การสร้างและทดสอบสายอากาศ

สำหรับเนื้อหาของบทนี้จะกล่าวถึงการสร้างและการทดสอบสายอากาศที่ได้จากการออกแบบในบทที่3 ซึ่งเป็นสายอากาศที่ใช้สำหรับแต่ละเขตการควบคุม โดยจะกล่าวถึงวัสดุสำหรับการสร้างสายอากาศ อุปกรณ์ที่ ใช้ในการทดสอบสายอากาศ พื้นที่ที่ใช้ในการทดสอบสายอากาศ ขั้นตอนในการทดสอบสายอากาศที่ออกแบบ การเปรียบเทียบแบบรูปการแผ่พลังงานของสายอากาศทางทฤษฎีกับผลการวัด และการนำผลของแบบรูป การแผ่พลังงานที่ได้จากการวัดไปใช้งานในแต่ละสถานีของแต่ละเขตพื้นที่การควบคุม ในการสร้างสายอากาศที่ ใช้สำหรับทดสอบ เพื่อเปรียบเทียบว่าผลการคำนวณทางทฤษฎีกับผลทางปฏิบัติจะใช้ความถี่ที่ไม่มีการรบกวน จากการควบคุมจราจรทางอากาศ โดยจะเลือกสร้างสายอากาศที่ใช้ในการทดสอบที่ความถี่ 123.95 MHz เนื่องจากความถี่นี้เป็นความถี่ที่ใช้งานในเขตที่ 6 ซึ่งอยู่ทางตอนใต้ของประเทศไทย การทดสอบสายอากาศ ครั้งนี้ใช้พื้นที่สนามฟุตบอลบริเวณหน้าพระบรมรูปสองรัชกาล จุฬาลงกรณ์มหาวิทยาลัย

วัสดุสำหรับสร้างสายอากาศทดสอบ

- องค์ประกอบของสายอากาศทำจาก ท่ออลูมิเนียมกลม ขนาดเส้นผ่าศูนย์กลาง 0.5 นิ้ว มี ความหนา 1 มม.
- ท่อยึดองค์ประกอบ (boom) ทำจากท่ออลูมิเนียมสี่เหลียม ขนาดเส้นผ่าศูนย์กลาง 1 นิ้ว มี ความหนา 1 มม.
- ฐานรององค์ประกอบ (support element) ใช้สำหรับรององค์ประกอบเพื่อความสะดวก ในการยึดองค์ประกอบกับท่อยึดองค์ประกอบ ทำจากอลูมิเนียมแท่งกลึงโดยสามารถรองรับ กันพอดีกับตัวองค์ประกอบและท่อยึดองค์ประกอบ
- 4) ตัวแมตช์อิมพิแดนช์ (matching) ใช้แบบแกมม่า (gamma) เนื่องจากเหมาะสำหรับการปรับ
 อิมพิแดนช์ระหว่างสายอากาศและสายนำสัญญาณแบบไม่สมดุล การปรับค่าอิมพิแดนช์จะใช้
 การปรับค่าคาปาชิแตนช์ และอินดักแตนช์ของตัวแมตช์ซึ่งมีโครงสร้างดังรูป 4.1
- หัวต่อสายนำสัญญาณแบบ N-type ทำหน้าที่ในการต่อสายนำสัญญาณกับตัวปรับแมตช์
 อิมพิแดนซ์ของสายอากาศ

