ผลของเมโธมิลต่อวงชีวิตของเซลล์และ การตายแบบอะพอพโตซิสในเซลล์เม็ดเลือดขาว

นางสาว ทิพิชา โปษยานนท์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2544 ISBN 974-17-0155-1 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

441825

EFFECTS OF METHOMYL ON CELL CYCLE AND APOPTOSIS IN LEUKOCYTIC CELLS

Miss Tipicha Posayanonda

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biopharmaceutical Sciences Faculty of Pharmaceutical Sciences Chulalongkorn University Academic Year 2001 ISBN 974-17-0155-1

Thesis Title	Effects of Methomyl on Cell Cycle and Apoptosis in	
	Leukocytic Cells	
Ву	Miss Tipicha Posayanonda	
Field of study	Biopharmaceutical Sciences	
Thesis Advisor	Associate Professor Palarp Sinhaseni, Ph.D.	
Thesis Co-advisor	Ratana Sindhuphak, Ph.D.	

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Boomy Tauhisi're Dean of Faculty of

Pharmaceutical Sciences

(Associate Professor Boonyong Tuntisira, Ph.D.)

THESIS COMMITTEE

Boonyc Tantisi' in Chairman

(Associate Professor Boonyong Tuntisira, Ph.D.)

Pla Sile Thesis Advisor

(Associate Professor Palarp Sinhaseni, Ph.D.)

Retric Sidhyhel Thesis Co-advisor

(Ratana Sindhuphak, Ph.D.)

m. freute Member

(Professor Wilhelm Schwaeble, M.D., Ph.D.)

Surnehar UncheRN . Member

(Assistant Professor Surachai Unchern, Ph.D.)

(Boonsri Ongpipattanakul, Ph.D.)

นางสาว ทิพิชา โปษยานนท์: ผลของเมโชมิลต่อวงชีวิตของเซลล์และการตายแบบอะพอพโตซิสในเซลล์เม็ดเลือดขาว. (EFFECTS OF METHOMYL ON CELL CYCLE AND APOPTOSIS IN LEUKOCYTIC CELLS) อาจารย์ที่ปรึกษา: รศ. คร. พาลาภ สิงหเสนี, อาจารย์ที่ปรึกษาร่วม: คร. รัตนา สินชภัค; 224 หน้า. ISBN 974-17-0155-1.

เมโธมิลเป็นสารม่แบลงในกลุ่มคาร์บาเมตที่มีการใช้กันอย่างแพร่หลายในประเทศไทยและประเทศเกษตรกรรมอื่นๆ ทั่วโลก มีรายงานว่าเมโซมิลนั้นสามารถควบคุมการเกิดอะพอพโตซิสในพืชได้โดยทำให้เกิดรานาด 0.8-1.5 นาโนเมตรขึ้นที่ผนังของ ไมโตคอนเครียของข้าวโพคเพศผู้ที่เป็นหมันและมีปริมาณโปรตีน URF13 ที่ผนังชั้นในของไมโตคอนเครียอยู่ในระคับสูง อันเป็น ผลให้เกิดการตายของเซลล์ตามมา (Rhoads และคณะ, 1994; Chaumont และคณะ, 1995)

Klotz และคณะ (1997) ได้เสนอว่าเมโซมิลนั้นเป็นสารที่สามารถควบคุมการทำงานของฮอร์โมนจากต่อมไร้ท่อได้ นอกจากนี้ ยังมีการทดลองพบว่าการเกิดพืบต่อหัวใจของเมโซมิลจากการตอบสนองแบบดีเพรสเซอร์นั้นไม่น่าจะเกี่ยวข้องกับผลของ เมโธมิลต่อการขับขั้งเอนไซม์ acetylcholinestcrase แต่อย่างใด (Saiyed และคณะ, 1992; Futagawa และคณะ, 2000) การ ทคลองของ Lohitnayy และ Sinhaseni (1998) ได้แสดงว่าเมโซมิลสามารถทำให้เกิดกาวะเกรียดออกซิเดชันได้ เนื่องจากพบว่า N-acetylcysteine สามารถยับยั้งการตายจากเมโซมิลในเซลล์ม้ามหนูได้ ซึ่งการทดลองดังกล่าวที่ว่าเมโซมิลสามารถทำให้เซลล์เกิด ้ความเสียหายจากภาวะเครียดออกซิเดชันนั้นตรงกันกับรายงานที่ระบุไว้โดย IPCS (1996) ว่าเมตาบอไลต์ของเมโชมิลนั้นสามารถ ก่อให้เกิดภาวะเครียดออกซิเดชันได้จากการทำให้เกิดการลดลงของกลูตาไรโอน

