บทที่ 4

การวิเคราะห์ผลการทดลอง

4.1 ผลการทดลอง

ผลการทคลองแบ่งออกเป็น 2 ส่วนใหญ่ ด้วยกันคือ

- ผลการทคลองคุณสมบัติทั่วๆไป
- 2) ผลการทดลองที่ได้จาก การทดลอง Triaxial แบบ Isotropically Consolidated Undrained Extension (CIUE)

4.1.1 ผลการทดลองคุณสมบัติทั่วๆไป (Index Properties)

จากการเก็บตัวอย่างคินแล้วนำมาทคสอบหาคุณสมบัติทั่วๆไปของคินโดยใช้วิธีกา ทคสอบตามมาตราฐานของ American Society for Testing and Materials (ASTM) ซึ่งได้ผลตาม ตารางที่ 4.1

คุณสมบัติ	ความลึก (เมตร)		
	4.0	8.0	12.0
Natural water content (w.)%	60 - 4	64-4	62 - 4
Liquid Limit (L.L.)%	72 - 1	79 - 1	83-1
Plastic Limit (P.L.)%	34-1	37 - 1	39 ⁺ _1
Plastic Index (P.I.)%	38 - 1	42 + 1	44 - 1
Specific Gravity (Gs)	2.60	2.67	2.72
Average Unit Weight (t/m ³)	1.58	1.59	1.65

ตารางที่ 4.1 : ตารางแสดงคุณสมบัติทั่วไปของคินที่ใช้ในการทดสอบ

จากด้วอย่างดินที่เก็บมานั้นนำมาตรวจสอบหาก่ากวามหนาแน่นของดินและกำนวณหาก่า หน่วยแรงรวมในแนวดิ่งตามธรรมชาติ (in-situ total vertical stress) และก่าหน่วยแรงประสิทธิผล ในแนวดิ่งตามธรรมชาติ (in situ effective vertical stress) ของตัวอย่างดิน โดยใช้ก่ากวามดันน้ำใน โพรงดินอยู่ในลักษณะ hydrostatic condition และมีระดับน้ำใด้ดินที่ระดับความลึก 1.00 เมตร จาก ผิวดิน และทำการทดลองแบบ one- dimensional oedometer เพื่อหาก่าหน่วยแรงประสิทธิผลสูง สุดที่ดินเกยได้รับตามธรรมชาติ (maximum past pressure) ดังรูปที่ 4.1, 4.2 และ 4.3 และก่าที่ได้ แสดงในตารางที่ 4.2

ตารางที่ 4.2 : ตารางแสดงค่าหน่วยแรงรวมในแนวดิ่งตามธรรมชาติ,ค่าหน่วยแรงประสิทธิผลใน แนวดิ่งตามธรรมชาติ และ ค่าหน่วยแรงประสิทธิผลสูงสุดที่ดินเคยได้รับตามธรรมชาติ

ระดับความลึก	O _{v0}	σ',,	°,™	OCR
(เมตร)	(kN/m^2)	(kN/m^2)	(kN/m^2)	
4.00	62	32.57	80.44	2.47
8.00	124.78	56.11	88.29	1.57
12.00	189.52	81.61	90.25	1.10

และผลที่ได้จากการทดลองแบบ one- dimensional oedometer นั้นยังสามารถหาค่า λ หและค่า e ซึ่งเป็นค่าพารามิเตอร์ของแบบจำลอง Modified Cam- Clay ดังได้ผลในตารางที่ 4.3 และรูปที่ 4.4,4.5 และ 4.6

ตารางที่ 4.3 : ตารางแสดงก่า λ,κ และก่า e ูที่ระดับความลึกต่างๆ

ระดับความถึก (เมตร)	λ	κ	e _{cs}	М
4.00	0.24	0.025	2.30	0.973
8.00	0.35	0.05	2.70	0.909
12.00	0.14	0.017	1.87	0.833

รูปที่ 4.1 ผลการทคสอบหาค่าหน่วยแรงประสิทษิผลสูงสุดที่มวลคินเคยได้รับตามธรรมชาติ ที่ระดับความลึก 4.00 ม. จากการทดลอง one-dimensional oedometer

Void ratio ,e

รูปที่ 4.2 ผลการทดสอบหาค่าหน่วยแรงประสิทธิผลสูงสุดที่มวลดินเดยได้รับตามธรรมชาติ ที่ระดับความลึก 8.0 ม. จากการทดลอง one-dimensional oedometer

. .

Pressure ,ksc.