บทที่ 4

รูป 4.1 ตัวแมตช์อิมพีแดนช์แบบแกมม่าแมตช์ซึ่งใช้กับ สายนำสัญญาณแบบไม่สมดุล

อุปกรณ์ที่ใช้ในการทดสอบ

- สายอากาศยากิ-อุดะ ที่ออกแบบในแต่ละเขต ดังแสดงในรูป 4.2 โดยสายอากาศที่สร้างขึ้นมา แต่ละตัวใช้ค่าพารามิเตอร์ที่ออกแบบไว้ในบทที่ 3
- เครื่องกำเนิดสัญญาณ รุ่น HP 8648C ของบริษัท Hewlett Packard ทำหน้าที่สร้างสัญญาณ เพื่อป้อนสัญญาณให้กับสายอากาศส่งในการทดสอบ
- เครื่องวิเคราะห์วงจรข่าย รุ่น HP 8753C ของบริษัท Hewlett Packard ใช้ในการปรับตัว แมตช์อิมพิแดนช์ของสายอากาศที่ใช้ทดสอบ
- เครื่องวิเคระห์แถบความถี่ รุ่น HP 85906 ของบริษัท Hewlett Packard ใช้ในการวัดระดับ สัญญาณของสายอากาศทดสอบ
- 5) สายอากาศไดโพลมาตรฐาน ใช้สำหรับการทดสอบหาระยะสนามไกลที่เหมาะสมสำหรับการ ทดสอบสายอากาศ
- 6) เสายึดสายอากาศที่สามารถปรับระดับความสูงของเสาได้ ซึ่งแสดงในรูป 4.3
- 7) ตัวหมุนสายอากาศทดสอบตามรูป 4.3
- 8) ตัวจับสายอากาศ ใช้สำหรับจับสายอากาศยึดติดกับเสายึดสายอากาศ
- 9) สายน่ำสัญญาณ
- 10) สายไฟฟ้า AC 220V

รูป 4.2 ลักษณะโครงสร้างของสายอากาศยากิ-อุดะที่ใช้ทดสอบ

รูป 4.3 เสายึดสายอากาศที่สามารถปรับระดับความสูงได้ และตัวหมุนสายอากาศทดสอบ

พื้นที่ในการทดสอบสายอากาศ

สำหรับพื้นที่ที่ใช้ในการทดสอบสายอากาศในระยะสนามไกลจะต้องเป็นสถานที่กว้าง และไม่มีการ รบกวนของคลื่นสัญญาณของความถี่ที่ทดสอบ ในงานวิจัยนี้ได้ทำการสำรวจแล้วปรากฏว่าบริเวณสนาม ฟุตบอลหน้าพระบรมรูปสองรัชกาลของจุฬาลงกรณ์มหาวิทยาลัย ดังแสดงในรูป 4.4 ได้ทำการวัดคลื่น สัญญาณความถี่ที่ทดสอบ 123.95 MHz. ด้วยเครื่องวิเคราะห์แถบความถี่ ปรากฏว่าไม่มีความถี่รบกวนใน บริเวณที่ทดสอบสายอากาศดังแสดงในรูป 4.5 และไม่มีสิ่งที่ทำให้เกิดการสะท้อนจากสภาพแวดล้อมใกล้เคียง

รูป 4.4 พื้นที่ที่ใช้ในการทดสอบสายอากาศบริเวณสนามฟุตบอล จุฬาลงกรณ์มหาวิทยาลัย

調査を対							-		
	:	:	:	:	:	:	:	:	:
RARZ	:	:	:		:	:	*******	:	
		:	:	:	:	:	:	:	:
	:	:	:	:	:				MARKER
LALL	:			:	:			\$182	128.95
£32P	:	÷	:	:	:			dEa	-85.93
								-	
SELE		:	-	:	:	:	:	-	:
240									
			Start Start	Stop of	124.25	S.F. Tend	145,713		To use
¥.e.		:	:	:	:	:		:	:
		:	:	:			:	:	

รูป 4.5 ผลการวัดความถี่ 123.95 MHz. ที่บริเวณทดสอบสายอากาศด้วยเ**ครื่องวิเคราะห์**แถบความถึ

<u>การทดสอบสายอากาศที่ออกแบบ</u>

การทดสอบสายอากาศจะต้องเป็นสนามไกลที่แท้จริง คือคลื่นที่มาตกกระทบสายอากาศรับจะต้อง เป็นคลื่นระนาบ ดังนั้นจำเป็นจะต้องทำการทาระยะสนามไกลที่แท้จริง เพื่อผลการทดสอบสายอากาศที่ แน่นอน โดยปกติสัญญาณที่เป็นคลื่นระนาบระดับการแกว่งของระลอกสัญญาณที่ตำแหน่งต่าง ๆ ในระยะ สนามไกลจะมีความแตกต่างกันน้อยมาก ดังนั้นในการตรวจสอบจะทำการวัดระดับสัญญาณที่มาถึง สายอากาศทดสอบเป็นระยะเพื่อดูการเปลี่ยนแปลงของสัญญาณ อุปกรณ์ที่ใช้ในการตรวจสอบแสดงดังรูป 4.6 เพื่อลดการสะท้อนของสัญญาณจากสภาพแวดล้อมสายอากาศที่เป็นตัวส่งจะต้องมีพูหลักแคบ และมีพูหลังต่ำ จึงเลือกใช้สายอากาศยากิ-อุดะเป็นสายอากาศส่ง โดยใช้สายอากาศไดโพลมาตรฐานเป็นสายอากาศรับ หลังจากนั้นจะทำการโพรบสัญญาณที่ระนาบท่างจากตัวสายอากาศส่งเป็นระยะ ๆ ค่าระดับสัญญาณที่รับได้ เมื่อวางเสาอากาศรับและส่งท่างกัน 5λ แสดงดังตารางที่ 4.1 ระยะท่างระหว่างเสารับและส่ง 7.5λ ระดับ สัญญาณที่วัดได้อยู่ในตารางที่ 4.2 และระยะที่ 10 λ ตามตารางที่ 4.3

