## **CHAPTER 4**



### **RESULTS AND DISCUSSIONS**

In this study, the vapor recovery unit was a type called carbon vacuum adsorption vapor recovery (CVA). It has been installed at the Shell of Thailand and Fuel Pipeline Transportation Limited bulk gasoline terminal. The operational function of the unit was described in 3.1.

The aim of this study was to determine the composition of evaporative emissions from gasoline transfer operation at bulk gasoline terminal. Moreover, evaluation of the VRU' s efficiency for controlling VOCs and HAPs were also included in this study. The results from the experiments were integrated to the economic for evaluation of the cost-effectiveness of the vapor recovery unit and the possibility implementation to the country policy on VOCs/hazardous VOCs emissions at bulk gasoline terminals.

# 4.1 Volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) in gasoline vapor at bulk gasoline terminal

The results of the volatile organic compounds presented in gasoline emission at both inlet (uncontrolled) and outlet (controlled) of VRU. The samples were analysed by gas chromatography - mass spectrometry (GC/MS) at the optimum conditions, the chromatogram shown a huge of either identified or unidentified compounds. The identification with the chromatogram obtained from GC/MS was found that it was more than 20 hit compounds listed in the GC/MS's library (**Appendix B**). The exact identification of those compounds, their standard were needed for the compound (chromatogram peak) confirmation. Therefore, to cut of the cost of analysis for unnecessary peaks the study was limited only the major volatile hydrocarbons and the HAPs. The chromatograms of both inlet and outlet samples and also some results that searched hit list of GC/MS shown in **Appendix B**.

However, the identified compounds that found at the inlet and outlet samples were mostly the same as the target of HAPs in this study i.e. benzene (B), toluene (T), ethylbenzene (EB), all three isomer of xylene (para-, meta-, ortho-, X), methyl tertbutyl ether (MTBE) and 1-butene.

The identified compounds both at the inlet and outlet of VRU were all in the list of hazardous air pollutants of the Clean Air Act of U.S EPA (Hazardous Air Pollutant List; Modification, 61 FR 30816, June 18, 1996). The other HAPs that also found in gasoline vapor were napthalene, cumene, n-hexane and 2,2,4-trimethylpentane or isooctane which also listed by U.S.EPA, Office of Air Quality Planning and Standard, (1994).

The information of gasoline composition were limited by its diversify composition among the sources and countries. The related studies that revealed the composition of gasoline emission reported by Air & Waste technology Co., Ltd in 2001 for the PCD, Thailand. The samples taken at Bangchak refinery area and found those thirty eighth hydrocarbons from total of forty five compounds in the study. There were ethene, acetylene, ethane, propene, propane, propyne, isobutane, I-butene, 1-butene, n-butyne, trans-2-butene, cis-2-butene, 3-methyl-1-butene, isopentane, 2-methylpentane, 3- methylpentane, 1-hexane, n-hexane, 2-methyl-2-pentene, benzene, cyclohexane, n-heptane, toluene, n-octane, ethylbenzene, m,p-xylenes, o-xylene, 1,3,5-trimethylbenzene, 1,2,4- trimethylbenzene and decane.

### 4.2 Control efficiency of VRU for VOCs and HAPs

The total of sixty-eight samples from both sites (inlet and outlet) were analysed for total VOCs at the Automotive Emission Laboratory, Pollution Control Department. The HAPs that measured were benzene, toluene, ethylbenzene, mxylene, o-xylene and methyl tert-butyl ether (MTBE). The results from these studies, VOCs and the HAPs concentration from the Shell of Thailand and FPT shown in Table 4.1 and 4.2 respectively.

The results show that MTBE concentration was the most frequently found and the highest concentration. Benzene and toluene were shown in the second after MTBE while the rest were rarely found and also at the low concentration.

| Date     | Sampling Time    | Tempe   | rature | ( C)   | Gasoli  | ne Loaded | (Liter) | MTBE (     | ug/l)  | Benzene   | (ug/l) | Toluene   | (ug/l) | Ethylbenzen | e (ug/l) |
|----------|------------------|---------|--------|--------|---------|-----------|---------|------------|--------|-----------|--------|-----------|--------|-------------|----------|
|          |                  | ambient | inlet  | outlet | Diesel  | 95        | 91      | inlet      | outlet | inlet     | outlet | inlet     | outlet | inlet       | outlet   |
| Sunday   | 11.28-12.28 AM   | 32      | 34     | 32.5   | 57,005  | 54,003    | 41,999  | 39,851.04  | 103.82 | 5,900.92  | 73.68  | na        | na     | 3,624.40    | 0        |
| 1/12/02  | 12.45-1.15 PM    | 32.5    | 35     | 33     | 86,996  | 57,006    | 48,007  | 75,969.16  | 82.12  | 1,547.32  | 65.12  | na        | na     | 0.00        | 0        |
| Monday   | 10.58-11.58 PM   | 28      | 29     | 28.5   | 212,027 | 309,038   | 158,991 | 428.56     | 0      | 767.44    | 14.66  | 1,626.84  | 31.23  | 0           | 0        |
| 2/12/02  | 00.05-1.05 AM    | 27      | 28     | 27.5   | 159,014 | 198,023   | 117,002 | 1,062.00   | 23.60  | 1,356.08  | 7.64   | 2,072.00  | 0      | 0           | 0        |
| Thuesday | 10.48-11.48 AM   | 28      | 29     | 29.5   | 289,035 | 168,009   | 117,039 | 18,443.60  | 0      | 3,877.92  | 48.22  | na        | na     | 0           | 0        |
| 3/12/02  | 11.59-00.59 AM   | 28      | 29     | 29.5   | 348,001 | 230,997   | 161,991 | 21,297.60  | 0      | 900.28    | 63.41  | na        | na     | 0           | 0        |
| Thursday | 11.03-00.03 AM   | 26.5    | 25.5   | 26     | 119,007 | 114,009   | 78,000  | 95,636.00  | 0      | 36,872.16 | 7.57   | 13,704.40 | 27.67  | 0           | 0        |
| 5/12/02  | 00.17-1.17 AM    | 26      | 25     | 25.5   | 84,231  | 72,018    | 56,998  | 2,381.24   | 0      | 5,098.32  | 3.12   | 6,832.80  | 0      | 0           | 0        |
| Sunday   | 9.25-10.25 AM    | 35      | 36     | 34     | 26,995  | 50,996    | 32,993  | 32,607.20  | 46.78  | 1,440.20  | 64.45  | na        | na     | 0           | 0        |
| 8/12/02  | 10.55-11.55 AM   | 36      | 37.5   | 35.5   | 62,999  | 60,006    | 32,997  | 66,981.40  | 0      | 7,021.76  | 35.45  | na        | na     | 0           | 0        |
| Thursday | 10.20-11.20 PM   | 26.5    | 27.8   | 28     | 200,998 | 171,009   | 119,999 | 4,663.60   | 139.26 | 664.12    | 46.86  | 1,863.00  | 102.78 | 204.92      | 0        |
| 12/12/02 | 11.40PM-00.40 Al | 26      | 27.5   | 28     | 653,986 | 564,121   | 384,081 | 1,255.16   | 0      | 1,156.16  | 24.32  | 1,940.52  | 54.74  | 0           | 0        |
| Thursday | 10.20-11.20 PM   | 28      | 27.5   | 28     | 264,000 | 228,017   | 159,120 | 16,998.80  | 12.43  | 3,139.96  | 56.58  | 2,551.64  | 37.21  | 58.28       | 0        |
| 13/2/03  | 11.30PM-00.30AM  | 28      | 27.5   | 28     | 216,903 | 162,023   | 108,061 | 69,604.00  | 14.07  | 7,942.80  | 64.43  | 6,139.60  | 50.79  | 126.48      | 0        |
| Friday   | 10.50-11.50 PM   | 27      | 26.5   | 27.5   | 330,000 | 210,013   | 137,996 | 2,624.20   | 14.14  | 884.00    | 64.60  | 405.28    | 52-11  | 0           | 0        |
| 14/2/03  | 00.00-1.00 AM    | 26.5    | 26     | 27     | 155,994 | 180,023   | 110,989 | 9,114.40   | 0      | 1,914.68  | 61.65  | 1,057.32  | 38.22  | 0           | 0        |
| Sunday   | 9.40-10.40 AM    | 33      | 35     | 32     | 74,991  | 23,996    | 32,996  | 104,736.00 | 0      | 11,283.16 | 9.05   | 9,144.00  | 60.08  | 277.52      | 0        |
| 16/2/03  | 11.00-12.00 AM   | 34.5    | 37     | 35.5   | 74,997  | 47,996    | 33,000  | 38,172.80  | 17.48  | 3,597.16  | 16.59  | 3,425.80  | 76-63  | 129.96      | 0        |

