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THAI ABST RACT 

เฟิรน์ แพทยานนท์ : บทบาทของโปรตีน E1 ของไวรัสแปปิโลมาทัยป์ 16 ในการก่อมะเร็งปากมดลูก (The Role of HPV16 E1 in Cervical Carcinogenesis) อ.ที่ปรึกษา
วิทยานิพนธ์หลัก: รศ. ดร.ภาวพันธ์ ภัทรโกศล, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: ดร.อาคม ไชยวงศ์คต, ดร.แชงคาร์ วาราดาราจัน{, หน้า. 

วัตถุประสงค  ์ การศกึษานี้มเีป้าหมายในการหารูปแบบการแสดงออกของยนี E1 ของไวรัสแปปิโลมาไทป์ 16 

ในตัวอยา่งเซลลป์ากมดลกู และบทบาทของโปรตนี E1 ในการกอ่มะเร็งปากมดลูก นอกจากนี้งานนี้ยังมเีป้าหมายในการ
ตรวจหาการซ ้าของ ยนี E1 ของไวรัสแปปิโลมาไทป์ 16 ขนาด 63 คูเ่บสในประชากรไทยดว้ย 

วธิที า  การศกึษานีใ้ชตั้วอย่างเซลลป์ากมดลูกทีม่ไีวรัสแปปิโลมาไทป์ 16 แบ่งเป็นเซลลป์กต  ิเซลลผ์ดิปกติ
ระยะกอ่นมะเร็ง (CIN) 1, 2/3 และ ระยะมะเร็ง (SCC) รวม 124 ตัวอยา่ง วัดปรมิาณการแสดงออกของ E1mRNA ดว้ยวธิ  ีddPCR ศกึษาภาวะ
เมธลิเลชั่น ของโปรโมเตอร์ p97 และ p 670 ดว้ยวธิี pyrosequencing    ศกึษาลักษณะรูปแบบของสารพันธุกรรมและความ
เปลีย่นแปลงของยนี E1 ดว้ยวธิปีฏกิริยิาลูกโซโ่พลเีมอเรส  ศกึษาคุณสมบัตขิองโปรตนี E1 ดว้ยการน าพลาสมดิทีม่ยีนี E1 

(pEGFP-C1-HPV16 E1) เขา้ในเซลล  ์ HEK293T  หลังจากนัน้ท าการศกึษาการเจรญิเพิม่จ านวนของเซลล ์ โดยนับปรมิาณเซลลท์ีม่ี
ชวีติและตรวจการท างานของเซลล ์ ศกึษาการตายของเซลลแ์บบ apoptosis และ necrosis ดว้ยการยอ้มดว้ย Annexin V และ propidium 

iodine ในภาวะทีม่แีละไม่มสีารยับยัง้ caspase (QVD-OPH) และนับปรมิาณเซลลด์ว้ยการใชเ้ครือ่ง flow cytometry   ศกึษาการแสดงออก
ของ RNA ภายในเซลลท์ีม่กีารแสดงออกของโปรตนี E1 ดว้ยวธิ  ีmicroarray และยนืยันการแสดงออกของ RNA ดว้ยวธี  ีReal-time reverse 

transcription (RT) PCR   ใชพ้ลาสมดิ pEGFP-C1 เป็นตัวควบคมุและเปรยีบเทยีบตลอดการศกึษานี ้

ผลการทดลอง  มกีารเพิม่ขึน้ของปรมิาณ E1mRNA สัมพันธเ์ป็นเสน้ตรงกับการพัฒนาของโรค (เซลลป์กต ิ0.18, CIN 

1 0.41, CIN 2/3 0.65 และ SCC 0.79) อย่างมนัียส าคัญ (r = 0.661, p =0.019) ไม่พบว่ามคีวามเกีย่วขอ้งระหว่างลักษณะรูปแบบของสาร
พันธุกรรมกับการแสดงออกของ  E1mRNA  พบภาวะเมธลิเลชั่นของโปรโมเตอร ์ p97 และ p 670 เพิม่ขึน้อย่างมนัียส าคัญใน
ตัวอยา่งเซลลม์ะเร็งเมือ่เปรยีบเทยีบกับตัวอยา่งเซลลป์กต ิ และพบวา่มคีวามเปลีย่นแปลงของยนี E1 ทีม่กีารซ ้าของ 63 คู่
เบสเพยีงรอ้ยละ 4.2   จากการนับจ านวนเซลลท์ีม่ชีวีติและตดิตามการเจรญิเตบิโตของเซลล ์HEK293T ทีม่กีารแสดงออกของ
โปรตนี E1 พบวา่เซลลม์จี านวนลดลงอยา่งมนัียส าคัญที ่24 ชัว่โมงหลังการน าเขา้พลาสมดิ เมือ่เปรยีบเทยีบกับเซลลท์ีม่พี
ลาสมดิตัวควบคมุ (p < 0.0001)  และยังพบวา่โปรตนี E1 เหนีย่วน าใหเ้ซลลต์ายดว้ยกระบวนการของ apoptosis และ necrosis ที ่48 ชัว่โมง
ภายหลังการน าเขา้พลาสมดิ  เมือ่ใส่สาร QVD-OPH พบว่าเซลลต์ายลดลงแต่ไม่มคีวามแตกต่างอย่างมนัียส าคัญทาง
สถติ ิ  เมือ่ศกึษาการแสดงออกของ RNA ภายในเซลลท์ีม่กีารแสดงออกของโปรตนี  E1 ดว้ยวธิี microarray และยนืยันการ
แสดงออกของ RNA ดว้ยวธี ีReal-time reverse transcription (RT) PCR พบวา่โปรตนี E1 มผีลเปลีย่นแปลงการแสดงออกของยนีหลายชนดิที่

เกีย่วขอ้งกับวถิกีารสรา้งโปรตนี  (RPL36A) กลไกเมตะบอลซิมึ (ALDOC) การเพิม่จ านวนของเซลล  ์(CREB5, HIF 1A, JMJD1C, FOXO3, NFKB1, 

PIK3CA, TSC22D3) การแตกหักของดเีอ็นเอ (ATR, BRCA1 และ CHEK1), และการตอบสนองทางภมูคิุม้กัน (ISG20)  อัตราการแสดงออกของ
ยนีสว่นใหญใ่นเซลลโ์ฮสทท์ีม่กีารแสดงออกของโปรตนี E1 จะลดลงที ่48 ชัว่โมงภายหลังการน าเขา้พลาสมดิ 

สรุป  การตรวจหา E1mRNA และภาวะเมธลิเลชั่นของโปรโมเตอร ์ p97 มปีระโยชน์เป็นตัวบ่งชีเ้พือ่พยากรณ์การ
เกดิมะเร็ง การมยีนี E1 ซ ้าของ 63 คู่เบสในประชากรไทยพบสัมพันธก์ับรอยโรคระยะก่อนมะเร็ง  โปรตนี E1 ของไวรัสแปปิ
โลมาไทป์ 16 สามารถเปลีย่นแปลงวถิสีัญญาณภายในเซลลห์ลายวถิแีละขึน้กับระยะเวลาทีแ่สดงออกของโปรตนี E1  ยนี
ทีไ่ดร้ับผลกระทบนี้เกีย่วขอ้งกับการเพิม่จ านวนของเซลลแ์ละการตอบสนองต่อการแตกหักดเีอ็นเอของเซลลโ์ฮสท์ 
การศกึษานีเ้สนอวา่โปรตนี E1 น่าจะมบีทบาทในการพัฒนาเซลลก์ลายเป็นมะเร็ง อยา่งไรก็ตาม ผลกระทบของโปรตนี E1 

ภายในเซลล ์ในการศกึษานีไ้มส่ามารถระบวุถิทีีจ่ าเพาะเกีย่วกับกลไกการเกดิมะเร็งได ้  ซึง่ตอ้งมกีารศกึษาตอ่ไป 
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ENGLISH ABST RACT 

# # 5674851930 : MAJOR BIOMEDICAL SCIENCES AND BIOTECHNOLOGY 

KEYWORDS: HPV / E1 PROTEIN / CERVICAL CANCER / CARCINOGENESIS 

FERN BAEDYANANDA: The Role of HPV16 E1 in Cervical Carcinogenesis. ADVISOR: ASSOC. PROF. 

PARVAPAN BHATTARAKOSOL, Ph.D., CO-ADVISOR: ARKOM CHAIWONGKOT, Ph.D., SHANKAR 

VARADARAJAN, Ph.D.{, pp. 

Objectives: This study aimed to determine the expression profile of HPV-16 E1 in cervical samples and the role of 

E1 in cervical carcinogenesis. In addition, this work also aimed to determine whether the HPV-16 E1 63bp duplication is present 

in the Thai population. 

Methods: One-hundred and twenty-four HPV16 positive cervical samples ranging from normal, CIN1, CIN2/3, and 

SCC lesions were studied. E1 mRNA expression was determined by ddPCR. Methylation of promoters p97 and p670 was 

quantified by pyrosequencing, while PCR and sequencing were used to determine the physical state and variations of HPV16 E1 

genome. HEK 293T cells were transfected with pEGFP-C1 containing HPV16 E1. Cell proliferation of transfected cells was 

measured using cell viability count and cell metabolism assay. Apoptosis and necrosis was determined in transfected cells treated 

with or without QVD-OPH (pan-caspase inhibitor) by Annexin V and propidium iodide staining and quantitated using flow 

cytometry. RNA expression Microarray analysis was performed on FACS sorted HPV16 transfected cells. RNA expression was 

confirmed by Real-time reverse transcription (RT) PCR. Plasmid containing pEGFP-C1 was used as a vector control throughout 

the experiments. 

Results: Increased E1mRNA expression related to disease progression (normal 0.18, CIN 1 0.41, CIN 2/3 0.65 and 

SCC 0.79) was demonstrated with significant positive correlation (r = 0.661, p =0.019). No association between physical state 

and E1 expression was found.  Methylation of p97and p670 promoters showed significant elevation in SCC compared to normal 

samples. Only 4.2% showed genomic variations of HPV16 E1 63 bp duplication. HPV16 E1 transfected HEK293T cells showed 

a significant decrease in number of viable cells and cell proliferation 24 h post-transfection (p < 0.0001). HPV16 E1 significantly 

induced both apoptotic and necrotic cell death 48 h post-transfection. Treatment of HPV16 E1 transfected cells with QVD-OPH 

showed a decreasing trend without statistical significance. Microarray and real-time RT PCR results revealed that E1 

dysregulated genes involved in protein synthesis (RPL36A), metabolism (ALDOC), cell proliferation (CREB5, HIF 1A, 

JMJD1C, FOXO3, NFKB1, PIK3CA, TSC22D3), DNA damage (ATR, BRCA1 and CHEK1), and immune response (ISG20) 

pathways. Kinetic host gene expression in HPV16 E1 transfected cells indicated that most genes were downregulated after 48 h 

post-transfection. 

Conclusion: Detection of E1 mRNA and p97 methylation were beneficial as cancer prognostic markers. The 

presence of 63 bp duplication in HPV16 E1 was observed in the Thai population and related to low grade lesions. The presence 

of HPV16 E1 protein alone was able to dysregulate many cellular pathways in a time dependent manner. Notable genes disrupted 

by HPV16 E1 included genes involved in cell proliferation and host DNA damage response. This study suggests that E1 may 

play a role in cancer development however HPV16 E1 transfection experiments did not provide a definite carcinogenic pathway 

which warrants further studies. 
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CHAPTER I  

GENERAL INTRODUCTION 

Cervical cancer is the fourth most common cancer in women worldwide, and 

is the second most common cancer in women who reside in developing countries 

(Ferlay et al., 2012).  More than 90% of cervical cancer cases are caused by the 

human papillomavirus (HPV), which is transmitted through intimate skin contact or 

sexual intercourse. HPV is currently the most common sexually transmitted infection. 

Although vaccines have been developed in an attempt to guard against the virus, the 

vaccines only protect against a few types of virus and do not protect people who have 

already been infected (Harper et al., 2004).  

The human papillomavirus is a small DNA virus that infects the basal layer of 

the stratified epithelium of the skin and mucosa through wounds or small breaks in the 

skin and replicates as the cells differentiate. To this date more than 150 types of HPV 

have been discovered. The mucosal types of HPV can be classified into two major 

groups, low-risk (types 6, 11, 40, 42, 43, 44, 53, 54, 61, 72, 73 and 81) and high-risk 

(types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 68), based on their association 

with cancer. Of the high-risk types that are known to cause cancer, HPV type 16 

(HPV-16) is the most common, being found in over 50% of all cancer cases. It is well 

established that the HPV types in the high-risk group are the cause of cervical cancer 

as well as other cancers including, anal, vulvar, and cancers of the oropharynx (Parkin 

& Bray, 2006). There are two main types of infection, transient and persistent 

infection. Transient infection is when HPV infects a host and goes through the normal 

mechanisms of producing new virions but after an amount of time the human immune 

system is able to clear the virus from the body. However in some cases persistent 

infection occurs due to the failure of the immune system to clear the virus and leads to 

the development of cervical cancer.  

Once a persistent infection has been established HPV genome integration can 

occur therefore, the HPV genome copies can exist as episomal, integrated, or mixed 

forms within the cell. It was once generally believed that HPV integration was the 
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main mechanism leading to cervical carcinogenesis. Thus, HPV integration should be 

rarely found in precancerous lesions. This conclusion was demonstrated in cervical 

cancer with HPV-18 infection. Almost all of HPV-18 infections show complete 

integration by the time the cells have progressed to invasive cancer (Cullen et al., 

1991). In contrast, HPV-16 which is responsible for over 50% of cervical cancer cases 

exhibits an integration pattern different from that of HPV-18. HPV-16 DNA 

integration occurs early after infection and only 50% has been shown to be integrated 

even at the carcinoma stage (Marongiu et al., 2014). HPV integration is followed by 

the overexpression of E6 and E7 due to a disruption in the E2 region during 

integration resulting in the loss of E2 function. E2 normally functions to regulate 

E6/E7 oncoprotein transcripts in conjunction with the E1 protein by binding to the E1 

protein and regulating the replication and expression of the oncoproteins (Chen & 

Stenlund, 2002).  

Replication of the HPV genome depends on the primary replication protein 

E1. E1 is an ATP-dependent helicase protein and is the only enzyme encoded by 

HPV. E1 is essential for the amplification of the viral episome in infected cells 

(Terenzi et al., 2008). Previous studies have shown that E1 does not only act as a 

helicase protein but is also involved in recruiting and interacting with other host 

proteins. E1 has also been deemed to drive host cell proliferation. However, the 

mechanism by which the E1 protein interacts with host cell proteins has not been 

described. In this study we aim to determine a possible mechanism in which E1 drives 

cell proliferation and possibly oncogenesis.  
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Conceptual Framework 

 

 

 

 

Infection by high risk HPV types can lead to carcinogenesis. Transient 

infections where the virus replicates and produces virions are mostly cleared by the 

host. However, if a persistent infection occurs, the viral genome can become 

integrated into the host genome causing an overexpression of the integrated viral 

genes. HPV16 is the most common type of HPV associated with cervical cancer. 

However, detection of the HPV16 genome revealed that a significant percentage of 

cervical cancer cells contained the episomal form of the HPV16 genome. The HPV 

E1 protein is the main replication protein responsible for maintaining the episomal 

form of the viral genome. In addition, it is also often integrated into the host genome 

along with the known HPV oncoproteins E6 and E7. The E1 protein has also been 

shown to interact with host cell proteins and cause DNA damage. This study aims to 

determine if the HPV16 E1 protein plays a role in cervical carcinogenesis.   
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CHAPTER II 

OBJECTIVES 

 Objectives 

1. To determine the expression profile of HPV16 E1 in cervical samples 

2. To determine if the Thai population contains the E1 63bp duplication 

3. To determine the role of E1 in cervical carcinogenesis 

 

 

 Hypothesis 

1. HPV16 E1 expression profile is different between the precancerous and 

cancerous stages. 

