รายการอ้างอิง

<u>ภาษาไทย</u>

วิบูลย์ แสงวีระพันธุ์ศิริ, <u>การควบคุมระบบพลศาสตร์(Control of Dynamic Systems)</u>. พิมพ์ครั้งที่ 1. กรุงเทพมหานคร: สำนักพิมพ์จุฬาลงกรณ์มหาวิทยาลัย, 2538.

<u>ภาษาอังกฤษ</u>

- Bosch, J. A. Coordinate Measuring Machine and Systems. U.S.A.: Marcel Dekker, 1995.
- Curless, B. L. <u>New Methods for Surface Reconstruction from Range Images</u>. Doctor of Phylosophy, Department of Electrical Engineering, Standford University, 1997.
- Dote, Y. and Kinoshita, S. <u>Brushless Servomotors Fundamentals and Applications</u>. New York: Oxford University Press, 1990.
- James T. Luxon, David E. Parker. <u>Industrial Laser and Their Applications</u>. Eaglewood Cliff, NJ: Prentice Hall,1992.
- The Aamerican Society of Mechanical Engineers. <u>Methods for Performance Evaluation of</u> <u>Coordinate Measuring Machine</u>. New York, 1985.

ภาคผนวก ก.

ข้อมูลจำเพาะของอุปกรณ์ต่าง ๆ

ก.1 ข้อมูลจำเพาะของอุปกรณ์วัดระยะทางด้วยแสงเลเซอร์

อุปกรณ์วัดระยะทางด้วยแสงเลเซอร์ที่ใช้ในวิทยานิพนธ์(ดังแสดงในรูปที่ ก.3)นี้เป็นของบริษัท KEYENCE รุ่น LC-2011 เป็นอุปกรณ์วัดระยะทางด้วยแสงเลเซอร์ชนิดเซมิคอนดัคเตอร์ แบบพัลส์ กำลังต่ำ แสงเลเซอร์มีความยาวคลื่น 780 นาโนเมตร มีกำลังน้อยกว่า 3 มิลลิวัตต์ ลำแสงที่ใช้ไม่มี อันตรายต่อผิวหนัง แต่มีอันตรายต่อดวงตา ข้อควรระวังในการใช้งานมีดังนี้

- อย่ามองลำแสงเลเซอร์โดยตรง หรือมองลำแสงที่สะท้อนจากผิวที่สามารถสะท้อนแสงได้ เป็นอย่างดี
- 2. ใช้อุปกรณ์กับตัวควบคุมที่ออกแบบมาเท่านั้น
- 3. เมื่อมีเหตุขัดข้องอย่าปรับปรุงหรือช่อมแชมอุปกรณ์เอง

การทำงานของอุปกรณ์จะทำงานหลังจากเปิดเครื่องไปแล้ว 3 วินาที หลังจากอุปกรณ์เริ่ม ทำงาน อุปกรณ์วัดระยะมีระยะโฟกัสที่ 40 มิลลิเมตรจากเลนส์ที่ปล่อยแสง ช่วงในการวัดมีค่า ±3 มิลลิเมตร จากระยะโฟกัส

คุณสมบัติของอุปกรณ์วัดระยะทางด้วยแสงเลเซอร์

- แสดงระยะห่างหรือปริมาณของแสงด้วยจอภาพแบบตัวเลข ซึ่งเป็นระยะห่างของชิ้นงาน จากตำแหน่งโฟกัส ระยะจะมีค่าเป็น 0 เมื่อผิวชิ้นงานอยู่ที่ตำแหน่งโฟกัสพอดี มีค่าเป็น บวกเมื่อชิ้นงานอยู่ห่างจากหัววัดเลยตำแหน่งโฟกัสออกไป และมีค่าเป็นลบเมื่อชิ้นงาน เข้าใกลัหัววัด ระยะห่างที่แสดงจะมีค่าเท่ากับแรงดันไฟฟ้าที่เครื่องจ่ายออกมา (1 mV = 1 μm)
- สามารถปรับค่าอัตราขยายได้โดยอัตโนมัติ เมื่อปริมาณแลงที่วัดได้ มีมากหรือน้อยเกิน ไป
- สามารถเลือกอัตราความเร็วในการวัดได้ 3 ระดับคือ 0.001, 0.01, 0.1 วินาที ในกรณีที่ ต้องการความแม่นยำสูงควรเลือกที่ 0.1 วินาที
- สามารถปรับค่า ฮีสเตอรีซิส(Hysteresis) ได้ 2 ระดับ(50 และ 10 ไมครอน) ถ้าต้องการ
 วัดค่าที่มีขนาดเล็กควรปรับไว้ที่ตำแหน่ง NARROW(10 ไมครอน)
- 5. แสดงสัญญาณ 'ใกล้(NEAR)' เมื่อระยะห่างระหว่างชิ้นงานกับหัววัดมีขนาดน้อยกว่าระยะ โฟกัสและ 'ใกล(FAR)' เมื่อระยะห่างระหว่างชิ้นงานกับหัววัดมีขนาดมากกว่าระยะโฟกัส