 Table 4.1 : The concentration of total VOCs and HAPs at sampling sites of VRU (The Shell of Thailand)

| Sampling Time   | Tempe   | rature | ( C)   | Gasoli  | ne Loaded | (Liter) | m-xylene | (ug/l) | o-xylene | (ug/l) | Total VOC  | (ppmv) | Total VO | C (mg/l) |
|-----------------|---------|--------|--------|---------|-----------|---------|----------|--------|----------|--------|------------|--------|----------|----------|
|                 | ambient | inlet  | outlet | Diesel  | 95        | 91      | inlet    | outlet | inlet    | outlet | inlet      | outlet | inlet    | outlet   |
| 11.28-12.28 AM  | 32      | 34     | 32.5   | 57,005  | 54,003    | 41,999  | 1,909.24 | 37.93  | 0        | 0      | 411,101.90 | 76.39  | 739.82   | 0.14     |
| 12.45-1.15 PM   | 32.5    | 35     | 33     | 86,996  | 57,006    | 48,007  |          | 0      | 80.04    | 0      | 499,450.20 | 27.97  | 898-81   | 0.05     |
| 10.58-11.58 PM  | 28      | 29     | 28.5   | 212,027 | 309,038   | 158,991 | 0        | 0      | 0        | 0      | 208,068.40 | 80.00  | 374.44   | 0.14     |
| 00.05-1.05 AM   | 27      | 28     | 27.5   | 159,014 | 198,023   | 117,002 | 261.08   | 0      | 0        | 0      | 448,464.73 | 61.43  | 807.05   | 0.11     |
| 10.48-11.48 AM  | 28      | 29     | 29.5   | 289,035 | 168,009   | 117,039 | 0        | 0      | 0        | 0      | 240,719.69 | 94.10  | 433.20   | 0.17     |
| 11.59-00.59 AM  | 28      | 29     | 29.5   | 348,001 | 230,997   | 161,991 | 0        | 0      | 0        | 0      | 460,150.31 | 76.18  | 828.08   | 0.14     |
| 11.03-00.03 AM  | 26.5    | 25.5   | 26     | 119,007 | 114,009   | 78,000  | 180.48   | 0      | 0        | 0      | 889,177.50 | 298.72 | 1,600.16 | 0.54     |
| 00.17-1.17 AM   | 26      | 25     | 25.5   | 84,231  | 72,018    | 56,998  | 345.76   | 0      | 0        | 0      | 707,467.50 | 256.24 | 1,273.15 | 0.46     |
| 9.25-10.25 AM   | 35      | 36     | 34     | 26,995  | 50,996    | 32,993  | 0        | 0      | 0        | 0      | 654,179.66 | 112.73 | 1,177.26 | 0.20     |
| 10.55-11.55 AM  | 36      | _37.5  | 35.5   | 62,999  | 60,006    | 32,997  | 0        | 0      | 0        | 0      | 684,487.95 | 154.74 | 1,231.80 | 0.28     |
| 10.20-11.20 PM  | 26.5    | 27.8   | 28     | 200,998 | 171,009   | 119,999 | 0        | 0      | 0        | 0      | 274,445.78 | 131.90 | 493.89   | 0.24     |
| 1.40PM-00.40 Al | 26      | 27.5   | 28     | 653,986 | 564,121   | 384,081 | 0        | 0      | 0        | 0      | 584,335.88 | 273.64 | 1,051.57 | 0.49     |
| 10.20-11.20 PM  | 28      | 27.5   | 28     | 264,000 | 228,017   | 159,120 | 209.20   | 8-83   | 0        | 0      | 225,977.44 | 220-80 | 406.67   | 0.40     |
| 11.30PM-00.30AN | 28      | 27.5   | 28     | 216,903 | 162,023   | 108,061 | 378.16   | 10.01  | 88.28    | 0      | 749,102.50 | 301.50 | 1,348.08 | 0.54     |
| 10.50-11.50 PM  | 27      | 26.5   | 27.5   | 330,000 | 210,013   | 137,996 | 0        | 5.57   | 0        | 0      | 114,081.91 | 264.50 | 205-30   | 0.48     |
| 00.00-1.00 AM   | 26.5    | 26     | 27     | 155,994 | 180,023   | 110,989 | 57.28    | 6.62   | 0        | 0      | 453,808.33 |        | 816.67   | -        |
| 9.40-10.40 AM   | 33      | 35     | 32     | 74,991  | 23,996    | 32,996  | 729.48   | 14.00  | 184.64   | 0      | 553,683.75 | 50.97  | 996-40   | 0.09     |
| 11.00-12.00 AM  | 34.5    | 37     | 35.5   | 74,997  | 47,996    | 33,000  | 381.36   | 15.56  | 90.40    | 0      | 286,047.38 | 66.72  | 514.77   | 0.12     |

 Table 4.1 : The concentration of total VOCs and HAPs at sampling sites of VRU (The Shell of Thailand) (con't)

| Date      | Sampling       | Tem     | perature ( | C )    | Gasoline loa | aded (Liter) | MTBE (    | ug/l)  | Benzene  | (ug/l) | Toluene  | (ug/l) | Ethylbenzene | : (ug/l) |
|-----------|----------------|---------|------------|--------|--------------|--------------|-----------|--------|----------|--------|----------|--------|--------------|----------|
|           | Time           | ambient | inlet      | outlet | 95           | 91           | inlet     | outlet | inlet    | outlet | inlet    | outlet | inlet        | outlet   |
| Tuesday   | 11.10-12.10 AM | 34.5    | 38         | 33     | 19,999       | 6,000        | 8,810.80  | 0      | 1,405.60 | 0      | 2,776.20 | 31.64  | 280.04       | 0        |
| 21/1/03   | 12.30-1.30 PM  | 35      | 38         | 33     | 4,997        | 7,999        | 27,485.60 | 0      | 2,874.56 | 0      | 905.60   | 24.372 | 0            | 0        |
| Wednesday | 11.00-12.00 AM | 32      | 37.5       | 32     | 12,474       | 25,285       | 21,008.00 | 0      | 4,432.12 | 4.06   | 5,592.80 | 31.48  | 131.72       | 0        |
| 22/1/03   | 1.00-2.00 PM   | 32.5    | 37.5       | 32     | 16,254       | 16,338       | 17,246.80 | 0      | 4,588.12 | 0      | 8,311.20 | 21.00  | 231.44       | 0        |
| Thursday  | 10.50-11.50 AM | 31      | 35.5       | 30.5   | 17,199       | 47,069       | 17,051.60 | 0      | 2,005.88 | 0      | 2,425.80 | 66.86  | 0            | 0        |
| 23/1/03   | 1.00-2.00 PM   | 32      | 36         | 30.5   | 14,364       | 22,562       | 26,985.20 | 0      | 2,966.28 | 1.06   | 2,826.64 | 45.54  | 0            | 0        |
| Friday    | 10.45-11.45 AM | 31      | 34         | 31     | 19,467       | 38,900       | 20,190.00 | 0      | 2,485.88 | 0      | 2,748.00 | 0      | 0            | 0        |
| 24/1/03   | 12.10-1.10 PM  | 31.5    | 36-5       | 31     | 13,041       | 42,012       | 31,877.20 | 0      | 3,377.64 | 0      | 1,885.32 | 24.33  | 0            | 0        |
| Saturday  | 10.30-11.30 AM | 31      | 34         | 31.5   | 12,474       | 76,244       | 19,620-40 | 0      | 2,082.48 | 5.80   | 1,093.76 | 17.03  | 0            | 0        |
| 25/1/03   | 11.50-12.50 AM | 31.5    | 36.5       | 31.5   | 4,536        | 19,061       | 9,905.20  | 0      | 2,738.80 | 5.58   | 2,763.20 | 22.01  | 0            | 0        |
| Sunday    | 10.40-11.40 AM | 30      | 35         | 30     | 9,828        | 16,338       | 24,659.20 | 0      | 4,386.12 | 0      | 6,453.20 | 0      | 204.92       | 0        |
| 26/1/03   | 12.00-1.00 PM  | 31      | 35.5       | 31     | 3,402        | 0            | 60,881.04 | 0      | 6,757.08 | 0      | 5,568.40 | 0      | 0            | 0        |
| Monday    | 11.20-12.20 AM | 32      | 36         | 32.5   | 45,549       | 84,413       | 43,424.00 | 0      | 5,498-52 | 2.38   | 0        | 0      | 141.60       | 0        |
| 27/1/03   | 12.40-1.40 PM  | 33      | 39         | 33-5   | 12,663       | 31,898       | 18,420.40 | 0      | 4,793.32 | 0      | 0        | 0      | 141.00       | 0        |
| Sunday    | 11.15-12.15 AM | 34      | 39         | 34     | 19,089       | 54,849       | 113.68    | 0      | 0        | 0      | 334.48   | 0      | 0            | 0        |
| 2/2/03    | 12.30-1.30 PM  | 35      | 41.5       | 35     | 11,907       | 64,574       | 12.24     | 0      | 0        | 0      | 337.04   | 0      | 0            | 0        |