2. The HPV16 E1 63bp duplication is present in the Thai population. 

3. The HPV16 E1 protein is able to induce cell proliferation or inhibit apoptosis 

leading to cell immortalization. 
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CHAPTER III 

LITERATURE REVIEW 

Cervical cancer  

Cervical cancer is the fourth most common cancer in women worldwide 

(Ferlay et al., 2013a). In 2012, there were more than 500,000 incidences of cervical 

cancer which caused over 200,000 deaths worldwide. Due to limited access to 

healthcare and lower rates of cervical cancer and HPV screening, cervical cancer 

prevalence in developing countries is much higher than developed countries (Arbyn 

et al., 2011; Ferlay et al., 2013b). Cervical cancer was ranked as one of the most 

common cancers, in developing countries such as Thailand (2nd) Myanmar (2nd), 

and Vietnam (4th). Although most of the global burden falls on developing 

countries, cervical cancer is still common in developed countries (Figure 1). Out of 

the most common cancers in women of developed countries such as the United 

Kingdom and United States of America, Japan, and Singapore, cervical cancer 

ranked 8th, 11th, 5th, and 6th respectively.  

 

Figure 1. Graphical representation of cervical cancer mortality worldwide 

Data represented as estimated age-standardised rates per 100,000 (Ferlay et al., 

2013a).  
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Diagnosis  

The American Cancer Society recommends routine screening for cervical 

cancer starting at 21 years of age (American Cancer Society, 2016). The main form 

of cervical cancer screening is the Papanicolaou test (Pap test, Pap smear). Pap 

smears are conducted by exfoliating cervical cells and placing them in a liquid 

preservative. The cells from the preservative are transferred to a microscopic slide 

and observed for abnormal cells by qualified medical personnel. Cytology results 

are reported as normal, uncertain (ASC-US: Atypical squamous cells of 

undetermined significance), and abnormal, i.e., low-grade intraepithelial lesion 

(LSIL), high-grade squamous intraepithelial lesion (HSIL) and squamous cell 

carcinoma (SCC). The confirmatory diagnostic tests are colposcopy with biopsy, 

endocervical scraping, and cone biopsies.  These methods are based on histological 

examination.  The changes in a biopsy are called cervical intraepithelial neoplasia 

(CIN) or dysplasia (Figure 2).  CIN can be graded into 3 stages, i.e., CIN1 (mild 

dysplasia), CIN2 (moderate dysplasia) and CIN3 (severe dysplasia) includes 

carcinoma in situ.  If the cells are cancerous, they will be further identified as either 

squamous cell carcinoma (SCC), adenocarcinoma, or other types.  Over 90% of all 

cervical cancer cases are caused by Human papillomavirus (HPV) (Walboomers et 

al., 1999). HPV testing is recommended following abnormal Pap smears, or if the 

patient is over 30 years of age (American Cancer Society, 2016).  
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Figure 2. Schematic of HPV infection 

Persistent HPV infection results in neoplasia and cancer. Cytologically detected 

lesions are classified as normal, low-grade intraepithelial lesion (LSIL), high-grade 

squamous intraepithelial lesion (HSIL) and cancer. Histologically detected lesions are 

classified as normal, cervical intraepithelial neoplasia (CIN) 1-3 and cancer 

depending on severity and number of abnormal cells. LSIL corresponds to CIN 1, 

while HSIL corresponds to CIN 2 and 3 (Lowy & Schiller, 2006).  
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Human papilloma viruses 

There are over 150 types of HPV, using genome similarity of the L1 gene 

HPV are classified into 5 genera: alpha, beta, gamma, mu, and nu (Figure 3). HPV in 

different genera share less than 60% similarity. Genomic similarity further separates 

HPV into species (60-70%), types (70-90%) and subtypes (>90%) (Burk et al., 2013; 

de Villiers et al., 2004). Depending on tissue tropism, HPV types in the alpha genus 

are classified into mucosal and cutaneous types. The mucosal types are separated 

further by each type’s ability to cause cancer being termed low-risk and high-risk 

types (Doorbar et al., 2015). Low-risk mucosal types are typically associated with 

genital warts (HPV 6, 11, 40, 42, 43, 44, 53, 54, 61, 72, 73 and 81) whereas high-risk 

types are associated with cervical carcinoma (HPV 16, 18, 31, 33, 35, 39, 45, 51, 52, 

56, 58, 59 and 68). Of the high-risk types, HPV16 and 18 are the most prevalent and 

HPV16 alone causes more than 50% of all cervical cancer cases. 
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Figure 3. Phylogenetic tree of human papillomavirus types. 

The five genera of human papillomaviruses are classified further into species, types 

and subtypes. Human papillomavirus types from the Alpha genus are often classified 

as low-risk cutaneous (grey), low-risk mucosal (orange), or high-risk mucosal (pink) 

(Doorbar et al., 2015).  
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HPV is a non-enveloped double-stranded DNA virus belonging to the family 

Papillomaviridae (Figure 4). HPV virions are approximately 55 nm in diameter. The 

HPV genome consists of circular double-stranded DNA approximately 8kb in size 

enclosed in an icosahedral capsid composed of 72 capsomeres (Veressimo Fernandes 

& Fernandes, 2012). The viral genome consists of the functional early (E) genes E1, 

E2, E4, E5, E6 and E7, and the structural late (L) genes, L1, and L2 (Figure 5). The 

early gene E1, encodes the primary protein responsible for viral replication, E2 is 

involved in transcriptional regulation, E4 is involved in virion release, E5 is 

responsible for the immune evasion of HPV, E6 binds and degrades the tumour 

suppressor protein p53 and E7 binds the retinoblastoma protein involved in regulating 

cell proliferation. The late proteins L1 and L2 are the major (80%) and minor (20%) 

capsid proteins respectively.  

 

 

 

 

Figure 4. Structure of HPV.  

Redrawn from (Swiss Institute of Bioinformatics, 2010). 
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Figure 5. Diagram of HPV genome structure.  

The HPV genome consists of early (E) and late (L) regions, which relate to their time 

of expression during the viral life cycle. The early region carries a number of genes 

which function at the level of viral replication and transcription. The late region 

encodes viral structural proteins and the upstream regulatory region (URR), contains 

promoters and the viral origin of replication (Stanley, 2012).  
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E1 protein 

The E1 protein is the primary replication protein of HPV and is an ATP-

dependent helicase protein that functions to bind to the viral origin of replication and 

as a helicase, unwinds the viral DNA and initiates replication (Hughes & Romanos, 

1993). The E1 protein is the most conserved protein encoded by all papillomaviruses 

because the E1 helicase function is crucial for the viral episome replication. It is 

thought that the E1 protein is required in all phases of the viral replication cycle, 

including the establishment, maintenance and amplification phases. The E1 protein 

works in tandem with E2 in order to initiate replication (Berg & Stenlund, 1997). The 

E2 protein recruits E1 to the origin of replication by binding to the E2 binding sites 

near the origin of replication and binding to E1 (Frattini & Laimins, 1994). This 

interaction with the E2 protein increases the affinity and specificity of E1 binding to 

HPV DNA (Berg & Stenlund, 1997). However, it has been shown that E1 can also 

initiate viral replication independent of E2, although with lower efficiency (Bonne-

Andrea et al., 1997).  

The E1 protein can be divided into three main domains, each with a distinct 

and important function: The N-terminal regulatory domain, the DNA binding domain, 

and the helicase domain ( 

Figure 6) (Bergvall et al., 2013). The N-terminal of the protein mainly 

contains the nuclear localization signal and the nuclear export signal, which allows for 

the shuttling of E1 in and out of the nucleus. The DNA binding domain is the domain 

that recognizes specific sequences near the origin of replication of the virus. There are 

a six E1 binding sites each with different affinities towards the E1 protein (Figure 7). 

The helicase domain of the E1 protein functions to bind ATP and forms a doughnut-

shape around the viral DNA template (Enemark & Joshua-Tor, 2006).  

Although the protein credited as being the major HPV transcriptional regulator 

protein is the E2 protein, E1 has been shown to also play a role in the transcriptional 

activation of HPV by forming a complex with E2 (King et al., 2011; Nishimura et al., 

2000). This E1-E2 complex form extends E2 half-life by preventing ubiquitination 

(King et al., 2011). In addition to stabilizing E2, E1 itself is also able to act as a 

transcriptional activator. This additional function of E1 facilitates the expression of 

viral proteins by recruitment of host proteins during HPV integration where E2 
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protein is lost.  As mentioned above the human papillomaviruses do not encode many 

proteins and rely heavily on host proteins in order to facilitate replication, 

transcription and translation. Therefore, another major role of the E1 protein is to 

interact with host cell proteins both in the episomal and integrated forms (Demeret et 

al., 1998; King et al., 2011). Several studies demonstrate that E1 can interact with 

proteins involved in cellular DNA replication machinery such as DNA polymerase 

alpha primase, replication protein A, and topoisomerase I, suggesting varied roles of 

E1 in viral replication (Loo & Melendy, 2004).  
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Figure 6. Diagram of E1 protein domains.  

Diagram of the different functional domains of E1 including the bipartite nuclear 

localization signal (NLS), DNA binding domain (DBD), and the domains which 

construct the helicase domain: minimal oligomerization domain (O) ATPase domain 

and the C-terminal brace. 

(Bergvall et al., 2013) 

 

 

 

 

 

 

 

 

Figure 7. Diagram of the origin of replication for papillomavirus.  

This diagram shows the 6 E1 binding sites (E1BS) and the E2 binding sites (E2BS). 

(Bergvall et al., 2013) 
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HPV replication cycle 

Papillomaviruses can infect a wide range of animal species, however each type 

of papillomavirus is highly host- and tissue-specific. HPV infects the basal layer of 

the epithelium through wounds or breaks in the epithelium and is maintained as an 

extrachromosomal element, or episome, in the nucleus of infected cells. In the lower 

strata of the epithelium only the early genes are expressed from the “early” promoter 

(Graham, 2017). As the infected cell proliferates, the HPV genome replicates and 

increases the episomal copy numbers in the cell. The viral genome is replicated along 

with host cell DNA replication, and after cell division occurs, the viral genome is also 

transferred to the daughter cells.  During this phase, no new virion progeny are 

produced.  When the infected cell proliferates and differentiates, HPV DNA 

replication increases resulting in a high episomal copy number (Burd, 2003).  E1 is 

responsible for driving viral genome replication and acts as a helicase to unwind DNA 

(Hughes & Romanos, 1993). E2 helps recruit E1 to the viral origin of replication and 

is also the viral transcription regulator (Frattini & Laimins, 1994). E2 binds to specific 

E2 binding sites (E2BS) and activate the early promoter, however once high viral 

protein expression occurs, E2 binds to E2BS other to repress expression (Tan et al., 

1994). The E6 and E7 proteins act to maintain the cell in the active state so that viral 

genome replication can continue to occur in contrast to the situation in uninfected 

cells where cells would no longer be in the active state. The E6 and E7 proteins 

therefore play an important role in maintaining the active state of the cell and 

preventing apoptosis by binding the p53 and retinoblastoma (pRB) proteins. Finally, 

in the upper strata of the epithelium, the “late” promoter is activated and the late 

proteins responsible for capsid formation, L1 and L2 are expressed and new virions 

are assembled and released in the upper strata of the epithelium  (Longworth & 

Laimins, 2004b) (Figure 8). Most HPV infections are transient and are cleared within 

approximately 2 years, however if the host immune system is unable to clear the 

infection, a persistent infection occurs (Plummer et al., 2007).    
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Figure 8. HPV replication cycle. 

This figure shows uninfected epithelium to the left and HPV infected epithelium to 

the right. Upon infection HPV establishes in the nucleus as low-copy episomes and 

expresses the early HPV genes E1, E2, E6, and E7. The viral genomes are replicated 

along with host DNA. Once cell division occurs, one daughter cell containing the 

replicated HPV genome moves away from the basal layer and differentiates. The 

process of differentiation induces the productive phase of HPV where the viral 

genome is amplified and triggers the expression of the late genes, L1 and L2. In the 

upper layers of the epithelium the new virions are assembled and shed (Moody & 

Laimins, 2010).  
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HPV integration  

Persistent infection of high-risk HPV can result in integration of the viral 

genome into the host genome. Integration can promote oncogenesis through the 

dysregulation of viral genes integrated into host DNA which function to increase 

proliferation and inhibit cell cycle checkpoints and apoptosis (Moody & Laimins, 

2010). Integration patterns of HPV depend on virus type. For example, more than 

90% of HPV18 associated cancers exhibit fully integrated HPV18 genomes. 

However, cancers caused by HPV 16 are much more varied in their integration 

pattern. HPV16 exhibits early integration but also keeps the episomal form of the 

genome as the cells have progressed to invasive cancer (Cullen et al., 1991).  

HPV oncogenicity 

HPV integration typically results in the disruption of the E2 ORF, therefore 

preventing the expression of the E2 protein. This results in the dysregulation of other 

integrated HPV genes (Jeon et al., 1995) especially E5, E6 and E7 expression. The E5 

protein primarily localises in the endoplasmic reticulum, golgi apparatus and nuclear 

membrane. E5 has weak transformation capabilities when expressed alone. However, 

E5 has been reported to enhance the oncogenic properties of E6 and E7 by activating 

the epidermal growth factor (EGFR). E5 also plays a role in HPV immune evasion by 

decreasing the surface levels of MHC class I proteins, which inhibits clearance of 

infected cells by the immune response system (Figure 9). Overexpression of E6 

causes a significant amount of the tumour suppressor protein p53 to be degraded by 

recruiting the cellular E3 ubiquitin ligase E6 associated proteins (E6AP) which 

triggers the degradation of p53. The protein p53 is known to play a crucial role in 

preventing genome mutation and maintaining genome stability, while degrading p53 

causes the cell to proliferate unchecked (Figure 10) (Polager & Ginsberg, 2009). HPV 

does not cause a mutation in the p53 gene but E6 protein simply attacks and degrades 

it (Howie et al., 2009). Over expression of E7 causes cell immortalization because E7 

binds the tumour suppressor protein, pRb, which normally binds and inactivates the 

transcription factor E2F. Because the oncoprotein E7 competes to bind with pRb, and 

thereby releasing E2F, the infected cells are able to increase proliferation. E7 also 

disrupts other cell cycle regulators such as histone deacetylase (HDAC) and facilitates 
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its removal to maintain the cell in an S phase environment required for viral genome 

amplification (Figure 11) (Longworth & Laimins, 2004a).   

 

 

 

 

 

 

 

 

Figure 9. HPV E5 interactions with cellular pathways and factors.  

E5 contributes to the actions of E6 and E7 by modulating the transit of signalling 

proteins through the endoplasmic reticulum (ER) and aiding in immune evasion. 

(Moody & Laimins, 2010) 
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Figure 10. HPV E6 affects many cellular proteins and signalling pathways. 

High-risk E6 proteins inhibit p53-dependent growth arrest and apoptosis in response 

to aberrant proliferation through several mechanisms, resulting in the induction of 

genomic instability and the accumulation of cellular mutations (Moody & Laimins, 

2010).  
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Figure 11. HPV E7 affects numerous cellular processes through interactions with 

multiple host cell proteins. 

(Moody & Laimins, 2010) 
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DNA Helicases and possible roles in cancer 

Genome instability is a characteristic of many cancers and has emerged to be a 

hallmark of cancer (Negrini et al., 2010).  Many factors can cause genome instability 

including DNA damage, from external sources such as exposure to chemicals, and 

radiation (Langie et al., 2015) and other factors which included mutations in genes 

involved in DNA damage repair and tumour suppressor molecules (Negrini et al., 

2010). DNA helicases are enzymes that function to bind and unwind complementary 

strands of DNA. This process is energy dependent and relies on nucleoside 5′-

triphosphate hydrolysis (Figure 12). The helicases are found in prokaryotes, 

eukaryotes as well as viruses. They are involved in numerous processes such as DNA 

replication, repair, recombination, and transcription (Hall & Matson, 1999).  

Mutations and dysregulation of helicase expression has been associated with cell 

transformation and cancer development. Mutations in helicase encoding genes have 

detrimental effects, such as Werner syndrome and Bloom’s syndrome. Werner 

syndrome is characterized by the appearance of premature aging features and early 

onset of age related diseases such as cardiovascular diseases, diabetes mellitus, and 

carcinoma (Martin, 1985).  Patients with Bloom’s syndrome are also predisposed to 

carcinogenesis (German, 1997). In addition, cells transformed by the Epstein-Barr 

virus and simian virus 40 have exhibited upregulated helicases expression.  Genome 

instability leads to carcinogenesis (Kawabe et al., 2000).  