จากการตรวจสอบพบว่าที่ระยะห่างระหว่างสายอากาศ 5λ ยังมีการแกว่งเป็นระลอกของสัญญาณอยู่ มาก แต่เมื่อทำการปรับระยะห่างออกเป็น 7.5λ และ 10λ จะมีการแกว่งของสัญญาณน้อยลง และพบว่าที่ ความสูงของสายอากาศรับและส่ง 1.5λ มีการแกว่งของระดับสัญญาณต่ำมาก ซึ่งถือว่าหน้าคลื่นเป็นคลื่น ระนาบจึงเป็นระยะสนามไกลสำหรับทดสอบสายอากาศได้ ในการทดสอบสายอากาศที่ออกแบบจะใช้ระยะ 10λ ความสูงของสายอากาศส่งและรับ 1.5 λ ระดับของสัญญาณส่งจากเครื่องกำเนิดสัญญาณ 0 dBm

รูป 4.6 การหาระยะสนามไกลเพื่อทดสอบสายอากาศโดยการใช้สายอากาศส่งแบบยากิ-อุดะ และสายอากาศรับแบบไดโพลซึ่งทำหน้าที่ในการโพรบวัดค่าสัญญาณ

ระยะห่าง/ความสูง	-1.5λ	-1λ	-0.5λ	0	0.5λ	1λ	1.5λ
0.5λ	-32.42	-31.37	-29.50	-31.00	-29.25	-29.80	-33.20
1λ	-29.45	-28.80	-28.34	-27. 27	-28.14	-28.81	-29.49
1.5λ	-26.80	-26.15	-25.24	-25.00	-25.50	-26.00	-26.60

ตาราง 4.1 ระดับสัญญาณของสายอากา**ศรับท**ี่ระนาบ 5λ

ตาราง 4.2 ระดับสัญญาณของสายอากา**ศรับท**ี่ระนาบ 7.5λ

ระยะห่าง/ความสูง	-1.5λ	-1λ	-0.5λ	0	0.5λ	1λ	1.5λ
0.5λ	-35.17	-34.78	-34.30	-33.60	-34.26	-33.95	-34.20
1λ	-35.00	-35.65	-35.40	-34.60	-35.30	-35.60	-35.86
1.5λ	-31.42	-31.61	-31.42	-31.14	-31.50	-31.63	-31.95

ตาราง 4.3 ระดับสัญญาณของสายอากาศรับที่ระนาบ 10λ

ระยะห่าง/ความสูง	-1.5λ	-1λ	-0.5λ	0	0.5λ	1λ	1.5λ
0.5λ	-38.04	-37.63	-37.40	-35.80	-36.95	-37.10	-37.20
1λ	-38.12	-38.00	-38.26	-37.70	-38.02	-38.44	-38.85
1.5λ	-36.50	-36.40	-36.42	-36.20	-36.62	-36.70	-36.90