 Table 4.1 : The concentration of total VOCs and HAPs at sampling sites of VRU (Fuel Pipeline Transportation)

| Date      | Sampling       | Tem     | perature ( | C )    | Gasoline loa | aded (Liter) | m-xylene | e(ug/l) | o-xylene | (ug/l) | Total VOC  | (ppmv) | Total VO | C (mg/l) |
|-----------|----------------|---------|------------|--------|--------------|--------------|----------|---------|----------|--------|------------|--------|----------|----------|
|           | Time           | ambient | inlet      | outlet | 95           | 91           | inlet    | outlet  | inlet    | outlet | inlet      | outlet | inlet    | outlet   |
| Tuesday   | 11.10-12.10 AM | 34.5    | 38         | 33     | 19,999       | 6,000        | 731.96   | 27.90   | 273.64   | 13.61  | 141992.40  | 28.27  | 255.53   | 0.051    |
| 21/1/03   | 12.30-1.30 PM  | 35      | 38         | 33     | 4,997        | 7,999        | 0        | 25.45   | 0        | 0      | 367,097.20 | 12.28  | 660.62   | 0.022    |
| Wednesday | 11.00-12.00 AM | 32      | 37.5       | 32     | 12,474       | 25,285       | 622.08   | 0       | 146.12   | 0      | 442,509.40 | 40.44  | 796.34   | 0.073    |
| 22/1/03   | 1.00-2.00 PM   | 32.5    | 37.5       | 32     | 16,254       | 16,338       | 885.64   | 0       | 196.84   | 0      | 349,394.40 | 14.86  | 628.77   | 0.027    |
| Thursday  | 10.50-11.50 AM | 31      | 35.5       | 30.5   | 17,199       | 47,069       | 0        | 42.97   | 0        | 20.15  | 318,689.40 | 101.10 | 573.51   | 0.182    |
| 23/1/03   | 1.00-2.00 PM   | 32      | 36         | 30.5   | 14,364       | 22,562       | 245.12   | 26.22   | 0        | 0      | 317,518.00 | 75.73  | 571.40   | 0.136    |
| Friday    | 10.45-11.45 AM | 31      | 34         | 31     | 19,467       | 38,900       | 236.28   | 0       | 0        | 0      | 290,881.50 | 45.66  | 523.47   | 0.082    |
| 24/1/03   | 12.10-1.10 PM  | 31.5    | 36.5       | 31     | 13,041       | 42,012       | 0        | 19.85   | 0        | 0      | 710,245.10 | 29.26  | 1,278.15 | 0.053    |
| Saturday  | 10.30-11.30 AM | 31      | 34         | 31.5   | 12,474       | 76,244       | 0        | 0       | 0        | 0      | 412,689.00 | 137.36 | 742.67   | 0.247    |
| 25/1/03   | 11.50-12.50 AM | 31.5    | 36.5       | 31.5   | 4,536        | 19,061       | 297.28   | 0       | 0        | 0      | 165,831.80 | 86.77  | 298.43   | 0.156    |
| Sunday    | 10.40-11.40 AM | 30      | 35         | 30     | 9,828        | 16,338       | 748.68   | 0       | 162.72   | 0      | 410,595.80 | 44.80  | 738.90   | 0.081    |
| 26/1/03   | 12.00-1.00 PM  | 31      | 35.5       | 31     | 3,402        | 0            | 401.36   | 0       | 183.36   | 0      | 590,040.00 | 2.43   | 1,061.83 | 0.004    |
| Monday    | 11.20-12.20 AM | 32      | 36         | 32.5   | 45,549       | 84,413       | 509.96   | 0       | 102.92   | 0      | 604,907.20 | 104.91 | 1,088.59 | 0.189    |
| 27/1/03   | 12.40-1.40 PM  | 33      | 39         | 33.5   | 12,663       | 31,898       | 663.52   | 0       | 150.52   | 0      | 361,599.20 | 37.50  | 650.73   | 0.067    |
| Sunday    | 11.15-12.15 AM | 34      | 39         | 34     | 19,089       | 54,849       | 113.44   | 0       | 0        | 0      | 497,722.50 | 108.20 | 895.70   | 0.195    |
| 2/2/03    | 12.30-1.30 PM  | 35      | 41.5       | 35     | 11,907       | 64,574       | 153.80   | 0       | 72.36    | 0      | 455,709.40 | 118.12 | 820.09   | 0.213    |

 Table 4.1 : The concentration of total VOCs and HAPs at sampling sites of VRU (Fuel Pipeline Transportation) (con't)

#### 4.2.1 Controlled VOCs by VRU compared to the regulation

The results showed that the VOCs emitted from the vent of VRU was very low concentration and under the compliance limit of a Notification of the Ministry of Science, Technology and Environment that is gasoline emissions at bulk gasoline terminals should not be over 17 milligram of total volatile organic compounds (mg/l) per liter in emitted vapor per hour. The average VOCs emitted at the Shell of Thailand and FPT were 0.24 mg/l and 0.11 mg/l respectively.

This emission was also under the compliance limit that required for loading and unloading installations at terminals, in Europe region, i.e. the mean concentration of vapor from the exhaust of the vapor recovery unit must not exceeded 35 g/normal cubic meter (Nm<sup>3</sup>) for any one hour.

The Best Available Control Technology (BACT) noticed by USEPA in 1991 has stated that the most stringent emission limitation of VOC at gasoline terminal achieved by carbon adsorption technique that could achieved by 95-97.5% control efficiency. Therefore, the implementation of the control device could also controlled the VOCs emit under the country regulation.

#### 4.2.2 Control efficiency of VRU for VOCs and HAPs

The daily calculation of VRU's ability for controlling gasoline emission at both sites were shown in **Appendix C**. The summaries of control efficiencies of the unit for individual HAPs and total VOCs were presented in Table 4.3. The results showed the control efficiency of the total VOCs was over 99.9% while the individual HAP that varied from 97% to 100% for both sites. Average control efficiency for VOCs and HAPs was shown in Figure 4.1.

| HAP Compound |         | Shell  |        |         | FPT    |        |  |  |  |
|--------------|---------|--------|--------|---------|--------|--------|--|--|--|
|              | Average | Min    | Max    | Average | Min    | Max    |  |  |  |
|              | CE%     | CE%    | CE%    | CE%     | CE%    | CE%    |  |  |  |
| MTBE         | 99.64   | 97.01  | 99.98  | 100.00  | 100.00 | 100.00 |  |  |  |
| Benzene      | 97.55   | 92.69  | 99.94  | 99.95   | 99.72  | 100.00 |  |  |  |
| Toluene      | 97.32   | 87.14  | 99.80  | 99.10   | 97.24  | 100.00 |  |  |  |
| Ethybenzene  | 100.00  | 100.00 | 100.00 | 100.00  | 100.00 | 100.00 |  |  |  |
| o-Xylene     | 100.00  | 100.00 | 100.00 | 99.38   | 95.02  | 100.00 |  |  |  |
| m-Xylene     | 97.07   | 88.84  | 98.08  | 98.79   | 89.3   | 100.00 |  |  |  |
| Total HAP    | 98.60   | 94.28  | 99.63  | 99.54   | 96.88  | 100.00 |  |  |  |
| Total VOC    | 99.955  | 99.77  | 99.994 | 99.982  | 99.948 | 99.999 |  |  |  |

 Table 4.3 The control efficiencies for VOCs and HAPs of Carbon Vacuum

 Adsorption Unit (CVA) at bulk gasoline terminals



Figure 4.1 VOCs and HAPs control efficiency of CVA

From these studies, the VOCs and HAPs removal efficiencies of two units were almost the same rate which an average efficiency of 99.97% and 99.01% respectively. However, the control efficiency for individual HAP was insignificantly difference and has the similar trended for individual HAP removal efficiencies of two units. The order of HAPs control efficiency were ethylbenzene > MTBE > o-xylene > benzene > toluene > m-xylene, 100%, 99.82%, 99.69%, 98.75%, 98.21% and 97.93%, respectively. These studies indicated that the Carbon Adsorption Units tend to control HAP emission independent of the control efficiency for VOCs and also shown that HAPs control efficiency was slightly lower than VOCs control efficiency, that was around 1%.

The results of VOCs and HAPs control efficiency by Carbon Adsorption Unit was slightly different when compared with the American Petroleum Institute in 1998. The API reported the average HAP removal efficiencies by Carbon Adsorption Unit was 99.73% and often greater than VOCs removal efficiencies averaged 97.3%.

#### 4.3 Estimation of toxic emission loaded at bulk gasoline terminals

The control efficiency data collected can be used to derive emission factors for HAPs that allow HAP emission estimation based on the volume of gasoline loaded at facilities. Controlled emission factor for each HAP could estimate by the following equation.

$$EF_{HAPi} = (EF_{VOC})(HAP \text{ to } VOC\%_i) (1-CE\%)$$
100

Where :

 $EF_{HAPi}$  = controlled emission factor for HAP<sub>i</sub> (mg-HAP<sub>i</sub>/l-gasoline loaded)  $EF_{VOC}$  = uncontrolled emission factor for VOC (mg-VOC/l-gasoline loaded) HAP to VOC%<sub>i</sub> = weight percent of HAP<sub>i</sub> in uncontrolled gasoline vapor CE% = control efficiency of HAP<sub>i</sub> (percent) (from table 4.3)

Value for the uncontrolled emission factor for VOC ( $EF_{VOC}$ ) and speciation of HAPs in uncontrolled gasoline vapors was varied with the different gasoline. Due to the lacking of specific information on these values in Thailand, the values for these variables were taken from U.S.EPA guidance. The uncontrolled VOC emission factor ( $EF_{VOC}$ ) was available in AP-42 Table 5.2-5 and shown in Table 4..4. The individual HAP content values of uncontrolled VOC emissions (HAP to VOC%) are taken from EPA publication Gasoline Distribution Industry (Stage I)- Background Information for proposed Standards (EPA-453/R-94-002a) and shown below in Table 4.5.