It is known that HPV induces DNA damage and requires molecules involved 

in the DNA damage/DNA repair pathways in order to successfully replicate (Moody 

& Laimins, 2009). In addition, it has been shown that E1-E2 mediated replication of 

the HPV genome is not inhibited by the host DNA damage response pathway (King et 

al., 2010). The HPV E1 protein is a helicase that facilitates viral genome replication 

and also interacts with host cell proteins (Figure 13). DNA damage caused by the 

HPV can be induced by the E1 protein alone. The E1 protein of HPV 31 induces 

DNA damage (Fradet-Turcotte et al., 2011).  DNA damage at viral replication foci 

were observed in the presence of E1 and E2 (Sakakibara et al., 2011).   

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 38 

 

Figure 12 DNA helicases catalytically disrupt base pairs between complementary 

strands in an ATP-dependent manner.  

(Brosh, 2013) 

 

 

 

 

Figure 13. Schematic representation of the initiation of DNA replication the E1 

protein. 

(Bergvall et al., 2013) 
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Host immune response to HPV 

To defend against foreign pathogens such as viruses and other microbes, the 

host utilizes a wide array of immune defence mechanisms. The first line of defence 

against HPV is the epithelial barrier. HPV infection occurs when there is a small 

wound in the epithelial barrier which allows the virus to attach and infect cells. Once 

infection occurs the next line of defence is the innate immune system which detects 

foreign pathogen-associated molecular patterns (PAMPs) rapidly and begins a 

signalling cascade for other immune response mechanisms (Turvey & Broide, 2010). 

The innate immune system consists of antigen presenting cells (APCs), phagocytes, 

natural killer (NK) cells and cytokines. Interferons (IFNs) are part of the innate 

immune response and are particularly important in defending against HPV infections. 

Interferon production can be stimulated through toll-like receptors (TLRs) that are 

located inside and outside of the cell (Nasu & Narahara, 2010). The most important 

TLRs in detecting viral PAMPs are intracellular TLR 3, 7, 8, and 9. These receptors 

sense foreign double stranded RNA, single stranded RNA and foreign DNA and 

signal the production of type I IFNs. Dendritic cells also sense pathogens using 

pattern recognition receptors (PRRs) and produce type I IFN (Turvey & Broide, 

2010). Type I IFNs are a family of cytokines particularly important for viral 

infections, because they protect cells against viral infection by a signalling cascade 

that puts the cell in an antiviral state by inducing expression of hundreds of genes. In 

addition to TLRs, the innate immune system can also detect infection and cell damage 

in the cytosol through major classes of receptors called NOD-like receptors (NLRs), 

RIG-like receptors (RLRs) and cytosolic DNA sensors and the STING pathway which 

also promote inflammation and type I IFN production (Barber, 2015). In HPV, 

infection is strictly intraepithelial, and HPV does not spread through blood nor does it 

cause cytolysis or cell death. Therefore, the natural life cycle of HPV is optimal for 

immune evasion. Moreover, viral proteins such as HPV E6 and E7 aid in evasion of 

innate immune responses (Amador-Molina et al., 2013). Adaptive immunity is 

induced after the innate immunity but is much more specific than the innate immune 

response and can also memorize foreign pathogens that have previously been 

encountered (Abbas et al., 2014). The adaptive immune system consists of 

lymphocytes separated into 2 broad categories that facilitate humoral antibody (B 
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cells) and cell-mediated immune (T cell) responses. B cells are activated by foreign 

pathogens to secrete antibodies, which are proteins called immunoglobulins. 

Antibodies circulate the bloodstream and body fluids, and specifically bind to foreign 

antigens. When antibodies bind to viruses they block the pathogen’s ability to bind to 

host cells and also serve as a homing device for the pathogens to be eliminated 

(Abbas et al., 2014). Cell mediated immune response is another integral part of the 

host immune system which consists of 2 main types of T cells: helper T cells and 

cytotoxic T lymphocytes (CTLs). CTLs recognize HPV specific peptides that are 

presented by MHC class I molecules on the surface of infected cells. CTLs kill 

infected cells but also activate nucleases which degrade viral genomes and secrete 

IFNγ which activate phagocytes. HPV has developed several adaptive immune 

response evasion mechanisms such as repression of MHC class I expression, absence 

of cell lysis and systemic viremia leading to low antigen levels available for 

presentation (Frazer, 2009). Despite the immune evasion mechanisms of HPV, most 

infections are cleared within 2 years (Plummer et al., 2007). 

 

HPV diseases  

HPV is a known cause of cervical cancers, with more than 90% of all cervical 

cancer cases being attributed to HPV. However other cancers have been linked to 

HPV as well such as vulvar, vaginal, penile, oropharyngeal, anal, and rectal cancers. 

In the United States, The Center for Disease Control estimated 13.5/100,000 persons 

of cancers in women and 9.7 of cancer in men were associated with HPV infection 

(Viens et al., 2016). In addition to cancer, HPV also causes benign cutaneous and 

mucosal lesions (Table 1). Several detection methods can diagnose HPV infection 

(Table 1). However, viral isolation of HPV is not possible because the virus cannot be 

propagated using normal tissue culture methods. Diagnosis of HPV can be done by 

observing the morphology of cells such as Pap smears and tissue samples. Cells 

infected with HPV exhibit a shrunken nucleus in large cytoplasmic vacuoles termed, 

koilocytes (Burd, 2003). The bulk of HPV diagnosis is done through molecular 

laboratory techniques. HPV DNA detection is done by two methods, the first is a 

polymerase chain reaction (PCR) using generic primers that can detect many HPV 

types (Husman et al., 1995). The second method used to detect HPV DNA is the 
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hybrid capture 2 method, which is based on hybridization of synthetic RNA probes, 

complementary to the DNA sequence of 13 high-risk (16, 18, 31, 33, 35, 39, 45, 

51,52, 56, 58, 59, and 68) and five low-risk (6, 11, 42, 43,44) HPV types (Lorincz, 

1996). HPV infection can also be tested by detecting HPV RNA. Testing for viral 

transcripts allows for the quantification of genome expression. The most common 

method to test for HPV RNA is reverse transcription quantitative real time PCR 

(Lamarcq et al., 2002). HPV infection can also be diagnosed using methods targeting 

viral proteins or HPV specific antibodies (Dias et al., 2005). 
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Table 1. HPV type and disease association   

(Burd, 2003) 

 

Disease  HPV type  

Plantar warts  

Common warts  

Flat warts  

Other cutaneous lesions  

(e.g., epidermoid cysts, laryngeal 

carcinoma)  

Epidermodysplasia verruciformis  

Recurrent respiratory papillomatosis  

Focal epithelial hyperplasia of head & neck  

Conjunctival papillomas /carcinomas)  

Condyloma acuminata (genital warts)  

Cervical intraepithelial neoplasia (CIN)  

Unspecified  

Low risk types 

High risk types 

 

Cervical carcinoma  

1,2,4,63  

2,1,7,4,26,27,29,41,57,65,77,1,3,4,10,28  

3, 10, 26, 27, 28, 38, 41, 49, 75, 76  

6, 11, 16, 30, 33, 36, 37, 38, 41, 48, 60, 72, 73  

 

2,3,10,5,8,9,12,14,15,17,19,20,21,22,23,24,25,36,37, 

38,47,50  

6, 11  

13, 32  

6, 11, 16  

6, 11, 30, 42, 43, 45, 51, 54, 55, 70  

 

30, 34, 39, 40, 53, 57, 59, 61, 62, 64, 66, 67, 68, 69  

6, 11, 16, 18, 31, 33, 35, 42, 43, 44, 45, 51, 52, 74  

16, 18, 6, 11, 31, 34, 33, 35, 39, 42, 44, 45, 51, 52, 56, 

58, 66  

16, 18, 31, 45, 33, 35, 39, 51, 52, 56, 58, 66, 68, 70  
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HPV and methylation 

Over the past few years, because HPV is an important cause of cervical 

cancer, co-testing of HPV DNA along with Pap smears has increased in healthcare 

practices. Infection plays an important role in cervical cancer diagnosis, prognosis, 

and treatment. HPV viral methylation has emerged in recent years as a new way to 

differentiate between women who have benign HPV infections and transformative 

infections (Chaiwongkot et al., 2013). DNA methylation is a normal process that 

occurs in humans and is a process that is used to regulate gene expression. Disruption 

of normal methylation sites has been linked to cancer (Stein, 2011). Regarding HPV, 

it is possible that the host defence mechanisms switch on and cause methylation of the 

HPV genome; it is also possible that methylation is an important process in which 

HPV regulates itself, by rendering some binding sites inaccessible, or signalling the 

virus to switch from a productive infection to a transformative infection (Vinokurova 

& von Knebel Doeberitz, 2011). For example, methylation of the HPV16 genome is 

high in CaSki cells with approximately 600 copies of integrated HPV16. In contrast, 

methylation of HPV16 in SiHa cells which have only 1-2 copies of integrated HPV16 

is low (Chaiwongkot et al., 2013). With novel more sensitive and higher throughput 

technology emerging at a more cost-effective price point, the search for non-invasive 

reliable biomarkers for cancer development is growing.   For example, methylation 

patterns in the L1 region of HPV-16 have been shown to be associated with increasing 

disease severity (Lorincz et al., 2013). Although methylation patterns have been 

suggested, a specific method that can be used to triage patients is still not defined. 

  

Hallmarks of cancer 

Cancer cells are different from normal cells because they have the ability to 

divide uncontrollably; this ability is accomplished through deregulating many cellular 

pathways involved in cell death, cell proliferation and invasion. Cancer cells therefore 

exhibit “hallmarks of cancer” that include: sustaining proliferative signalling, evading 

growth suppressors, activating invasion and metastasis, enabling replicative 

immortality, inducing angiogenesis, and resisting cell death (Hanahan & Weinberg, 

2011) (Figure 14). The most notable hallmark of cancer is the ability to proliferate 
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indefinitely. In normal cells, proliferation is controlled by many cellular signals that 

activate cell growth and signals that are involved in negative feedback loops. Cancer 

cells deregulate these signals, either by activating the cell proliferation signals or 

disrupting negative feedback signals and evade growth suppressor signals. Normal 

cells and cancer cells both require nutrients. Cancer cells activate angiogenesis to 

increase the amount of nutrients to help sustain expanding growth. In order to have a 

high replicative potential cancer cells obtain a high level of telomerase, which is a 

specialized DNA polymerase that adds telomere repeat segments to the ends of DNA. 

In normal cells, telomerase is present in low amounts in human somatic cells, which 

caps the ability of normal cells to proliferate. Another important ability of cancer cells 

is the ability to resist cell death. Normal cells are typically regulated by programmed 

cell death. Cancer cells resist programmed cell death by increasing expression of 

antiapoptotic regulators such as Bcl-2 or down-regulating proapoptotic factors such as 

Bax. Activation of invasion and metastasis occurs in cancer cells by disrupting 

expression of cell adhesion molecules and up-regulating molecules involved in 

migration of cells. Other important properties of cancer cells are genome instability, 

and inflammation. Recently studies have described emerging hallmarks which include 

reprogramming of energy metabolism and evading immune destruction.  

These hallmarks of cancer occur due to transformation of normal cells into 

cancer cells by three major factors: spontaneous DNA mutations, environmental 

causes such as exposure to carcinogens, and microbial infections. 
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Figure 14. Hallmarks of cancer. 

The hallmarks of cancer comprise six major biological capabilities. The six hallmarks 

of tumour cells are the ability to: sustain proliferative signalling, evade growth 

suppressors, resist cell death, enable replicative immortality, induce angiogenesis, and 

activate invasion and metastasis. (Hanahan & Weinberg, 2011) 
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Apoptosis  

In order to maintain homeostasis, cells undergo programmed cell death (PCD) 

to maintain cell population in tissues, combat infections, and clear abnormal cells. 

There are two main pathways that initiate apoptosis: the extrinsic or death receptor 

mediated pathway, and the intrinsic or mitochondrial pathway (Figure 15). In both 

pathways initiator caspases are activated which in turn activate executioner caspases.  

Initiation of apoptosis by extrinsic signalling pathways involves ligation and 

activation of transmembrane death receptors belonging to the tumour necrosis factor 

(TNF) receptor superfamily (Figure 16). Members of the TNF receptor family share 

similar cysteine-rich extracellular domains and have a cytoplasmic domain called the 

death domain that helps to initiate cell death by signalling death signals from the cell 

surface to intracellular molecules. Several receptors on the cell surface are known as 

decoy receptors which act to bind death signalling ligands but do not initiate cell 

death because they lack a functional death domain (Ashkenazi & Dixit, 1998). Death 

inducing ligands bind to their specific receptors and provided that a functional death 

domain is present, the receptors recruit death substrate proteins such as Fas associated 

protein via death domain (FADD) (Wajant, 2002). Proteins such as FADD induce 

apoptosis by activating the extrinsic initiator caspase 8 and forming the death 

inducing signalling complex (DISC). Death receptor-mediated apoptosis can be 

inhibited by proteins such as c-FLIP which binds to DISC and inactivates them 

(Figure 17) (Krueger et al., 2001).  
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Figure 15. Death receptor and mitochondrial pathways of apoptosis. 

Apoptosis can be initiated by two pathways: death receptors on the cell surface 

(extrinsic pathway) or mitochondria (intrinsic pathway). In both pathways, induction 

of apoptosis leads to activation of an initiator caspase which activate executioner 

caspases. Active executioner caspases cleave the death substrates resulting in 

apoptosis (Igney & Krammer, 2002).  
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Initiation of apoptosis by extrinsic signalling pathways involves ligation and 

activation of transmembrane death receptors belonging to the tumour necrosis factor 

(TNF) receptor superfamily (Figure 16). Members of the TNF receptor family share 

similar cysteine-rich extracellular domains and have a cytoplasmic domain called the 

death domain that helps to initiate cell death by signalling death signals from the cell 

surface to intracellular molecules. Several receptors on the cell surface are known as 

decoy receptors which act to bind death signalling ligands but do not initiate cell 

death because they lack a functional death domain (Ashkenazi & Dixit, 1998). Death 

inducing ligands bind to their specific receptors and provided that a functional death 

domain is present, the receptors recruit death substrate proteins such as Fas associated 

protein via death domain (FADD) (Wajant, 2002). Proteins such as FADD induce 

apoptosis by activating the extrinsic initiator caspase 8 and forming the death 

inducing signalling complex (DISC). Death receptor-mediated apoptosis can be 

inhibited by proteins such as c-FLIP which binds to DISC and inactivates them 

(Figure 17) (Krueger et al., 2001).  

 

 

 

Figure 16. Death receptors and their respective death ligands. 

(Igney & Krammer, 2002) 
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Figure 17. Initiation of death receptor mediated apoptosis.  

An example of a death ligand (CD95L) binding to its receptor, recruiting Fas 

associated death domain protein and initiator caspase 8. This forms the death inducing 

signalling complex. Death-receptor-mediated apoptosis can be mediated by the 

competitive binding of Decoy receptor 3 or through inhibition by FLICE-inhibitory 

proteins (Igney & Krammer, 2002).   
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The intrinsic signalling pathways initiate apoptosis through the mitochondria 

(Figure 18). Intracellular signals can be positive or negative stimuli. Negative signals 

include the absence or down regulation of survival factors, growth factors, hormones, 

or molecules that would normally lead to suppression of apoptosis. Thus, the absence 

of these signals lead to initiation of apoptosis. Positive stimuli include cell damaging 

agents such as toxins, radiation, hypoxia, free radicals and viral infections (Igney & 

Krammer, 2002). Together these signals cause a change in mitochondria outer 

membrane potential (MOMP). Change in MOMP releases pro-apoptotic proteins 

normally kept in the intermembrane space of the mitochondria into the cytosol such as 

cytochrome c (Cyt c), second mitochondria-derived activator of caspase (SMAC) and 

direct inhibitors of apoptosis proteins binding protein with low pI (DIABLO). SMAC 

and DIABLO function to bind inhibitors of apoptosis proteins (IAPs) and drive 

apoptosis (Du et al., 2000; Verhagen et al., 2000). When cytochrome c is released it 

binds apoptotic protease activating factor 1 (Apaf-1) and together with ATP, recruits 

and activates intrinsic initiator caspase 9 forming the apoptosome. MOMP is mainly 

regulated by a family of pro and anti-apoptotic proteins belonging to the B cell 

lymphoma 2 (BCL-2) family (Green & Kroemer, 2004). The BCL-2 family of 

proteins can be subgrouped by function and structure according to their function and 

number of BCL-2 homology (BH) domains. The anti-apoptotic proteins with multiple 

homology domain proteins include BCL-2, BCL-XL, BCL-W, A1 and MCL-1. Pro-

apoptotic multiple domain proteins consist of BAK, BAX, and BOK. Lastly, there are 

pro-apoptotic BCL-2 proteins that contain only BH3 homology, these proteins include 

BID, BIM, BIK, BMF, HRK, NOXA, PUMA and bNIP3 (Chipuk & Green, 2008). 
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Figure 18. Initiation of mitochondrial apoptotic pathway. 

