PRECIPITATION KINETICS OF CALCIUM-PHOSPHONATE (ATMP)

Ms. Patcharee Charoensirithavorn

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with Case Western Reserve University, The University of Michigan, The University of Oklahoma, and Institut Français du Pétrole 2004

ISBN 974-9651-35-9

Thesis Title:	Precipitation Kinetics of Calcium-Phosphonate (ATMP)
By:	Ms. Patcharee Charoensirithavorn
Program:	Petrochemical Technology
Thesis Advisors:	Assoc. Prof. Sumaeth Chavadej
	Asst. Prof. Pomthong Malakul
	Prof. H.Scott Fogler

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyahint.

College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

lundy umael

(Assoc. Prof. Sumaeth Chavadej)

(Prof. H. Scott Fogler)

(Asst. Prof. Pomthong Malakul)

Vramoch R.

(Asst. Prof. Pramoch Rangsunvigit)

(Dr. Sirirat Jitkarnka)

ABSTRACT

4571014063 : PETROCHEMICAL TECHNOLOGY
Patcharee Charoensirithavorn: Precipitation Kinetics of Calcium Phosphonate (ATMP)
Thesis Advisors: Assoc. Prof. Sumaeth Chavadej, Asst. Prof.
Pomthong Malakul, and Prof. H.Scott Fogler, 43 pp.
ISBN 974-9651-35-9
Keywords : Squeeze Treatment / Scale Inhibitor / Nucleation / Kinetics

Oilfield formation damage by scale formation can occur when incompatible brine streams are mixed during production operation. Scale inhibitors are injected and retained in the reservoir by adsorption and/or precipitation. This study was divided into 2 parts: nucleation kinetics and growth kinetics of scale inhibitor. A model for the induction time, the time between the establishment of supersaturation and the detection of a first precipitate, was applied to scale inhibitor (Amino tri(methylene phosphonic acid), ATMP) precipitation with calcium ions. Experimental data were analyzed by accounting for inhibitor dissociation and cationinhibitor complexing at different ionic strength. Longer induction times were observed at lower inhibitor concentrations and in the presence of salts. The Ca-ATMP precipitates both fromed in the presence and the absence of salts had a Ca:ATMP molar ratio of 1 at a pH of 1.5 and salts did not have significant impact on the morphology of the precipitates. The presence of salts in solution was found to decrease both nucleation and growth rates in the order of LiCl<NaCl<KCl. Increases in the nucleation and growth rates delay the inhibitor precipitation kinetics which will be beneficial for effective inhibitor squeeze treatment designs and preventation of reservoir permeability problems resulted from the precipitation in near well-bore region.

iii

บทคัดย่อ

พัชรี เจริญสิริถาวร: จลศาสตร์การตกตะกอนของแคลเซียมฟอสฟอเนต (เอทีเอ็มพี) (Precipitation Kinetics of Calcium – Phosphonate (ATMP)) อ. ที่ปรึกษา: รศ. คร. สุเมธ ชวเคช, ผศ. คร. ปมทอง มาลากุล ณ อยุธยา และ ศ. คร. สกอรต์ เอช ฟอกเลอร์ 45 หน้า ISBN 974-9651-35-9

