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CHAPTER I

INTRODUCTION

In this chapter, we will introduce functional equations and provide the overview

of literature reviews.

1.1 Functional Equations

‘What is a functional equation?’, this question may arise when one heard of the

word ‘functional equations’. Unfortunately, there is no formal definition of what

functional equation is, but it is widely accepted that functional equations concern

with equations whose unknown are functions. J. Aczél ([1]) describe functional

equations as follows.

functional equations are equations, both sides of which are terms constructed

from a finite number of unknown functions (of a finite number of variables) and

from a finite number of independent variables. This construction is effected by

a finite number of known functions of one or several variables (including the

four species) and by finitely many substitutions of terms which contain known

and unknown functions into other known and unknown functions. The functional

equations determine the unknown functions. We speak of functional equations

or systems of functional equations, depending on whether we have one or several

equations.

Functional equations grew rapidly in the last century. A number of books have

been written on this subject. For instance, [1], [2] and [5] are notable.

In this thesis, we investigate an interesting property of functional equations,

known as ‘stability’. In chapter II, the basic knowledge and necessary backgrounds

will be given. Afterward, in chapter III and IV, we will prove the stability of

certain functional equations, which is the main result of our work.
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1.2 Literature Review

In 1940, S. M. Ulam [9] proposed the following problem.

Let G1 be a group and let G2 be a metric group with a metric d(·, ·). Given

any ε > 0, does there exist a δ > 0 such that for a function h : G1 → G2

satisfying the inequality d(h(xy), h(x)h(y)) < δ, for all x, y ∈ G1, there exists a

group homomorphism H : G1 → G2 with d(h(x), H(x)) < ε, for all x ∈ G1?

If the answer to this question is affirmative, we say that the functional equation

f(xy) = f(x)f(y) is stable. The first answer to this question was given by D. H.

Hyers [6] in 1941 as follows.

Theorem 1.1. (Hyers) Let f : E1 → E2 be a mapping between Banach spaces

E1, E2 such that

||f(x+ y)− f(x)− f(y)|| ≤ ε for all x1, x2 ∈ E1,

for some ε > 0. Then there exists exactly one additive mapping A : E1 → E2:

A(x+ y) = A(x) + A(y) for all x, y ∈ E1

such that

||A(x)− f(x)|| ≤ ε for all x ∈ E1,

given by the formula

A(x) = lim
n→∞

2−nf(2nx), x ∈ E1.

Moreover, if f(tx) is continuous in t for each fixed x ∈ E1, then A is linear.

This result marks the starting point of the theory of Hyers-Ulam stability of

functional equations.

Later, T. Aoki [3] and Th. M. Rassias [8] generalized the concept of the

Hyers-Ulam stability which propeled many mathematicians to study this kind of

stability for a number of important functional equations. Rassias’ result is given

in the following theorem.
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Theorem 1.2. (Rassias) Let f : E1 → E2 be a mapping between Banach spaces

E1, E2 such that

||f(x+ y)− f(x)− f(y)|| ≤ Q(||x||p + ||y||p) for all x1, x2 ∈ E1,

for some constants Q > 0 and 0 ≤ p < 1. Then there exists a unique additive

mapping A : E1 → E2: such that

||A(x)− f(x)|| ≤ 2Q

2− 2p
||x||p for all x ∈ E1,

Moreover, if f(tx) is continuous in t for each fixed x ∈ E1, then A is linear.

In 2009, S. M. Jung [7] applied this idea of stability to the other functional

equation as follows.

For n ∈ N, let Fn be the nth Fibonacci number. It is well known that

Fn = Fn−1 + Fn−2,

for all n ≥ 2. Consequently, the functional equation

f(x) = f(x− 1) + f(x− 2)

is called the Fibonacci functional equation. Furthermore, a function f : R → X

will be called a Fibonacci function if it satisfies the Fibonacci functional equation,

for all x ∈ R , where X is a real vector space. Jung found the general solutions

of the Fibonacci functional equation and proved its Hyer-Ulam stability for the

certain class of functions f : R→ X.

Theorem 1.3. (Jung) Let (X, || · ||) be a real Banach space. If a function f :

R→ X satisfies the inequality,

||f(x)− f(x− 1)− f(x− 2)|| ≤ ε,

for all x ∈ R and for some ε > 0, then there exists a Fibonaaci function G : R→ X

such that

||f(x)−G(x)|| ≤ (1 +
2√
5

)ε,

for all x ∈ R.
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We extend the definition of the Fibonacci functional equation in the following

manner. For a1, a2, . . . , ak ∈ C with ak 6= 0, we call a functional equation

f(x) = a1f(x− 1) + a2f(x− 2) + · · ·+ akf(x− k)

the linear recurrence functional equation of order k. A function f : R → X

is called a recurrence function of order k if it satisfies the recurrence functional

equation of order k, for all x ∈ R, where X is a complex vector space.

1.3 Proposed Work

We first give Jung’s result of a stability of the Fibonacci functional equation in the

sense of Hyers-Ulam-Aoki-Rassias. Then, we will prove the Hyers-Ulam stability

of second order linear recurrence functional equations.



CHAPTER II

PRELIMINARIES

In combinatorics, recurrence relation is one of the most important topics. Our

thesis concerns much about recurrence relations, especially linear homogeneous

recurrence relations. In this chapter, we will review some basic knowledge of

linear homogeneous recurrence relations.

One of the well-known sequences, the Fibonacci sequence {Fn}, can be con-

structed by the recurrence relation that every term is a sum of two predecessive

terms, i.e.,

Fn = Fn−1 + Fn−2,

for all n ≥ 2, with F0 = 0 and F1 = 1.