รุ่น (Model)	Sensor head	LC-2011			
	Controller	LC-2001			
Light source		Semiconductor laser(780 nm, 3nW max.			
		pulse duration:50 micro second)			
Reference distance		40 nm			
Measurement range*		±3 mm			
Spot diameter		0.05 mm max.			
Analog output(MON.)	Output voltage**	±3 V(1 mV/1 μm)			
	Output impedance	Approx. 33 Ω			
	Resolution***	0.5 μm			
	Linearity***	\pm 0.3% of measured range			
	Responsivity	DC to 600 Hz(at 1ms) -3dB/DC to 60Hz(at 10			
		ms) -3dB/DC to 6 Hz(at 100 ms) -3dB			
	Temperature	Sensor: 1.0 μm/ ^o C			
	fluctuation	Controller: 0.5 μm/ ^o C			
Control Output	Solid-state	Open-collector 100 mA(40 V) max.			
	Contact	SPST-NO relay contact $ imes$ 2			
		250 VAC 2A(resistive load)			
Ambient operating illumination		2500 lx max.			
Ambient operating temperature		0 to 50 °C			
Ambient operating humidity		35 to 85% RH(without condensation)			
Supply voltage		110/120VAC or 220/240VAC±10% 50/60Hz			
Power consumption		10 VA max.			

ตารางที่ ก.1 ข้อมูลจำเพาะของอุปกรณ์วัดระยะด้วยแสงเลเซอร์

*เทียบกับ Reference distance

** 0V \vec{n} Referance distance

***วัตถุที่ใช้: white mat paper ที่การตอบสนอง 10 ms

ก.2 ข้อมูลจำเพาะของตัวขับ BL

รุ่น	BL30	
Continuous Current	3.75 A	
Peak Current	7.5 A	
DC bus Voltage	85 V	
AC Input Voltage(RMS)	61 V	
Weights	0.8 Kg	
Motor Options	ML-1620	
	ML-2340	
Power input	AC direct from mains transformer	
Control input	\pm 10 V analogue (torque or velocity)	
Reference outputs	±15 V at 10 mA	
Velocity feedback	Built-in incremental encoder	
Commutation method	4 bit absolute encoder	
Jumper link settings	Input range, current limit, torque/vel. Mode	
Potentiometer settings	Time constant, damping, balance, tach gain	
Diagnostic LED's(Front) Power on, current limit, overtem		
	drive/motor fault	
Diagnostic LED's(Rear)	Power on, composite fault	
Dimensions	រូរป n.1	

ก.3 ข้อมูลจำเพาะของมอเตอร์ขับเคลื่อน 3 แกนหลัก

Туре	Weights(including cable)
ML-2340	2.1 Kg

รูปที่ ก.2 ขนาดของมอเตอร์รุ่น ML-2340

ข้อมูลค่ารีโซลูชั่น VS. ความเข้มของแสงที่รับได้ของอุปกรณ์วัดระยะ ทางด้วยแสงเลเซอร์กับจำนวนของการวัดที่ใช้ในการเฉลี่ย

ข้อมูลของค่ารีโซลูชั่นนี้เป็นค่าของอุปกรณ์วัดระยะทางด้วยแสงเลเซอร์รุ่นใกล้เคียงกับรุ่นที่ใช้ ในวิทยานิพนธ์นี้ซึ่งรุ่นที่ใช้นั้นไม่มีข้อมูลในส่วนนี้จึงนำข้อมูลของรุ่นใกล้เคียงกันมาแสดงเพื่อให้เห็นถึง ปัจจัยที่มีผลต่อการวัดและความถูกต้องของผลที่ได้

