

CHAPTER I

INTRODUCTION AND PRELIMINARIES

This work is concerned with Rolle's theorem and its consequences developed for functions from a subset of \mathbf{R}^n into a Banach space.

In 1995, M.Furi and M.Martelli [4] proved a multi-dimensional version of Rolle's theorem. The basic idea of their result is to assume a certain behavior of the function f on the boundary of \mathcal{D} in \mathbb{R}^n and then obtain information on the derivative of f at an interior point of \mathcal{D} . The theorem assume that a function f is defined on a subset \mathcal{D} of \mathbb{R}^n with values in \mathbb{R}^q . If f is continuous on \mathcal{D} , differentiable on the interior of \mathcal{D} and there is a point vin \mathbb{R}^n such that v is orthogonal to f(x) for every x in the boundary of \mathcal{D} then there is a point c in the interior of \mathcal{D} such that v is orthogonal to df(c)(u) for any u in \mathbb{R}^n .

We prove theorems analogous to that of Furi and Martelli for a function from a subset of \mathbf{R}^n into a Banach space. And as its consequence we develop a theorem which is a generalization of the Mean Value theorem of Sanderson [6].

Now we give the definitions of differentiation in \mathbf{R}^n and present some basic theorems of differentiable functions in \mathbf{R}^n which are needed in our work.

The inner product and the norm on \mathbf{R}^n are the Euclidean inner product and the Euclidean norm in \mathbf{R}^n , respectively, that is

$$x \cdot y = \sum_{i=1}^{n} x_i y_i$$
 where $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n)$ in \mathbb{R}^n ,

and $||x|| = \text{the norm of } x = \sqrt{x \cdot x}$ for x in \mathbb{R}^n .

Definition 1.1. Let f be a function with domain A in \mathbb{R}^n and range in \mathbb{R}^m , and let a_0 be an interior point of A. We say that f is differentiable at a_0 if there exists a linear function $L : \mathbb{R}^n \to \mathbb{R}^m$ such that for every $\varepsilon > 0$ there exists a positive real number $\delta(\varepsilon)$ such that if $x \in \mathbb{R}^n$ is any vector satisfying $||x - a_0|| \le \delta(\varepsilon)$, then $x \in A$ and

$$||f(x) - f(a_0) - L(x - a_0)|| \le \varepsilon ||x - a_0||.$$

If such a linear function L exists then it is unique. It is called the *derivative* of f at a_0 and denoted by $df(a_0)$.

Lemma 1.2. If $f: A \to \mathbb{R}^m$ is differentiable at $a_0 \in A$, then there exist strictly positive real numbers δ , K such that if $||x - a_0|| \le \delta$, then

$$|| f(x) - f(a_0) || \le K || x - a_0 ||$$
.

It follows that if f is differentiable at a_0 then f is continuous at a_0 .

Theorem 1.3 Let $A \subseteq \mathbb{R}^n$ and let a_0 be an interior point of A.

(a) If f and g are defined on A with values in \mathbb{R}^m and are differentiable at a_0 , and if α , $\beta \in \mathbb{R}$, then the function $h = \alpha f + \beta g$ is differentiable at a_0 and

$$dh(a_0) = \alpha df(a_0) + \beta dg(a_0).$$

(b) If $\varphi : A \to \mathbf{R}$ and $f : A \to \mathbf{R}^m$ are differentiable at a_0 , then the product function $k = \varphi f : A \to \mathbf{R}^m$ is differentiable at a_0 and

$$dk(a_0)(u) = [d\varphi(a_0)(u)]f(a_0) + \varphi(a_0)[df(a_0)(u)]$$
 for $u \in \mathbf{R}^n$.

The next result is the chain rule which asserts that the derivative of the composition of two differentiable functions is the composition of their derivatives.

Theorem 1.4. Let f have domain $A \subseteq \mathbb{R}^n$ and range in \mathbb{R}^m , and let g have domain $B \subseteq \mathbb{R}^m$ and range in \mathbb{R}^r . Suppose that f is differentiable at a_0 and that g is differentiable at $b = f(a_0)$. Then the composition $h = g \circ f$ is differentiable at a_0 and

$$dh(a_0) = dg(b) \circ df(a_0),$$

that is,

$$d(g \circ f)(a_0) = dg(f(a_0)) \circ df(a_0).$$

The next two theorems are the Mean Value Theorems.