An important concept for solving linear homogeneous recurrence relations in-

volves the characteristic equation. Loosely speaking, the characteristic equation is

a polynomial equation which is used to find a general solution of the given linear

homogeneous recurrence relation. To see this, we first give the following theorem

([4]) without proof:

Theorem 2.1. Let q be a nonzero number. Then the sequence {hn = qn}∞n=1 is a

solution of the linear homogeneous recurrence relation

hn = a1hn−1 + a2hn−2 + · · ·+ akhn−k, (ak 6= 0, n ≥ k) (2.1)

with constant coefficients a1, a2, . . . , ak if and only if q is a root of the polynomial

equation

xk − a1xk−1 − a2xk−2 − · · · − ak = 0. (2.2)

If the polynomial equation has k distinct roots q1, q2, . . . , qk, then

hn = c1q
n
1 + c2q

n
2 + · · ·+ ckq

n
k (2.3)
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is the general solution of (2.1) in the following sense: No matter what initial values

for h0, h1, . . . , hk−1 are given, there are constants c1, c2, . . . , ck so that (2.3) is the

unique sequence which satisfies both the recurrence relation (2.1) and the initial

values.

The polynomial equation (2.2) is called the characteristic equation of the re-

currence relation (2.1) and its k roots (possibly complex) are the charateristic

roots. If those k roots are pairwise distinct, then (2.3) is the general solution of

(2.1).

In the case where the characteristic roots are repeated, we can handle it with

the more general result as follows.

Theorem 2.2. Let q1, q2, . . . , qt be the distinct roots of the characteristic equation

of the linear homogeneous recurrence relation with constant coefficients:

hn = a1hn−1 + a2hn−2 + · · ·+ akhn−k, (ak 6= 0, n ≥ k) (2.4)

If qi is a root of (2.4) with multiplicity si, the part of the general solution of this

recurrence relation corresponding to qi is

H(i)
n = (c1 + c2n+ · · ·+ csin

si−1)qni .

The general solution of the recurrence relation (2.4) is

hn = H(1)
n +H(2)

n + · · ·+H(t)
n .



CHAPTER III

HYERS-ULAM-AOKI-RASSIAS STABILITY OF

FIBONACCI FUNCTIONAL EQUATION

In this chapter, we will give a proof of a stability of the Fibonacci functional

equation in the sense of Hyers-Ulam-Aoki-Rassias. Throughout this chapter, we

denote the positive root and the negative root of the characteristic equation x2−

x− 1 = 0 by α and β, respectively. To be precise, let

α =
1 +
√

5

2
and β =

1−
√

5

2
.

Since we consider a function with the domain R, we will use the absolute value as

the norm to investigate the stability. We now prove the stability of the Fibonacci

functional equation.

Theorem 3.1. Let (X, || · ||) be a real Banach space and 0 < p < 1. If a function

f : R→ X satisfies the inequality,

||f(x)− f(x− 1)− f(x− 2)|| ≤ ε|x|p,

for all x ∈ R and for some ε > 0, then there exists a Fibonaaci function G : R→ X

such that

||f(x)−G(x)|| ≤ ε · 2p
(

(
5 + 2

√
5

5
)|x|p + (

√
5− 2)

)
,

for all x ∈ R.

Proof. Observe that

f(x)− (α + β)f(x− 1) + αβf(x− 2) = f(x)− f(x− 1)− f(x− 2). (3.1)

Hence

‖f(x)− αf(x− 1)− β
(
f(x− 1)− αf(x− 2)

)
‖ ≤ ε|x|p.
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Fix a non-negative integer k. Replacing x by x−k in the above inequality, we get

‖f(x− k)− αf(x− k − 1)− β
(
f(x− k − 1)− αf(x− k − 2)

)
‖ ≤ ε|x− k|p.

So,

‖βk
(
f(x−k)−αf(x−k−1)

)
−βk+1

(
f(x−k−1)−αf(x−k−2)

)
‖ ≤ |βk|(ε|x−k|p).

(3.2)

Note that |x− k| ≤ |x|+ k ≤ 2 max{|x|, k}. Hence |x− k|p ≤ 2p max{|x|p, kp} ≤

2p(|x|p + kp). Then, (3.2) becomes

‖βk
(
f(x−k)−αf(x−k−1)

)
−βk+1

(
f(x−k−1)−αf(x−k−2)

)
‖ ≤ |βk|

(
ε·2p(|x|p+kp)

)
(3.3)

By a telescoping sum,

f(x)−αf(x− 1)− βn
(
f(x− n)− αf(x− n− 1)

)
=

n−1∑
k=0

(
βk
(
f(x− k)− αf(x− k − 1)

)
− βk+1

(
f(x− k − 1)− αf(x− k − 2)

))
.

Using the triangle inequality and (3.3), we have

||f(x)− αf(x− 1)− βn
(
f(x− n)− αf(x− n− 1)

)
||

≤
n−1∑
k=0

‖βk
(
f(x− k)− αf(x− k − 1)

)
− βk+1

(
f(x− k − 1)− αf(x− k − 2)

)
‖

≤
n−1∑
k=0

|βk|
(
ε · 2p(|x|p + kp)

)
= ε · 2p

(
|x|p

n−1∑
k=0

|βk|+
n−1∑
k=0

kp|βk|

)
, (3.4)

for all x ∈ R and for all n ∈ N. Since p < 1 and recall that |β| < 1,
∑n−1

k=0 k
p|βk| ≤∑n−1

k=0 k|βk| <
∑∞

k=0 k|βk|. It can be verified that
∑∞

k=0 kx
k =

x

(1− x)2
provided

that|x| < 1. Hence
∑∞

k=0 (k|β|k) =
|β|

(1− |β|)2
=
√

5− 2. By (3.4) and the above

remarks, we get

||f(x)−αf(x−1)−βn
(
f(x−n)−αf(x−n−1)

)
|| ≤ ε·2p

(
|x|p

n−1∑
k=0

|βk|+ (
√

5− 2)

)
(3.5)
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Furthermore, for any x ∈ R and for any n,m ∈ N with n ≤ m, (3.3) implies that

‖βn
(
f(x− n)− αf(x− n− 1)

)
− βm

(
f(x−m)− αf(x−m− 1)

)
‖

≤
m−n−1∑
k=0

|βn+k|
(
ε · 2p(|x|p + (n+ k)p)

)
.