จากการศึกษาครั้งนี้ เมื่อให้เมโซมิลขนาด 8 มก./กก. แบบครั้งเดียวแก่หนูทดลองทางปากเป็นเวลา 6 ชั่วโมงแล้ว พบ ้ว่ามีการตายของเซลล์เม็คเลือดขาวลิมโฟไซต์แบบอะพอพโดซิสเกิดขึ้น และยังพบว่าเมโหมิลสามารถชักนำให้เกิดการตาย แบบอะพอพโตชิสในเซลล์เพาะเลี้ยงเม็ดเลือดขาวอีกด้วย โดยเซลล์แต่ละชนิดนั้นมีความไวต่อเมโซมิลในขนาดต่าง ๆ กัน กล่าวคือ เบโธบิลสามารถก่อให้เกิดการลดลงของทรานสแบบบรนโพเทนเซียลของไมโตกอนเครีย (∆Ψ) และอะพอพโตซิสในเซลล์เพาะเลี้ยง ใด้ในขนาด 18 มิลลิโมลาร์ (MM6), 12 มิลลิโมลาร์ (THP-1) และ 12 มิลลิโมลาร์ (Jurkat) ที่ 6 ชั่วโมง และในขนาด 12 มิลลิโมลาร์ (MM6), 6 มิลลิโมลาร์ (THP-1) และ 6 มิลลิโมลาร์ (Jurkat) ที่ 24 ชั่วโมง อย่างไรก็ดี ไม่พบว่าเมโธมิลก่อให้เกิด ลักษณะของนิวเคลียสแบบอะพอพโตซิสได้ในเซลล์ Raji เนื่องจากไม่สามารถตรวจพบการแตกหักของสารพันธุกรรมดีเอ็นเอ แต่ กลับพบว่ามีการหยุดของเซลล์อยู่ในช่วงระยะของ G./G. แทน

อะพอพโตซิสที่เกิดขึ้นนั้นสามารถยับยั้งได้โดย zVAD fink ซึ่งแสดงให้เห็นว่ากระบวนการเกิดอะพอพไตซิสนั้น เกิดผ่านเอนไซม์ caspase และนอกจากนี้ IL-6 นั้นก็ยังสามารถยับยั้งการเกิดอะพอพโตซิสจากเมโซมิลในเซลล์เพาะเลี้ยงเหล่านี้ได้ อีกด้วย ดังนั้นผู้วิจัยจึงเสนอว่าการเกิดอะพอพโตซิสจากเมโธมิลนั้นมีส่วนที่สัมพันธ์กับการลดลงของ IL-6 หรือการรบกวนที่วิถีที เกี่ยวข้องกับการนำส่งสัญญาณของ IL-6 ก็เป็นได้

้ผลการอ่านชิ้นส่วนของม้ามจากหนูทคลองหลังจากได้รับเมโชมิลทางปากขนาด 8 มก./กก. แบบให้ครั้งเดียวไปแล้ว เป็นเวลา 24 ชั่วโมงโคยใช้กล่องจุลทรรศอิเล็กครอน พบว่ามีการบวมของไมโคกอนเครียเกิดขึ้นและมีการเปลี่ยนแปลงของไมโฅ-้คอนเครียไปในทางเสื่อม โคยพบว่ามีการหายไปของคริสตีที่ผนังไมโตคอนเครีย และยังพบเซลล์ตายจากการอ่านชิ้นเนื้อภายใต้กล้อง จุลทรรศน์ธรรมคาที่เมโธมิลขนาดเดียวกันอีกด้วย ซึ่งจากการทดลองเพื่อศึกษาถึงผลกระทบของเมโธมิลต่อเมตาบอลิสมของพลังงาน ที่เกี่ยวข้องกับการทำหน้าที่ของไมโตคอนเครียนั้นพบว่ามีการเพิ่มขึ้นของระคับ 2,3 DPG ในเลือค และมีการเพิ่มขึ้นของการทำงาน ของเอมไซม์ NADH-DCIP reductase ในเม็ดเลือดแดงแบบมีความสัมพันธ์กันระหว่างขนาดและการตอบสนองด้วย