Various stimuli signal pro-apoptotic BCL-2 proteins such as BAX, BID, BAD and 

BIM to activate mitochondrial release of cytochrome c (Cyt c) into the cytosol, where 

it binds apoptotic protease activating factor 1 (APAF1) and recruits and activates pro-

caspase 9, forming the apoptosome. Apoptosis through the intrinsic pathway can be 

inhibited by survival signals, anti-apoptotic proteins, such as anti-apoptotic BCL2 

family members, BCL-2 and BCL-XL and inhibitors of apoptosis proteins (IAPs), 

which are regulated by the proteins Second Mitochondria-derived Activator of 

Caspase (SMAC) and direct IAP binding protein with low pI (DIABLO) (Igney & 

Krammer, 2002).  
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Apoptosis can also be induced by extensive damage to cellular DNA (Figure 

19). DNA damage has been shown to induce both extrinsic and intrinsic apoptosis 

(Roos & Kaina, 2013). When DNA damage occurs, the DNA repair pathway is 

normally initiated. The most prominent proteins involved in DNA damage detection 

and repair are: ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and 

Rad3 related (ATR). These proteins signal to checkpoint kinases 1 and 2 (CHK1, 

CHK2) and p53 proteins. Once these proteins are activated they phosphorylate and 

activate other proteins such as cell division cycle 25 (CDC25) which is a kinase 

involved in cell cycle regulation and p53 which induces expression of another cell 

cycle regulating protein p21 (Roos & Kaina, 2006). CDC25 and p21 are both S-phase 

checkpoint proteins and can induce cell cycle arrest where cellular resources can be 

directed towards repair of the damaged DNA. However, if the damaged DNA cannot 

be repaired, p53 can activate pro-apoptotic factors and induce apoptosis (Awasthi et 

al., 2015).  
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Figure 19. Activation of ATM or ATR in response to DNA damage.  

ATM and ATR are proteins with DNA damage-binding and signalling activity. 

Depending on the downstream signalling targets of ATM and ATR, cells undergo 

apoptosis, DNA repair or cell-cycle arrest (Roos & Kaina, 2006).  
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Cell proliferation and the cell cycle 

In order to replace damaged and dying cells, healthy cells need to grow and 

proliferate. The cell needs to replicate its DNA and divides into two daughter cells 

through a process called the cell cycle. The cell cycle consists of two main stages: 1) 

mitosis (M) separated into prophase, metaphase, anaphase, and telophase and 2) 

interphase separated into G0, G1, S, and G2. At the G1 phase cells decide whether or 

not they are going to divide. If conditions are suboptimal for cell growth cells 

withdraw from the cell cycle into the G0 phase until activated. However, if 

environmental conditions favour cell growth, then the cell progresses through all 

stages of the cell cycle and divides (Pardee et al., 1978). The cell cycle is tightly 

regulated and depends on many checkpoints and molecules to signal transition from 

each phase. E2F transcription factors are involved in controlling G1 to S phase 

progression. E2F transcription factors activate expression of a multitude of genes 

involved in DNA replication (Leone et al., 1998). The retinoblastoma protein family 

(pRB) is a negative regulator of E2F transcription factors and under suboptimal cell 

growth conditions, is able to inhibit cell cycle progression by binding to E2F. 

However, under optimal cell growth conditions pRB is inactivated by 

phosphorylation. This occurs through the activity of cyclin dependent kinases 

(CDKs). Activation of CDKs requires binding of regulatory subunits known as 

cyclins and also requires phosphorylation (Morgan, 1995). Cyclins are synthesized 

and destroyed at specific times during the cell cycle, therefore regulating CDK 

activity. Only a few CDKs are directly involved in driving the cell cycle. These 

include interphase CDKs: CDK2, CDK4 and CDK6, mitotic CDK1. CDKs form 

complexes with cyclins to drive cell proliferation. There are four different classes of 

cyclins: A, B, D, E that bind to cell cycle CDKs. The G1 – S phase transition involves 

CDK2, 4, and 6. Early in the G1 phase, CDK4 and 6 form complexes with Cyclin D 

and phosphorylate pRB and by doing so, free E2F transcription factors. CDK2 

complexes with cyclin E and also phosphorylates pRB but also functions to recruit 

DNA helicases and polymerases for DNA replication (Massague, 2004). CDK activity 

is regulated by two families of inhibitors: INK4 proteins, including INK4A (p16), 

INK4B (p15), INK4C (p18) and INK4D (p19), and the Cip and Kip family, consisting 

of Cip1 (p21), Kip1 (p27) and Kip2 (p57). These proteins regulate cell cycle 
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progression by binding and inactivating cyclin and CDK proteins (Sherr & Roberts, 

1999). 

 

Cyclooxygenases 

Cyclooxygenases (COX) comprise a family of enzymes which catalyse the 

formation of prostaglandins (PGs) from arachidonic acid. PGs are involved in cellular 

adhesion, growth ability and differentiation. There are two COX isoforms: COX-1 

and COX-2. COX-1 is a constitutively-expressed enzyme and is responsible for 

prostaglandin production in most tissues. In contrast, COX-2 is an inducible enzyme, 

mostly expressed at sites of inflammation (Kirkby et al., 2012). Overexpression of 

COX-2 has been detected in a variety of tumours (Ristimaki et al., 2002; Secchiero et 

al., 2005). COX-2 has been shown to increase cell proliferation. Prostaglandin E2 is a 

major product of COX-2 which has been shown to increase cell proliferation and 

mediate apoptosis (Sheng et al., 1998). Prostaglandin E2 acts through different cell 

surface membrane receptors called EP receptors (EP1, EP2, EP3, and EP4) (Breyer et 

al., 2001). Prostaglandin E2 binding to EP2 and EP4 receptors are coupled with G 

proteins induce an increase of intracellular cAMP; cAMP is then able to activate 

cellular kinases such as protein kinase A (PKA) and phosphatidylinositol 3-kinases 

(PI3K); this is one pathway in which COX-2/ PGE2 increases cell proliferation (Choi 

et al., 2005). 

 

PI3K/AKT 

The phosphatidylinositol 3-kinases (PI3K)/AKT pathway regulates wide range 

of cellular processes involved in cell proliferation and growth (Figure 20). PI3K are 

members of a unique and conserved family of intracellular lipid kinases. These 

proteins bind and activate many intracellular signalling proteins. PI3K catalyses the 

formation of Phosphatidylinositol-3,4,5-trisphosphate (PIP3) in order to recruit a 

major downstream target, AKT, also known as protein kinase B (Stokoe et al., 1997). 

AKT is a serine/threonine kinase. There are three members of the AKT family: 

AKT1, AKT2 and AKT3, which are broadly expressed. AKT activation requires 

translocation to the plasma membrane and phosphorylation at Thr308 and Ser473. 
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Recruitment AKT to the plasma membrane is carried out by PIP3 while the necessary 

phosphorylation of AKT is carried out by 3-phosphoinositide-dependent protein 

kinase-1 and 2, (PDK1 and PDK2) (Stokoe et al., 1997). The PI3K/AKT pathway has 

been shown to increase cell proliferation by interacting with many proliferation and 

apoptotic proteins. For example, AKT targets mammalian target of rapamycin 

(mTOR) a protein known to drive cell proliferation (Nave et al., 1999). PI3K 

signalling also regulates angiogenesis and proliferation, by mechanisms including 

vascular endothelial growth factor (VEGF) transcriptional activation and hypoxia 

inducible factor-1α (HIF1α) (Skinner et al., 2004). AKT phosphorylates CDK 

inhibitors p21 and p27 resulting in their exclusion from the nucleus and subsequent 

degradation. With decreased levels of CDK inhibitors, then tightly controlled CDK-

cyclin complexes are free to drive the cell cycle and proliferation.  

 

 

 

 

Figure 20. The phosphatidylinositol 3–kinase (PI3K) signalling pathway.  

Activated receptor tyrosine kinases (RTKs) recruit and activate PI3K, leading to 

increased PIP3levels. PIP3 recruits many proteins to the membrane including AKT 

and activates AKT which phosphorylates a range of substrates. (Zhang, L. et al., 

2013) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 57 

Summary and aims of this thesis 

 

The majority of cervical cancer cases and a significant proportion of other 

cancers are attributed to HPV with HPV16 the most common type of HPV associated 

with cervical cancer (Li et al., 2011). The replicative helicase protein, E1 and the 

DNA binding protein E2, are required for viral genome replication, which is 

facilitated by the E1 protein following recruitment to the viral origin of replication by 

E2 (Frattini & Laimins, 1994)In addition, E2 acts as a transcriptional regulator for 

viral gene expression (Thierry, 2009). A hallmark of cervical cancer is viral genome 

integration into host cells which often results in the disruption of the HPV E2 ORF. 

Following integration, there is an increase in expression of the integrated viral genes 

which are no longer regulated by E2 (Moody & Laimins, 2010). The early viral genes 

often integrated into the host genome include E6, E7 and E1 (Woodman et al., 2007). 

The E6 protein of high risk HPV binds and degrades the tumour suppressor protein 

p53 which is a crucial genome maintenance protein and degradation of p53 causes 

cells to proliferate unchecked apoptosis is decreased (Howie et al., 2009). E7 binds to 

the retinoblastoma protein which is another tumour suppressor protein which acts to 

bind the transcription factor E2F causes E2F to be released and drive cell proliferation 

(Longworth & Laimins, 2004b). In addition to expression of E6 and E7 which 

decrease apoptosis and increase cell cycle activity, the E1 helicase may also promote 

DNA damage. Carcinogenesis is caused through the aberration of many pathways 

which includes inhibition of cell death, increase cell proliferation, and also DNA 

damage (Hanahan & Weinberg, 2011). Recently, studies have pointed that the E1 

protein, which is responsible for the replication of HPV, could play a role in 

carcinogenesis (Castillo et al., 2014). HPV E1 has been shown to interact with various 

host proteins to facilitate viral replication and interference of cell proliferation 

pathways (Castillo et al., 2014) and DNA damage (Fradet-Turcotte et al., 2011). 

However, whether E1 plays a role in cancer development is still unknown. This study 

aims to determine whether HPV16 E1 is associated with cervical cancer progression 

and the functional roles in host cell pathways involved in carcinogenesis.  In 

particular, it will: 
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 Quantitate E1 mRNA expression in a cohort of 124 HPV16 positive cervical 

samples. 

 Determine the physical state of the HPV16 genome (i.e. episomal, intergrated 

or mixed) cervical samples. 

 Establish if the HPV16 E1 virus in this cohort of Thai patients contains a 

previously reported 63bp duplication. 

 Determine if expression of HPV16 E1 protein can induce proliferation or 

inhibit apoptosis of transfected cells. 

 Determine if expression of HPV16 E1 affects host cell gene expression. 
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CHAPTER IV 

MATERIAL AND METHODS 

Part I. HPV16 E1 DNA and mRNA detection in clinical specimens  

1. Clinical specimens and HPV DNA detection 

Cervical samples in SurePath™ Liquid-based cytology system (BD, United 

States) were obtained from routine Pap smears at the Outpatient Department of 

Gynaecology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand. The 

samples were from 2012 – 2014 and stored at -80°C. One mL of patient sample was 

used for HPV DNA detection at the Virology Unit, Department of Microbiology, 

King Chulalongkorn Memorial Hospital, Bangkok, Thailand by the Cobas 4800 high-

risk HPV test (Roche, Switzerland). The use of left over specimens was approved by 

Institutional Review Board, Faculty of Medicine, Chulalongkorn University, a WHO 

certified ethics committee (COA No. 482/2015, IRB No. 298/58).  

A total of 124 HPV16 positive samples were selected for this study. Pap smear 

results, i.e. normal, low/high-grade squamous intraepithelial lesion (LSIL/HSIL), and 

squamous cell carcinoma (SCC) and histological results from colposcopy (cervical 

intraepithelial neoplasia (CIN) 1, CIN 2/3 and SCC) were also obtained. 

 

2. Cell Lines 

The CaSki and SiHa cell lines were used in this study as HPV16 positive controls.  

CaSki cell contains approximately 600 copies of the HPV16 genome, whereas SiHa 

cell contains 1-2 copies of HPV16.  The CaSki and SiHa cell lines were grown in 

Dulbecco's Modified Eagle's medium (DMEM) (GE Healthcare Life Sciences, USA) 

supplemented with 10% fetal bovine serum (FBS) (Gibco, USA) and 100 units/ml 

penicillin and 100 µg/ml streptomycin (Gibco, USA) and incubated at 37 °C, 5% 

CO2.  The cells were passaged when 80-90% confluency was reached.  In order to 

passage cells, the medium was removed, and the cells were washed twice with 

phosphate buffered saline (PBS) and trypsin-EDTA was added. The cells were then 

incubated at 37°C for 2-3 min. Growth medium was then added to the cells and the 
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cell suspension was mixed and subcultured at a ratio of 1:3 or 1:4 of the original 

cultures by adding an appropriate volume of culture medium to the flask. 

 

3. Detection of HPV16 E1 DNA in Patient Samples  

The presence of HPV16 E1 DNA in patient cervical samples was determined by 

PCR amplification of HPV16 E1 using the primer pair 1258f and 1404r (Integrated 

DNA Technologies, Singapore).  The sequences of the primers were 5’-GCG GGT 

ATG GCA ATA CTG AA -3’ and 5’- TAA CAC CCT CTC CCC CAC TT -3’, 

respectively (Bogovac et al., 2011).  Leftover nucleic acid extract from cervical 

samples was used as template DNA.  Briefly, 10-50 ng of the template DNA, was 

mixed with the PCR master mix containing, 1X PCR buffer, 2.5 mM MgCl2, 250 µM 

dNTP, 400 nM forward and reverse primers and 1.25 U high-fidelity grade DNA 

polymerase (Thermo Fisher Scientific, USA) using the following PCR conditions: 

initial denaturation at 95 °C for 5 min, followed by 40 cycles of 94 °C for 30 s, 55 °C 

for 1 min, and 72 °C for 1 min, with a final extension at 72 °C for 10 min.  PCR 

products were detected by 2% agarose gel electrophoresis stained with SYBR® Safe 

(Invitrogen, USA).  The PCR products on the agarose gel were visualized by a UV 

transilluminator and photographed.  The expected product size was 146 base pairs 

(bp). 

 

4. 63 bp Duplication in HPV16 E1 genome 

Because the primer pair used to detect the presence of HPV16 E1 also amplifies a 

region of interest in which a 63 bp duplication may occur, the presence of the 

duplication was simultaneously determined with the presence of the HPV16 E1 DNA. 

Wild-type samples yield a 146 bp product while samples containing the 63 bp 

duplication yield 209 bp.  The PCR products were excised from the agarose gel and 

purified using a NucleoSpin PCR Cleanup and Gel Extraction kit (Macherey-Nagel, 

Germany).  The amount and purity of purified DNA was measured using a 

biophotometer (Eppendorf, Germany).  Samples exhibiting the 63 bp duplication 

phenotype were then sent for verification by Sanger sequencing (AIT Biotech, 

Singapore). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 61 

5. HPV16 physical state detection 

PCR was used to determine the physical state of the HPV16 genome (episomal, 

integrated or mixed) by detecting a region of E2, which is deleted upon integration 

into the host genome. This was achieved using primers (Integrated DNA 

Technologies, Singapore) and PCR conditions as previously reported (Peitsaro et al., 

2002).  Briefly, 10-50 ng of the template DNA was mixed with the PCR master mix 

containing, 1X PCR buffer, 2.5 mM MgCl2, 250 µM dNTP, 400 nM forward and 

reverse primers and 1.25 U high-fidelity grade DNA polymerase (Thermo Fisher 

Scientific, USA). Samples were amplified using the following PCR conditions: initial 

denaturation at 95 °C for 10 min, followed by 40 cycles of 95 °C for 30 s, 55 °C for 1 

min, 72 °C for 45 s and a final extension at 72 °C for 10 min. The amplified products 

of 82 bp (pure episomal/mixed form) or absence of a detectable PCR product 

(integrated form) were determined by 2% agarose gel electrophoresis. 