EFs were calculated for the unit studied at loading operation with vapor balance service (Shell) and submerged loading using dedicated normal service (FPT).

Tables 4.6 and 4.7 shown the EFs for vapor balance service dedicated and normal service, respectively.

| Emission Factor,              |
|-------------------------------|
| mg-VOC/l-transferred gasoline |
|                               |
| 590                           |
| 980                           |
|                               |

## Table 4.4 Uncontrolled VOC emission factors for tank trucks

Source : AP-42 Table 5.2-5

|                                 | HA     | P-to-VOC weigh | t % by type of g | gasoline    |  |
|---------------------------------|--------|----------------|------------------|-------------|--|
| НАР                             | Normal | Reformulated   | Oxygenated       | Reformulate |  |
|                                 |        |                |                  | &Oxygenated |  |
| MTBE                            | 0.0    | 8.7            | 11.9             | 11.9        |  |
| Benzene                         | 0.9    | 0.4            | 0.7              | 0.4         |  |
| Toluene                         | 1.3    | 1.1            | 1.1              | 1.1         |  |
| Ethylbenzene                    | 0.1    | 0.1            | 0.1              | 0.1         |  |
| Xylenes                         | 0.5    | 0.4            | 0.4              | 0.4         |  |
| Hexane                          | 1.6    | 1.4            | 1.4              | 1.4         |  |
| Isooctane <sup>a</sup>          | 0.8    | 0.7            | 0.7              | 0.7         |  |
| Total HAP <sup>b</sup>          | Na     | 12.9           | 16.3             | 16.0        |  |
| Total HAP w/o MTBE <sup>b</sup> | 4.8    | na             | na               | na          |  |

## Table 4.5 Uncontrolled gasoline vapor HAP-to-VOC content

2,2,4-trimethylpentane

The total HAP ratios shown are not simply run individual HAPs but are the average of the total HAPs and therefore may not be equal to the sum of the individual average Source : Gasoline Distribution Industry (Stage I)- Background information for Proposed Standards (EPA-453/R-94-002a)

|                       |         | Emission Factor by Gasoline Type (EF) <sup>a</sup><br>(mg-HAP/l gasoline transferred) |            |  |  |  |
|-----------------------|---------|---------------------------------------------------------------------------------------|------------|--|--|--|
| НАР                   | Control |                                                                                       |            |  |  |  |
|                       | Effic.% | Normal                                                                                | Oxygenated |  |  |  |
| MTBE                  | 99.64   | Na                                                                                    | 0.4198     |  |  |  |
| Benzene               | 97.55   | 0.2161                                                                                | 0.1681     |  |  |  |
| Toluene               | 97.32   | 0.3414                                                                                | 0.2889     |  |  |  |
| Ethylbenzene          | 100     | 0                                                                                     | 0          |  |  |  |
| Xylenes <sup>b</sup>  | 98.53   | 0.0720                                                                                | 0.0576     |  |  |  |
| Sum HAPs <sup>c</sup> | 98.60   | 0.6295                                                                                | 0.9344     |  |  |  |

Table 4.6 HAP EFs for carbon adsorber units at submerged loading operations using vapor balance service. (SHELL site)

<sup>a</sup> Calculated using AP-42 uncontrolled VOC emission factor of 980 mg/l and vapor HAP to VOC content listed in Table 4.5

<sup>b</sup> Xylenes calculated using the average CE% of m-xylene and p-xylene

Sum of five HAPs evaluated in this study

 Table 4.7 HAP EFs for carbon adsorber units at submerged loading operations

 using dedicated normal service. (FPT site)

|                       |         | Emission Factor by Gasoline Type (EF) <sup>a</sup><br>(mg-HAP/l gasoline transferred) |            |  |  |  |
|-----------------------|---------|---------------------------------------------------------------------------------------|------------|--|--|--|
| HAP                   | Control |                                                                                       |            |  |  |  |
|                       | Effic.% | Normal                                                                                | Oxygenated |  |  |  |
| MTBE                  | 100.00  | Na                                                                                    | 0          |  |  |  |
| Benzene               | 99.95   | 0.0027                                                                                | 0.0021     |  |  |  |
| Toluene               | 99.10   | 0.0690                                                                                | 0.0584     |  |  |  |
| Ethylbenzene          | 100     | 0                                                                                     | 0          |  |  |  |
| Xylenes <sup>b</sup>  | 99.08   | 0.0270                                                                                | 0.0216     |  |  |  |
| Sum HAPs <sup>c</sup> | 99.54   | 0.0990                                                                                | 0.0821     |  |  |  |

<sup>a</sup> Calculated using AP-42 uncontrolled VOC emission factor of 590 mg/l and vapor HAP to VOC content listed in Table 4.5

<sup>b</sup> Xylenes calculated using the average CE% of m-xylene and p-xylene

<sup>c</sup> Sum of five HAPs evaluated in this study

The EFs from Table 4.6 and 4.7 used for estimation of the emissions of specific HAP compounds as follows:

 $E_{HAPi} = V_T x EF_{HAPi}$ 

| Where : E <sub>HAPi</sub>     | = controlled emissions (mg/time period) for HAP <sub>i</sub> |
|-------------------------------|--------------------------------------------------------------|
| $\mathrm{EF}_{\mathrm{HAPi}}$ | = emission factor (mg/liter) for HAP <sub>i</sub>            |
| V <sub>T</sub>                | = volume of gasoline transferred (liter/time period)         |

Volume of Gasoline loaded divided by the type of gasoline as reported by Shell in 2002 i.e. octane No. 91 (normal gasoline) and octane No.95 (oxygenate gasoline) were 240,000,000 liters and 360,000,000 liters, respectively (Sunan Chanfun, interviewed by February 29, 2003). While FPT has reported the volume of gasoline octane No.91 and octane No.95 loaded at 173,049,301 liters and 83,388,026 liters, respectively (Pinit Boonsenan, interviewed by March 3, 2003). Controlled HAPs were calculated by  $EF_{HAPi}$  and  $V_T$ , shown in Table 4.8. The comparison of uncontrolled emissions and controlled emissions are shown in Table 4.9 and Figure 4.2.

 Table 4.8 Estimation of HAP Emission rates for Shell and FPT, (Kg./year)

|                         | Annual emiss | sions at Shell <sup>a</sup> | Annual emissions at FPT <sup>a</sup> |           |  |
|-------------------------|--------------|-----------------------------|--------------------------------------|-----------|--|
| HAP                     | Octane 91    | Octane 95                   | Octane 91                            | Octane 95 |  |
| MTBE                    | Na           | 151.128                     | Na                                   | 0         |  |
| Benzene                 | 51.864       | 60.516                      | 0.467                                | 0.175     |  |
| Toluene                 | 81.936       | 104.04                      | 11.940                               | 4.870     |  |
| Ethylbenzene            | 0            | 0                           | 0                                    | 0         |  |
| Xylenes⁵                | 17.280       | 20.736                      | 4.672                                | 1.801     |  |
| Total HAPs <sup>c</sup> | 151.08       | 336.42                      | 17.080                               | 6.846     |  |
| Total VOCs              | 26           | 4.6                         | 27                                   | 2.23      |  |

<sup>a</sup> based on gasoline loaded in year 2002

<sup>b</sup> m-Xylene, p-Xylene were included

<sup>e</sup> HAPs mean MTBE, Benzene, Toluene, Ethylbenzene and Xylenes

## Table 4.9 Estimation of uncontrolled emission and controlled emission of ShellThailand and FPT in year 2002

|                         | Annual emiss | ions at Shell <sup>a</sup> | Annual emissions at FPT <sup>a</sup> |            |  |  |
|-------------------------|--------------|----------------------------|--------------------------------------|------------|--|--|
| HAP                     | Uncontrolled | Controlled                 | Uncontrolled                         | Controlled |  |  |
| MTBE                    | 4284         | 151.13                     | 992.32                               | 0          |  |  |
| Benzene                 | 468          | 112.38                     | 214.12                               | 0.64       |  |  |
| Toluene                 | 708          | 185.98                     | 316.69                               | 16.81      |  |  |
| Ethylbenzene            | 60           | 0                          | 25.64                                | 0          |  |  |
| Xylenes <sup>b</sup>    | 264          | 38.02                      | 119.88                               | 6.47       |  |  |
| Total HAPs <sup>c</sup> | 5784         | 404.48                     | 1668.65                              | 29.93      |  |  |

<sup>a</sup> based on gasoline loaded in year 2002

<sup>b</sup> m-Xylene, p-Xylene were included

HAPs mean MTBE, Benzene, Toluene, Ethylbenzene and Xylenes



## Figure 4.2 : Estimation uncontrolled emissions and controlled emissions (Shell&FPT)

Figure 4.2, show HAPs generated during gasoline loaded from both bulk gasoline terminals i.e. FPT and Shell, was 7,452.65 Kg. MTBE emission was the highest at 5,276.32 Kg. While ethylbenzene was the less emitted by 85.64 Kg. The VRU showed the results of controlling those HAPs more than 99% but the total HAPs after controlled still emitted of 423.41 Kg in year 2002.

The average totally VOCs generated by Shell and FPT in year 2002, were 588,000 kg and 151,298 kg respectively without the vapor control equipment. The implementation of VRU could reduce the VOCs emission to 264 kg,and 27.23 kg at Shell and FPT, respectively.