การทดสอบเพื่อหาคุณสมบัติของสายอากาศ ขั้นตอนแรกจะทำการปรับตัวแมตช์อิมพีแดนซ์ของ สายอากาศให้ได้ค่าอัตราส่วนคลื่นนิ่ง (Voltage Standing Wave Ratio: VSWR) ต่ำสุด โดยการปรับจะ ใช้สายอากาศและเครื่องวิเคราะห์ข่ายเป็นตัววัดอัตราส่วนคลื่นนิ่งของสายอากาศ ในการปรับแมตช์ซิ่งจะซื้ สายอากาศขึ้นในบนท้องฟ้าเพื่อลดผลกระทบของการสะท้อนจากพื้นดิน การวัดแบบรูปการแผ่พลังงานของ สายอากาศจะทำที่ระยะสนามไกลดังที่ได้ตรวจสอบในตอนแรก โดยงานวิจัยนี้เลือกระยะห่างระหว่าง สายอากาศ 10λ ความสูงของเสาอากาศส่งและรับสูง 1.5λ ลักษณะของการวัดแสดงดังรูป 4.7 ในการวัด แบบรูปการแผ่พลังงานของสายอากาศส่งและรับสูง 1.5λ ลักษณะของการวัดแสดงดังรูป 4.7 ในการวัด แบบรูปการแผ่พลังงานของสายอากาศที่ทดสอบจะทำการหมุนตัวควบคุมสายอากาศรับไปทีละ 10 องศาและ วัดค่ากำลังที่รับได้จนครบ 360 องศา สำหรับการวัดแบบรูปการแผ่พลังงานที่มีการปรับมุมยกของสายอากาศก็ ทำในลักษณะเดียวกันแต่จะทำการปรับมุมยกของสายอากาศตามที่ออกแบบไว้ในแต่ละสถานีของแต่ละเขต การควบคุม

รูป 4.7 การทดสอบสายอากาศที่ระยะสนามไกล

ผลการวัดและคำนวณแบบรูปการแผ่พลังงานของสายอากาศ

งานวิจัยนี้สร้างสายอากาศตามที่ได้ออกแบบสำหรับปฏิบัติงาน ณ สถานีควบคุมจากพื้นดินสู่อากาศ ในแต่ละเขตของการควบคุมการจราจรทางอากาศ โดยเลือกมาบางเขตการควบคุมเพื่อทำการทดสอบ ในที่นี้ จะใช้เขตที่ 1,2,4 และ 7 โดยสายอากาศที่ทดสอบบางตัวสามารถจะใช้ร่วมกับสายอากาศเขตอื่นได้

1) สายอากาศยากิ-อุดะ 3 องค์ประกอบ (แบบที่ 1)

สำหรับสายอากาศตัวนี้จะใช้สำหรับสถานี MK ในเขตที่ 2 ค่าปัจจัยของสายอากาศในส่วน ของความยาวและระยะห่างระหว่างองค์ประกอบแสดงดังตาราง 4.4 ซึ่งมีโครงสร้างของสายอากาศตามรูป 4.8 ผลการวัดและคำนวณทางทฤษฎีของแบบรูปการแผ่พลังงานของสายอากาศแสดงอยู่ในรูป 4.9

	ระยะท่าง	ความยาว
ตัวประกอบสะท้อนคลื่น	-0.10λ	0.495 λ
ตัวประกอบไวงาน	0	0.48λ
ตัวประกอบซี้ทิศ	0.24λ	0.45λ

ิตาราง 4.4 ค่าปัจจัยของสายอากาศ 3 องค์ประกอบ (แบบที่ 1)

รูป 4.8 ลักษณะโครงสร้างของสายอากาศยากิ-อุดะ 3 องค์ประกอบ (แบบที่ 1)

รูป 4.9 แบบรูปการแผ่พลังงานของสายอากาศ 3 องค์ประกอบ ในระนาบ H (แบบที่1)

สำหรับการใช้งานสายอากาศในพื้นที่ควบคุมจะต้องมีการปรับมุมยกของสายอากาศ เพื่อให้ได้แบบ-รูปการแผ่พลังงานในระนาบที่ต้องการ ดังนั้นในการวัดจะต้องมีการปรับมุมยกของสายอากาศตามการคำนวณ ในบทที่ 3 ซึ่งแบบรูปการแผ่พลังงานของสายอากาศยากิ-อุดะที่มีมุมยก (แบบที่ 1) แสดงดังรูป 4.10

2) สายอากาศยากิ-อุดะ 3 องค์ประกอบ (แบบที่ 2)

สำหรับค่าปัจจัยของสายอากาศแบบ 3 องค์ประกอบ (แบบที่ 2) เป็นดังแสดงในตารางที่ 4.5 มีการจัดระยะห่างระหว่างองค์ประกอบที่แตกต่างจากแบบที่ 1 สายอากาศตัวนี้เป็นสายอากาศที่ออกแบบ สำหรับใช้ที่สถานี RCAG LP ของเขตที่ 7 ซึ่งมีโครงสร้างของสายอากาศตามรูป 4.11 ผลการวัดและการ คำนวณแบบรูปการแผ่พลังงานของสายอากาศในระนาบ H แสดงดังรูป 4.12 จะเห็นได้ว่าผลที่ได้จากการวัด และการคำนวณมีความใกล้เคียงกันมาก