<u>สภาวะในการวัด</u>:

ใช้การวัดในโหมด Point-to-point

<u>เป้าหมาย</u>:

No.1 White paper No.2 Acrylic card(White) No.3 Acrylic card(Ivory) No.4 Acrylic card(Opaline) No.2 Acrylic card(Orange) No.2 Acrylic card(Opaline)

No.2 Acrylic card(Brown)

No.2 Acrylic card(Chocolate brown)

Unit: µm

Workpiece No.	INTENSITY	Number of measurements for averaging											
		2048	1024	612	256	128	64	32	16	8	4	2	1
1	8690	0.2	0.2	0.4	0.6	0.6	0.8	1.0	1.4	2.0	2.8	4.0	5.6
2	2500	0.2	0.4	0.4	0.6	1.0	1.2	1.4	2.0	2.8	4.2	5.6	8.2
3	2090	0.2	0.4	0.6	0.6	1.0	1.2	1.6	2.4	3.4	5.0	7.0	9.6
4	1185	0.4	0.8	0.6	1.2	1.4	2.4	3.0	4.4	6.2	9.0	12.0	18.0
5	750	0.8	0.8	1.2	1.6	2.2	3.4	4.4	7.6	10.2	14.4	20.0	27.4
6	515	1.2	1.6	2.0	2.8	8.6	5.2	7.0	10.2	14.8	20.6	29.8	40.0
7	250	1.0	1.6	2.0	3.4	4.9	6.8	10.2	15.0	22.0	31.0	45.0	65.0
8	145	1.6	2.4	8.6	5.2	7.6	12.0	18.0	25.0	35.0	55.0	75.0	120.0

ภาคยนวก ค.

ตัวอย่างการใช้งานโปรแกรม SCAN

ค.1 กรณีใช้ 3 แกน

สมมุติว่าต้องการสแกนโดยใช้ 3 แกน ก่อนที่จะใช้โปรแกรมต้องทำการเปิดอุปกรณ์ต่างๆ ยกเว้นตัวขยายสัญญาณ, วงจรถอดรหัสของแกนที่ 4 จากนั้นเมื่อเริ่มใช้งานโปรแกรมจะปรากฎที่ หน้าจอ

	E MAIN 👻 🔺		
	PATH		
×	PARALLEL		
I .	PARALLEL		
	SPIRAL		
	OPEN		
	SCAN		
FILE TRANSFER			
	QUIT		

รูปที่ ค.1 หน้าต่างเริ่มต้นของโปรแกรม SCAN

20 มิลลิเมตร เส้นสแกนแต่ละเส้นห่างกัน 5 มิลลิเมตร ในเส้นสแกน 1 เส้นจะมีข้อมูล 200 จุด และ ใช้การสแกนแบบ Zig-Zag จากนั้นจึงกด OK เพื่อสิ้นสุดการกำหนดค่าพารามิเตอร์ จากนั้น โปรแกรมจะให้ใส่ชื่อไฟล์ที่ข้อมูลทางเดินจะบันทึกแล้วจะกลับสู่หน้าต่างเริ่มต้นอีกครั้ง

PARALLEL	тох
X เริ่มต้ม	0
¥ เริ่มต้น	0
ความกว้างของบริเวณที่จะสแกนขนานกับแกน X (มิลลิเมทร)	200
ความยาวของบริเวณที่จะสแกนขนานกับแกน Ƴ (มิลลิเมทร)	20
ระยะ ระหว่างเส้นสแกน (มิลลิเมทร)	5
จ้ำนวนข้อมูลฑ่อเส้นสแกน	200
⊠ Zig-Zag	ОК

รูป ค.2 หน้าต่างสร้างทางเดินขนานกับแกน X

 2. เมื่อกลับสู่หน้าต่างเริ่มต้นให้กดปุ่ม SCAN เพื่อเข้าสู่หน้าต่าง SCAN แต่ก่อนที่จะเข้าสู่หน้าต่าง SCAN จะปรากฏหน้าต่างแสดงข้อความให้เซตดีโคดเดอร์เป็น 0 หมายถึงดีโคดเดอร์ที่ใช้สำหรับแกน ที่ 4 ในกรณีนี้ให้เลือก OK หลังจากนั้นจะเข้าสู่หน้าต่าง SCAN ซึ่งใช้ควบคุมและแสดงผลในระหว่าง ทำการสแกนดังแสดงในรูปที่ ค.3 ในรูปมีส่วนที่แสดงตำแหน่งปัจจุบัน