MTBE has been used for lead replacement as an octane enhancer (helps prevent the engine from "knocking"). Oxygen helps gasoline burn more completely, reducing a harmful tailpipe emissions from motor vehicles especially carbon monoxide. The Connecticut Academy of Science and Engineering (CASE, 1999) reported on the impact of gasoline additive, MTBE adding has been reduced the percentage of toxic air (benzene, ethyl benzene, toluene, xylenes and hexane), known as the human carcinogens. This reduction is accompanied by an increasing in the level of MTBE in the air. Nevertheless, the background information for proposed standard of EPA (1994), delineated that the inclusion of MTBE in the liquid to meet the oxygen demands but it increased the HAP to VOC ratio in gasoline vapor from approximately 5 weight percent to near 16 percent (with the 15 percent MTBE gasoline). Consequently, MTBE was the highest amount of HAPs that emitted from the control device in this study.

MTBE is highly soluble in water and easy to transfer to groundwater from gasoline leaking from underground storage tanks, pipelines and other components of the gasoline distribution system (University of California, Research & Teaching, 1998). Besides, it has been found that there are significant risks and costs associated with water contamination due to the use of MTBE. Therefore, the replacement of MTBE to ethanol has begun in the United States to prevent those problems. On March 15, 2002, the Governor issued a new Executive Order and announced a one-year extension to the phase out of MTBE. "Under the newly announced timeline, the MTBE phase out will be accomplished no later than December 31, 2003 (California Energy Commission, 2003). If MTBE is switched to ethanol in Thailand with same reason as the United States, the HAPs character emitted from gasoline transfer operation will be changed.

## 4.4 Effect of VOCs controlled to O<sub>3</sub> reduction in Bangkok

The study of Boaning in 2002 found that to reduce  $O_3$  formation in Bangkok, VOCs should be controlled because the sensitivity analysis showed that  $O_3$  formation in Bangkok is more sensitive to VOC than  $NO_x$  emissions. The report also stated that to ensure the highest ozone concentration in Bangkok is below the standard of 100 ppb., VOC emissions should be reduced by about 60%.

The air emission sources database in the Bangkok Metropolitan Region 1997 has been shown that the total VOCs emission in Bangkok city was 179,963 tons and will be increased to 212,180 tons in 2002, estimated by Gauss Model of Airvivo system (Table 4.9). The sources of pollutant emissions were classified by sources of pollutants generated, point source (factories), mobile source (vehicle) and area sources (residential, gasoline transfer operations and aviation) and the gasoline transfer operations contributed the most ratio of VOCs generated and classified as area source which was 88.52%. Therefore, to control VOCs at area source the gasoline transfer operation should be the first priority.

The total amount of gasoline loaded at Shell gasoline terminal in 2002 was 600 million liters, that could approximately generated VOCs 588 tons. With the 99.955% efficiency control of VRU at the Shell, it has been recovered VOCs by 576.24 tons that was 6.72% of VOCs generated and classified as area source or 0.27% of total VOCs generated in Bangkok from all sources.

|         | Source | ]       | NOx     | V       | /OC     |  |
|---------|--------|---------|---------|---------|---------|--|
|         |        | 1997    | 2002    | 1997    | 2002    |  |
| Bangkok | Point  | 6553    | 5780    | 382     | 332     |  |
|         | Mobile | 164,737 | 170,914 | 171,086 | 203,276 |  |
|         | Area   | 6434    | 6960    | 8468    | 8572    |  |
| Total   |        | 177,724 | 183,654 | 179,936 | 212,180 |  |

Table 4.10 Pollutant emission rates (t yr<sup>-1</sup>) for Bangkok in 1997 and 2002

Source : PCD (2000).

It was estimated that 2,732 million liters of gasoline were loaded from major oil companies 5 terminals in Bangkok in 2002 (Department of Energy Business, 2002). VOCs had been generated approximately 2,677 tons during this amount of gasoline was transferred to tank truck at gasoline terminals (calculated using AP-42 uncontrolled VOC emission factor of 980 mg/l). At an assumption of 95% VOCs control efficiency, the lowest control efficiency for the carbon adsorption technique mentioned by Best Available Control Technology (BACT) of EPA, 2544 tons of VOCs will be controlled by approximately. This amount of removal VOCs (Stage I) is 30% of VOCs generated from area source in Bangkok or 1.2% of total VOCs generated in Bangkok.

Even though, VOCs controlled by VRU comparing to the total VOCs generated in Bangkok is a very small ratio, it is shown that VOCs generated from gasoline transfer operation at gasoline terminal can be efficiently controlled, especially for VOCs generated classified as area source. In addition, those emissions that extremely affect the human health whom work in these premises is reduced. Besides, HAPs contained in VOCs such we know mostly carcinogen i.e. benzene and MTBE were eliminated.

To accommodate the VOCs generated during gasoline transfer, law has been enacted to control gasoline vapor at gasoline terminals, oil tank trucks (Stage I) and gasoline station in Bangkok Metropolitan Regions (Stage II). UAM-V model was applied in the study of Boaning in 2002, the results showed that simulated O<sub>3</sub> peak value would reduce by 2.9% for implementing Stage I completion.

#### 4.5 Cost effectiveness of VRU

The cost effectiveness for the emission control from bulk gasoline loading operation is defined as the total annualized cost divided by the total emissions controlled per year (Baht / mg VOC or HAPs controlled). However, the specific or actual information used for calculation was quite limited. Thus, some data used in this study would be estimated based on the existing condition.

The capital investment cost of the vapor recovery system at the Shell Thailand included vapor recovery unit and gasoline loading rack modification. The loading racks were modified from the traditional operation, top loading, to bottom loading. The capital cost of the system at FPT was expended for vapor recovery unit and modification of 2 from 14 loading racks but still used top loading operation.

Annual operating cost included electricity to power compressors, pumps, and blowers, routine maintenance, chemical and operating labor. The unit requires overhaul maintenance every 5 years and it costs around 0.5% of the unit's investment cost. The price of activated carbon is estimated at 4 U.S. Dollar per kilogram, and the activated carbon is assumed to has a working life of 10 years (Fuel Pipeline Transportation, May 2001 and Shell Bangkok Thailand, May 2001). Total activated carbon in the bed of VRU at FPT and Shell are 11,440 kg and 19,740 kg., respectively.

Recovery volume was at 0.12% and 0.08% by volume of liter gasoline loaded at Shell and FPT, respectively The recovered gasoline will be sold as a gasoline regular grade and has to pay tax at 30%. The average price of gasoline for the last 5 years is 13 Baht per liter. It is assumed that gasoline consumption in Bangkok will be increase approximately 1.5% by volume. The full capacity of the vapor recovery unit at FPT and Shell were 1.6 million cubic meter per year and 2.038 million cubic meter per year, respectively (Fuel Pipeline Transportation, May 2001 and Shell Bangkok Thailand, May 2001). Therefore, the unit could be operated in the future year with the increasing rate 1.5% of gasoline loaded. Both of the total VOC and HAPs controlled are the difference between the uncontrolled and the controlled emission level. All data of FPT and Shell are presented in Table 4.10 and 4.11, respectively.

The net present value (NPV) of an average cost per kilogram of VOCs removed (a) is NPV of total cost for 20 years of VRU's life divided by NPV of total VOCs removed by VRU through 20 years. The formula shows as below. Discount rate (r) used in the study is 10%.

$$a = \frac{\sum Ct / (1+r)^{t}}{\sum Qt / (1+r)^{t}}$$

Where Ct = cost at time t t = period time of VRU life Qt = Quantity of emission removed at time t r = discount rate

Table 4.10, cost effectiveness of VRU's FPT, showed that the NPV of average revenue through 20 years is 17.57 million Baht. The NPV of total annual cost for 20 years is 36.23 million Baht and the NPV of total VOCs removed by VRU through 20 years is 1423.37 tons. So, an average cost per kilogram of VOCs removed is 25.45 Baht (36.23 MB/1423.37 tons) while an average revenue per kilogram of VOCs removed is 12.34 Baht (17.57 MB/ 1423.37 tons). Due to the result shown that the net annual revenue through 20 years is shown negative result at -18.66 million Baht, therefore the unit might not make a profit for the company.