In order to differentiate the physical state of the HPV16 genome into pure 

episomal, mixed and integrated form, quantitative real-time PCR (qPCR) detecting 

both E2 and E6 genes was performed using StepOnePlus Real-Time PCR System 

(Applied Biosystems, USA).  External standard curves were determined for both E6 

and E2 genes using full-length HPV16 plasmid, p1203 PML2d HPV16, a gift from 

Peter Howley (Addgene plasmid # 10869).  Serial 10-fold dilutions containing 10
7 

– 

10
3 

copies were amplified using the same primers as in the conventional PCR assay.  

In order to mimic mixed forms of the HPV16 genome, full-length HPV16 plasmid 

was mixed with SiHa DNA to create mixed forms with 20% - 80% integration (Nagao 

et al., 2002).  The PCR reactions of E6 and E2 were run simultaneously in separate 

tubes under the same conditions as follows: 1X SsoAdvanced™ Universal SYBR® 

Green Supermix1X, 400 nM forward and reverse primers, and 10-50 ng of template 

DNA.  PCR conditions were initial denaturation at 95 °C for 30 s, followed by 40 

cycles of 95 °C for 10 sec, and 60 °C for 1 min.  The ratio of E2/E6 copies was 

determined in each sample. 
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6. Quantification of HPV16 E1 mRNA expression in patient samples 

6.1. RNA extraction:  

Approximately 500 µL of clinical sample was centrifuged at 500g for 5 min.  

The cell pellet was washed once with PBS and suspended in PBS to a final 

volume of 200 µL.  RNA extraction was performed using RNeasy Mini Kit 

(Qiagen, Germany) according to the manufacturer’s protocol.  The final elution 

volume was 40 µL.  The amount and purity of the extracted RNA were 

determined using a biophotometer (Eppendorf, Germany). 

 

6.2. Reverse transcription 

Reverse transcription was performed according to manufacturer’s protocol 

using Super Script IV (SSIV) (Invitrogen, USA).   In order to synthesize cDNA, 1 

µg of total RNA or a maximum of 11 µL from each patient sample was added to 

2.5 µM Oligo d(T)20, and 0.5mM dNTP, and incubated at 65 °C for 5 min.  The 

mixture was centrifuged to mix, and a final concentration of 200 U of reverse 

transcriptase, 40 U of RNaseOUT RNase Inhibitor, 100mM Dithiothreitol (DTT) 

and 1X of SSIV Buffer in a final volume of 20 µL was added and incubated at 

50°C for 10 min. After that, the reaction was inactivated at 80°C for 10 min. 

 

6.3. Droplet digital PCR (ddPCR) 

In order to quantify HPV16 E1 mRNA expression in patient samples, cDNA 

from each patient was amplified using primers 1258f and 1404r (Integrated DNA 

Technologies, Singapore), as previously described (Bogovac et al., 2011), and 

quantitated by using a FAM-labelled TaqMan MGB probe 5’ CCA TGT AGT 

CAG TAT AGT GG-3’ FAM (Thermo Fisher Scientific, USA).  β-actin mRNA 

levels were also determined using a primer assay set (catalogue no. 

Hs99999903_m1, Thermo Fisher Scientific, USA). The ddPCR reactions were 

performed according to the manufacturer’s instructions.  Briefly, 3 µL of sample 

cDNA was mixed with 900 nM (final concentration) of primers 1258f and 1404r, 

and 250nM of the E1 probe along with an 1x of the β-actin primer probe assay and 

1x of ddPCR™ Supermix for Probes (Bio-Rad, USA) at a final volume of 20 µL.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 63 

Samples were then emulsified with the Bio-Rad droplet generator oil using the 

QX200 droplet generator (Bio-Rad, USA).  Droplets were then transferred to a 96-

well PCR plate (Eppendorf, USA) and heat-sealed at 185 °C for 3 s.  

Amplification was carried out using a Bio-Rad C1000 Touch thermal cycler with 

the following parameters: initial denaturation at 95 °C for 10 min, followed by 40 

cycles at 94 °C for 30 s, and 60 °C for 1 min, with a final step for enzyme 

inactivation at 98 °C for 10 min. The results were analysed by QuantaSoft 

software (Bio-Rad, USA). Only droplets above the minimum amplitude threshold 

level determined by a negative control were considered positive. The amount of 

HPV16 E1 mRNA was normalized to β-actin mRNA levels for each individual 

sample. 

 

7. HPV16 methylation of early (p97) and late (p670) promoters by 

pyrosequencing 

7.1. Preparation of bisulfite modified DNA  

Leftover DNA extract from patient samples (1 μg) was bisulfite-treated 

following instructions from the EZ DNA-Gold Bisulfite Conversion Kit (Zymo 

Research, USA).  Briefly, 130 µL of conversion reagent was added to 1 µg of 

DNA to a final volume of 150 µL. The mixture was then placed in a thermal 

cycler under the following conditions: 98 °C for 10 min, 64 °C for 2.5 h and 4 °C 

for 10 min. 600 µL M-Binding Buffer was then added to each column placed in 

collection tubes. Samples were then added to the column and mixed with the 

binding buffer before centrifugation at 10,000 g for 30 s. The flow-through was 

discarded and 100 µL of M-Wash Buffer was added to the column and centrifuged 

at 10,000g for s. Flow-through was again discarded and 200 µl of M-

Desulphonation Buffer mixture was added to each column and incubated for 15 

min. The columns were then centrifuged at 10,000 g for 30 s and washed again 

with 200 µl of M-Wash Buffer.  Samples were then eluted with 20 µl of M-

Elution Buffer and stored at – 20 °C.  The bisulfite modified DNA was then used 

to determine the methylation status of both the early (p97) and the late (p670) 

promoters. 
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7.2. PCR amplification 

Bisulfite-modified HPV-16 DNA (4 µL) was amplified by PCR as follows: 1X 

PCR Buffer, 2.5 mM MgCl2, 250 µM dNTP, 400 nM forward and reverse primers 

and 1.25 U high-fidelity grade DNA polymerase (Thermo Fisher Scientific, USA). 

The primers used were p97 Forward: 5'-TTG TAA AAT TGT ATA TGG GTG 

TG-3', Reverse: Biotin-5´-AAA TCC TAA AAC ATT ACA ATT CTC-3’ 

(Rajeevan et al., 2006) (Integrated DNA Technologies, Singapore) and p670 

Forward: 5'-TGG AAT AAT ATT AGA ATA GTA ATA TAA TAA A-3', 

Reverse:  Biotin 5’-TTA TCC AAC TAA ACC ATC TAT TTC ATC C-3' 

(Integrated DNA Technologies, Singapore).  PCR conditions were initial 

denaturation at 95 °C for 10 min, followed by 50 cycles of 95 °C for 1 min, 55 °C 

for 1 min, and 72 °C for 1 min and a final extension at 72 °C for 10 min.  PCR 

products were detected by 1.5% agarose and purified using NucleoSpin® Gel and 

PCR Clean-up (Macherey-Nagel). 

 

7.3. Pyrosequencing  

The purified products were denatured and mixed with 400 nM of sequencing 

primer and loaded into the PyroMark™ Q96 machine (Qiagen, Germany).  

Sequencing primers were: p97 5’-AAT TTA TGT ATA AAA TTA AGG G-3' 

(Rajeevan et al., 2006) and p670 5’-GTA AAG ATT TTA TAA TAT AAG GGG-

3’(Integrated DNA Technologies, Singapore). 
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Part II. HPV16 E1 transfection in HEK 293T cells 

1. Cell culture 

Human embryonic kidney (HEK) 293T cell line was used in this study to carry 

out HPV16 E1 transfections. HEK 293T cells were grown in Dulbecco’s Modified 

Eagle’s Medium (DMEM), (GE Healthcare Life Sciences, USA) supplemented 

with 10% heat inactivated FBS (Gibco, USA), 100 unit/ml penicillin and 100 

µg/ml streptomycin (Gibco, USA) and 1mM of sodium pyruvate (Gibco, USA) 

and incubated at 37°C, 5% CO2.  The cells were passaged when 80-90% 

confluency was reached.  To passage cells, medium was removed, and the cells 

were washed twice with PBS and digested by trypsin-EDTA.  The cells were then 

incubated at 37°C for 1-3 min.  Growth medium was then added. Cells were 

resuspended and split at a ratio of 1:3 – 1:5, by addition of appropriate volumes of 

culture medium. 

 

2. Plasmid construction  

Plasmids containing codon optimized HPV16 E1 and its truncated forms were 

kindly provided by Dr. Seiichiro Mori (NIID, Japan). Truncated forms of E1 

were generated by the addition of stop codons into the HPV16 E1 sequence. A 

total of 3 mutants were used in this study pEGFP-E1-184, pEGFP-E1-359 and 

pEGFP-E1-439, expressing amino acids 1 to 184, 1 to 359 and 1 to 439 of 

HPV16 E1, respectively. The primers used to amplify E1 were: forward using 

forward primer 5’- CTC CTC CTC GAG CTG CCG ACC CCG CTG GGA CG-

3’ and reverse 5’-GGT GGT GGT ACC CTA CAG TGT GTT GGT ATT TTG 

ACC-3’. The pEGFP-C1 vector (Figure 22) (Clontech, USA) was provided by 

Dr. Shankar Varadarajan (University of Liverpool, UK). The HPV16 E1 

sequence as shown in Figure 21 was cloned into the pEGFP vector (Figure 23).  
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A) Amino acid sequence of HPV16E1 

 
MADPAGTNGEEGTGCNGWFYVEAVVEKKTGDAISDDENENDSDTGEDLVDFIVNDNDYLT 

QAETETAHALFTAQEAKQHRDAVQVLKRKYLGSPLSDISGCVDNNISPRLKAICIEKQSR 

AAKRRLFESEDSGYGNTEVETQQMLQVEGRHETETPCSQYSGGSGGGCSQYSSGSGGEGV 

SERHTICQTPLTNILNVLKTSNAKAAMLAKFKELYGVSFSELVRPFKSNKSTCCDWCIAA 

FGLTPSIADSIKTLLQQYCLYLHIQSLACSWGMVVLLLVRYKCGKNRETIEKLLSKLLCV 

SPMCMMIEPPKLRSTAAALYWYKTGISNISEVYGDTPEWIQRQTVLQHSFNDCTFELSQM 

VQWAYDNDIVDDSEIAYKYAQLADTNSNASAFLKSNSQAKIVKDCATMCRHYKRAEKKQM 

SMSQWIKYRCDRVDDGGDWKQIVMFLRYQGVEFMSFLTALKRFLQGIPKKNCILLYGAAN 

TGKSLFGMSLMKFLQGSVICFVNSKSHFWLQPLADAKIGMLDDATVPCWNYIDDNLRNAL 

DGNLVSMDVKHRPLVQLKCPPLLITSNINAGTDSRWPYLHNRLVVFTFPNEFPFDENGNP 

VYELNDKNWKSFFSRTWSRLSLHEDEDKENDGDSLPTFKCVSGQNTNTL 
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B) Nucleotide sequence of HPV16E1 

 
ATGGCCGACCCCGCTGGGACGAATGGGGAAGAAGGGACGGGGTGCAATGGCTGGTTC

TACGTCGAGGCGGTTGTGGAAAAAAAAACCGGCGATGCAATATCCGACGACGAAAAC

GAGAATGATTCAGACACAGGCGAAGACCTCGTCGATTTTATTGTTAACGATAATGAT

TATCTGACCCAAGCAGAAACAGAGACAGCCCACGCGCTTTTTACGGCCCAAGAGGCC

AAACAGCACAGAGATGCCGTGCAAGTGCTTAAGCGCAAATATCTCGGGTCACCATTG

TCCGATATATCAGGCTGTGTAGACAATAACATAAGCCCTAGACTTAAGGCAATCTGC

ATAGAAAAGCAAAGTCGCGCCGCCAAACGCAGGCTGTTCGAAAGCGAGGACTCCGGC

TACGGGAACACCGAGGTCGAGACCCAGCAGATGCTGCAGGTTGAAGGGCGCCATGAG

ACTGAGACTCCATGTAGTCAATATAGCGGAGGCTCAGGAGGCGGTTGCTCTCAGTAC

TCCTCAGGTAGCGGAGGGGAGGGAGTGTCAGAGCGGCACACCATCTGTCAGACTCCC

CTGACCAATATTCTTAACGTGCTTAAAACCTCTAACGCGAAGGCAGCCATGCTTGCT

AAATTCAAGGAGCTGTATGGAGTTAGCTTCTCAGAACTGGTTAGACCATTTAAAAGT

AACAAATCCACGTGCTGCGATTGGTGTATAGCAGCCTTCGGCCTCACTCCTTCAATC

GCCGATAGCATTAAAACACTCCTGCAACAGTATTGCCTCTATCTCCACATCCAGAGC

CTTGCTTGCAGTTGGGGGATGGTCGTGTTGCTTCTTGTGCGCTATAAGTGCGGCAAG

AACCGGGAGACGATTGAAAAACTTCTGAGCAAGCTTCTTTGCGTATCCCCAATGTGC

ATGATGATCGAGCCACCCAAGCTCCGGTCCACTGCTGCAGCGCTGTACTGGTATAAA

ACAGGTATAAGTAACATCTCCGAGGTTTACGGCGACACTCCCGAGTGGATCCAAAGA

CAGACTGTTCTTCAGCATTCCTTTAACGATTGCACGTTTGAACTGAGCCAGATGGTG

CAGTGGGCTTATGACAACGACATCGTTGATGACAGCGAAATTGCCTACAAGTACGCA

CAGTTGGCCGATACAAATAGCAATGCCAGTGCATTTCTTAAGAGTAATTCACAGGCG

AAAATTGTCAAGGACTGCGCTACAATGTGCCGACATTATAAGCGCGCAGAGAAGAAG

CAGATGAGCATGTCTCAGTGGATCAAGTATAGGTGTGACAGAGTTGATGATGGAGGA

GATTGGAAGCAGATTGTTATGTTCCTGCGATACCAGGGCGTGGAATTTATGTCTTTT

TTGACTGCATTGAAACGCTTTCTGCAGGGAATTCCCAAAAAAAATTGTATCCTCCTG

TACGGGGCGGCTAACACTGGCAAGTCCCTCTTTGGCATGTCACTGATGAAGTTCCTG

CAAGGAAGCGTCATCTGCTTCGTCAATTCAAAAAGTCACTTTTGGTTGCAGCCTCTC

GCAGATGCAAAAATCGGAATGCTCGACGATGCCACAGTGCCATGTTGGAATTATATC

GATGATAATCTGCGGAACGCTCTGGATGGTAATCTCGTCTCCATGGATGTGAAGCAT

CGCCCGCTGGTACAGCTCAAATGCCCTCCCTTGCTCATAACTTCCAACATCAATGCC

GGCACCGACTCCCGCTGGCCGTATTTGCATAACAGGCTTGTGGTCTTTACCTTCCCC

AATGAGTTTCCATTCGACGAGAATGGGAATCCCGTGTACGAACTGAACGACAAGAAT

TGGAAGTCTTTCTTCAGCAGGACTTGGTCACGGCTGTCTCTGCACGAGGACGAGGAC

AAAGAGAACGACGGTGATTCCCTCCCTACCTTCAAATGCGTATCTGGTCAAAATACC

AACACACTGTAG 

 

 

Figure 21. HPV16 E1 sequence used to construct pEGFP-E1. 

A) amino acid sequence B) nucleotide sequence. 
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Figure 22. Schematic of pEGFP-C1 vector control plasmid. 
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Figure 23. Schematic of inserted HPV16 E1 sequence in pEGFP-C1 plasmid. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 70 

3. Plasmid extraction 

After the colonies were grown to the desired OD 600 (0.6-0.8), plasmid extraction 

was performed according to manufacturer’s protocol using either NucleoSpin® 

Plasmid miniprep (Machery-Nagel, Germany) or NucleoBond® Xtra midiprep 

(Machery-Nagel, Germany) depending on the volume of bacterial culture.  In brief, 

bacteria containing the desired plasmid were pelleted at 5000 g for 15 min.  

Resuspension buffer was added to the pellet and vortexed to ensure thorough mixing.  

Lysis buffer was added and mixed gently to ensure complete lysis while protecting 

the DNA from being damaged.  Neutralization buffer was added and mixed gently.  