้ผู้วิจัยจึงสรุปได้ว่าเมโชมิลมีผลกระทบต่อการทำหน้าที่ของไมโตคอนเครียโดยไปมีผลรบกวนต่อเมตาบอลิสมของ พลังงาน และเมโซมิลในขน เคสูงก็ยังสามารถชักนำให้เกิดการตายแบบอะพอพโตซิสได้ทั้งนอกกายและในกาย นอกจากนี้ เมโซมิล ยังทำให้เกิดผลกระทบต่อบ้าบโดยก่อให้เกิดการเปลี่ยนแปลงของไบโตคอนเตรียไปในทางเสื่อม รวมทั้งก่อให้เกิดการตายของเซลล์ อีกด้วย ผู้วิจัยเสนอว่ากลไกที่เมโซมิลก่อให้เกิดผลต่าง ๆ เหล่านี้น่าจะมีความสัมพันษ์กับการลดลงของ IL-6 หรือการรบกวนวิถีที่ ้เกี่ยวข้องกับการนำส่งสัญญาณของ IL-6 โดยการเปลี่ยนแปลงต่าง ๆ เหล่านี้แสดงถึงความเป็นไปได้ที่เมโธมิลจะส่งผลกระทบต่อการ ควบคุมระบบภูมิคุ้มกันของร่างกายได้โดยผ่านทางวิถีที่เกี่ยวข้องกับการทำงานของ IL-6 ได้ ซึ่งน่าจะมีการทำการศึกษาต่อไป

เกสัชวิทยา สรีรวิทยา **ກາຄ**ື 2 **ທ**າ และชีวเคมี เกสัชศาสตร์ชีวภาพ ສາຫາວື່ ສາ ปีการศึกษา 2544

ลายมือชื่อนิสิต

ลายมือชื่ออาจารย์ที่ปรึกษา วิวาท วิวา ลายมือชื่ออาจารย์ที่ปรึกษาร่วม วิวาท วิษมาว

g. Ch.

4176591633: MAJOR BIOPHARMACEUTICAL SCIENCES

KEY WORD: METHOMYL / APOPTOSIS / LEUKOCYTIC CELLS / SPLEEN

TIPICHA POSAYANONDA EFFECTS OF METHOMYL ON CELL CYCLE AND APOPTOSIS IN LEUKOCYTIC CELLS THESIS ADVISOR ASSOC PROF. PALARP SINHASENI, PhD, THESIS COADVISOR RATANA SINDHUPHAK. PhD, pp **224**. ISBN 974-17-0155-1

Methomyl is a methyl carbamate insecticide widely used in Thailand and many agricultural countries for crop protection. Effects of methomyl on modifying apoptosis in plant has been reported to induce a 0.8-1.5 nm sized-mitochondrial pore generation and cell death in male sterile maize expressing high levels of URF13 protein in its inner mitochondrial membrane (Rhoads et al., 1994; Chaumont et al., 1995).

A study of Klotz et al. (1997) suggested methomyl as an endocrine modulator. In addition, its cardiotoxicity from the developed depressor responses may not be related to the anti-acetylcholinesterase action (Saiyed et al., 1992; Futagawa et al., 2000). Lohitnavy and Sinhaseni (1998) suggested that methomyl could generate oxidative stress, as shown by the blocking effect of N-acetylcysteine on methomyl-induced cell death in spleen cells. This oxidative damage induced by methomyl is in agreement with a report from IPCS (1996), which showed that a metabolite of methomyl in the biological systems could generate oxidative stress from a glutathione depletion.

In this study, rats orally exposed to single dose of methomyl at 8 mg kg body weight for 6 hours showed lymphocyte apoptosis. The apoptosis induced by methomyl was also shown with different sensitivities in leukocytic cell lines. In these cell lines, methomyl reduced mitochondrial transmembrane potential ($\Delta\Psi$ m) and induced apoptosis at concentrations of 18 mM (MM6), 12 mM (THP-1), and 12 mM (Jurkat) after 6 hour-exposure, and at concentrations of 12 mM (MM6), 6 mM (THP-1), and 6 mM (Jurkat) after 24 hour-exposure. Methomyl was not shown to induce nuclear apoptosis in Raji cells since DNA fragmentation was not detected, instead, the Raji cells showed a cell cycle arrest in the G₀G₁ phase

The apoptosis occurred could be blocked by zVAD-fmk, which indicated a caspase dependent process In addition, IL-6 could partly prevent methomyl-induced apoptosis in these cell lines, suggesting that the apoptosis was partially related to either the reduction of IL-6 or the interference in IL-6-related signaling pathways.