วิธีการป้องกันปัญหาที่สร้างความเสียหายในระหว่างการขุดเจาะน้ำมันที่เกิดขึ้นเนื่องจาก การเกิดการตกตะกอนของการผสมกันของน้ำทะเลและน้ำที่ก้างอยู่ในชั้นหินคือ การฉีดสารยับยัง การตกตะกอนเข้าสู่ชั้นหิน และค้างอยู่ในชั้นหินโดยการตกตะกอนกับไอออนบวกในชั้นหิน งาน วิจัยนี้ แบ่งการศึกษาเป็น 2 ส่วน คือ จลศาสตร์การก่อและการเติบโตของตะกอนแคลเซียมและ สารยับยังการเกิดตะกอน ซึ่งในการศึกษานี้เลือก Aminotri (methylene phosphonic acid) หรือ ATMP เป็นสารต้นแบบของสารยับยั้งการตกตะกอน แบบจำลองของ ระยะเวลาการตก ตะกอน (induction time) ประยุกต์เข้ากับการตกตะกอน ระหว่างแคลเซียมและ ATMP โดย วิเคราะห์รวมถึงผลของการแตกตัวของ ATMP และการเกิดสารเชิงซ้อนระหว่างแคลเซียมและ ATMP ผลการทดลองพบว่า ในสภาวะความเข้มข้นของสารยับยั้งสูง และ/หรือมีเกลือ (โซเดียม กลอไรด์, ลิเทียมคลอไรด์, และ/หรือ โพแทสเซียมคลอไรด์) ในสารละลาย จะมีระยะเวลาการตก ตะกอนนานขึ้น ตะกอนจากทั้งที่มีเกลือและที่ไม่มีเกลือในสารละลาย จะมีระยะเวลาการตก ตะกอนนานขึ้น ตะกอนจากทั้งที่มีเกลือและที่ไม่มีเกลือในสารละลาย งามีระยะเวลาการตก สามารถยับยั้งการเกิดตะกอนแล้วยังพบว่าเกลือสามารถยับยั้งการเติบโตของตะกอนได้อีกด้วย การเพิ่มอัตราการเกิดตะกอนแล้วยังพบว่าเกลือสามารถยับยั้งการเติบโตจองตะกอนได้อีกด้วย

ACKNOWLEDGEMENTS

This work could not have been completed without the help of a number of individuals and organizations. I would like to express the deepest appreciation for their assistance.

Special thanks are offered to Professor H. Scott Fogler, Assoc. Prof. Sumaeth Chavadej, and Asst. Prof. Pomthong Malakul for giving me a chance to work on this interesting thesis and also for their valuable suggestions and constant encouragement throughout my graduate work.

I would like to thank Asst. Prof. Pramoch Rangsunvigit and Dr. Sirirat Jitkarnka for their kind advice and for being on the thesis committee.

I would like to extend my sincere thanks to the member in Porous Media Research Group for their hospitality during my visit to the University of Michigan, especially, Veerapat Tantayakom for his suggestion and help.

Also my thanks are given to all Thai graduate students both in the Department of Chemical Engineering and outside the Department for giving me their very sincere and warm welcome like family.

The Partial financing supports through research grants provided by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PTT consortium). Moreover, the financial support provided by the University of Michigan Porous Media Affiliates Program, including Becker Petrolite, Chevron, Texaco, Conoco Philips, Halliburton, PDVSA, Schlumberger, and Shell Oil.

Also, very special thanks to the generous supporter, Monsanto Company for the chemicals and information used in this study.

Finally, I would like to extend the most important thank to my family for providing their love, hospitality and every thing until I completely finished this thesis.

This Thesis would not have been possible without all these persons and organization above.

TABLE OF CONTENTS

	Title Page		
	Abstract (in English)		
	Abstract (in Thai)		
	Acknowledgements		
	Table of Contents		
	List of Tables		
	List of Figures	x	
CHAPTI	ER		
Ι	INTRODUCTION	1	
II	BACKGROUND AND LITERATURE SURVEY	4	
	2.1 Precipitation	4	
	2.2 Nucleation	5	
	2.3 Induction Time		
	2.4 Supersaturation Ratio		
	2.5 Crystal Growth		
	2.6 Related Work	11	
III	EXPERIMENTAL	12	
	3.1 Materials	12	
	3.2 Experimental Systems and Procedures	13	
	3.2.1 Ca-ATMP Nucleation Experiments	13	
	3.3.2 Ca-ATMP Growth Experiments	14	
	3.3.3 Characterization of Ca-ATMP Precipitates	15	