To clear the lysate, the solution was centrifuged (11,000 g) for 5 minutes.  The 

supernatant was collected and applied to a NucleoSpin® Plasmid column, binding the 

DNA to the column.  The column was then either centrifuged or allowed to elute by 

gravity flow.  The flow through was discarded and the column was washed once with 

wash buffer.   The plasmid DNA was then eluted and precipitated with isopropanol 

and centrifugation (15,000 g for 15 min). The precipitate was then washed with 70% 

ethanol and centrifuged again (15,000 g for 15 min).  The pellet was resuspended in 

10 mMTris-HCl, pH 8.5 for downstream use.   

  

4. HPV16 E1 transfection and detection 

HEK 293T cells were transfected with either pEGFP vector control plasmid or 

pEGFP-E1 plasmid using X-tremeGENE HP DNA Transfection reagent (Roche, 

USA). Transfection was performed according to manufacturer’s protocol.  Complexes 

were prepared in Opti-MEM™ I Reduced Serum Media (Gibco, USA). A 1:3 ratio of 

plasmid to transfection reagent was used for all experiments at a concentration of 1 µg 

plasmid/100 µL Opti-MEM™. GFP positive cells were detected using fluorescence 

microscopy and flow cytometry.  

 

5. Cell proliferation assay by viable cell count 

HEK 293T cells were seeded at a density of 5x10
4
 cells/mL of growth medium 

into each well of 24-well plate.  After 24 h, cells were transfected with 0.25 µg of 

either pEGFP or pEGFP-E1.  At 12, 24, 36, and 48 h post-transfection, cells were 
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harvested and stained with 0.4% trypan blue (Sigma-Aldrich, USA).  Viable and non-

viable cells were counted using a hemocytometer counting chamber. Two 

independent experiments with triplicate wells were performed. 

 

6. Cell proliferation assay using CountBright™ Absolute Counting Beads 

CountBright™ Absolute Counting Beads (Invitrogen, USA) are a calibrated 

suspension of microspheres approximately 7 µm in diameter that fluoresce brightly 

and have a wide range of excitation and emission wavelengths (UV to 635 nm 

excitation and 385-800 nm emission). Using flow cytometry, the microspheres can be 

separated from cells by either scatter or fluorescence threshold ratio of microspheres 

to cells in a known volume, which can then be used to calculate the absolute number 

of cells in a sample. HEK 293T cells were seeded at a density of 5x10
4
 cells/mL of 

growth medium into each well of 24-well plate.  After 24 h, the cells were transfected 

with either pEGFP or pEGFP-E1.  At 12, 24, 36, and 48 h post-transfection, the cells 

were harvested and 10µL of CountBright™ Absolute Counting Beads were added to 

each sample.  Final cell count was determined by AxC/B where A = number of cell 

events, B = number of bead events and C = assigned bead count of the lot 

(beads/10µL).  

 

7. Cell proliferation assay using TetraZ™ Cell Proliferation Kit 

In order to quantify cellular proliferation, TetraZ™ Cell Counting Kit 

(BioLegend, USA) was used. The TetraZ™ Cell Counting solution is based on the 

dehydrogenase activity of viable cells. Upon addition of the TetraZ™ Cell Counting 

solution, viable cells produce a water soluble dye. Because the amount of dye 

produced is proportional to the amount of viable cells, cell proliferation can be 

determined by measuring absorbance. The transfection of either control plasmid or 

HPV16 E1 plasmid into the HEK 293T cells was performed as previously described.  

Twelve hours post-transfection, the culture medium was removed and replenished 

with new medium.   At 12, 24, 36, and 48 h post-transfection, 10µL of TetraZ™ 

solution was added to each well.  The cells were then placed in a 37°C, 5% CO2 
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incubator for 2 h.  Absorbance was measured at 450nm using a microplate reader 

(Perkin Elmer).  

 

8. Cell viability assay using Zombie Yellow™ Fixable Viability Kit 

To determine the cytotoxicity of E1 transfected cells, Zombie Yellow™ Fixable 

Viability Kit (BioLegend, USA) was used, which is an amine-reactive fluorescent dye 

that is permanent to cells with compromised membranes but non-permanent to live 

cells. The transfection of either control plasmid or HPV16 E1 plasmid into the HEK 

293T cells was performed as previously described.  The Zombie Yellow™ dye was 

diluted at a ratio of 1:100 in PBS.   At 24, 48, and 72 h post-transfection, the cells 

were harvested, washed in PBS and resuspended with 100 µL of diluted Zombie 

Yellow™ solution. Cells were incubated at room temperature, in the dark, for 15 min.  

After incubation, the cells were washed and resuspended in PBS containing 2% FBS 

and then analysed by flow cytometry (BD FACSAria™ II).  Two independent 

experiments with triplicate wells were performed. 

 

9. Apoptosis  

Apoptosis occurs normally in cells as a mechanism of programmed cell death. 

However, apoptosis can also occur as a defence mechanism when cells are under 

stress. A hallmark characteristic of apoptosis is the translocation of the phospholipid 

phosphatidylserine (PS) which is normally located in the inner plasma membrane 

leaflet of healthy cells to the outer membrane leaflet (Jacobs et al., 2012). The 

anticoagulant, annexin V is able to preferentially bind phosphatidylserine (Koopman 

et al., 1994). Therefore, APC-conjugated annexin V was used to quantitate apoptotic 

cells in this study.  Propidium iodide is a nucleic acid-binding dye that is excluded 

from live cells but is permeable to late apoptotic and necrotic cells.  In order to 

determine the extent of apoptosis in cells transfected with either pEGFP or pEGFP-

E1, the transfected HEK 293T cells were harvested at 24, 48, and 72 h post-

transfection and washed with PBS. Cells were resuspended in 100 µL of binding 

buffer (140 mM NaCl, 4 mM KCl, 0.75 mM MgCl2, 10 mM HEPES and 2.5 mM 

CaCl2, pH 7.4) and stained with 5 µL of APC-conjugated annexin V (Biolegend, 
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USA) in the dark at room temperature for 15 min. Propidium iodide (final 

concentration 2.5 µg/mL) (Biolegend, USA) was added to the cells and incubated for 

5 min at room temperature in the dark.   Apoptosis and cell death were analysed by 

flow cytometry (BD FACSAria™ II). For confocal imaging of apoptosis, cells 

transfected with pEGFP were incubated with 5 µL of APC-conjugated annexin V for 

15 min and imaged (Olympus FV 3000).  

In order to confirm E1 induced apoptosis, QVD-OPH, a broad spectrum caspase 

inhibitor was used to block apoptosis (Caserta et al., 2003). HEK 293T cells in 24-

well plate were treated with 2.5µM Q-VD-OPH (Sigma Aldrich, USA).  After 24 h 

treatment, the cells were transfected with either pEGFP or pEGFP-E1.  At 48 h post-

transfection, cells were harvested and stained with Annexin V and PI, using the same 

protocol as previously described above.  Apoptosis and cell death were analysed by 

flow cytometry (BD FACSAria™ II). 

 

10. Microarray  

HEK 293T cells were seeded (2.0x10
6
 cells in 10 mL growth medium) into T75 

flasks, and after 24 h, cells were transfected with either pEGFP or pEGFP-E1.  Forty-

eight hours after transfection, the cells were trypsinized.  The GFP-positive cells were 

sorted by flow cytometry (BD FACSAria™ II).   DNA, RNA, and protein were 

extracted from the sorted cells using NucleoSpin® TriPrep (Macherey-Nagel, 

Germany).  Extracted RNA was then precipitated using 0.3M sodium acetate and 1 

volume of isopropanol. The solution was chilled at -20°C for at least 1 h. The pellet 

was centrifuged for 15 min (15,000 g, 4 °C ), washed with 70% ethanol and 

centrifuged again for 15 min (15,000 g, 4 °C ).  Precipitated RNA was then sent for 

microarray analysis (Illumina Human HT-12 platform) (Macrogen, Republic of 

Korea).  

Bioinformatics analysis was performed by Macrogen. Significant difference in 

gene expression between pEGFP and pEGFP-E1 transfected cells was set at a 

difference of 2-fold.  
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11. Prime PCR 

RNA was extracted from GFP-positive cells using NucleoSpin® RNA Plus 

(Macherey-Nagel, Germany). Extracted RNA (3 µg) was reverse transcribed using 

Super Script IV (Invitrogen, USA) according to manufacturer’s protocol.  The cDNA 

from pEGFP or pEGFP-E1 transfected cells was amplified by real-time PCR using 

PrimePCR™ 96 well as follows: 10µL of 2x SsoAdvanced™ Universal SYBR® 

Green Supermix (Bio-Rad, USA), 1µL of cDNA template, and 9µL of Nuclease-free 

H2O for a final volume of 20µL. The PCR reaction was as follows: initial 

denaturation at 95°C for 2 min, followed by 40 cycles of 95°C for 30 s, 60°C for 30 

sec. GAPDH was used as a reference gene.  Gene expression analysis was calculated 

using the 2
-ΔΔCT 

method.  
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CHAPTER V 

RESULTS 

Part I   HPV16 E1 DNA and mRNA detection in clinical specimens 

1. Patient demographic data 

One-hundred and twenty-four HPV16 positive samples were used in this study. 

The samples were categorized using cytology (Pap smear) and histology (colposcopy) 

results.  Samples positive for HPV16 with no abnormal cytological features were 

recruited as the “Normal” group.  Colposcopy was performed in all patients with 

abnormal Pap smear results.  Pap smear results perfectly correlated with colposcopy 

results, i.e., low grade intraepithelial lesion (LSIL) = CIN 1, high grade intraepithelial 

lesion (HSIL) = CIN 2/3, and SCC.  From this information, this study presents 

categorized 124 samples as: Normal (n=22), CIN 1 (n=38), CIN 2/3 (n=27), and SCC 

(n=37). Mean age (years)±SD (range) for each group were: Normal; 44.35±8.03 (29-

55), CIN I; 44.35±12.50 (16-56), CIN 2/3; 39.37±10.43 (21-57), and SCC; 

51.45±14.89 (28-78), respectively. 

 

2. HPV16 physical state 

The ability of the HPV to cause cancer has been previously correlated with the 

physical state of the viral genome, categorized into: pure episomal, integrated, and 

mixed forms (Pirami et al., 1997; Williams et al., 2011). Viral genome integration 

often results in the disruption of the E2 gene, which leads to overexpression of the 

viral oncogenes E6 and E7 (Jeon et al., 1995), significantly increasing the 

pathogenicity of HPV due to the function of these known oncoproteins (Burke et al., 

2012; Burke et al., 2014; Munger et al., 1992).  In this study, the region of E2 that is 

deleted upon viral integration into the host genome was determined by PCR, and 111 

out of 124 samples (89.5%) from different clinical stages were successfully amplified.  

Of these, integration of the viral genome was observed in 31 samples (28%), i.e., 
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Normal 7/19 (37%), CIN 1 10/34 (29%), CIN2/3 6/24 (25%) and SCC 8/34 (24%) 

whereas the rest (72%) exhibited a mixed or pure episomal form.  

 

 

 

 

 

Figure 24. Establishment of a cut-off value for HPV16 physical state of episomal and 

mixed forms using HPV16 E2 and E6 genes.  

Full-length HPV16 plasmid DNA was mixed with SiHa DNA to produce mixed forms 

of HPV16 episomal and integrated DNA. These forms represented episomal, 

integrated and mixed forms ranging from 20 to 80% integration. Differences in E2 

and E6 copy number was determined by unpaired t-test. Bars indicate standard error 

and * indicates p-values < 0.05. 
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To distinguish the episomal from mixed form, we performed quantitative real-

time PCR (qPCR) in 39 samples. To set a cut-off point between mixed and episomal 

forms, full-length plasmid DNA was mixed with 20-80% of SiHa DNA (absence of 

E2 gene) (Figure 24). Of the 39 samples, integrated, mixed and episomal forms were 

observed in 18%, 28%, and 54%, respectively (Table 2).  From the qPCR results, the 

episomal form was observed in 33% of Normal, 88% of CIN 1, 83% of CIN 2/3 and 

37% of SCC patients. Three discrepancies (integrated to mixed form) were found. 

 

Table 2. Physical state determined by PCR and quantitative real-time PCR (qPCR). 

 
 

 

3. HPV16 E1 induces apoptosis and necrosis 

It has been established that E1 is essential to the initiation of viral replication and 

could potentially instigate carcinogenesis (Castillo et al., 2014). Consequently, the 

correlation between E1 expression and carcinogenesis was first investigated.  E1 

mRNA expression was quantitatively determined and normalized to β-actin for each 

sample by Droplet Digital PCR (ddPCR) (Figure 25, Figure 26, and Figure 27). To 

establish the cut-off for E1 positive droplets, cDNA from the CaSki cell line was used 

(Figure 25). After E1 amplification, positive droplets were calculated for both E1 and 

β-actin. 

  

 

Method Physical State NORMAL CIN 1 CIN 2/3 SCC Total 

PCR 

 

MIXED 3 (50%) 7 (88%) 6 (100%) 13 (68%) 74% 

INTEGRATED 3 (50%) 1 (12%) 0 6 (32%) 26% 

 

qPCR 

EPISOMAL 2 (33%) 7 (88%) 5 (83%) 7 (37%) 54% 

MIXED 2 (33%) 1 (12%) 1 (17%) 7 (37%) 28% 

INTEGRATED 2 (33%) 0 0 5 (26%) 18% 

 DISCORDANCE (N) 1 1 0 1  
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Figure 25. Graphical representation of amplified SiHa cDNA used for quantification 

of E1 and β-actin mRNAs by ddPCR. 

A) Individual droplet amplitude of E1 mRNA B) Histogram of E1 mRNA C) 

Individual droplet amplitude of β-actin and D) Histogram of β-actin. 
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Figure 26. Graphical representation of amplified CaSki cDNA used for quantification 

of E1 and β-actin mRNAs by ddPCR.  

A) Individual droplet amplitude of E1 mRNA B) Histogram of E1 mRNA C) 

Individual droplet amplitude of β-actin and D) Histogram of β-actin 
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Figure 27. Graphical representation of amplified patient sample cDNA used for 

quantification of E1 and β-actin mRNAs by ddPCR.  

A) Individual droplet amplitude of E1 mRNA B) Individual droplet amplitude of β-

actin. 
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Of the 39 samples analysed, the mean relative E1 mRNA expression levels ±SE 

(range) were: Normal (n=5), 0.18±0.06 (0.01-0.33); CIN 1 (n=9), 0.42±0.07 (0.11-

0.70); CIN 2/3 (n=7), 0.65±0.10 (0.29-1.10); and SCC (n=18), 0.79±0.12 (0.04-1.60), 

respectively (Figure 28).   Relative E1 mRNA expression levels in CaSki and SiHa 

cervical cancer cell lines were 0.13 and 0.06, respectively.  To determine if E1 

expression was constant or changed throughout all clinical stages, the mean E1 

mRNA level of all samples (0.60) was set as a cut-off point.  The results revealed that 

the percentage of samples with E1 mRNA expression above the cut-off point were 

0.0% (Normal), 25.0% (CIN 1), 71.4% (CIN 2/3), and 58.8% (SCC) indicating that 

E1 mRNA expression increased in relation to disease stage.  A significant increase in 

E1 expression was found between SCC samples and normal samples (p-value = 

0.014) and CIN 2/3 and normal samples (p-value = 0.003) (Figure 28).   A significant 

positive correlation between E1 expression and clinical stage was therefore 

demonstrated (r = 0.661, p-value = 0.019). 

 

Figure 28. E1 mRNA expression increases with progression of cervical carcinoma.  

Total cellular RNA was extracted from cervical samples, reverse transcribed and 

analysed by ddPCR.  E1 expression was determined relative to clinical stage of each 

patient. E1 expression increases significantly with disease progression.  
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4. E1 expression is not related to physical state of the virus 

In order to determine if E1 expression was related to the physical state of the 

virus, E1 mRNA expression was compared to HPV16 physical state determined by 

both PCR and qPCR.  For PCR, no significant difference was found for E1 

expression:  0.73±0.20 (mean + SE) for integrated HPV and 0.65±0.08 for mixed/pure 

episomal form (p-value = 0.76).  Similarly, qPCR showed no difference (p-value = 

0.487) among episomal (0.97± 0.25), mixed (0.30±0.15) and integrated (0.74±0.19) 

(Figure 29)These results indicate that physical state may not be a crucial factor in 

regulating E1 expression or there were other underlying factors that correlated to the 

dynamic integration pattern of HPV16. 