Table 4.11, cost effectiveness of VRU's Shell, shows that the NPV of average revenue through 20 years is 61.65 million Baht. The NPV of total annual cost for 20 years is 127.62 million Baht and the NPV of total VOCs removed by VRU through 20 years is 5,530.23 tons. The average cost per kilogram of VOCs removed is 23.08 Baht (127.62 MB/5,530.23 tons) while an average revenue per kilogram of VOCs removed is 11.15 Baht (65.97 MB/ 5,530.23 tons). In the same way of FPT case, the net annual revenue through 20 years is shown negative at -65.97 million Baht, therefore the unit might not make a profit for the company.

|      | Gasoline I  | _oaded      | VOCs        | VOCs        | HAPs        | Capital cost | O&M     | Total Annual | Gasoline  | Revenue | Net annual |
|------|-------------|-------------|-------------|-------------|-------------|--------------|---------|--------------|-----------|---------|------------|
| Year | 91          | 95          | Generation  | Removal     | Removal     |              | Cost    | Cost         | Recovered |         | Revenue    |
|      | (liter/yr)  | (liter/yr)  | (kgVOCs/yr) | (kgVOCs/yr) | (kgHAPs/yr) | (MB)         | (MB/yr) | (МВ/ут)      | (lit)     | (МВ/ут) | (МВ/ут)    |
| 2002 | 173,049,301 | 83,388,026  | 151,298     | 151,270.79  | 1644.72     | 36-08        | 0-11898 | 36-20        | 205,150   | 1.867   | - 34.33    |
| 2003 | 175,645,041 | 84,638,846  | 153,567     | 153,539.85  | 1669.39     |              | 0-11898 | 0-12         | 208,227   | 1.895   | 1.78       |
| 2004 | 178,279,716 | 85,908,429  | 155,871     | 155,842-95  | 1694-43     |              | 0.11898 | 0-12         | 211,351   | 1.923   | 1.80       |
| 2005 | 180,953,912 | 87,197,056  | 158,209     | 158,180.59  | 1719.85     |              | 0.11898 | 0.12         | 214,521   | 1.952   | 1.83       |
| 2006 | 183,668,221 | 88,505,011  | 160,582     | 160,553.30  | 1745.65     |              | 1.51898 | 1-52         | 217,739   | 1.981   | 0.46       |
| 2007 | 186,423,244 | 89,832,587  | 162,991     | 162,961-60  | 1771.83     |              | 0-11898 | 0-12         | 221,005   | 2.011   | 1.89       |
| 2008 | 189,219,593 | 91,180,075  | 165,436     | 165,406.03  | 1798.41     |              | 0.11898 | 0.12         | 224,320   | 2.041   | 1.92       |
| 2009 | 192,057,886 | 92,547,776  | 167,917     | 167,887.12  | 1825.39     |              | 0.11898 | 0.12         | 227,685   | 2.072   | 1.95       |
| 2010 | 194,938,755 | 93,935,993  | 170,436     | 170,405.42  | 1852.77     |              | 0.11898 | 0.12         | 231,100   | 2.103   | 1.98       |
| 2011 | 197,862,836 | 95,345,033  | 172,993     | 172,961.50  | 1880 56     |              | 1.51898 | 1.52         | 234,566   | 2 135   | 0.62       |
| 2012 | 200,830,779 | 96,775,208  | 175,588     | 175,555.93  | 1908.77     |              | 2.0409  | 2.04         | 238,085   | 2.167   | 0.13       |
| 2013 | 203,843,240 | 98,226,837  | 178,221     | 178,189-27  | 1937.40     |              | 0-11898 | 0.12         | 241,656   | 2.199   | 2.08       |
| 2014 | 206,900,889 | 99,700,239  | 180,895     | 180,862.10  | 1966.46     |              | 0-11898 | 0.12         | 245,281   | 2.232   | 2.11       |
| 2015 | 210,004,402 | 101,195,743 | 183,608     | 183,575-04  | 1995.96     |              | 0.11898 | 0.12         | 248,960   | 2.266   | 2.15       |
| 2016 | 213,154,468 | 102,713,679 | 186,362     | 186,328-66  | 2025.89     |              | 1.51898 | 1.52         | 252,695   | 2.300   | 0.78       |
| 2017 | 216,351,785 | 104,254,384 | 189,158     | 189,123.59  | 2056,28     |              | 0.11898 | 0.12         | 256,485   | 2.334   | 2.22       |
| 2018 | 219,597,062 | 105,818,200 | 191,995     | 191,960-45  | 2087-13     |              | 0.11898 | 0.12         | 260,332   | 2.369   | 2-25       |
| 2019 | 222,891,018 | 107,405,473 | 194,875     | 194,839.85  | 2118.43     |              | 0.11898 | 0.12         | 264,237   | 2.405   | 2.29       |
| 2020 | 226,234,383 | 109,016,555 | 197,798     | 197,762-45  | 2150.21     |              | 0.11898 | 0.12         | 268,201   | 2.441   | 2.32       |
| 2021 | 229,627,899 | 110,651,803 | 200,765     | 200,728-89  | 2182.46     |              | 0.11898 | 0.12         | 272,224   | 2.477   | 2.36       |
|      |             | NPV         | ton         | 1.423.37    |             |              |         | B36 23       | 1.930.336 | B17.57  | - B18 66   |

## Table 4.11 Cost effectiveness of vapor recovery unit (FPT)

|      | Gasoline    | Loaded      | VOCs        | VOCs        | HAPs        | Capital cost | O&M     | Total Annual | Gasoline    | Revenue | Net annual |
|------|-------------|-------------|-------------|-------------|-------------|--------------|---------|--------------|-------------|---------|------------|
| Year | 91          | 95          | Generation  | Removal     | Removal     |              | Cost    | Cost         | recovered   |         | Revenue    |
|      | (liter/yr)  | (liter/yr)  | (kgVOCs/yr) | (kgVOCs/yr) | (kgHAPs/yr) | (MB)         | (MB/yr) | (МВ/ут)      | (Lit)       | (MB/yr) | (МВ/ут)    |
| 2002 | 240,000,000 | 360,000,000 | 588,000     | 587,735-40  | 5296.51     | 118-0        | 2-05    | 120.05       | 720,000     | 6-552   | - 113.50   |
| 2003 | 243,600,000 | 365,400,000 | 596,820     | 596,551.43  | 5375.96     |              | 2-05    | 2-05         | 730,800     | 6.650   | 4.60       |
| 2004 | 247,254,000 | 370,881,000 | 605,772     | 605,499.70  | 5456.60     |              | 2.05    | 2.05         | 741,762     | 6.750   | 4.70       |
| 2005 | 250,962,810 | 376,444,215 | 614,859     | 614,582-20  | 5538.45     |              | 2.05    | 2.05         | 752,888     | 6.851   | 4.80       |
| 2006 | 254,727,252 | 382,090,878 | 624,082     | 623,800.93  | 5621.53     |              | 3.55    | 3.55         | 764,182     | 6.954   | 3.40       |
| 2007 | 258,548,161 | 387,822,241 | 633,443     | 633,157.94  | 5705.85     |              | 2.05    | 2.05         | 775,644     | 7.058   | 5-01       |
| 2008 | 262,426,383 | 393,639,575 | 642,945     | 642,655-31  | 5791.44     |              | 2.05    | 2.05         | 787,279     | 7.164   | 5.11       |
| 2009 | 266,362,779 | 399,544,169 | 652,589     | 652,295.14  | 5878.31     |              | 2_05    | 2.05         | 799,088     | 7.272   | 5.22       |
| 2010 | 270,358,221 | 405,537,331 | 662,378     | 662,079.57  | 5966.48     |              | 2.05    | 2.05         | 811,075     | 7.381   | 5-33       |
| 2011 | 274,413,594 | 411,620,391 | 672,313     | 672,010.76  | 6055.98     |              | 3.55    | 3.55         | 823,241     | 7-491   | 3.94       |
| 2012 | 278,529,798 | 417,794,697 | 682,398     | 682,090.93  | 6146.82     |              | 5.13632 | 5.14         | 835,589     | 7.604   | 2.47       |
| 2013 | 282,707,745 | 424,061,617 | 692,634     | 692,322.29  | 6239.02     |              | 2.05    | 2.05         | 848,123     | 7.718   | 5-67       |
| 2014 | 286,948,361 | 430,422,542 | 703,023     | 702,707.12  | 6332.61     |              | 2.05    | 2.05         | 860,845     | 7.834   | 5.78       |
| 2015 | 291,252,587 | 436,878,880 | 713,569     | 713,247.73  | 6427.60     |              | 2.05    | 2-05         | 873,758     | 7.951   | 5.90       |
| 2016 | 295,621,375 | 443,432,063 | 724,272     | 723,946-45  | 6524.01     |              | 3-32    | 3.32         | 886,864     | 8.070   | 4.75       |
| 2017 | 300,055,696 | 450,083,544 | 735,136     | 734,805-64  | 6621.87     |              | 2.05    | 2-05         | 900,167     | 8-192   | 6.14       |
| 2018 | 304,556,531 | 456,834,797 | 746,164     | 745,827.73  | 6721.20     |              | 2.05    | 2.05         | 913,670     | 8.314   | 6-26       |
| 2019 | 309,124,879 | 463,687,319 | 757,356     | 757,015.14  | 6822-02     |              | 2.05    | 2.05         | 927,375     | 8.439   | 6.39       |
| 2020 | 313,761,753 | 470,642,629 | 768,716     | 768,370-37  | 6924.35     |              | 2.05    | 2.05         | 941,285     | 8-566   | 6.52       |
| 2021 | 318,468,179 | 477,702,268 | 780,247     | 779,895-93  | 7028-21     |              | 2.05    | 2.05         | 955,405     | 8-694   | 6-64       |
|      |             | NPV         | ton         | 5, 530 23   |             |              |         | B127.62      | 6, 774, 764 | ₿61.65  | - \$65.97  |

## Table 4.12 Cost effectiveness of vapor recovery unit (Shell)

The conclusion of cost effectiveness of VRU is presented in Table 4.12.

|                                        | Shell<br>(Baht)     | FPT<br>(Baht)       |
|----------------------------------------|---------------------|---------------------|
| Net annual revenue of VRU              | -65.97 million Baht | -18.66 million Baht |
| Average cost per kg. of VOCs removed   | 23.08               | 25.45               |
| Average revenue per kg of VOCs removed | 11.15               | 12.34               |

Table 4.13 The conclusion of cost effectiveness of VRU

From the Table 4.12, even though the net annual revenue of Shell of Thailand is higher than FPT, it still shows that an average cost per kilogram of VOCs removed in lower than FPT. So it could imply that the quantity of gasoline loaded affects the cost per liter of gasoline transferred. The more gasoline transferred from the terminal with pass through the VRU the less cost pay to remove those emissions.