Transmission electron microscopic sections of spleens collected from rats after the 24 hour-oral exposure to single dose of methomyl at 8 mg/kg illustrated the mitochondrial swelling and degenerative changes with cristae loss. Cell death was shown under light microscope at the same dose of methomyl. Energy metabolism related to mitochondrial function was investigated. The results showed that the increasing levels of 2,3-DPG in blood and the increase in red blood cell NADH-DCIP reductase activity were affected and exhibited in dose-response relationship.

It is concluded that methomyl affects mitochondrial function via the interference with energy metabolism. It can induce apoptosis at high dose treatments both *in vitro* and *in vivo*. In addition, its effects on spleen show mitochondrial degeneration and cell death. Mechanisms of these effects are postulated as a possible relationship to the reduction of IL-6 or the interference with IL-6-related signaling pathways. These changes may suggest the further investigation into possible modulatory effects of methomyl on IL-6 related signals in the immune response.

Department	Pharmacology, Physiology, and Biochemistry	Student's signature	174
Field of study	Biopharmaceutical sciences	Advisor's signature	1
Academic year	2001	Co-advisor's signature	K

2- AD

ACKNOWLEDGEMENTS

This thesis could not have been completed without funding from Thailand Research Fund and the help of a number of individuals.

First and foremost I would like to thank my advisor, Associate Professor Dr. Palarp Sinhaseni, for her enthusiastic support, and encouragement in the development of this work during my years at Chulalongkorn University, and for providing me with an independent environment in which to cultivate and sharpen my scientific skills. I am extremely thankful for her endless effort to provide invaluable guidance and inspired ideas.

I would like to give a very special thank you to Dr. Ratana Sindhuphak, my coadvisor in the Institute of Health Research, Chulalongkorn University, for her help, advice, and strong support especially in my laboratory part.

I would like to thank Professor Dr. Wilhelm Schwaeble, my co-advisor in the Department of Microbiology and Immunology, University of Leicester, U.K. for providing me with wonderful facilities in his laboratory, and for his help and advice during my stay in England. I also wish to express my thank you to Professor Dr. H.-W. Löms Zeigler-Heitbrock, University of München, Germany, for MM6 and his helpful advice.

I would like to acknowledge the contributions of the members of my committee: Associate Professor Dr. Boonyong Tuntisira, Assistant Professor Dr. Surachai Unchern, and Dr. Boonsri Ongpipattanakul. Their advice, criticism, and support are very helpful and greatly appreciated.

A special thank you goes to Dr. Vira Kasantikul at the Faculty of Pharmacy, Silpakorn University, for his great help and advice in the electron microscopy part.

Another special thank you goes to Dr. Yupa Onthuam in the Institute of Health Research, Chulalongkorn University, for her helpful advice on the statistic analysis.

I am deeply grateful to Roger Snowden and his colleagues in the MRC Toxicology Unit, University of Leicester, U.K. My work could not be completed without the kindness, great help, and good advice of these people, who helped me in the part of cell lines and flow cytometric analysis.

I wish to thank the Institute of Health Research, Chulalongkorn University, especially Professor Dr. Nikorn Dusitsin and Professor Dr. Peerasak Chantaraprateep for their kindness and support, and for providing me great facilities in the Institute.

I would also like to express my thanks to the Faculty of Pharmaceutical Sciences, Chulalongkorn University, especially the Department of Pharmacology and staff, for providing me good facilities in the laboratory.

I would like to acknowledge the help of my lovely colleagues at the Faculty of Pharmaceutical Sciences, Chulalongkorn University: Flg. Off. Teerayut Suramana and Ms. Nopparat Nuntharatanapong, who always stayed with me and helped me in the laboratory. I am also grateful to them for their useful advice. Many thanks go to everyone in the Lab. 4, Institute of Health Research, Chulalongkorn University, who always helped me with everything related to my laboratory work. I would also like to thank my friends in the Institute of Health Research, Chulalongkorn University, for their generous support and friendship.