 

 

 

Figure 29. Physical state of the viral genome (episomal, mixed or integrated) was 

determined by qPCR. 

E1 expression was compared to viral genome physical state. Data is presented as the 

ratio between E1 mRNA and β-actin. Bars represent the standard error.  
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5. Methylation of E2BS is associated with SCC   

Gene expression is regulated by many different mechanisms, one of which is 

DNA methylation.  Since E1 is controlled by both the early and late promoters, 

methylation in both promoter regions was explored.  E2 binding sites (E2BS) 

responsible for transcriptional repression (nucleotide positions 37, 43, 52 and 58), in 

the early promoter region (p97) where the E2 protein binds resulting in negative 

regulation of viral gene expression, were examined by pyrosequencing.  

In order to optimize the pyrosequencing conditions, SiHa and CaSki cell lines were 

used. It has been previously reported that SiHa cells have only 1 – 2 copies of HPV16 

per cell, and that the HPV16 genome in SiHa cells lacks methylation while CaSki 

cells contain approximately 600 copies of HPV16 per cell and are extensively 

methylated (Badal et al., 2003).  

Sixty-six samples (20 Normal, 13 CIN I, 14 CIN 2/3, and 19 SCC) were 

successfully amplified, % methylation of each CpG is shown in Table 3.  

Interestingly, mean methylation levels of all four CpG positions in the E2BS were 

higher in CIN 2/3 (12.60%) and SCC (12.96%) patients, than in Normal (1.29%) and 

CIN 1 (1.37%) patients (Table 3).  The methylation status in SCC samples was 

significantly higher compared to Normal samples, for positions 37 (p-value =0.022), 

43 (p-value =0.006), and 58 (p-value <0.001) (Figure 30 a, b, d).  In addition, SCC 

samples could also be significantly differentiated from CIN 1 patients at positions 43 

(p-value =0.011) and 58 (p-value <0.001) (Figure 30 b, d).   E2BS methylation in 

SCC and CIN 2/3 samples was significantly higher compared with Normal (p-value < 

0.001 and 0.002, respectively) and CIN 1 (p-value <0.001 and < 0.001, respectively) 

(Figure 31). 

Methylation levels of the differentiation induced late promoter region (p670) at 

nucleotide positions 497, 504, 507, and 539 were also determined.   Thirty samples 

(12 Normal, 9 CIN 1, 5 CIN 2/3 and 4 SCC) were investigated.   Methylation levels of 

p670 were higher than those of E2BS in all stages (Figure 31). Methylation at each 

position in the p670 region (497, 504, 507 and 539), was not significantly different.  

However, statistically significant methylation of p670 in SCC was determined 

compared to Normal (p-value = 0.007) and CIN 2/3 (p-value = 0.001), but not CIN 1 

(p-value = 0.2) (Figure 31).  Interestingly, CaSki and SiHa cells, showed different 
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patterns of methylation.  CaSki cells exhibited hypermethylation at all early and late 

promoter positions with a range of 56% - 82%, whereas SiHa cells exhibited 

hypomethylation with a range of 0% - 2%.  Nevertheless, E1 expression from both 

cell lines was comparable (0.13 and 0.06, respectively). 

 

Table 3. Early and late promoter methylation in patient cervical samples. 

Group  Normal CIN 1 CIN 2/3 SCC 

Early promoter 

(p97) 

 

CpG 37  

 

Mean 

SE 

Range 

1.300 

0.21 

1-3 

1.375 

0.26 

1-3 

10.08 

6.088 

1-60 

13.43 

5.14 

1-55 

CpG 42 

 

Mean 

SE 

Range 

1.11 

0.11 

1-2 

1.13 

0.13 

1-2 

19.00 

11.65 

1-68 

13.07 

5.16 

1-55 

CpG 52 Mean 

SE 

Range 

4.00 

2.00 

2-8 

4.00 

2.00 

2-8 

24.17 

12.96 

2-66 

17.45 

6.10 

2-55 

CpG 58 Mean 

SE 

Range 

1.00 

0.00 

1-1 

1.00 

0.00 

1-1 

12.36 

7.42 

1-66 

12.29 

4.54 

1-53 

Total Mean 1.29 1.37 12.60 12.96 

Late Promoter 

(p670) 

 

CpG 497 Mean 

SE 

Range 

21.00 

2.52 

16-24 

29.00 

4.16 

20-39 

21.20 

2.34 

14-28 

45.50 

7.50 

38-53 

CpG 504 Mean 

SE 

Range 

46.67 

9.97 

31-57 

61.80 

8.89 

42-85 

46.75 

4.70 

35-58 

62.50 

1.5 

61-64 

CpG 507 Mean 

SE 

Range 

25.00 

5.51 

14-31 

34.80 

5.03 

22-47 

19.80 

2.56 

13-28 

44.00 

5.00 

39-49 

CpG 539 Mean 

SE 

Range 

38.50 

1.50 

37-40 

37.20 

5.57 

23-51 

36.00 

6.43 

26-48 

46.00 

2.00 

44-48 

Total Mean 32.27 40.70 29.41 49.50 
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Figure 30. The percentage of methylation at different CpG positions of the E2BS.  

(a) p37 (b) p43 (c) p52 and (d) p58.  Significant differences of methylation between 

cancer and normal patients were observed at 3 positions in the E2BS: p37, p43, p58.  

Data are represented as the mean of percentage methylation. 
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Figure 31. Methylation of all positions of E2BS showed a significant difference 

between SCC/CIN 2/3 patients and Normal/CIN 1 patients.  

Late promoter methylation (p670) was consistently higher than E2BS methylation for 

all clinical stages. In the p670 region SCC patients exhibited significantly higher 

methylation than in normal patients.  
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6. Additional genetic events that may be involved in E1-associated 

carcinogenesis 

In addition to measurements of E1 expression levels, genetic variation in the E1 

gene was explored to determine if there was a possible correlation between genetic 

variance and disease progression.  It has been previously reported that a 63 bp 

duplication in the E1 gene of HPV16 is associated with lower disease progression 

(Sabol et al., 2008).  Therefore, the prevalence of the 63 bp duplication genomic 

variant of HPV16 E1 in HPV16 positive samples was determined by PCR (Figure 32).  

Ninety-five out of 124 samples (15 Normal, 22 CIN 1, 32 CIN 2/3 and 26 SCC) were 

successfully analysed.  The 63 bp duplication was exhibited in 4 samples (4.2%), all 

of which were categorized as CIN.  Nucleotide and amino acid sequences of those 4 

samples were analysed using reference HPV16 sequences K02718 and NP_041327.2 

(Figure 33). 

 

 

Figure 32. Gel electrophoresis of wild-type HPV16 E1 (WT) and HPV16 E1 

containing the 63 bp duplication.  

DNA from patient samples were amplified using primers specific to the region of 

interest in HPV16 E1.  The amplified wild-type sequence was at 163 bp while the 

amplified fragments containing the duplication was at 210 bp. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 88 

 

 

Figure 33. A 63 bp duplication was found in the E1 region in 4 clinical samples 

(patients 01-04). 

Samples containing the 63 bp duplication in the E1 region are shown. (a) the 

nucleotide sequence of patients compared to the reference sequence K02718 and (b) 

the predicted amino acid sequence compared to that of the reference sequence 

NP_041327.2 

 

Part II  Functional role of HPV16 E1 transfection in HEK 293T cells  

While a correlation between HPV16 E1 and carcinogenesis was observed in 

patient samples, the specific role of HPV16 E1 in carcinogenesis is still unknown. 

Experiments have determined E1 in various types of HPV to be critical in the 

maintenance of viral genome replication, and also been linked to DNA damage and 

pathways involved in carcinogenesis. The goal of the following experiments was to 

identify the pathways in which HPV16 E1 induces carcinogenesis. 

 

1. Detection of HPV16 E1 transfection in HEK 293T cells 

In order to determine the role of HPV16 E1, HEK 293T cells were transfected 

with either pEGFP (vector control) or pEGFP-E1 (eGFP tagged HPV16 E1). 

Detection of HPV16 E1 transfected cells was observed under fluorescence 

microscopy (Figure 34) and flow cytometry.  The green fluorescence in E1 

transfected HEK 293T cells was found mainly localized in the nucleus whereas the 

green fluorescence (of GFP alone) was observed both in the cytoplasm and nucleus of 

GFP transfected HEK 293T cells.  
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Figure 34. pEGFP and pEGFP-E1 transfect HEK 293T cells. 

Green fluorescence was observed in HEK 293T cells transfected with pEGFP alone 

and with pEGFP-E1 transfected cells under fluorescence microscopy. Arrow denotes 

nuclear localization.  

 

 

2. Full-length HPV16 E1 decreases cell proliferation 

In order to determine if HPV16 E1 influenced cell growth, HEK 293T cells were 

transfected with either pEGFP or pEGFP-E1 and incubated at 37°C. Cell viability was 

quantitated using trypan blue staining technique. The results showed that the 

percentage of cell growth reduction in E1 transfected cells compared to GFP 

transfected cells was 12%, 39%, 38%, and 28% at 12, 24, 36, and 48 hours post-

transfection, respectively. There was a significant difference in cell growth between 

GFP and E1 at 24 (p-value < 0.0001), 36 (p-value = 0.0001), and 48 h (p-value = 

0.0004) (Table 4, Figure 35). 
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Table 4. Number of viable cells of GFP and HPV16 E1 transfected HEK 293T cells. 

 

 

 

 

 

Figure 35. HPV16 E1 decreases cell growth.   

Cell viability was quantitated using trypan blue. Statistically significant cell growth 

reduction was observed in E1 transfected cells at 24, 36, and 48 hours post 

transfection. 

  

 Hours post-transfection 

 12 24 36 48 

 

 

GFP 

62400 124800 105600 112000 

67200 102400 124800 129600 

48000 97600 83200 105600 

68800 105600 108800 115200 

78400 100800 115200 124800 

70400 115200 123200 128000 

Mean±SE 65867±4160 107733±4206 110133±6216 119200±3957 

 

 

E1 

46400 68800 75200 97600 

49600 59200 72000 96000 

67200 64000 73600 64000 

59200 72000 70400 88000 

57600 64000 60800 76800 

68800 65600 57600 89600 

Mean±SE 58133±3687 65600±1801 68267±2969 85333±5220 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 91 

HPV16 E1 is comprised of 4 main domains: the N-terminal domain (ND) which 

contains the nuclear localization and export signals; the DNA binding domain (DBD) 

which binds to the viral replication origin; the oligomerization domain (OD) which is 

responsible for oligomerization and the ATPase helicase domain (HD). Plasmids 

containing the various domains of E1 were constructed i.e., pEGFP-E1-184 (ND) 

pEGFP-E1-359 (ND+DBD) pEGFP-E1-439 (ND+DBD+OD) (Figure 36) to explore 

which domain is important in cell growth reduction. HEK 293T cells were transfected 

with these 3 truncated forms of E1 along with full-length E1 and GFP vector control. 

Cell growth was measured using CountBright™ absolute counting beads and flow 

cytometry. Statistically significant cell growth reduction was observed in pEGFP-E1 

(49%, p-value < 0.0001), pEGFP-E1-184 (11%, p-value < 0.01) and pEGFP-E1-359 

(21%, p-value < 0.003) compared to pEGFP vector control (Figure 37 and Table 6). 

 

 

Figure 36. Truncated pEGFP-E1 plasmids and corresponding domains.  
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Figure 37. Full-length and partially truncated forms of E1inhibit cell proliferation.  

HEK 293T cells were transfected with either the vector control (GFP), full-length 

HPV16 E1(E1) or one of the truncated forms (184, 359 and 439). Cell count was 

analysed using CountBright™ beads and flow cytometry 

 

Table 5. Absolute cell count using CountBright™ beads for HEK 293T cells 

transfected with plasmids containing either the vector control, full-length E1 or 

truncated forms of E1. 

* indicates p-value < 0.05 

 

 GFP E1 184 359 439 

 

 

Absolute 

Cell 

Count 

85221 45597 78494 63527 89922 

91307 43184 77710 63584 89346 

90674 45041 80928 83572 84399 

102763 53416 90091 75679 101537 

98297 50344 86288 71184 99177 

96115 51744 87634 89317 91828 

Mean 94063 48221* 83524* 74477* 92701 

SE 2550 1696 2109 4296 2637 
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To confirm the growth inhibitory effect of full-length and truncated forms of E1, 

cell proliferation was quantitated by the TetraZ™ Cell Counting Kit which is a 

colorimetric cell counting kit based on the ability of viable cells to convert 

tetrazolium salts to formazan, which can then be quantitated.  

The results show that there was an increase in cell proliferation with incubation 

time for all truncated forms of HPV16 E1 and pEGFP.  In contrast, full-length HPV16 

E1 showed a significant reduction in cell proliferation at 24 (p = 0.04) and 36 hours (p 

= 0.008) post-transfection compared to the pEGFP vector control. The mean OD450   at 

24 and 36 hours cells post-transfection was 1.83 and 1.98 while the mean OD450  for 

E1 transfected cells was 0.98 and 0.72. In conclusion, full-length E1 strongly 

inhibited cell proliferation at a statistically significant level in all experiments. It was 

also noted that only cells transfected with full-length HPV16 E1 exhibited decreased 

cell viability.   

 

 

 

Figure 38. Cell proliferation of GFP vector control, full-length HPV16 E1 and 

truncated forms of HPV16 E1.  

Cell proliferation was significantly decreased in full-length HPV16 E1 transfected 

cells. 
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Table 6. Full-length E1 decreases cellular proliferation at 24 and 36 hours post-

transfection.  

* indicated p-value < 0.05. 

 

Hours PT  MOCK GFP E1 WT 184 359 439 

 Mean 1.12 1.18 1.25 1.29 1.40 1.50 

12 SE 0.04 0.03 0.07 0.05 0.08 0.06 

 Min 1.06 1.14 1.146 1.21 1.29 1.41 

 Max 1.17 1.22 1.35 1.35 1.51 1.59 

 Mean 1.94 1.83 0.98 * 1.88 1.86 1.78 

24 SE 0.22 0.28 0.22 0.28 0.27 0.24 

 Min 1.42 1.18 0.47 1.22 1.19 1.21 

 Max 2.57 2.57 1.56 2.61 2.63 2.40 

 Mean 1.96 1.98 0.73 * 1.85 1.93 1.88 

36 SE 0.24 0.36 0.12 0.29 0.32 0.30 

 Min. 1.38 1.14 0.45 1.19 1.16 1.18 

 Max 2.62 2.83 1.02 2.55 2.67 2.60 

 

 

 

3. HPV16 E1 induces apoptosis and necrosis 

Previous experiments indicated that transfection with full-length HPV16 E1 

caused decreased proliferation in cells, when compared to transfection with the vector 

control. Decreases in cell proliferation can be induced by cell cycle arrest, but also 

cell death. It was noted from the previous experiments that HPV16 E1 may increase 

cell death.  Subsequently the following experiments aimed to confirm if transfection 

with HPV16 E1 induced cell death in addition to decreasing cell proliferation.  

HEK 293 T cells were transfected with either the GFP vector control or HPV16 

E1, and cell death at 24, 48 and 72 hours after transfection was measured by staining 

with the viability dye, Zombie Yellow™, and analysed by flow cytometry.  E1 

induced significant cell death at 24 and 72 hours post-transfection (Figure 39). Death 

in vector control cells was less than 10% for the duration of the experiment. In 

contrast, the percentage of cell death increased over time in cells transfected with E1, 

i.e. 3.68% ± 0.75% at 24 hours, 13.13% ± 1.44% at 48 hours, and 34.63% ± 6.59% at 

72 hours post-transfection. 
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Figure 39. E1 induces cell death.  

HEK 293 T cells were transfected with either pEGFP or pEGFP-E1. Cells were 

stained with Zombie Yellow and percent cell death was analysed by flow cytometry at 

24, 48, and 72 hours post-transfection. Black bars indicate HEK 293T cells 

transfected with pEGFP vector control while grey bars indicate cells transfected with 

pEGFP-E1. 
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Since E1 also induced cell death, further exploration of the mechanism by which 

E1 induces death was undertaken.  Cell death can occur naturally or can be induced 

by external factors, and it is also initiated through many pathways, the two most 

common being apoptosis and necrosis. 