Since |β| < 1, the right hand side tends to zero as m,n → ∞. We conclude that{
βn
(
f(x − n) − αf(x − n − 1)

)}
is a Cauchy sequence. Since X is complete, a

function G1 : R→ X given by

G1(x) = lim
n→∞

βn
(
f(x− n)− αf(x− n− 1)

)
,

is well-defined. Moreover, we obtain that

G1(x− 1) +G1(x− 2)

= β−1 lim
n→∞

βn+1
(
f(x− (n+ 1))− αf(x− (n+ 1)− 1)

)
+ β−2 lim

n→∞
βn+2

(
f(x− (n+ 2))− αf(x− (n+ 2)− 1)

)
= (β−1 + β−2)G1(x).

Since β is a root of x2−x−1 = 0, we have β−1+β−2 = 1. So G1(x−1)+G1(x−2) =

G1(x) for all x ∈ R. Hence G1 is a Fibonacci function. If we let n → ∞, then

(3.5) yields

‖G1(x)− (f(x)− αf(x− 1))‖ ≤ ε · 2p
(

(

√
5 + 3

2
)|x|p + (

√
5− 2)

)
, (3.6)

for every x ∈ R.

On the other hand, (3.1) can be rearranged to

‖f(x)− βf(x− 1)− α
(
f(x− 1)− βf(x− 2)

)
‖ ≤ ε|x|p.

By replacing x by x+ k in the above inequality, we get

‖f(x+ k)− βf(x+ k − 1)− α
(
f(x+ k − 1)− βf(x+ k − 2)

)
‖ ≤ ε · |x+ k|p.

Note that |x+ k| ≤ |x|+ k ≤ 2 max{|x|, k}. Hence |x+ k|p ≤ 2p max{|x|p, kp} ≤

2p(|x|p + kp).

‖α−k
(
f(x+k)−αf(x+k−1)

)
−α−k+1

(
f(x+k−1)−βf(x+k−2)

)
‖ ≤ α−k

(
ε·2p(|x|p+kp)

)
.

(3.7)
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By a telescoping sum,

f(x)−βf(x− 1)− α−n
(
f(x+ n)− βf(x+ n− 1)

)
=

n∑
k=1

(
α−k

(
f(x+ k)− βf(x+ k − 1)

)
− α−k+1

(
f(x+ k − 1)− βf(x+ k − 2)

))
.

Using the triangle inequality and (3.7), we have that

||f(x)− βf(x− 1)− α−n
(
f(x+ n)− βf(x+ n− 1)

)
||

≤
n∑
k=1

‖α−k
(
f(x+ k)− βf(x+ k − 1)

)
− α−k+1

(
f(x+ k − 1)− βf(x+ k − 2)

)
‖

≤
n−1∑
k=0

α−k (ε · 2p(|x|p + kp)) = ε · 2p
(
|x|p

n−1∑
k=0

α−k +
n−1∑
k=0

kp|α−k|

)
, (3.8)

for x ∈ R and n ∈ N. Since p < 1 and recall that α−1 < 1,
∑n−1

k=0 k
pα−k ≤∑n−1

k=0 kα
−k <

∑∞
k=0 kα

−k =

√
5− 2

2
. By (3.8) and the above facts, we get

||f(x)−βf(x−1)−α−n
(
f(x+n)−βf(x+n−1)

)
|| ≤ ε·2p(|x|p

n−1∑
k=0

α−k+

√
5− 2

2
).

(3.9)

Furthermore, for any x ∈ R and for any n,m ∈ N with n ≤ m, (3.7) implies that

‖α−n
(
f(x+ n)− αf(x+ n− 1)

)
− α−m

(
f(x+m)− βf(x+m− 1)

)
‖

≤
m−n−1∑
k=0

α−(n+k)
(
ε · 2p(|x|p + (n+ k)p)

)
.

Since α−1 < 1, the right hand side tends to zero as m,n→∞. We conclude that{
α−n

(
f(x+ n)− βf(x+ n− 1)

)}
is a Cauchy sequence. Since X is complete, a

function G2 : R→ X given by

G2(x) = lim
n→∞

α−n
(
f(x+ n)− βf(x+ n− 1)

)
,

is also well-defined. Moreover, we obtain that

G2(x− 1) +G2(x− 2)

= α−1 lim
n→∞

α−(n−1)
(
f(x+ (n− 1))− βf(x+ (n− 1)− 1)

)
+ α−2 lim

n→∞
α−(n−2)

(
f(x+ (n− 2))− βf(x+ (n− 2)− 1)

)
= (α−1 + α−2)G2(x).
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Since α is a root of x2−x−1 = 0, we have α−1+α−2 = 1. So G2(x−1)+G2(x−2) =

G2(x) for all x ∈ R. Hence G2 is a Fibonacci function. If we let n → ∞, then

(3.9) becomes

‖G2(x)− (f(x)− βf(x− 1))‖ ≤ ε · 2p
(

(

√
5 + 1

2
)|x|p +

√
5− 2

2

)
, (3.10)

for every x ∈ R.