The study of cost effectiveness as mentioned above was based on the current situation. It was found that implementing VRU with the partial unit utilization, gasoline throughput is under design, can cause the company a financial burden. Therefore, a study of cost effectiveness with a full capacity (1.6 million cubic meter and 2.038 million cubic meter of FPT and Shell, respectively) of the unit under the same conditions as the previous study shows the different cost effectiveness of VRU as shown in the Table 4.14 and 4.15 for FPT and Shell, respectively.

The cost effectiveness of the unit at FPT shows that under the full utilization of VRU, the NPV of average revenue through 20 years is 56.55 million Baht and the NPV of total VOCs removed by VRU through 20 years is 4582.34 tons. So, an average cost per kilogram of VOCs removed is 7.9 Baht (36.23 MB/4582.34 tons) while an average revenue per kilogram of VOCs removed is 12.34 Baht (56.55 MB/ 4582.34 tons). The net annual revenue through 20 years is shown positive result at 20.32 million Baht, therefore the company can get a profit from this control device.

|      | Gasoline      | Loaded      | VOCs        | VOCs        | Capital cost | O&M     | Total Annual  | Gasoline  | Revenue               | Net annual     |
|------|---------------|-------------|-------------|-------------|--------------|---------|---------------|-----------|-----------------------|----------------|
| Year | 91            | 95          | Generation  | Removal     |              | Cost    | Cost          | Recovered |                       | Revenue        |
|      | (liter/yr)    | (liter/yr)  | (kgVOCs/yr) | (kgVOCs/yr) | (MB)         | (MB/yr) | (MB/yr)       | (lit)     | (MB/yr)               | (МВ/ут)        |
| 2002 | 173,049,301   | 83,388,026  | 151,298     | 151,270.79  | 36-08        | 0-11898 | 36-20         | 205,150   | 1-867                 | - 34-33        |
| 2003 | 212,089,223   | 102,200,365 | 185,431     | 185,397.48  |              | 0.11898 | 0.12          | 251,432   | 2-288                 | 2.17           |
| 2004 | 259,936,552   | 125,256,767 | 227,264     | 227,223-15  | 0            | 0-11898 | 0-12          | 308,155   | 2-804                 | 2.69           |
| 2005 | 318,578,238   | 153,514,694 | 278,535     | 278,484-69  | 1            | 0-11898 | 0-12          | 377,674   | 3-437                 | 3-32           |
| 2006 | 390,449,489   | 188,147,608 | 341,372     | 341,310-84  |              | 1-51898 | 1.52          | 462,878   | 4-212                 | 2.69           |
| 2007 | 478,534,893   | 230,593,709 | 418,386     | 418,310-57  |              | 0-11898 | 0.12          | 567,303   | 5.162                 | 5-04           |
| 2008 | 586,492,365   | 282,615,650 | 512,774     | 512,681.43  |              | 0-11898 | 0.12          | 695,286   | 6-327                 | 6-21           |
| 2009 | 718,805,043   | 346,373,740 | 628,455     | 628,342-36  |              | 0-11898 | 0.12          | 852,143   | 7.755                 | 7 64           |
| 2010 | 880,967,461   | 424,515,656 | 770,235     | 770,096 40  | 0            | 0-11898 | 0-12          | 1,044,386 | 9.504                 | 9.38           |
| 2011 | 1,079,713,720 | 520,286,388 | 944,000     | 943,830.14  |              | 1-51898 | 1-52          | 1,280,000 | 11.648                | 10-13          |
| 2012 | 1,079,713,720 | 520,286,388 | 944,000     | 943,830 14  |              | 2.0409  | 2-04          | 1,280,000 | 11 648                | 9.61           |
| 2013 | 1,079,713,720 | 520,286,388 | 944,000     | 943,830-14  |              | 0-11898 | 0-12          | 1,280,000 | 11 648                | 11-53          |
| 2014 | 1,079,713,720 | 520,286,388 | 944,000     | 943,830-14  |              | 0-11898 | 0-12          | 1,280,000 | 11 648                | 11-53          |
| 2015 | 1,079,713,720 | 520,286,388 | 944,000     | 943,830-14  |              | 0-11898 | 0-12          | 1,280,000 | 11-648                | 11-53          |
| 2016 | 1,079,713,720 | 520,286,388 | 944,000     | 943,830-14  |              | 1-51898 | 1.52          | 1,280,000 | 11-648                | 10-13          |
| 2017 | 1,079,713,720 | 520,286,388 | 944,000     | 943,830-14  |              | 0 11898 | 0-12          | 1,280,000 | 11.648                | 11-53          |
| 2018 | 1,079,713,720 | 520,286,388 | 944,000     | 943,830-14  |              | 0-11898 | 0-12          | 1,280,000 | 11.648                | 11-53          |
| 2019 | 1,079,713,720 | 520,286,388 | 944,000     | 943,830 14  |              | 0-11898 | 0.12          | 1,280,000 | 11.648                | 11-53          |
| 2020 | 1,079,713,720 | 520,286,388 | 944,000     | 943,830-14  |              | 0-11898 | 0-12          | 1,280,000 | 11.648                | 11-53          |
| 2021 | 1,079,713,720 | 520,286,388 | 944,000     | 943,830-14  |              | 0-11898 | 0.12          | 1,280,000 | 11 648                | 11-53          |
|      |               | NPV         | ton         | 4,582.34    |              |         | <i>₿36 23</i> | 6.214,467 | <b>B</b> 56 <b>55</b> | <b>B</b> 20 32 |

 Table 4.14 Cost effectiveness of vapor recovery unit with full capacity operation (FPT)

|      | Gasolin     | Gasoline Loaded |             | VOCs         | Capital cost | O&M     | Total Annual | Gasoline   | Revenue        | Net annual       |
|------|-------------|-----------------|-------------|--------------|--------------|---------|--------------|------------|----------------|------------------|
| Year | 91          | 95              | Generation  | Removal      |              | Cost    | Cost         | recovered  |                | Revenue          |
|      | (liter/yr)  | (liter/yr)      | (kgVOCs/yr) | (kgVOCs/yr)  | (МВ) (МВ/ут) |         | (MB/yr)      | (Lit)      | (MB/yr)        | (MB/yr)          |
| 2002 | 240,000,000 | 360,000,000     | 588,000     | 587,735.40   | 118.0        | 2.05    | 120.05       | 720,000    | 6.552          | - 113.50         |
| 2003 | 274,920,000 | 412,380,000     | 673,554     | 673,250.90   |              | 2.05    | 2.05         | 824,760    | 7.505          | 5.46             |
| 2004 | 314,920,860 | 472,381,290     | 771,556     | 771,208.91   |              | 2.05    | 2.05         | 944,763    | 8.597          | 6.55             |
| 2005 | 360,741,845 | 541,112,768     | 883,818     | 883,419.80   |              | 2.05    | 2.05         | 1,082,226  | 9-848          | 7.80             |
| 2006 | 413,229,784 | 619,844,675     | 1,012,413   | 1,011,957.38 |              | 3.55    | 3.55         | 1,239,689  | 11.281         | 7.73             |
| 2007 | 473,354,717 | 710,032,076     | 1,159,719   | 1,159,197.18 |              | 2.05    | 2.05         | 1,420,064  | 12.923         | 10.87            |
| 2008 | 542,227,828 | 813,341,743     | 1,328,458   | 1,327,860.37 |              | 2.05    | 2.05         | 1,626,683  | 14.803         | 12.75            |
| 2009 | 621,121,977 | 931,682,966     | 1,521,749   | 1,521,064.06 |              | 2.05    | 2.05         | 1,863,366  | 16.957         | 14.91            |
| 2010 | 711,495,225 | 1,067,242,838   | 1,743,163   | 1,742,378.88 |              | 2.05    | 2.05         | 2,134,486  | 19-424         | 17-37            |
| 2011 | 815,017,780 | 1,222,526,671   | 1,996,794   | 1,995,895.01 |              | 3.55    | 3.55         | 2,445,053  | 22.250         | 18.70            |
| 2012 | 815,017,780 | 1,222,526,671   | 1,996,794   | 1,995,895.00 |              | 5 13632 | 5.14         | 2,445,053  | 22.250         | 17-11            |
| 2013 | 815,017,780 | 1,222,526,671   | 1,996,794   | 1,995,895.00 |              | 2.05    | 2.05         | 2,445,053  | 22.250         | 20.20            |
| 2014 | 815,017,780 | 1,222,526,671   | 1,996,794   | 1,995,895.00 |              | 2.05    | 2.05         | 2,445,053  | 22.250         | 20.20            |
| 2015 | 815,017,780 | 1,222,526,671   | 1,996,794   | 1,995,895.00 |              | 2.05    | 2.05         | 2,445,053  | 22.250         | 20.20            |
| 2016 | 815,017,780 | 1,222,526,671   | 1,996,794   | 1,995,895.00 |              | 3.32    | 3.32         | 2,445,053  | 22.250         | 18.93            |
| 2017 | 815,017,780 | 1,222,526,671   | 1,996,794   | 1,995,895.00 |              | 2.05    | 2.05         | 2,445,053  | 22.250         | 20.20            |
| 2018 | 815,017,780 | 1,222,526,671   | 1,996,794   | 1,995,895.00 |              | 2.05    | 2.05         | 2,445,053  | 22-250         | 20-20            |
| 2019 | 815,017,780 | 1,222,526,671   | 1,996,794   | 1,995,895.00 |              | 2.05    | 2.05         | 2,445,053  | 22.250         | 20.20            |
| 2020 | 815,017,780 | 1,222,526,671   | 1,996,794   | 1,995,895-00 |              | 2.05    | 2.05         | 2,445,053  | 22.250         | 20.20            |
| 2021 | 815,017,780 | 1,222,526,671   | 1,996,794   | 1,995,895.00 |              | 2.05    | 2.05         | 2,445,053  | 22.250         | 20.20            |
|      |             | NPV             | ton         | 11.18390     |              |         | B127.62      | 13,700,740 | <b>B</b> 12468 | - <i>B2</i> : 94 |