	ระยะท่าง	ความยาว
ตัวประกอบสะท้อนคลื่น	-0.15λ	0. 495 λ
ตัวประกอบไวงาน	0	0.48λ
ตัวประกอบชี้ทิศ	0.20 λ	0.45 λ

ตาราง 4.5 ค่าปัจจัยของสายอากาศ 3 องค์ประกอบ (แบบที่ 2)

ในระนาบ H (แบบที่ 2)

เมื่อวัดแบบรูปการแผ่พลังงานของสายอากาศที่มีการปรับมุมยกแล้วเปรียบเทียบกับผลการวัดที่ไม่มี มุมยกปรากฏว่ามีความแตกต่างกันน้อยมาก ดังที่ได้แสดงดังรูป 4.13

รูป 4.13 แบบรูปการแผ่พลังงานของสายอากาศยากิ-อุดะ 3 องค์ประกอบ ในระนาบตัดที่มีมุมยก (แบบที่ 2)

3) สายอากาศยากิ-อุดะ 3 องค์ประกอบ (แบบที่ 3)

สำหรับสายอากาศ 3 องค์ประกอบแบบที่ 3 นี้ออกแบบเพื่อใช้ที่สถานี RCAG KN ของ เขตที่ 7 ค่าปัจจัยของสายอากาศแสดงดังตาราง 4.6 ซึ่งแตกต่างแบบที่ 2 ที่ระยะห่างระหว่างองค์ประกอบ ไวงานและตัวประกอบซี้ทิศเท่านั้น ลักษณะโครงสร้างของสายอากาศแสดงดังรูปที่ 4.14 ผลที่ได้จากการ คำนวณและการวัดแบบรูปการแผ่พลังงานของสายอากาศแสดงดังรูป 4.15 จากผลการวัดจะเห็นได้พูหลังของ สายอากาศมีค่ามากกว่าการคำนวณ และมีลำคลื่นแคบกว่าการคำนวณอีกด้วย เมื่อมีการปรับมุมยกของ สายอากาศจะได้ผลการวัดและการคำนวณแบบรูปการแผ่พลังงานของสายอากาศดังรูป 4.16

	ระยะท ่าง	ความยาว
ตัวประกอบสะท้อนคลื่น	-0. 15λ	0.495 λ
ตัวประกอบไวงาน	0	0.48 λ
ตัวประกอบชี้ทิศ	0.15λ	0.45λ

ตาราง 4.6 ค่าปัจจัยของสายอากาศ 3 องค์ประกอบ (แบบที่ 3)

รูป 4.14 โครงสร้างของสายอากาศยากิ-อุดะ 3 องค์ประกอบ (แบบที่ 3)

รูป 4.15 แบบรูปการแผ่พลังงานของสายอากาศ 3 องค์ประกอบ ในระนาบ H (แบบที่ 3)

4) สายอากาศยากิ-อุดะ 5 องค์ประกอบ (แบบที่ 1)

สำหรับสายอากาศตัวนี้ได้ออกแบบเพื่อใช้งานที่สถานี MK ของเขตที่ 1 และสถานี RCAG LP ของเขตที่ 7 ค่าปัจจัยของสายอากาศที่ออกแบบแสดงดังตาราง 4.7 และสายอากาศมีโครงสร้างดังรูป 4.17 ผลที่ ได้จากการวัดและคำนวณแบบรูปการแผ่พลังงานของสายอากาศแสดงดังรูป 4.18 โดยผลที่ได้จากการวัดมี ความกว้างลำคลื่นแคบกว่าการคำนวณ

	ระยะห่าง	ความยาว
ตัวประกอบสะท้อนคลื่น	-0.126λ	0.51 λ
ตัวประกอบไวงาน	0	0.47λ
ตัวประกอบชี้ทิศตัวที่ 1	0. 1 55 λ	0.45λ
ตัวประกอบชี้ทิศตัวที่ 2	0.33 λ	0.43λ
ตัวประกอบชี้ทิศตัวที่ 3	0.53 λ	0.41λ