We now set

G(x) =
β

β − α
G1(x)− α

β − α
G2(x)

Since both G1 and G2 are Fibonacci functions, it is straight forward to show that

G is also a Fibonacci function. Furthermore,

||f(x)−G(x)||

= ||f(x)−
( β

β − α
G1(x)− α

β − α
G2(x)

)
||

=
1

α− β
||(β − α)f(x)−

(
βG1(x)− αG2(x)

)
||

≤ 1

α− β
(||βf(x)− αβf(x− 1)− βG1(x)||+ ||αG2(x)− αf(x) + αβf(x− 1)||)

=
1√
5

(|β| · ‖G1(x)− (f(x)− αf(x− 1))‖+ α · ‖G2(x)− (f(x)− βf(x− 1))‖).

Applying the inequalities (3.6) and (3.10), we have

||f(x)−G(x)|| ≤ ε · 2p
(

(
5 + 2

√
5

5
)|x|p + (

√
5− 2)

)
,

for all x ∈ R. This completes the proof.



CHAPTER IV

SECOND ORDER LINEAR RECURRENCE

FUNCTIONAL EQUATIONS

4.1 General Solution

After we have already presented a linear recurence functional equation, it is natu-

ral to ask for an existence of linear recurrence function (or a solution of the linear

recurrence functional equation).

Assume that α is a root of the characteristic equation x2 − ax − b = 0. We

easily see that a function f , which is defined by

f(x) =

α
x, if x ∈ Z;

0, if x /∈ Z,

satisfies the linear recurrence functional equation f(x) = af(x − 1) + bf(x − 2).

(Note that it is clear that α 6= 0 since b 6= 0.) This example gives us a hint how

to find a general solution of the linear recurrence functional equation.

Assume that f is a solution of the linear recurrence functional equation. Note

that for every point x, y ∈ R with |x−y| < 1, there is no correlation between f(x)

and f(y) . We may say informally that the value of f at x and y are independent.

As we can see in the above example, once we carefully assign the value of points

having integral-valued distance, we can leave the other points vanished without

breaking the recurrence condition.

Moreover, note that if we assign the value to only two points having distance

1, e.g. f(−0.5) and f(0.5), then the other values, says f(0.5 + k) for all k ∈ Z,

can be obtained immediately by the condition f(x) = af(x− 1) + bf(x− 2).

From this observation, we can think of the interval [−1, 1) as the ‘basis’ for

extending other values outside the interval [−1, 1) recursively. By using the no-
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tation [x] for the greatest integer which is not greater than x for any x ∈ R, we

have the following theorem.

Theorem 4.1. Let (X, || · ||) be a complex Banach space, a, b ∈ C and b 6= 0. Let

α and β be roots of the characteristic equation x2 − ax− b = 0.

(i) For α 6= β: A function f : R → X is a second order linear recurrence

function of the form f(x) = af(x− 1) + bf(x− 2) if and only if there exists

a function g : [−1, 1)→ X such that

f(x) =
α[x]+1 − β[x]+1

α− β
g(x− [x])− αβα

[x] − β[x]

α− β
g(x− [x]− 1), (4.1)

for all x ∈ R.

(ii) For α = β: A function f : R → X is a second order linear recurrence

function of the form f(x) = af(x− 1) + bf(x− 2) if and only if there exists

a function g : [−1, 1)→ X such that

f(x) = ([x] + 1)α[x]g(x− [x])− [x]α[x]+1g(x− [x]− 1), (4.2)

for all x ∈ R.

Proof.

(i) For α 6= β, observe that

f(x)− (α + β)f(x− 1) + αβf(x− 2) = f(x)− af(x− 1)− bf(x− 2) = 0.

Thus,

f(x)− αf(x− 1) = β
(
f(x− 1) + αf(x− 2)

)
By mathematical induction, we get

f(x)− αf(x− 1) = βn
(
f(x− n) + αf(x− n− 1)

)
, (4.3)

for all x ∈ R and arbitrary non-negative integer n. Substitue x by x + n in (4.3)

and divide both sides by βn, we have that

f(x)− αf(x− 1) = β−n
(
f(x+ n) + αf(x+ n− 1)

)
.
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This implies that (4.3) is true for all x ∈ R and for all n ∈ Z. Similarly,

f(x)− βf(x− 1) = αn
(
f(x− n) + βf(x− n− 1)

)
, (4.4)

for all x ∈ R and for all n ∈ Z.

We multiply (4.3) by β and (4.4) by α, respectively. After that, we subtract

the first resulting equation from the second equation, we obtain

f(x) =
αn+1 − βn+1

α− β
f(x− n)− αβα

n − βn

α− β
f(x− n− 1),

for all x ∈ R and for all n ∈ Z. Taking n = [x] in the above equation, we have

f(x) =
α[x]+1 − β[x]+1

α− β
f(x− [x])− αβα

[x] − β[x]

α− β
f(x− [x]− 1).

Since 0 ≤ x − [x] < 1 and −1 ≤ x − [x] − 1 < 0, we define g = f |[−1,1) and the

necessary condition is done.