รูปที่ 4.3 ผลการทคสอบหาค่าหน่วยแรงประสิทธิผลสูงสุคที่มวลคินเคยได้รับตามธรรมชาติ ที่ ระดับความลึก 12.0 เมตร จากการทคลอง one - dimensional oedometer

รูปที่ 4.4 กราฟแสดงการหาด่า λ และ κ จากตัวอย่างดินที่ระดับความลึก 4.00 ม.

รูปที่ 4.5 กราฟแสดงการหาค่า **λ และ ห** จากตัวอย่างดินที่ระดับความลึก 8.00 ม.

รูปที่ 4.6 กราฟแสดงการหาด่า λ และ κ จากตัวอย่างดินที่ระดับความลึก 12.0 ม.

4.1.2 ผลการทดสอบTriaxial แบบ Isotropically Consolidated Undrained Extension (CIUE)

จากการทดลองTriaxial แบบ Isotropically Consolidated Undrained Extension Test ของ ตัวอย่างดินเหนียวจำนวน 7 ตัวอย่าง ที่ระดับความลึก 4 เมตร, 8 เมตร และ 12 เมตร โดยการ เปลี่ยนแปลงค่า Confining Stress และในการวิจัยนี้ใช้อัตราการลดแรงในแนวดิ่งที่ทำให้เกิดการ วิบัติมีค่าเท่ากับ –0.5 นิวตัน ต่อนาที พบว่าได้ผลการทดลองดังนี้

จากกราฟความสัมพันธ์ระหว่างค่า deviator stress (q* = σ'₁- σ'₃) และค่า % axial strain ที่ได้มาจากผลการทคลอง CIUE ดังแสงในรูปที่ 4.7 พบว่ากราฟที่ได้จะมีความชันลคลงจาก ค่าเริ่มต้นและลคลงจนคงที่ในขณะที่ด้วอย่างวิบัติ

สำหรับก่า Initial Young's Modulus (E_{ini})จะกำนวณที่ตำแหน่งความชันเริ่มต้น โดยจาก การทคลองจะอยู่ที่ประมาณ axial strain 0.01 % ตารางที่ 4.4 แสดงก่า Initial Young's Modulus (E_{ini}) ที่ได้จากการทคลอง

	Initial overburden	Initial Young's
Sample	Stress,	Modulus, Eini
	(O 'v)ini (kPa)	(Mpa)
4.0 m.	30	6
	250	18
	50	13
8.0 m.	150	16
	250	40
12.0 m.	80	14
	250	37

ตารางที่ 4.4 : ตารางแสดงค่า Initial Young's Modulus

จากกราฟความสัมพันธ์ระหว่างการ Normalized ค่า deviator stressด้วยค่า mean total stress กับ ค่า % axial strain ที่ได้มาจากผลการทดลอง CIUE ดังแสงในรูปที่ 4.8 พบว่ากราฟที่ได้ จะมีความชันและลักษณะของเส้นกราฟขึ้นอยู่กับค่า Confining Stress ส่วนกราฟความสัมพันธ์ ระหว่างการ Normalized ค่า deviator stressด้วยค่า mean effective stress กับ ค่า % axial strain ที่

Axial Strain, \mathcal{E}_1 (%)

รูปที่4.7 กราฟแสดงความสัมพันธ์ระหว่างค่า Deviator Stress กับ ค่า % Axial Strain

Axial Strain, $\mathcal{E}_1(\%)$

รูปที่ 4.8 กราฟแสดงความสัมพันธ์ระหว่างค่า q*/p และค่า% Axial Strain

ได้มาจากผลการทคลอง CIUE ดังแสงในรูปที่ 4.9 พบว่ากราฟที่ได้จะมีความชันเริ่มต้นใกล้เคียง กันที่ Confining Stress ต่างๆ

จากกราฟความสัมพันธ์ระหว่างค่า Excess pore pressure กับ ค่า % axial strain ที่ได้มา จากผลการทคลอง CIUE ดังแสงในรูปที่ 4.10 พบว่าค่า Excess pore pressure ที่เกิดขึ้นมีค่าเป็นลบ และเมื่อค่า % axial strain เพิ่มมากขึ้นค่า Excess pore pressure จะเป็นลบมากขึ้นด้วยและเมื่อดิน เริ่มวิบัติค่า Excess pore pressure จะคงที่และจะเป็นลบน้อยลง

จากกราฟความสัมพันธ์ระหว่างการ Normalized ค่า Excess pore pressure ด้วยค่า Confining Stressกับ ค่า % axial strain ที่ได้มาจากผลการทดลอง CIUE ดังแสงในรูปที่ 4.11 พบว่า กราฟที่ได้ของตัวอย่างดินที่ระดับความลึกต่างกันและก่า Confining Stress เดียวกันจะมีก่าใกล้ เกียงกัน