	140	_ (. 4	
ตาราง 47	ดาปลลยของสายอากาศ	5 ລ.າຄ	ประกอบ	(113 13 130	-11
ALLS IN		2 2/1		(00000	,

เมื่อทำการปรับมุมยกของสายอากาศ และทำการวัดแบบรูปการแผ่พลังงานของสายอากาศ ซึ่งแสดงดังรูป 4.19 จะเห็นได้ว่าผลที่ได้จากการวัดที่มีการปรับมุมยกและไม่ปรับมุกยกของสายอากาศมีความแตกต่างกันน้อย มาก

รูป 4.17 โครงสร้างของสายอากาศยากิ-อุดะ 5 องค์ประกอบ (แบบที่ 1)

รูป 4.18 แบบรูปการแผ่พลังงานของสายอากาศ 5 องค์ประกอบ ในระนาบ H (แบบที่ 1)

....

5) สายอากาศยากิ-อุดะ 5 องค์ประกอบ (แบบที่ 2)

ค่าปัจจัยของสายอากาศแบบ 5 องค์ประกอบ (แบบที่ 2) แสดงดังตาราง 4.8 ซึ่งมีการจัดระยะห่าง ระหว่างองค์ประกอบและความยาวขององค์ประกอบแตกต่างกับแบบที่ 1 ลักษณะโครงสร้างของสายอากาศดังรูป 4.20 สายอากาศตัวนี้เป็นสายอากาศที่ออกแบบสำหรับใช้ที่สถานี RCAG KT,UB ของเขตที่ 2 สถานี MK,RCAG NS ของเขตที่ 4 และสถานี RCAG DOI ของเขตที่ 7 ผลการวัดและการคำนวณแบบรูปการแผ่พลังงานของ สายอากาศแสดงดังรูป 4.21 จะเห็นว่าผลที่ได้จากการวัดและการคำนวณมีความแตกต่างกันเล็กน้อยที่ความกว้าง-ลำคลื่นของแบบรูปการแผ่พลังงาน

	ระยะท่าง	ความยาว
ตัวประกอบสะท้อนคลื่น	-0.12 λ	0.495 λ
ตัวประกอบไวงาน	0	0.47λ
ตัวประกอบชี้ทิศตัวที่ 1	0.2 4λ	0.45 λ
ตัวประกอบชี้ทิศตัวที่ 2	0.62 λ	0.43λ
ตัวประกอบชี้ทิศตัวที่ 3	0.92 λ	0.41λ

ตาราง 4.8 ค่าปัจจัยของสายอากาศ 5 องค์ประกอบ (แบบที่ 2)

เมื่อทำการปรับมุมยกของสายอากาศ และทำการวัดแบบรูปการแผ่พลังงาน ดังแสดงในรูป 4.22 จะเห็น ได้ว่าผลที่ได้เมื่อเปรียบเทียบกับการไม่ปรับมุมยกมีความแตกต่างกันน้อยมาก

รูป 4.20 โครงสร้างของสายอากาศยากิ-อุดะ 5 องค์ประกอบ (แบบที่ 2)

รูป 4.21 แบบรูปการแผ่พลังงานของสายอากาศ 5 องค์ประกอบ ในระนาบ H (แบบที่ 2)

รูป 4.22 แบบรูปการแผ่พลังงานของสายอากาศยากิ-อุดะ 5 องค์ประกอบ ในระนาบตัดที่มีมุมยก (แบบที่ 2)

6) สายอากาศยากิ-อุดะ 6 องค์ประกอบ

สำหรับสายอากาศแบบ 6 องค์ประกอบมีค่าปัจจัยดังตาราง 4.9 สายอากาศตัวนี้เป็นสายอากาศ ที่ออกแบบสำหรับใช้ที่สถานี RCAG KM ของเขตที่ 1 สถานี RCAG KN,UB ของ เขตที่ 2 และสถานี RCAG KN ของเขตที่ 7 มีลักษณะโครงสร้างของสายอากาศดังรูป 4.23 ผลการวัดและการคำนวณแบบรูปการแผ่พลังงาน ของสายอากาศแสดงดังรูป 4.24 ผลพบว่าแบบรูปการแผ่พลังงานของสายอากาศที่ได้จากการวัดมีพูหลักแคบกว่า การคำนวณและมีระดับสัญญาณพูข้างและหลังมากกว่าด้วย