Conversely, to prove the sufficient condition, assume that f is a function of

the form (4.1), where g : [−1, 1)→ X is an arbitrary function. We will show that

f satisfies f(x) = af(x− 1) + bf(x− 2) by a direct computation. Recall that

f(x) =
α[x]+1 − β[x]+1

α− β
g(x− [x])− αβα

[x] − β[x]

α− β
g(x− [x]− 1) (4.5)

We substitute x by x − 1 and x − 2 in (4.5), respectively. Using the fact that

[x+ k] = [x] + k for all x ∈ R and for all k ∈ Z, we have

f(x− 1) =
α[x] − β[x]

α− β
g(x− [x])− αβα

[x]−1 − β[x]−1

α− β
g(x− [x]− 1), (4.6)

and

f(x− 2) =
α[x]−1 − β[x]−1

α− β
g(x− [x])− αβα

[x]−2 − β[x]−2

α− β
g(x− [x]− 1). (4.7)
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Recall that a = α + β and b = −αβ. So,

af(x−1) + bf(x− 2)

= (α + β)
(α[x] − β[x]

α− β
g(x− [x])− αβα

[x]−1 − β[x]−1

α− β
g(x− [x]− 1)

)
− (αβ)

(α[x]−1 − β[x]−1

α− β
g(x− [x])− αβα

[x]−2 − β[x]−2

α− β
g(x− [x]− 1)

)
=
((α + β)(α[x] − β[x])− (αβ)(α[x]−1 − β[x]−1)

α− β
)
g(x− [x])

− αβ
((α + β)(α[x]−1 − β[x]−1)− (αβ)(α[x]−2 − β[x]−2)

α− β
)
g(x− [x]− 1)

=
α[x]+1 − β[x]+1

α− β
g(x− [x])− αβα

[x] − β[x]

α− β
g(x− [x]− 1)

= f(x).

This completes the sufficient condition of the first case.

(ii) For α = β, we claim that

f(x) = (n+ 1)αnf(x− n)− nαn+1f(x− n− 1), (4.8)

for all x ∈ R and for all n ∈ Z. We use mathematical induction as follows. Since

α = β, by the relation between roots and coefficients, we have

f(x) = 2αf(x− 1)− α2f(x− 2). (4.9)

Assume f(x) = nαn−1f(x− n+ 1)− (n− 1)αnf(x− n) for n > 0. Then

f(x) = nαn−1f(x− n+ 1)− (n− 1)αnf(x− n)

= nαn−1
(
2αf(x− n) + α2f(x− n− 1)

)
− (n− 1)αnf(x− n)

= (n+ 1)αnf(x− n)− nαn+1f(x− n− 1).

On the other hand, substitute x = x + 2 in (4.9) and dividing both sides by α2,

we derive an equation

f(x) = 2α−1f(x+ 1)− α−2f(x+ 2). (4.10)
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Assume f(x) = (n− 1)α−n+2f(x+ n− 2) + (n− 2)α−n+1f(x+ n− 1) for n > 0.

Then

f(x) = (n− 1)α−n+2f(x+ n− 2) + (n− 2)α−n+1f(x+ n− 1)

= (n− 1)α−n+2(2α−1f(x+ n− 1)− α−2f(x+ n)) + (n− 2)α−n+1f(x+ n− 1)

= nα−n+1f(x+ n− 1)− (n− 1)α−nf(x+ n).

That is,

f(x) = (−n+ 1)α−nf(x+ n) + nα−n+1f(x+ n− 1).

This implies that (4.8) is true for all x ∈ R and for all n ∈ Z as desired. Taking

n = [x] in the above equation, we have

f(x) = ([x] + 1)α[x]f(x− [x])− [x]α[x]+1f(x− [x]− 1).

Since 0 ≤ x − [x] < 1 and −1 ≤ x − [x] − 1 < 0, we define g = f |[−1,1) and the

necessary condition is done.

Conversely, to prove the sufficient condition, assume that f is a function of

the form (4.2), where g : [−1, 1) → X is an arbitrary function. We again show

that f satisfies f(x) = af(x− 1) + bf(x− 2) by a direct computation. Recall that

f(x) = ([x] + 1)α[x]g(x− [x])− [x]α[x]+1g(x− [x]− 1). (4.11)

Substitute x by x− 1 and x− 2 in 4.11, respectively, we get

f(x− 1) = [x]α[x]−1g(x− [x])− ([x]− 1)α[x]g(x− [x]− 1) (4.12)

and

f(x− 2) = ([x]− 1)α[x]−2g(x− [x])− ([x]− 2)α[x]−1g(x− [x]− 1). (4.13)
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Therefore,

af(x−1) + bf(x− 2)

= 2α
(

[x]α[x]−1g(x− [x])− ([x]− 1)α[x]g(x− [x]− 1)
)

− α2
(

([x]− 1)α[x]−2g(x− [x])− ([x]− 2)α[x]−1g(x− [x]− 1)
)

=
(
2[x]α[x] − ([x]− 1)α[x]

)
g(x− [x])

−
(
2([x]− 1)α[x]+1 − ([x]− 2)α[x]+1

)
g(x− [x]− 1)

= ([x] + 1)α[x]g(x− [x])− [x]α[x]+1g(x− [x]− 1)

= f(x).

This final assertion completes the entire proof.

In short, we can assign a value to all point in the interval [−1, 1) independently.

After that, we extend the domain [−1, 1) to the entire real line by the recurrence

condition relying on the roots of the characteristic equation.

4.2 Stability

In this section, we will prove the Hyers-Ulam stability of second order linear

recurrence functional equations. We give an overview of the entire section here.

(i) If the characteristic equation has no root which lies on the unit circle {z ∈

C | |z| = 1}, then the second order linear recurrence functional equation is

stable.

(ii) Otherwise, the second order linear recurrence functional equation has no

stability.

We begin with the following two lemmas.