 ในตอนนี้สามารถทำการกำหนดให้ตำแหน่งปัจจุบันของอุปกรณ์วัดพิกัดเป็นพิกัด (0,0) ได้โดย เลือกเมนู SET ZERO

 จากนั้นโปรแกรมจะถามโปรแกรมทางเดินและให้ใส่ชื่อไฟล์ที่ใช้ใส่ข้อมูลที่ได้จากการสแกนเมื่อใส่ค่า ดังกล่าวเรียบร้อยแล้วโปรแกรมจะกลับสู่หน้าต่าง SCAN แล้วจึงเริ่มทำงาน ระหว่างสแกนจำนวนจุดที่ จะสแกนจะแสดงที่ 'จำนวนจุดที่สแกน' และเมื่อสิ้นสุดการทำงานโปรแกรมจะแสดงหน้าต่างข้อความ ว่าสิ้นสุดการทำงานแล้ว

ค.2 กรณีใช้ 4 แกนโดยองศาของหัววัดคงที่

 จากหน้าต่างเริ่มต้นให้เลือกปุ่มสร้างทางเดินขนานกับแกน Y แล้วจะปรากฏหน้าต่างดังในรูปที่ ค.4 พารามิเตอร์ที่ต้องการคล้ายกับกรณีทางเดินขนานกับแกน X แต่มีส่วนของ Option เพิ่มเติมคือ Scan_4 หากเลือก Option ดังกล่าวหมายความว่าไฟล์ทางเดินที่จะสร้างจะกำหนดองศาของหัววัด ด้วยในตอนต้นของไฟล์

PARALLEL	то ү 🔽 🖍
×เริ่มต้น	0
Y เริ่มต้น	0
ความกว้างของบริเวณที่จะสแกนขนานกับแกน X (มิลลิเมทร)	0
ความยาวของบริเวณที่จะสแกนขนานกับแกน Y (มิลลิเมทร)	0
ระยะระหว่างเส้นสแกน (มิลลิเมตร)	0
จำนวนข้อมูลท่อเส้นสแกน	0
🗌 Zig-Zag	
Use 4_Axis	OK

รูปที่ ค.4

 ใส่ค่าองศาของหัววัดให้สอดคล้องกับพื้นผิวที่ต้องการ แล้วกดปุ่ม OK เพื่อเสร็จการสร้างไฟล์ทาง เดิน

3. จากนั้นเลือกปุ่ม SCAN เพื่อเข้าสู่หน้าด่าง SCAN

4. เมื่อเข้าสู่หน้าต่างสแกนแล้วให้เลือก SCAN_4 Option เป็น Y-parallel หลังจากนั้นจะปรากฏหน้า ต่างให้ใส่ซื่อไฟล์ทางเดินที่ต้องการและชื่อไฟล์ที่จะบันทึกข้อมูล เมื่อสิ้นสุดการสแกนโปรแกรมจะแสดง หน้าต่างข้อความว่าสิ้นสุดการทำงานแล้วและจะกลับไปยังหน้าต่าง SCAN ดังเดิม

ค.3 กรณีองศาของหัววัดมีการเปลี่ยนแปลงตลอดเวลา

```
1. จากหน้าด่างเริ่มต้นให้เลือกปุ่ม SCAN
```

2. เมื่อเข้าสู่หน้าต่างสแกนแล้วให้เลือก SCAN_4 Option เป็น Y-parallel หลังจากนั้นจะปรากฏหน้า ต่างให้ใส่ค่าพารามิเตอร์คือ

ds หมายถึงค่าระยะห่างระหว่างจุดข้อมูล

ประวัติผู้เขียน

นาย ปัญญา ดีประเสริฐกุล เกิดเมื่อวันที่ 12 เมษายน 2517 ณ เขตป้อมปราบ กรุงเทพ มหานคร สำเร็จการศึกษาระดับปริญญาตรีสาขาวิศวกรรมเครื่องกลจาก ภาควิชาวิศวกรรม เครื่องกล คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ในปีการศึกษา 2538 และได้เข้า ศึกษาต่อในหลักสูตรวิศวกรรมศาสตร์ มหาบัณฑิตในปีการศึกษา 2539