เมื่อทำการปรับมุมยกของสายอากาศตามที่ออกแบบไว้ในแต่ละพื้นที่การควบคุม ผลที่ได้จะมี ความแตกต่างกับสายอากาศที่ไม่ได้ปรับมุมยกดังแสดงในรูป 4.25

	ระยะห่าง	ความยาว
ตัวประกอบสะท้อนคลื่น	-0.12λ	0.495λ
ตัวประกอบไวงาน	0	0.47λ
ตัวประกอบชี้ทิศตัวที่ 1	0.28 λ	0.45λ
ตัวประกอบชี้ทิศตัวที่ 2	0.62 λ	0.445λ
ตัวประกอบชี้ทิศตัวที่ 3	0.92 λ	0.42λ
ตัวประกอบชี้ทิศตัวที่ 4	1.13λ	0.42λ

ตาราง 4.9 ค่าปัจจัยของสายอากาศ 6 องค์ประกอบ

รูป 4.23 โครงสร้างของสายอากาศยากิ-อุดะ 6 องค์ประกอบ

ในระนาบ H

รูป 4.25 แบบรูปการแผ่พลังงานของสายอากาศยากิ-อุดะ 6 องค์ประกอบ ในระนาบตัดที่มีมุมยก

ผลการวัดแบบรูปการแผ่พลังงานของสายอากาศและพื้นที่ควบคุมการจราจรทางอากาศ

เนื่องจากแบบรูปการแผ่พลังงานของสายอากาศที่ออกแบบจะต้องสามารถใช้ได้กับพื้นที่การควบคุมการ จราจรทางอากาศของแต่ละเขต ดังนั้นจะต้องนำไปวางลงบนพื้นที่จริง จากที่กล่าวไว้ตอนแรกว่าสามารถใช้สาย อากาศบางตัวที่ออกแบบมากกว่า 1 สถานี ซึ่งสามารถแยกออกเป็นส่วน ๆ ได้ดังนี้

1) ผลการวัดแบบรูปการแผ่พลังงานของสายอากาศเขตที่ 1

การควบคุมการจราจรทางอากาศของเขตที่1 ประกอบด้วยสถานีวิทยุภาคพื้นดินสู่อากาศ 2 สถานี คือ MK และสถานี RCAG KM โดยที่สถานี MK ใช้สายอากาศยากิ-อุดะ 5 องค์ประกอบแบบที่ 1 สถานี RCAG KM ใช้สายอากาศยากิ-อุดะ 6 องค์ประกอบ เมื่อวางแบบรูปการแผ่พลังงานของสายอากาศที่ได้จากการวัด ลงในพื้นที่การควบคุมมีความใกล้เคียงกัน ดังแสดงในรูป 4.26 แม้ว่าจะมีส่วนของพูข้างและพูหลังมากกว่าที่ กำหนดบ้างแต่ไม่มีผลกระทบที่น่าวิตกกังวล

----- แบบรูปการแผ่พลังงานจากการวัด รูป 4.26 แบบรูปการแผ่พลังงานของสายอากาศที่ได้จากการวัด และการกำหนดจากพื้นที่ควบคุมของเขตที่ 1

2) ผลการวัดแบบรูปการแผ่พลังงานของสายอากาศเขตที่ 2

พื้นที่การควบคุมของเขตที่ 2 ประกอบด้วยสถานีวิทยุภาคพื้นดินสู่อากาศ 4 สถานีคือ สถานี MK สถานี RCAG KT, KN และ UB สถานี MK ใช้สายอากาศยากิ-อุดะ (แบบที่ 1) สถานี RCAG KT ใช้ สายอากาศ 5 องค์ประกอบ(แบบที่ 2) สถานี RCAG KN ใช้สายอากาศยากิ-อุดะ 6 องค์ประกอบ ส่วนสถานี RCAG UB ใช้สายอากาศ 2 ตัว คือทางทิศตะวันตกใช้สายอากาศยากิ-อุดะ 5 องค์ประกอบ (แบบที่ 2) ทางทิศ ตะวันออกใช้สายอากาศแบบ 6 องค์ประกอบ จากผลที่ได้จากการวัดตามรูป 4.27 เมื่อเทียบกับแบบรูปการแผ่ พลังงานที่กำหนด แม้ว่าบางสถานีมีพูหลักแคบกว่าแต่ก็ยอมรับได้ เพราะแบบรูปการแผ่พลังงานของสายอากาศ ยังครอบคลุมเส้นทางการบินอยู่