I would like to thank the Allergy and Clinical Immunology Department, Faculty of Medicine, Chulalongkorn University, especially Ms. Supranee Buranapraditkun, for her technical assistance in the flow cytometric analysis part done in Thailand. A special thank you goes to Du Pont (Thailand) Co. Ltd. for providing me methomyl and its support for my poster presentation at the 40th Annual Meeting of Society of Toxicology in San Francisco, California, U.S.A.

I wish to thank all friends in the Department of Microbiology and Immunology, University of Liecester, U.K., for their helps in the laboratory and their friendship. I had a very great time with them during my stay there.

Thanks to all my relatives and friends for their support and encouragement. Many thanks to Ms. Yolada Yaiprayoon and Ms. Kusalee Wilairat for their kindness and great help with the slides for my viva presentation.

Finally, I would like to dedicate this thesis to my loving mother, Mrs. Tomyantee Posayanonda. Her love, understanding, guidance, encouragement, sacrifices, and support from the very beginning allow me to complete my Ph.D. Although my father passed away, I would like to give a big thank you to him for his love and for teaching me to work hard and always stay with positive attitudes. I certainly love to share my success with him. Loads of thanks go to my lovely sister and brother, Ms. Juntragarn Posayanonda and Mr. Pannuchit Posayanonda for their excellent encouragement and support.

Tipicha Posayanonda

TABLE OF CONTENTS

THAI ABST	RACTiv	7
ENGLISH ABSTRACT		
ACKNOWL	EDGEMENTS v	i
TABLE OF	CONTENTS	iii
LIST OF TA	BLESx	
LIST OF FIG	GURES	v
CHAPTER		
Ι	INTRODUCTION 1	
	Problem Statement	
	Objectives	
	Hypothesis	
	Contributions of the Study	
П	LITERATURE REVIEW	
	Carbamates	
	Methomyl	6
	Acetonitrile	6
	Regulation of the Cell Division Cycle and Cell Death	0
	Mitochondria	3
	Reactive Oxygen Species	3
	Cell Signaling. 5	5
	Spleen	5
	Cytology of the Spleen	1
	Microcirculatory	5
	Adhesion Molecules	7
	Innate Immune Responses	3
	Adaptive Immune Responses	5
III	MATERIALS AND METHODS 9	1
	Animals	1
	Cells	1

TABLE OF CONTENTS (Continued)

Page

CHAPTER

Ш

		Chemicals	
		Equipment	
		In Vitro Assays	
		In Vivo Assays	
		Data Analysis	
	IV	RESULTS	
	V	DISCUSSION	
REFE	REN	CES	
APPE	NDIC	ES	
	APP	ENDIX A	
	APP	ENDIX B	
	APP	ENDIX C	
	APP	ENDIX D	

LIST OF TABLES

Р	a	g	e
---	---	---	---

Table 1	Signs and symptoms of anticholinesterase insecticide	
	poisoning	.12
Table 2	Acute toxicity of technical grade methomyl in laboratory	
	animals	21
Table 3	Cellular composition of the spleen	70
Table 4	MM6 cell death detected by annexin V-FITC after methomyl	
	exposure for 6 hours	104
Table 5	THP-1 cell death detected by annexin V-FITC after methomyl	
	exposure for 6 hours	105
Table 6	Jurkat cell death detected by annexin V-FITC after methomyl	
	exposure for 6 hours	105
Table 7	Raji cell death detected by annexin V-FITC after methomyl	
	exposure for 6 hours	106
Table 8	MM6 cell death detected by annexin V-FITC after methomyl	
	exposure for 24 hours.	106
Table 9	THP-1 cell death detected by annexin V-FITC after methomyl	
	exposure for 24 hours.	107
Table 10	Jurkat cell death detected by annexin V-FITC after methomyl	
	exposure for 24 hours.	107
Table 11	Raji cell death detected by annexin V-FITC after methomyl	
	exposure for 24 hours.	108
Table 12	Reduction of mitochondrial transmembrane potential in	
	MM6 cells detected by TMRE after methomyl	
	exposure for 6 hours	14
Table 13	Reduction of mitochondrial transmembrane potential in	
	THP-1 cells detected by TMRE after methomyl	
	exposure for 6 hours	115
Table 14	Reduction of mitochondrial transmembrane potential in	
	Jurkat cells detected by TMRE after methomyl	
	exposure for 6 hours	15

