclear Multiple Bond Coherence
HMQC	=	¹ H-detected Heteronuclear Multiple Quantum Coherence
Hz	=	Hertz
IR	=	Infrared spectrum
J	\in	Coupling constant
kg	=	Kilogram
L	-	Liter
λ_{max}	=	Wavelength at maximal absorption
3		Molar absorptivity

M ⁺	=	Molecular ion
m	=	Multiplet
MeOH	=	Methanol
mg	=	Milligram
MHz	=	Megahertz
min		Minute
ml	=	Milliliter
<i>m z</i>	=	Mass to charge ratio
MS	=	Mass spectrometry
No.		Number
nm	=	Nanometer
		Nuclear magnetic reconance
NMR	=	Nuclear magnetic resonance
nmr P	=	Pentet
NMR P ppm	=	Pentet Part per million
NMR P ppm q		Pentet Part per million Quartet
NMR P ppm q v _{max}		Pentet Part per million Quartet Wave number at maximal absorption
NMR P ppm q v _{max} s		Pentet Part per million Quartet Wave number at maximal absorption Singlet
NMR P ppm q v _{max} s t		Pentet Part per million Quartet Wave number at maximal absorption Singlet Triplet
NMR P ppm q v_{max} s t TLC		Pentet Part per million Quartet Wave number at maximal absorption Singlet Triplet Thin layer chromatography