3) ผลการวัดแบบรูปการแผ่พลังงานของสายอากาศเขตที่ 4

การควบคุมการจราจรของเขตที่ 4 ประกอบด้วยสถานีวิทยุภาคพื้นดินสู่อากาศ 3 สถานีคือ MK สถานี RCAG NS และสถานี RCAG KM โดยที่สถานี MK สถานี RCAG NS (สายอากาศ 2 ตัว) ใช้สายอากาศ ยากิ-อุดะ 5 องค์ประกอบ(แบบที่ 2) สถานี RCAG KN ใช้สายอากาศยากิ-อุดะ 6 องค์ประกอบ เมื่อนำ แบบรูปการแผ่พลังงานของสายอากาศที่ได้จากการวัดลงในพื้นที่การควบคุมดังรูป 4.28 ผลที่ได้พบว่าแบบรูปการ-แผ่พลังงานจากการวัดและการกำหนดในพื้นที่ควบคุมมีความใกล้เคียงกัน

รูป 4.28 แบบรูปการแผ่พลังงานของสายอากาศที่ได้จากการวัด และการกำหนดจากพื้นที่ควบคุมของเขตที่ 4 4) ผลการวัดแบบรูปการแผ่พลังงานของสายอากาศเขตที่ 7

การควบคุมการจราจรทางอากาศของเขตที่ 7 ประกอบด้วยสถานีควบคุมภาคพื้นดินสู่ อากาศ 3 สถานีคือ สถานี RCAG LP ใช้สายอากาศ 2 ตัว ทางทิศตะวันตกใช้สายอากาศยากิ-อุดะ 5 องค์ ประกอบ (แบบที่ 1) ทางทิศตะวันออกใช้สายอากาศ 3 องค์ประกอบ (แบบที่ 3) สถานี RCAG DOI ใช้สายอากาศ ยากิ-อุดะ 5 องค์ประกอบแบบที่ 2 และสถานี RCAG KN ใช้สายอากาศ 3 องค์ประกอบ (แบบที่ 3) จากผลของ การวัดแบบรูปการแผ่พลังงานเมื่อเทียบกับการกำหนดในพื้นที่ควบคุมดังรูป 4.29 ผลที่ได้จากการวัดมีความ-ใกล้เคียงกับการคำนวณ แต่มีความแตกต่างกันเล็กน้อยที่สถานี RCAG KN ที่พูหน้า พูข้าง และพูหลังสูงกว่าที่ กำหนดแต่สามารถยอมรับได้

จากการสร้างและทดสอบสายอากาศยากิ-อุดะ สำหรับการควบคุมการจราจรทางอากาศ ขั้นตอนแรก จะสร้างสายอากาศตามที่ออกแบบไว้สำหรับของแต่ละสถานีในแต่ละเขตพื้นที่การควบคุม สำหรับการทดสอบ สายอากาศจะตรวจวัดหาระยะสนามไกลที่แท้จริงเพื่อการวัดแบบรูปการแผ่พลังงานของสายอากาศ โดยวัด สัญญาณที่ตกกระทบสายอากาศรับ จากการตรวจวัดระยะห่างระหว่างสายอากาศส่งและรับประมาณ 7.5λ-10λ มีการแกว่งของระลอกสัญญาณมีน้อยมากจึงถือว่าหน้าคลื่นเป็นคลื่นระนาบ ดังนั้นระยะเป็นการทดสอบสายอากาศ ระยะสนามไกล โดยงานวิจัยนี้เลือกระห่างระหว่างสายอากาศ 10λ ผลที่ได้จากการวัดแบบรูปการแผ่พลังงานของ สายอากาศเมื่อเปรียบเทียบกับผลการคำนวณทางทฤษฎีความความแตกต่างกันที่ขนาดของความกว้างลำคลื่น โดย ผลจากการวัดมีความกว้างลำคลื่นแคบกว่า แต่อย่างไรก็ตามเมื่อนำผลที่ได้จากการวัดไปวางลงในพื้นที่การควบคุม พบว่าแบบรูปการแผ่พลังงานจากาการวัดและการกำหนดมีความใกล้เคียงกัน และสามารถครอบคลุมเส้นทาง การบินในแต่ละเขต