Page

Table 15	Reduction of mitochondrial transmembrane potential in
	Raji cells detected by TMRE after methomyl
	exposure for 6 hours 116
Table 16	Reduction of mitochondrial transmembrane potential in
	MM6 cells detected by TMRE after methomyl
	exposure for 24 hours
Table 17	Reduction of mitochondrial transmembrane potential in
	THP-1 cells detected by TMRE after methomyl
	exposure for 24 hours
Table 18	Reduction of mitochondrial transmembrane potential in
	Jurkat cells detected by TMRE after methomyl
	exposure for 24 hours
Table 19	Reduction of mitochondrial transmembrane potential in
	Raji cells detected by TMRE after methomyl
	exposure for 24 hours
Table 20	Increase of MM6 cells in the sub- G_1 area detected by
	PI after methomyl exposure for 6 hours
Table 21	Increase of THP-1 cells in the sub-G ₁ area detected by
	PI after methomyl exposure for 6 hours
Table 22	Increase of Jurkat cells in the sub-G ₁ area detected by
	PI after methomyl exposure for 6 hours
Table 23	Increase of Raji cells in the sub-G ₁ area detected by
	PI after methomyl exposure for 6 hours
Table 24	Increase of MM6 cells in the sub- G_1 area detected by
	PI after methomyl exposure for 24 hours
Table 25	Increase of THP-1 cells in the sub- G_1 area detected by
	PI after methomyl exposure for 24 hours
Table 26	Increase of Jurkat cells in the sub-G ₁ area detected by
	Pl after methomyl exposure for 24 hours

1.1

	Page
Table 27	Increase of Raji cells in the sub- G_1 area detected by
	PI after methomyl exposure for 24 hours
Table 28	MM6 cell death detected by annexin V-FITC after
	acetonitrile exposure for 6 hours
Table 29	THP-1 cell death detected by annexin V-FITC after
	acetonitrile exposure for 6 hours
Table 30	Jurkat cell death detected by annexin V-FITC after
	acetonitrile exposure for 6 hours
Table 31	Raji cell death detected by annexin V-FITC after
	acetonitrile exposure for 6 hours
Table 32	Reduction of mitochondrial transmembrane potential
	in MM6 cells detected by TMRE after acetonitrile
	exposure for 6 hours
Table 33	Reduction of mitochondrial transmembrane potential
	in THP-1 cells detected by TMRE after acetonitrile
	exposure for 6 hours
Table 34	Reduction of mitochondrial transmembrane potential
	in Jurkat cells detected by TMRE after acetonitrile
	exposure for 6 hours
Table 35	Reduction of mitochondrial transmembrane potential
	in Raji cells detected by TMRE after acetonitrile
	exposure for 6 hours
Table 36	Increase of MM6 cells in the sub- G_1 area detected by
	Pl after acetonitrile exposure for 6 hours
Table 37	Increase of THP-1 cells in the sub-G ₁ area detected by
	PI after acetonitrile exposure for 6 hours
Table 38	Increase of Jurkat cells in the sub-G ₁ area detected by
	Pl after acetonitrile exposure for 6 hours

	Table 39	Increase of Raji cells in the sub-G1 area detected by
		PI after acetonitrile exposure for 6 hours
	Table 40	Effects of 1 μ M zVAD-fmk on THP-1 cell death
1		detected by annexin V-FITC after methomyl exposure
		for 6 hours
	Table 41	Effects of 10 μ M zVAD-fmk on THP-1 cell death
		detected by annexin V-FITC after methomyl exposure
		for 6 hours
	Table 42	Effects of 100 μ M zVAD-fmk on THP-1 cell death
		detected by annexin V-FITC after methomyl exposure
		for 6 hours
	Table 43	Effects of 1 μ M zVAD-fmk on the reduction of
		mitochondrial transmembrane potential in THP-1 cells
		detected by TMRE after methomyl exposure for 6 hours159
	Table 44	Effects of 10 μ M zVAD-fmk on the reduction of
		mitochondrial transmembrane potential in THP-1 cells
		detected by TMRE after methomyl exposure for 6 hours159
	Table 45	Effects of 100 μ M zVAD-fmk on the reduction of
		mitochondrial transmembrane potential in THP-1 cells
		detected by TMRE after methomyl exposure for 6 hours160
	Table 46	Effects of 50 nM IL-6 on the reduction of
		mitochondrial transmembrane potential in MM6 cells
		detected by TMRE after methomyl exposure for 6 hours
	Table 47	Effects of 50 nM IL-6 on the reduction of
		mitochondrial transmembrane potential in THP-1 cells
		detected by TMRE after methomyl exposure for 6 hours
	Table 48	Effects of 50 nM iL-6 on the reduction of
		mitochondrial transmembrane potential in Jurkat cells
		detected by TMRE after methomyl exposure for 6 hours