4.2 การพัฒนาแบบจำลองคณิตศาสตร์

เมื่อน้ำค่ำ Normalized Young's Modulus (E_{tan}/E_{ini}) และค่า mean total stress ratio (q*/p) มาเขียนกราฟ ดังแสดงในรูปที่ 4.12 จะพบว่าความสัมพันธ์เป็นไปในรูปของสมการ

$$\frac{E_{\tan}}{E_{ni}} = m^{\ddagger} \exp^{-n^{\ast}} \left(\frac{q^{\ast}}{p}\right)$$
(4.1)

โดยที่ m* และ n* เป็นค่าคงที่ ซึ่งจะพบว่า m* มีค่าคงที่เกือบจะเป็น 1 แต่ค่า n* จะ ไม่คงที่ ซึ่งจะอยู่ในรูปฟังก์ชั่นของค่า initial confining stress ซึ่งแสดงได้ดังตารางที่ 4.5

และเมื่อนำค่าของ n* และ initial confining stress มาเขียนกราฟ คังแสคงในรูปที่ 4. 14 จะ พบว่าเป็นความสัมพันธ์แบบเส้นตรง คังสมการ

$$n^* = -0.0277 \sigma' c + 13.835$$
 (4.2)

Axial Strain, \mathcal{E}_1 (%)

รูปที่ 4.9 กราฟแสดงความสัมพันธ์ระหว่างค่า q*/p* และค่า% Axial Strain

Axial Strain , \mathcal{E}_1 (%)

รูปที่4.10 กราฟแสดงความสัมพันธ์ระหว่างค่า Excess pore pressure กับ ค่า % Axial Strain

Axial Strain, \mathcal{E}_1 (%)

รูปที่4.11 กราฟแสดงความสัมพันธ์ระหว่างค่าNormalized Excess pore pressure กับ ค่า % Axial Strain

	Initial confining Stress,		
Sample	(Ơ'v)ini (kPa)	m*	n*
4.0 m.	30	1.44	21.42
	250	1.03	7.00
	50	1.60	12.68
8.0 m.	150	1.30	10.15
	250	1.89	6.84
12.0 m.	80	1.16	11.06
	250	1.22	6.83

ตารางที่ 4.5 : ตารางแสดงค่า m* และ n* ที่ได้จากการนำค่า Normalized Young's Modulus (E_{tan}/E_{ini}) และค่า mean total stress ratio (q*/p)

และเมื่อนำค่า Normalized Young's Modulus (E_{tan}/E_{ini}) และค่า mean effective stress ratio (q*/p*) มาเขียนกราฟ ดังแสดงในรูปที่ 4.13 จะพบว่าความสัมพันธ์เป็นไปในรูปของสม การที่ 4.1 โดยที่ m* และ n* เป็นค่าคงที่ ซึ่งจะพบว่า m* มีค่าคงที่เกือบจะเป็น 1 แต่ค่า n* จะคงที่ โดยเฉลี่ยได้เท่ากับ 3 ซึ่งแสดงได้ดังตารางที่ 4.6

ตารางที่ 4.6 : ตารางแสดงค่า m* และ n* ที่ได้จากการนำค่า Normalized Young's Modulus (E_{tan}/E_{ini}) และค่า mean effective stress ratio (q*/p*)

	Initial confining Stress,		
Sample	(O 'v)ini (kPa)	m*	n*
	30	1.35	2.47
4.0 m.	250	1.04	4.05
	50	1.19	1.86
8.0 m.	150	1.44	4.52
	250	1.822	3.44
12.0 m.	80	1.06	2.76
	250	0.96	3.00

รูปที่ 4.12 กราฟแสดงความสัมพันธ์ระหว่างค่า Normalized Young's Modulus กับ mean total stress ratio (q*/p)

รูปที่ 4.13 กราฟแสดงความสัมพันธ์ระหว่างค่า Normalized Young's Modulus กับ mean effective stress ratio (q*/p*)

รูปที่ 4.14 กราฟแสดงความสัมพันธ์ระหว่างค่า parameter n* กับ initial confining stress (mean total stress)

รูปที่ 4.15 กราฟแสดงความสัมพันธ์ระหว่างค่า parameter n กับ initial confining stress (mean effective stress)

รูปที่4.16 กราฟแสดง total stress paths ความสัมพันธ์ระหว่างค่า q* และ p

รูปที่4.17 กราฟแสดง effective stress paths ความสัมพันธ์ระหว่างค่า q* และ p*

รูปที่4.18 กราฟแสดงความสัมพันธ์ ระหว่างค่า Shear stress และ ค่า % Axial Strain จากการทดสอบ Unconfined compression