Theorem 1.5. Let f be a real - valued function defined on an open subset Ω of \mathbb{R}^n . Suppose that the set Ω contains the points a, b and the line segment S joining them, and that f is differentiable at every point of this line segment. Then there exists a point c on S such that

$$f(b) - f(a) = df(c)(b - a).$$

Theorem 1.6. Let $\Omega \subseteq \mathbb{R}^n$ be an open set and let $f: \Omega \to \mathbb{R}^m$. Suppose that Ω contains the points a, b and the line segment S joining these points, and that f is differentiable at every point of S. Then there exists a point c on S such that

$$|| f(b) - f(a) || \le || df(c)(b - a) ||.$$

Throughout this research, we denote by $D(x_0, r)$, $B(x_0, r)$ and $S(x_0, r)$, the closed ball, the open ball and the sphere, centered at x_0 with radius r in \mathbf{R}^n , respectively.

That is
$$D(x_o, r) = \{ x \in \mathbb{R}^n \mid || x - x_o || \le r \},$$

 $B(x_o, r) = \{ x \in \mathbb{R}^n \mid || x - x_o || \le r \},$
 $S(x_o, r) = \{ x \in \mathbb{R}^n \mid || x - x_o || = r \} = \partial D(x_o, r).$

The following three theorems are the multi-dimensional version of Rolle's theorem proved by Furi and Martelli [4].

4

-

5

Theorem 1.7. Let $x_0 \in \mathbb{R}^n$, $f : D(x_o, r) \to \mathbb{R}^n$ be continuous on $D(x_o, r)$ and differentiable on $B(x_o, r)$. Assume that there exists a vector $v \in \mathbb{R}^n$ such that vis orthogonal to f(x) for every $x \in S(x_o, r)$. Then there exists a vector $c \in B(x_o, r)$ such that $v \cdot df(c)(u) = 0$ for every $u \in \mathbb{R}^n$.

Theorem 1.8. Let $x_0 \in \mathbb{R}^n$, $f : D(x_o, r) \to \mathbb{R}^p$ be continuous on $D(x_o, r)$ and differentiable on $B(x_o, r)$. Assume that there exists a vector $v \in \mathbb{R}^n$ such that $v \cdot f(x)$ is constant for every $x \in S(x_o, r)$. Then there exists a vector $c \in B(x_o, r)$ such that $v \cdot df(c)(u) = 0$ for every $u \in \mathbb{R}^n$.

Theorem 1.9. Let $x_0 \in \mathbb{R}^n$, $f: D(x_o, r) \to \mathbb{R}^p$ be continuous on $D(x_o, r)$ and differentiable on $B(x_o, r)$. Let $v \in \mathbb{R}^p$ and $z_o \in B(x_o, r)$ be such that $v \cdot (f(x) - f(z_o))$ does not change sign on $S(x_o, r)$. Then there exists a vector $c \in B(x_o, r)$ such that $v \cdot df(c)(u) = 0$ for every $u \in \mathbb{R}^n$.

It is noticed that a straightforward reformulation of Rolle's theorem in \mathbf{R}^n , for $n \ge 2$, fails.

For example, let $f: \mathbf{R}^2 \to \mathbf{R}^2$ be defined by

$$f(x,y) = (x(x^2 + y^2 - 1), y(x^2 + y^2 - 1))$$

for any (x,y) in \mathbb{R}^2 . Then f is continuous on D(0,1), differentiable on B(0,1)and f(x,y) = (0,0) = 0 for every (x,y) in S(0,1). However the derivative of f at x = (x, y) is the linear transformation df(x), from \mathbf{R}^2 into \mathbf{R}^2 , represented by the matrix

$$\begin{bmatrix} 3x^{2} + y^{2} - 1 & 2xy \\ 2xy & 3y^{2} + x^{2} - 1 \end{bmatrix}$$

for every x in B(0,1) and it is obvious that $df(x) \neq 0$ for any $x \in D(0,1)$.

In proving our main theorems, we need the following two basic theorems for real-valued function on a subset of \mathbb{R}^n .

Theorem 1.10 Let $K \subseteq \mathbb{R}^n$ and let $f: K \to \mathbb{R}$ be continuous on K. If K is compact, then there are points x_1, x_2 in K such that $f(x_1) = \sup \{ f(x) : x \in K \}$, $f(x_2) = \inf \{ f(x) : x \in K \}$.

Theorem 1.11 Let $A \subseteq \mathbb{R}^n$, and $f: A \to \mathbb{R}$. If an interior point c of A is a point of extremum of f, and if the derivative df(c) exists, then df(c) = 0, the zero function.