Table 49	Rat lymphocytic cell death detected by annexin V-FITC
	after single dose oral-treatments of methomyl for 6 hours170
Table 50	Levels of 2,3-DPG in blood collected from rat after
41	single dose oral-treatments of methomyl for 24 hours
Table 51	NADH-DCIP reductase activities in red blood cells
	collected from rat after single dose oral-treatments of
	methomyl for 6 hours

LIST OF FIGURES

Figure 1	The basic structure of the carbamate esters	9
Figure 2	The interaction between carbamate esters and	
	acetylcholinesterase enzyme	10
Figure 3	Enzymatic process of carbamates	10
Figure 4	Chemical structure of methomyl	16
Figure 5	Metabolic pathways of methomyl in mammals	
Figure 6	Cell division cycle	32
Figure 7	Regulation of the cell cycle	
Figure 8	Cell death	
Figure 9	Model of apoptotic process	42
Figure 10	Glycolysis pathway and mitochondria	44
Figure 11	Glycolysis pathway	45
Figure 12	Mitochondrial permeability transition pore	
	and apoptosis regulation	48
Figure 13	Caspase activation and apoptosis	
Figure 14	Formation of ROSs and antioxidant mechanisms	
	in biologic systems	54
Figure 15	The mitogen-activated protein kinase (MAPK)	
	core signaling module	57
Figure 16	IL-6 receptor system	60
Figure 17	Signal transduction pathways involved with	
	the IL-6 receptor	61
Figure 18	Histological appearance of red and white pulp	
Figure 19	Splenic circulation	
Figure 20	Graph shows percentage of MM6 cell death detected by	
	annexin V-FITC after methomyl exposure for 6 hours	109
Figure 21	Graph shows percentage of THP-1 cell death detected by	
	annexin V-FITC after methomyl exposure for 6 hours	110
Figure 22	Graph shows percentage of Jurkat cell death detected by	
	annexin V-FITC after methomyl exposure for 6 hours	

Page

Figure 23	Graph shows percentage of Raii cell death detected by
0	annexin V-FITC after methomyl exposure for 6 hours
Figure 24	Flow cytometric analysis of cell death detected by
8	annexin V-FITC after methomyl exposure for 6 hours
Figure 25	Graph shows percentage of MM6 cells with the reduction
0	of mitochondrial transmembrane potential detected by
	TMRE after methomyl exposure for 6 hours
Figure 26	Graph shows percentage of THP-1 cells with the reduction
8	of mitochondrial transmembrane potential detected by
	TMRE after methomyl exposure for 6 hours
Figure 27	Graph shows percentage of Jurkat cells with the reduction
	of mitochondrial transmembrane potential detected by
	TMRE after methomyl exposure for 6 hours
Figure 28	Graph shows percentage of Raji cells with the reduction
8	of mitochondrial transmembrane potential detected by
	TMRE after methomyl exposure for 6 hours
Figure 29	Flow cytometric analysis of the reduction of mitochondrial
6	transmembrane potential detected by TMRE after
	methomyl exposure for 6 hours
Figure 30	Graph shows percentage of MM6 cells in the sub- G_1 area
i igure 50	detected by PI after methomyl exposure for 6 hours
Figure 31	Graph shows percentage of THP-1 cells in the sub- G_1 area
	detected by PI after methomyl exposure for 6 hours
Figure 32	Graph shows percentage of Jurkat cells in the sub-G ₁ area
0	detected by PI after methomyl exposure for 6 hours
Figure 33	Graph shows percentage of Raji cells in the sub-G ₁ area
	detected by PI after methomyl exposure for 6 hours
Figure 34	Flow cytometric analysis of cells with DNA fragmentation
C	in the sub-G ₁ area detected by PI after methomyl exposure
	for 6 hours