 Table 4.15 Cost effectiveness of vapor recovery unit with full capacity operation (Shell)

At the full utilization of VRU at Shell, it is found that the NPV of average revenue through 20 years is 124.68 million Baht and the NPV of total VOCs removed by VRU through 20 years is 11,183.9 tons. Therefore, an average cost per kilogram of VOCs removed is 11.41 Baht (127.62 MB/11,183.90 tons) while an average revenue per kilogram of VOCs removed is 11.15 Baht (124.68 MB/ 11,183.9 tons). The net annual revenue through 20 years is shown a negative result at -2.94 million Baht, therefore the company can get a profit from this control device.

The conclusion of cost effectiveness of VRU with full utilization is presented in Table 4.16.

Table 4.16 The conclusion of cost effectiveness of VRU with full utilization

|                                        | Shell<br>(Baht)    | FPT<br>(Baht)      |
|----------------------------------------|--------------------|--------------------|
| Net annual revenue of VRU              | -2.94 million Baht | 20.32 million Baht |
| Average cost per kg. of VOCs removed   | 11.41              | 7.90               |
| Average revenue per kg of VOCs removed | 11.15              | 12.34              |

To consider a pay back period of the unit investment with full utilization (Table 4.14 and 4.15), it is found that FPT and Shell will get the profit from the VRU in the ninth year and eleventh year, respectively as shown in the Table 4.17.

The results of cost effectiveness in this study well agreed with the results of EPA's studies (Table 4.18). The trial study of bulk terminal loading rack cost, for control VOC at 10 mg per liter gasoline loaded, was performed with 4 different level of gasoline throughput with three techniques for control emission, Carbon adsorption, Thermal Oxidizer and Refrigeration. The table indicates that employing carbon adsorption unit to control VOCs could gain when gasoline throughput is increased. It imply that the more gasoline loaded at terminal the cost of VOCs controlled will be decrease. (U.S.EPA, Office of Air Quality Planning and Standards, 1994s).

| Year | Shell   | FPT    | Year | Shell  | FPT    |
|------|---------|--------|------|--------|--------|
| 1    | -113.50 | -34.33 | 11   | 5.75   | 24.54  |
| 2    | -108.04 | -32.16 | 12   | 25.95  | 36.07  |
| 3    | -101.50 | -29.47 | 13   | 46.15  | 47.60  |
| 4    | -93.70  | -26.16 | 14   | 66.35  | 59.13  |
| 5    | -85.97  | -23.46 | 15   | 85.28  | 69.26  |
| 6    | -75.09  | -18.42 | 16   | 105.48 | 80.79  |
| 7    | -62.34  | -12.21 | 17   | 125.68 | 92.32  |
| 8    | -47.43  | -4.58  | 18   | 145.88 | 103.85 |
| 9    | -30.06  | 4.81   | 19   | 166.08 | 115.38 |
| 10   | -11.36  | 14.94  | 20   | 186.28 | 126.91 |

Table 4.17 Pay back period of VRU investment at FPT and Shell (Million Baht)

However, all above discussed are only on monetary view. There are other benefits that could get from the emissions control at gasoline terminals by VRU i.e. reducing toxic substance such as benzene and MTBE known as a carcinogen. Therefore, it could reduce the risk of health impact to operators whom work at site during gasoline loaded. Nevertheless, the health benefit from VOCs and HAPs reduction at gasoline terminals can theoretically be valued from the reduction of sickness day-off of operators who work at site (Figure 4.3). The explanation this value, Figure 4.3 shown that when the VOCs was reduced ( $A_{VOC}$  to  $B_{VOC}$ ), the occurrence of sickness of operators will be reduced. The difference of occurrence of sickness from level  $A_S$  (VOCs concentration at A) and level  $B_S$  (VOCs concentration at B) are the health benefit that could be valued. This value getting from the reduction of VOCs and HAPs by VRU should be more studied to obtain the information of health benefit. At the time of writing, such an empirical study is not available to the researcher. So, this value is not estimated for the present study. The study of Air & Waste Technology in 1995 stated that 85% of gasoline station (17 out of 20) owner expressed concerned on the health impacts to the gas station attendants. Besides, they agreed with the idea of vapor recovery control. The other major profit getting from emission reduction was reducing of ozone formation that is a major air pollution problem in Bangkok as mentioned in 4.4.



Figure 4.3 Health benefit from VOCs reduction

In conclusion, even though the vapor recovery system will cause the company a financial burden, it will benefit far better from both reduced chance of the gasoline loading terminal personnel to expose the hazardous air pollutants and reduced level of air pollution, especially for ozone accumulation.

| Gasoline throughput              | 380,000 | ) l/day |       | 950,000 | ) l/day |       | 1,900,0 | 00 l/day | · · · · · · · · · · · · · · · · · · · | 3,800,0 | 00 l/day |         |
|----------------------------------|---------|---------|-------|---------|---------|-------|---------|----------|---------------------------------------|---------|----------|---------|
| Vapor Processor                  | CA      | TO      | REF   | CA      | ТО      | REF   | CA      | ТО       | REF                                   | CA      | ТО       | REF     |
| Capital Investment               |         |         |       |         |         |       |         |          |                                       |         |          |         |
| Unit purchase cost               | 237.9   | 108     | 318   | 245.9   | 119     | 387   | 254.8   | 119      | 387                                   | 297.4   | 137      | 462     |
| Unit installation cost           | 202.2   | 92      | 270.3 | 209     | 101     | 329   | 216.6   | 101      | 329                                   | 252.8   | 116      | 392.7   |
| Annual Operating Costs           |         |         |       |         |         |       |         |          |                                       |         |          |         |
| Electricity                      | 9       | 1       | 4.3   | 12      | 6       | 10.8  | 16      | 8        | 21.6                                  | 25      | 18       | 43.2    |
| Pilot gas                        |         | 7.3     |       |         | 16.7    |       |         | 33       |                                       |         | 61.6     |         |
| Carbon replacement               | 2.1     |         |       | 2.9     |         |       | 3.8     |          |                                       | 5.2     |          |         |
| Maintenance                      | 6       | 3.5     | 11.6  | 6       | 3.5     | 11.6  | 6       | 3.5      | 11.6                                  | 6       | 3.5      | 11.6    |
| Operating Labor                  | 6.8     | 6.8     | 6.8   | 6.8     | 6.8     | 6.8   | 6.8     | 6.8      | 6.8                                   | 6.8     | 6.8      | 6.8     |
| Subtotal (Direct Operating Cost) | 23.9    | 18.6    | 22.7  | 22.7    | 33      | 29.2  | 32.6    | 51.3     | 40                                    | 43      | 89.9     | 61.6    |
| Capital charges (16.3%)          | 71.7    | 32.5    | 95.9  | 74.2    | 35.9    | 116.7 | 76.8    | 35.9     | 116.7                                 | 89.7    | 41.2     | 139.3   |
| Tax and Insurance (4%)           | 17.6    | 8       | 23.5  | 18.2    | 8.8     | 28.6  | 18.9    | 8.8      | 28.6                                  | 22      | 10.1     | 34.2    |
| Net Annualized Cost              | 55.8    | 59.1    | 84.7  | (23.5)  | 77.8    | 31    | (158.9) | 96       | (101.8)                               | (419.6) | 141.2    | (339.2) |
| Total VOC Controlled,            | 132.7   | 132.7   | 132.7 | 331.7   | 331.7   | 331.7 | 663.4   | 663.4    | 663.4                                 | 1326.9  | 1326.9   | 1326.9  |
| Mg VOC/yr                        |         |         |       |         |         |       |         |          |                                       |         |          |         |
| Cost Effectiveness,              | 420     | 445     | 638   | (71)    | 235     | 93    | (240)   | 145      | (153)                                 | (316)   | 106      | (256)   |
| \$/Mg VOC                        |         |         |       |         |         |       |         |          |                                       |         |          |         |

## Table 4.18 Bulk terminal loading rack costs – New 10mg/ I Unit (Thousand of third quarter 1990 Dollars)

Source: USEPA, Office of Air Quality Planning and Standards , 1994