Lemma 4.2. Let (X, || · ||) be a complex Banach space, a, b ∈ C and b 6= 0. Let

α and β be roots of the characteristic equation x2 − ax − b = 0 and assume that

|β| < 1. Given ε > 0, if a function f : R→ X satisfies the inequality,

||f(x)− af(x− 1)− bf(x− 2)|| ≤ ε,
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for all x ∈ R, then there exists a recurrence function of order two G1 : R → X

such that

‖G1(x)− (f(x)− αf(x− 1))‖ ≤ (
|β|

1− |β|
)ε

Proof. Let α, β be characteristic roots of x2−ax−b = 0 and assume that |β| < 1.

Recall that

f(x)− (α + β)f(x− 1) + αβf(x− 2) = f(x)− af(x− 1)− bf(x− 2). (4.14)

Hence

‖f(x)− αf(x− 1)− β
(
f(x− 1)− αf(x− 2)

)
‖ < ε.

Fix a non-negative integer k. Replacing x by x−k in the above inequality, we get

‖f(x− k)− αf(x− k − 1)− β
(
f(x− k − 1)− αf(x− k − 2)

)
‖ ≤ ε.

So,

‖βk
(
f(x−k)−αf(x−k−1)

)
−βk+1

(
f(x−k−1)−αf(x−k−2)

)
‖ ≤ |βk|ε (4.15)

By a telescoping sum,

f(x)−αf(x− 1)− βn
(
f(x− n)− αf(x− n− 1)

)
=

n−1∑
k=0

(
βk
(
f(x− k)− αf(x− k − 1)

)
− βk+1

(
f(x− k − 1)− αf(x− k − 2)

))
.

Using the triangle inequality and (4.15), we have

||f(x)− αf(x− 1)− βn
(
f(x− n)− αf(x− n− 1)

)
||

≤
n−1∑
k=0

‖βk
(
f(x− k)− αf(x− k − 1)

)
− βk+1

(
f(x− k − 1)− αf(x− k − 2)

)
‖

≤
n−1∑
k=0

|βk|ε, (4.16)

for x ∈ R and n ∈ N. Furthermore, for any x ∈ R and for any n,m ∈ N with

n ≤ m, (4.15) implies that

‖βn
(
f(x− n)− αf(x− n− 1)

)
− βm

(
f(x−m)− αf(x−m− 1)

)
‖ ≤

m−1∑
k=n

|βk|ε.
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Since |β| < 1, the right hand side tends to zero as m,n → ∞. We conclude that{
βn
(
f(x − n) − αf(x − n − 1)

)}
is a Cauchy sequence. Since X is complete, a

function G1 : R→ X given by

G1(x) = lim
n→∞

βn
(
f(x− n)− αf(x− n− 1)

)
,

is well-defined. Moreover, we obtain that

aG1(x− 1) + bG1(x− 2)

= aβ−1 lim
n→∞

βn+1[f(x− (n+ 1))− αf(x− (n+ 1)− 1)]

+ bβ−2 lim
n→∞

βn+2[f(x− (n+ 2))− αf(x− (n+ 2)− 1)]

= (aβ−1 + bβ−2)G1(x).

Since β is a root of x2−ax−b = 0, aβ−1+bβ−2 = 1. So aG1(x−1)+bG1(x−2) =

G1(x) for all x ∈ R. Hence G1 is a recurrence function of order two. If we let

n→∞, then (4.16) yields

‖G1(x)− (f(x)− αf(x− 1))‖ ≤ (
|β|

1− |β|
)ε,

for every x ∈ R.

Lemma 4.3. Let (X, || · ||) be a complex Banach space, a, b ∈ C and b 6= 0. Let

α and β be roots of the characteristic equation x2 − ax − b = 0 and assume that

|α| > 1. Given ε > 0, if a function f : R→ X satisfies the inequality,

||f(x)− af(x− 1)− bf(x− 2)|| ≤ ε,

for all x ∈ R and for some ε > 0, then there exists a recurrence function of order

two G2 : R→ X such that

‖G2(x)− (f(x)− βf(x− 1))‖ ≤ (
|α|−1

1− |α|−1
)ε

Proof. Let α, β be characteristic roots of x2−ax−b = 0 and assume that |α| > 1.

The equation (4.14) in the previous lemma can be rearranged to

‖f(x)− βf(x− 1)− α(f(x− 1)− βf(x− 2))‖ ≤ ε.
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By replacing x by x+ k in the above inequality, we get

‖f(x+ k)− βf(x+ k − 1)− α
(
f(x+ k − 1)− βf(x+ k − 2)

)
‖ ≤ ε.

So,

‖α−k
(
f(x+k)−αf(x+k− 1)

)
−α−k+1

(
f(x+k− 1)−βf(x+k− 2)

)
‖ ≤ |α−k|ε

(4.17)

By a telescoping sum,

f(x)−βf(x− 1)− α−n
(
f(x+ n)− βf(x+ n− 1)

)
=

n∑
k=1

(
α−k

(
f(x+ k)− βf(x+ k − 1)

)
− α−k+1

(
f(x+ k − 1)− βf(x+ k − 2)

))
.

Using the triangle inequality and (4.17), we have that

||f(x)−βf(x− 1)− α−n
(
f(x+ n)− βf(x+ n− 1)

)
||

≤
n∑
k=1

‖α−k
(
f(x+ k)− βf(x+ k − 1)

)
− α−k+1

(
f(x+ k − 1)− βf(x+ k − 2)

)
‖

≤
n∑
k=1

|α−k|ε, (4.18)

for x ∈ R and n ∈ N. Furthermore, for any x ∈ R and for any n,m ∈ N with

n ≤ m, (4.17) implies that

‖α−n
(
f(x+n)−αf(x+n−1)

)
−α−m

(
f(x+m)−βf(x+m−1)

)
‖ ≤

m−1∑
k=n

|α−k|ε.