Figure 35	Flow cytometric analysis of the DNA fragmentation
	in Raji cells detected by PI after methomyl exposure
	for 6 hours
Figure 36	Graph shows percentage of MM6 cell death detected by
	annexin V-FITC after acetonitrile exposure for 6 hours137
Figure 37	Graph shows percentage of THP-1 cell death detected by
	annexin V-FITC after acetonitrile exposure for 6 hours138
Figure 38	Graph shows percentage of Jurkat cell death detected by
	annexin V-FITC after acetonitrile exposure for 6 hours139
Figure 39	Graph shows percentage of Raji cell death detected by
	annexin V-FITC after acetonitrile exposure for 6 hours140
Figure 40	Flow cytometric analysis of cell death detected by
_	annexin V-FITC after acetonitrile exposure for 6 hours141
Figure 41	Graph shows percentage of MM6 cells with the reduction of
	mitochondrial transmembrane potential detected by
	TMRE after acetonitrile exposure for 6 hours144
Figure 42	Graph shows percentage of THP-1 cells with the reduction of
	mitochondrial transmembrane potential detected by
	TMRE after acetonitrile exposure for 6 hours145
Figure 43	Graph shows percentage of Jurkat cells with the reduction of
	mitochondrial transmembrane potential detected by
	TMRE after acetonitrile exposure for 6 hours146
Figure 44	Graph shows percentage of Raji cells with the reduction of
	mitochondrial transmembrane potential detected by
	TMRE after acetonitrile exposure for 6 hours147
Figure 45	Flow cytometric analysis of the reduction of mitochondrial
	transmembrane potential detected by TMRE after
	acetonitrile exposure for 6 hours

Figure 46	Graph shows percentage of MM6 cells in the sub- G_1 area
	detected by PI after acetonitrile exposure for 6 hours151
Figure 47	Graph shows percentage of THP-1 cells in the sub-G ₁ area
	detected by PI after acetonitrile exposure for 6 hours152
Figure 48	Graph shows percentage of Jurkat cells in the sub- G_1 area
	detected by PI after acetonitrile exposure for 6 hours153
Figure 49	Graph shows percentage of Raji cells in the sub-G1 area
	detected by PI after acetonitrile exposure for 6 hours154
Figure 50	Flow cytometric analysis of cells with DNA fragmentation
	in the sub-G ₁ area detected by PI after acetonitrile exposure
	for 6 hours
Figure 51	Graph shows effects of 100 μ M zVAD-fmk on THP-1 cell
	death detected by annexin V-FITC after methomyl
	exposure for 6 hours
Figure 52	Graph shows effects of 100 μ M zVAD-fmk on the reduction
	of mitochondrial transmembrane potential in THP-1 cells
	detected by TMRE after methomyl exposure for 6 hours 161
Figure 53	Immunoblot analysis of caspase-3 cleavage in Jurkat cells
	after methomyl and acetonitrile exposure for 6 hours
Figure 54	Graph shows effects of 50 nM IL-6 on the reduction
0	of mitochondrial transmembrane potential in MM6 cells
	detected by TMRE after methomyl exposure for 6 hours 166
Figure 55	Graph shows effects of 50 nM IL-6 on the reduction
	of mitochondrial transmembrane potential in THP-1 cells
	detected by TMRE after methomyl exposure for 6 hours 167
Figure 56	Graph shows effects of 50 nM IL-6 on the reduction
	of mitochondrial transmembrane potential in Jurkat cells
	detected by TMRE after methomyl exposure for 6 hours 168
Figure 57	Lymphocytiv cell death

P	a	g	e
	a	ĸ	C

Figure 58	Electron microscopy of spleen cells collected from rats		
	exposed to methomyl		
Figure 59	Levels of 2.3-DPG in blood		
Figure 60	NADH-DCIP reductase activities in red blood cells		
Figure 61	Energy production by mitochondria		
Figure 62	Glucose metabolism in the red blood cell		
Figure 63	NADH-dependent reduction of DCIP		
Figure 64	Pathways of methemoglobin reduction: NADH-dependent		
	and NADPH-dependent		