CHAPTER

PAGE

IV	RESULTS AN	ID DISCUSSION	16
	4.1 Nucleation	Kinetics	16
	4.2 Effect of p	H on Induction Time	17
	4.3 Effect of N	Aonovalent Salts (LiCl, NaCl, KCl) on	
	Induction	Time at Different Concentration	20
	4.4 Effect of In	nitial ATMP Concentration on Induction	
	Time with and without Monovalent Salts.		21
	4.5 Relationsh	ip Between Induction Time and Supersaturation	
	Ratio		21
	4.6 Growth Ki	netics	25
	4.5 Effect of Monovalent Salts (LiCl, NaCl, KCl) on		
	Growth Ra	ite	26
	4.6 Growth Ra	ite Parameters	27
	4.7 Effect of Monovalent Salts (LiCl, NaCl, and KCl) on		
	Growth Ra	ite	26
	4.8 Growth Rate Parameters4.9 Growth Mechanism		27
			27
	4.10 The Surfa	ce Morphology Ca-ATMP precipitates	28
v	CONCLUSIO	INS AND RECOMMENDATIONS	30
	REFERENCES		31
			33
	Appendix A	Typical properties of Aminotri(methylene	
		phosphonic acid)	33
	Appendix B	Calculation method for deprotonation and	
		metal complexation of ATMP	34

vii

CHAPTER		PAGE
Appendix C	Experimental data	40
CURRICULUM VITAE		42

LIST OF TABLES

TABLE		PAGE
4.1	The Dependence of Compositions of Ca-ATMP Precipitates	
	on Solution pH	19
4.2	Effect of Monovalent Salt on Nucleation Rate, Free Energy for	
	Formation of Critical Nucleus of Ca-ATMP precipitates at different	
	supersaturation ratio	23
4.3	The Growth Rate Parameters	27

ix

LIST OF FIGURES

FIGUR	URE PA	
2.1	Solubility-supersaturation zones for barium sulphate.	4
2.2	Classical nucleation theory: dependence of nuclear size	
	on Gibbs free energy.	6
2.3	Concentration driving forces in crystallization from solution	
	according to the simple diffusion-reaction model.	9
3.1	Molecular structure of ATMP.	11
3.2	Experimental apparatus for nucleation experiments.	12
4.1	(a.)Typical precipitation curves	
	(b.)Enlarged turbidity-time curves showing t_{ind} for the	
	operating conditions $[ATMP] = [CaCl_2] = 0.05 \text{ M}, \text{ pH } 1.5$	
	and temperature $=25^{\circ}$ C.	17
4.2	The effect of solution pH on induction time of Ca-ATMP	
	precipitates.	18
4.3	The morphology of Ca-ATMP precipitates at different pH:	
	(a.) pH 1.5, Ca/ATMP molar ratio = 1,	
	(b.) pH 4.0, Ca/ATMP molar ratio = 1 and	
	(c.) pH 7.0, $Ca/ATMP$ molar ratio = 3.	19
4.4	Effect of NaCl on Ca-ATMP precipitate at condition	
	$[ATMP] = [CaCl_2] = 0.049 M and pH1.5.$	20
4.5	Effect of LiCl, NaCl, and KCl concentration on Ca-ATMP	
	precipitate at condition $[ATMP] = [CaCl_2] = 0.0488 M$ and pH1.5.	20
4.6	Induction period as a function of initial reagent concentration	
	of ATMP and $[ATMP]/[CaCl_2] = 1$.	21
4.7	The logarithm of induction time versus (lnS) ⁻² for Ca-ATMP	
	precipitate: (a)without salts, (b) with LiCl 0.50 M.,	
	(c)with NaCl 0.50 M. and (d) with KCl 0.50 M.	22

х

FIGURE

PAGE

4.8	Calculated surface free energy for Ca-ATMP precipitated at	
	pH 1.5 and 25°C with and without monovalent salt.	22
4.9	Effect of supersaturation ratio on the nucleation rate with and	
	without monovalent salt.	24
4.10	Effect of supersaturation ratio on the equivalent spherical radius	
	of Ca-ATMP precipitate with and without monovalent salt.	25
4.11	Scanning electron microscopy pictures of Ca-ATMP crystals	
	(a) before, and (b) after growth.	26
4.12	Effect of LiCl, NaCl, and KCl on Ca-ATMP growth rate at	
	condition $[ATMP] = [CaCl_2] = 0.075 \text{ M}$, $[salt] = 0.05M$ and pH 1.5	26
4.13	(a,b) Scanning electron microscope images(x10000) of the	
	Ca-ATMP crystals showing spiral-like growth features and	
	(c,d)Development of growth spiral from a screw dislocation	28
4.14	SEM photograph (x12000) of surface morphology of Ca-ATMP	
	precipitate.	29

xi