Since |α−1| < 1, the right hand side tends to zero as m,n → ∞. We conclude

that {α−n
(
f(x+n)−βf(x+n−1)

)
} is a Cauchy sequence. Since X is complete,

a function G2 : R→ X given by

G2(x) = lim
n→∞

α−n
(
f(x+ n)− βf(x+ n− 1)

)
,

is also well-defined. Moreover, we obtain that

aG2(x− 1) + bG2(x− 2)

= aα−1( lim
n→∞

α−(n−1)[f(x+ (n− 1))− βf(x+ (n− 1)− 1)])

+ bα−2( lim
n→∞

α−(n−2)[f(x+ (n− 2))− βf(x+ (n− 2)− 1)])

= (aα−1 + bα−2)G2(x).
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Since α is a root of x2−ax−b = 0, aα−1+bα−2 = 1. So aG2(x−1)+bG2(x−2) =

G2(x) for all x ∈ R. Hence G2 is a recurrence function of order two. If we let

n→∞, then (4.18) becomes

‖G2(x)− (f(x)− βf(x− 1))‖ ≤ (
|α|−1

1− |α|−1
)ε,

for every x ∈ R.

For a convenient reason, we construct a real-valued function λ : C\{z ∈

C | |z| 6= 1} → R by

λ(γ, ε) =


( |γ|

1− |γ|

)
ε, if |γ| < 1;( |γ|−1

1− |γ|−1
)
ε, if |γ| > 1.

It is valuable to note that for any fixed γ with |γ| 6= 1, λ(γ, ε) is arbitrarily small

depending on ε, i.e., λ(γ, ε)→ 0 as ε→ 0. Taking this function into account, we

merge Lemma 4.2 and Lemma 4.3 into a single lemma.

Lemma 4.4. Let (X, || · ||) be a complex Banach space, a, b ∈ C and b 6= 0. Let

α and β be roots of the characteristic equation x2 − ax − b = 0 and assume that

|β| 6= 1. Given ε > 0, if a function f : R→ X satisfies the inequality,

||f(x)− af(x− 1)− bf(x− 2)|| ≤ ε,

for all x ∈ R, then there exists a recurrence function of order two G′ : R → X

such that

‖G′(x)− (f(x)− αf(x− 1))‖ ≤ λ(β, ε).

Next, we introduce the Kronecker delta symbol δxy, which is defined by

δxy =

1, if x = y;

0, if x 6= y.

For the rest of the thesis, we use the function λ and the Kronecker delta symbol

to represent our theorems elegantly and generalizable. Now, Lemma 4.4 will be

applied to prove our main theorem as follows.
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Theorem 4.5. [Stability of the second order linear recurrence functional equa-

tions]

Let (X, || · ||) be a complex Banach space, a, b ∈ C and b 6= 0. Let α and β be

distinct roots of the characteristic equation x2 − ax− b = 0. Assume that |α| 6= 1

and |β| 6= 1. Given ε > 0, if a function f : R→ X satisfies the inequality,

||f(x)− af(x− 1)− bf(x− 2)|| ≤ ε,

for all x ∈ R, then there exists a recurrence function of order two G : R → X

such that

||f(x)−G(x)|| ≤
( |β|λ(β, ε) + |α|λ(α, ε)

|β − α|

)
for all x ∈ R.

Proof. Let α, β be distinct characteristic roots of x2−ax−b = 0 such that |α| 6= 1

and |β| 6= 1. Since |β| 6= 1, by using Lemma 4.4, there exist a recurrence function

of order two G1 : R→ X such that

‖G1(x)− (f(x)− αf(x− 1))‖ ≤ λ(β, ε). (4.19)

Since |α| 6= 1, by a similar argument, there exist a recurrence function of order

two G2 : R→ X and δ2 > 0 such that

‖G2(x)− (f(x)− βf(x− 1))‖ ≤ λ(α, ε). (4.20)

The assumption α 6= β allows us to define

G(x) =
β

β − α
G1(x)− α

β − α
G2(x)

Since G1(x) = aG1(x − 1) + bG1(x − 2) and G2(x) = aG2(x − 1) + bG2(x − 2),

it is straight forward to show that G is a recurrence function of order two, more

explicitly, G(x) = aG(x − 1) + bG(x − 2). By (4.19), (4.20) and the triangle
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inequality, we have

||f(x)−G(x)||

= ||f(x)−
( β

β − α
G1(x)− α

β − α
G2(x)

)
||

=
1

|β − α|
||(β − α)f(x)− [βG1(x)− αG2(x)]||

≤ 1

|β − α|
(||βf(x)− αβf(x− 1)− βG1(x)||+ ||αG2(x)− αf(x) + αβf(x− 1)||)

≤ |β|λ(β, ε) + |α|λ(α, ε)

|β − α|
.

This completes the proof.

The stability the recurrence functional equation f(x) = af(x− 1) + bf(x− 2)

fails in the case that (at least) one of its characteristic roots lies on the unit circle

{z ∈ C | |z| = 1} as we will show later.

To show that the stability fails, we need a counter-example. Let ε > 0, a, b ∈ C

and b 6= 0. Let α and ω be roots of the characteristic equation x2 − ax − b = 0

and assume that |ω| = 1. We define a function f : R→ C by

f(x) =

γω
xxδαω+1, if x ∈ Z;

0, if x /∈ Z.
(4.21)

where γ = min{ ε
2|ω| ,

ε
2|α|} = min{ ε

2
, ε
2|α|}. We call it a pseudo second order

linear recurrence function. We will use this notation for the rest of our work, and

we will show later that this function is a counter-example we desire. Moreover,

the following remark is very useful. For any x ∈ Z,

|f(x)− af(x− 1)− bf(x− 2)|

= γ|ωxxδαω+1 − aωx−1(x− 1)δαω+1 − bωx−2(x− 2)δαω+1|

= γ|(ωx − aωx−1 − bωx−2)xδαω+1−(
aωx−1((x− 1)δαω+1 − xδαω+1) + bωx−2((x− 2)δαω+1 − xδαω+1)

)
|.

Using the fact that ω2 − aω − b = 0, i.e., ωx − aωx−1 − bωx−2 = 0, we get

|f(x)−af(x−1)−bf(x−2)| = γ|aωx−1((x−1)δαω+1−xδαω+1)+bωx−2((x−2)δαω+1−xδαω+1)|.

(4.22)
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The last two results of our work can be described in this way. The pseudo

second order linear recurrence function f satisfies |f(x)−af(x−1)−bf(x−2)| ≤ ε

for all x ∈ R. Suppose that there is a recurrence function G which approximates

f , i.e., the quantity |f(x) − G(x)| is bounded. Our technique is to show that

for sufficient large natural number k, | f(k) − G(k) | is always greater than the

absolute value of a non-constant polynomial p(k), i.e., it is unbounded. Hence, a

contradiction.

Lemma 4.6. Let a, b ∈ C and b 6= 0. Let α and ω be roots of the characteristic

equation x2−ax− b = 0 and assume that |ω| = 1. The pseudo second order linear

recurrence function defined by (4.21) satisfies the inequality

|f(x)− af(x− 1)− bf(x− 2)| ≤ ε, (4.23)

for all x ∈ R.

Proof. Note that the pseudo recurrence function is not vanished only at integers.

Thus, (4.23) is true for all real number x /∈ Z. In this proof, the variable x will

be taken as an integer.

We consider two cases as follows.

Case 1: α = ω.

In this case, it is straightforward that (4.22) becomes |f(x)−af(x−1)−bf(x−2)| =

γ|aωx−1 + 2bωx−2|. Since |ω| = 1, γ|aωx−1 + 2bωx−2| = γ|aω + 2b| · |ωx−2| =

γ|aω + 2b|. The relation between the roots and coefficients, says a = α + ω

and b = −αω, implies that |f(x) − af(x − 1) − bf(x − 2)| = γ|aω + 2b| =

γ|(α + ω)ω − 2αω| = γ|ω2 − αω| = γ|ω − α|. Since γ = min{ ε
2
, ε
2|α|}, by the

triangle inequality, γ|ω − α| ≤ γ|ω|+ γ|α| ≤ ε
2

+ ε
2

= ε. This asserts (4.23).

Case 2: α = ω.

Since ω is a root of the characteristic polynomial, ω2 = aω + b. Thus, aω + 2b =

ω2 + b. Replacing n = 2 into (4.22) yields

|f(x)− af(x− 1)− bf(x− 2)| = γ|aω(−2x+ 1) + b(−4x+ 4)| · |ωx−2|

= γ| − 2(aω + 2b)x+ ((aω + 2b) + 2b)|

≤ γ(|2(ω2 + b)x|+ |(ω2 + b) + 2b|). (4.24)
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Since ω has a multiplicity 2 , 2ω = α and ω2 = −b. So, aω + 2b = (aω + b) + b =

ω2 + b = 0. Taking this fact into (4.24). We have

|f(x)− af(x− 1)− bf(x− 2)| ≤ γ|2b| = 2γ|ω2| = 2γ ≤ ε,

as desired.

Theorem 4.7. Let a, b ∈ C and b 6= 0. Let α and ω be roots of the characteristic

equation x2− ax− b = 0 and assume that |ω| = 1. Then, the pseudo second order

linear recurrence function f defined by (4.21) satisfies the inequality

|f(x)− af(x− 1)− bf(x− 2)| ≤ ε, (4.25)

for all x ∈ R. But for any real number η, there is no recurrence function G : R→

C such that G(x) = aG(x− 1) + bG(x− 2) with

|f(x)−G(x)| ≤ η, (4.26)

for all x ∈ R.

Proof. Lemma 4.6 confirms that (4.25) holds for every x ∈ R, i.e.,

|f(x)− af(x− 1)− bf(x− 2)| ≤ ε,

for all x ∈ R. Suppose on the contrary that such G exists. Let k ∈ N be

arbitrary. Since α and ω are roots of the characteristic equation x2 − ax− b = 0,

by solving the linear homogeneous recurrence relation, there exist c1, c2 ∈ C such

that G(k) = c1k
δαωαk + c2ω

k. So,

| f(k)−G(k) |=| γωkkδαω+1 − (c1k
δαωαk + c2ω

k) | (4.27)

If α 6= ω, then (4.27) gives

| f(k)−G(k) | =| γωkk − (c1α
k + c2ω

k) |

=| ωk(γk − c2)− c1αk |

≥| |ωk(γk − c2)| − |c1αk| |

=| |γk − c2| − |c1αk| | .
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Whether |α| = 1 or |α| 6= 1, the last term tends to infinity as k → ∞. This

contradicts (4.26).

If α = ω, then (4.27) gives

| f(k)−G(k) | =| γωkk2 − (c1kω
k + c2ω

k) |

=| γk2 − (c1k + c2) | .

The last term tends to infinity as k →∞. This contradicts (4.26).
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