In order to determine whether HPV16 E1 induced cell death through apoptosis or 

necrosis, HEK 293T cells were transfected with either pEGFP or pEGFP-E1. 

Apoptosis and cell death were measured by annexin V and propidium iodide staining 

at 24, 48, and 72 hours post-transfection using flow cytometry (Figure 40). The results 

revealed that HPV16 E1 significantly induced apoptosis starting at 24 h (p-value < 

0.001), 48 h (p-value < 0.001), and 72 h (p-value < 0.001) post-transfection. The 

difference in mean percentages of apoptotic cells between E1 transfected cells and the 

vector control were 10.97%, 26.44 % and 28.3 % at 24, 48, and 72 hours, 

respectively.  A significant increase in mean percentage of necrotic cells was also 

observed in cells transfected with E1, i.e., 6.33 % (p-value = 0.007), 15.35% (p-value 

= 0.022), 26.20% (p-value < 0.001) at 24, 48, and 72 hours, respectively (Figure 40, 

Table 7).  This experiment demonstrated that, in addition to decrease cell 

proliferation, E1 also causes cell death through both the apoptosis and necrosis 

pathways.  

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 97 

 

 

Figure 40. E1 induces both apoptosis and necrosis. 

HEK 293 T cells were transfected with either pEGFP or pEGFP-E1. Apoptosis was 

measured using annexin V, necrosis was measured using propidium iodide.  Results 

were analysed by flow cytometry. Significant difference between pEGFP and pEGFP-

E1 transfected cells are denoted by *.  
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Table 7. Percentage of apoptotic cells at 24, 48 and 72 hours post-transfection.  

Data presented as Mean + SE.   

 24 h 48 h 72 h 

GFP    

Early Apoptosis 1.39 + 0.22 1.64 + 0.23 2.08 + 0.22 

Apoptosis 1.70 + 0.21 2.10 + 0.28 3.74 + 0.53 

Necrosis 1.12 + 0.29 2.30 + 0.49 2.10 + 0.41 

Dead 2.82 + 0.23 4.39 + 0.37 5.84 + 0.43 

E1    

Early Apoptosis 2.66 + 0.68 4.46 + 0.94 1.37 + 0.063 

Apoptosis 13.42 + 1.80 28.54 + 3.16 32.04 + 5.04 

Necrosis 7.45 + 1.83 17.64 + 5.64 28.30 + 5.35 

Dead 20.87 + 2.80 46.19 + 4.634 60.34 + 3.68 

 

 

 

 

Figure 41. APC conjugated Annexin V staining in pEGFP or pEGFP E1transfected 

HEK 293T cells 48 hours post-transfection.  
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Subsequently, to confirm whether cell death caused by HPV16 E1 was due to 

apoptosis, the pan-caspase inhibitor, QVD-OPH was used to treat cells 24 hours prior 

to transfection. In order to determine the cytotoxicity of QVD-OPH on HEK 293T 

cells, the cells were treated with QVD-OPH for 72 hours. Cell death was then 

analysed using propidium iodide and flow cytometry. It was found that at 

concentrations higher than 2.5 µM QVD-OPH induced a significant amount of cell 

death (Figure 42). Mean cell death for cells treated with 5 µM and 10 µM of QVD-

OPH was 15.4% (p-value = 0.04) and 15.7% (p-value = 0.001) respectively.  

Additionally, cell viability was confirmed using TetraZ™ Cell Counting Kit. Average 

% viability was, 100% (CT), 97.7% (1.25 µM), 86% (2.5 µM), and 67% (5 µM), 34% 

(10 µM) (Figure 43). Because 5 µM and 10 µM concentrations negatively influenced 

cell viability in both experiments, 2.5 µM of QVD-OPH was used to treat cells. HEK 

293T cells were treated with QVD-OPH, a pan-caspase inhibitor continuously, 

starting from 24 hours prior to transfection with either pEGFP or pEGFP-E1.  

Apoptosis and cell death were measured by annexin V and propidium iodide staining 

at 48 hours post-transfection by flow cytometry.  There was a decreasing trend of 

apoptosis in cells treated with QVD-OPH, however the results were not statistically 

significant (p-value = 0.20) as shown in Figure 44. 
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Figure 42. Percentage of cell death in cells treated with QVD-OPH. 

HEK 293T cells were treated with QVD-OPH at the indicated concentrations for 72 

hours. Cell death was determined by propidium iodide staining and analysed by flow 

cytometry.  
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Figure 43. Percentage of viable cells treated with QVD-OPH. 

Cells were treated with QVD-OPH for 72 hours. Cell viability was determined using 

TetraZ™ Cell Counting Kit and quantitated at 450 nm using a microplate reader.  
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Figure 44. Treatment of E1 transfected cells with QVD-OPH showed a decreasing 

trend in apoptosis. 

HEK 293 T cells were treated with QVD-OPH 24 hours prior to transfection with 

either pEGFP or pEGFP-E1. Apoptosis was determined using annexin V and 

quantitated by flow cytometry 48 hours after transfection.  
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4. HPV16 E1 affects many host cellular pathways 

The previous experiments suggested that HPV16 E1 induced apoptosis but 

also caused cell death through other pathways. In order to further explore the role of 

HPV16 E1, HEK 293T cells were transfected with either pEGFP or pEGFP-E1. 

Microarray analysis was performed on RNA collected 48 hours post-transfection. 

Gene expression profiles revealed that E1 impacted gene expression in various 

pathways. In total, 416 genes were differentially expressed in HPV16 E1 transfected 

cells of these 238 were upregulated (> 2-fold change), and 177 were downregulated 

(< 2-fold change).  Gene expression pattern was significantly different in non-

transfected HEK 293T cells, pEGFP transfected cells and pEGFP E1 transfected cells 

as shown in the heatmap (Figure 45). The genes with the highest differential 

expression in E1 transfected cells were small nucleolar RNA C/D box A and C, 

SNORD3A (16.59-fold change) and SNORD3C (16.02-fold change); and SNORD84 

(7.31-fold change). The next overexpressed gene was interferon stimulated gene 20, 

ISG20 (8.94-fold change) which is a gene known to exhibit antiviral properties. The 

fifth upregulated gene was variable charged X-link, VCX (6.21-fold change). In 

contrast, E1 suppressed the expression of many genes including inhibin beta E 

subunit, INHBE (-5.70-fold change). INHBE encodes for an inhibin beta subunit 

which is a member of transforming growth factor-beta superfamily. In addition, DNA 

Damage Inducible Transcript 4, DDIT4 (-4.43-fold change), normally upregulated 

during DNA damage (Ellisen et al., 2002), TSC22 domain family member 3, 

TSC22D3 (-3.90-fold change), encodes a glucocorticoid induced leucine zipper 

protein and interacts with FoxO3 were also suppressed. The most influenced 

pathways induced by E1 included ribosome, metabolism, transcriptional 

misregulation, cell proliferation and cell death (Table 8). Many genes involved in cell 

proliferation and death were significantly different between the vector control and E1 

transfected cells. A total of 117 genes differentially expressed genes involved in cell 

growth/death were identified, 59 were upregulated while 58 were downregulated 

(Table 9).  
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Figure 45.f Heat map showing gene expression patterns in non-transfected HEK 293T 

cells, pEGFP transfected cells and pEGFP-E1 transfected cells. 
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Table 8. Pathways significantly influenced by E1 from gene expression analysis. 

 

 
  

Pathway Sig. Genes p value Pathway Sig. Genes p value

Ribosome 14 9.33E-15 Epithelial cell signaling in Helicobacter pylori infection 4 0.00208

FoxO signaling pathway 9 4.51E-08 Prolactin signaling pathway 4 0.00243

Hepatitis B 9 8.46E-08 Phagosome 5 0.00252

Neurotrophin signaling pathway 8 3.74E-07 Pertussis 4 0.00271

Transcriptional misregulation in cancer 9 3.75E-07 RNA transport 5 0.00362

MAPK signaling pathway 10 4.97E-07 Estrogen signaling pathway 4 0.00592

PI3K-Akt signaling pathway 11 6.39E-07 HIF-1 signaling pathway 4 0.00641

Small cell lung cancer 7 9.77E-07 Chagas disease (American trypanosomiasis) 4 0.00657

Pathways in cancer 11 2.12E-06 Toll-like receptor signaling pathway 4 0.00692

Legionellosis 6 2.41E-06 Alanine, aspartate and glutamate metabolism 3 0.00763

Protein processing in endoplasmic reticulum 8 3.33E-06 Bladder cancer 3 0.00887

Metabolic pathways 17 8.45E-06 Cell cycle 4 0.01049

Measles 7 0.00001 Osteoclast differentiation 4 0.01212

Non-alcoholic fatty liver disease (NAFLD) 7 0.00002 Amino sugar and nucleotide sugar metabolism 3 0.01362

Prostate cancer 6 0.00002 Malaria 3 0.01414

NF-kappa B signaling pathway 6 0.00002 Endocytosis 5 0.01427

Cocaine addiction 5 0.00004 Wnt signaling pathway 4 0.01442

HTLV-I infection 8 0.00005 Insulin signaling pathway 4 0.01442

Huntington's disease 7 0.00008 Signaling pathways regulating pluripotency of stem cells 4 0.01496

Toxoplasmosis 6 0.00009 Glutathione metabolism 3 0.01521

Colorectal cancer 5 0.00009 Pathogenic Escherichia coli infection 3 0.01746

Epstein-Barr virus infection 7 0.00010 Hippo signaling pathway 4 0.01845

Viral carcinogenesis 7 0.00011 NOD-like receptor signaling pathway 3 0.01863

Glycolysis / Gluconeogenesis 5 0.00012 Acute myeloid leukemia 3 0.01863

Biosynthesis of antibiotics 7 0.00014 cGMP-PKG signaling pathway 4 0.02270

Adipocytokine signaling pathway 5 0.00014 Pancreatic cancer 3 0.02430

Regulation of actin cytoskeleton 7 0.00014 Central carbon metabolism in cancer 3 0.02497

Ubiquitin mediated proteolysis 6 0.00016 Amphetamine addiction 3 0.02564

Chronic myeloid leukemia 5 0.00017 RIG-I-like receptor signaling pathway 3 0.02702

Apoptosis 5 0.00030 Thyroid hormone synthesis 3 0.02842

Alzheimer's disease 6 0.00039 Herpes simplex infection 4 0.02978

Influenza A 6 0.00049 Leishmaniasis 3 0.02985

Tuberculosis 6 0.00052 Biosynthesis of amino acids 3 0.02985

Alcoholism 6 0.00053 Chemokine signaling pathway 4 0.03100

TNF signaling pathway 5 0.00074 Cardiac muscle contraction 3 0.03280

MicroRNAs in cancer 7 0.00076 TGF-beta signaling pathway 3 0.03431

cAMP signaling pathway 6 0.00084 Salmonella infection 3 0.03901

Amyotrophic lateral sclerosis (ALS) 4 0.00094 ErbB signaling pathway 3 0.03982

Sphingolipid signaling pathway 5 0.00101 Rap1 signaling pathway 4 0.04068

AMPK signaling pathway 5 0.00114 Gap junction 3 0.04145

Non-small cell lung cancer 4 0.00122 Ras signaling pathway 4 0.04908

Shigellosis 4 0.00183
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Table 9. Genes differentially expressed in HPV16 E1 transfected cells involved in cell 

proliferation and cell death.  
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Because E1 influences many pathways involved in cell death and proliferation, the 

panel of genes comprised of hallmark genes in the cell proliferation, apoptosis, and 

DNA damage pathways, along with genes that were highly up/downregulated from 

these pathways were selected for validation by real-time RT PCR.  Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway analysis of apoptotic pathway 

and pathways involved in cell cycle and proliferation were analysed, genes with a 

differential expression of 2-fold were considered significant  (Figure 46). A total of 38 

genes were included in the panel (Table 10). In total, the real-time RT PCR identified 

24 differentially expressed genes (3 upregulated and 21 downregulated) after 48 hours 

of transfection. The genes most affected by E1 transfection were genes involved in 

cell proliferation and DNA damage. Only 2 out of 8 genes, BAK1 (0.30) and CASP3 

(0.23), in the apoptosis pathway showed any differential expression, whereas 16 out 

of 22 in the cell proliferation pathway and 5 out of 6 genes in the DNA damage 

pathways were found. Once it was confirmed that E1 had an effect on gene expression 

at 48 post-transfection the next experiment sought to determine if the effect on gene 

expression was time-dependent. Therefore, real-time RT PCR was performed on RNA 

collected from cells transfected with either vector control or HPV16 E1 at 12 and 24 

hours post transfection. The results revealed that changes in expression occurred in a 

time-dependent manner. At 12 hours post-transfection only 5 genes out of the 38 in 

the panel were differentially expressed, while 12 genes were up/downregulated after 

24 hours of transfection. The results from the real-time RT PCR concluded that E1 

indeed has an effect on gene expression in a time-dependent manner; however it was 

noted that most genes were down regulated (Table 10).  
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Figure 46. Example of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

analysis of apoptosis, cell cycle, and FOXO pathways. 

Blue indicates decreased expression greater than 2-fold. Red indicates increased 

expression greater than 2-fold. 
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Table 10. Results obtained from Real-time RT-PCR at 12, 24 and 48 hours post-

infection compared to the microarray results at 48 hours. 

 

 

  

Gene Microarray

Mean SE Mean SE Mean SE

Apoptosis BAK1 0.94 0.02 0.76 0.03 0.30 0.11 0.93

BAX 1.87 0.12 1.70 0.11 0.72 0.20 2.63

BCL2 1.03 0.05 1.50 0.03 1.62 0.75 0.49

CASP3 1.00 0.04 0.63 0.02 0.23 0.08 0.68

CASP8 1.02 0.02 0.75 0.02 0.87 0.55 0.83

CASP9 1.08 0.05 0.76 0.10 0.72 0.32 0.93

TNFRSF10D* 2.17 0.08 3.70 0.17 0.96 0.30 2.22

TP53 1.36 0.07 1.50 0.04 0.58 0.18 1.27

Cell Proliferation AKT1 1.22 0.14 1.10 0.01 0.42 0.12 0.94

BIRC5* 1.36 0.07 1.20 0.05 0.50 0.12 3.08

CDC25C 1.17 0.09 0.53 0.00 0.23 0.08 0.81

CDK1 1.44 0.06 0.99 0.01 0.39 0.13 no data

CDKN2D 0.81 0.04 2.00 0.06 1.28 0.36 2.02

CREB5* 0.48 0.01 0.23 0.00 0.13 0.06 0.33

DDIT4* 1.17 0.21 1.40 0.21 0.34 0.11 0.23

FOXO3* 0.66 0.00 0.45 0.01 0.23 0.09 0.42

H1F0 0.77 0.03 0.59 0.03 0.14 0.04 0.42

HIF1A 0.79 0.06 0.39 0.02 0.19 0.07 0.76

INHBE* 1.97 0.13 1.30 0.03 0.16 0.04 0.18

JMJD1C* 0.54 0.01 0.20 0.00 0.07 0.03 0.29

MAP2K5 0.66 0.01 0.53 0.02 0.75 0.51 0.37

MYC 0.64 0.03 0.64 0.01 0.27 0.11 0.46

NFKB1 0.77 0.03 0.86 0.03 0.57 0.33 0.48

PGK1 0.99 0.01 0.95 0.01 0.61 0.21 2.09

PIK3CA 0.76 0.04 0.64 0.07 0.18 0.06 0.80

PTGS2 0.82 0.01 1.50 0.04 1.97 0.98 1.13

RASD2* 2.28 0.10 7.40 0.29 2.45 0.59 4.90

SBSN* 3.90 0.11 3.80 0.00 2.18 0.97 4.81

STAT3 1.14 0.08 0.72 0.01 0.31 0.12 0.86

TSC22D3* 0.64 0.03 0.35 0.00 0.14 0.09 0.26

DNA Damage ATM 1.15 0.05 0.88 0.01 0.70 0.30 0.83

ATR 0.76 0.02 0.48 0.00 0.19 0.07 0.97

BRCA1 0.80 0.02 0.65 0.02 0.38 0.17 0.63

CHEK1 0.89 0.03 1.00 0.04 0.33 0.11 0.78

CHEK2 1.10 0.02 0.90 0.02 0.38 0.13 1.07

FANCG* 1.09 0.03 0.72 0.01 0.19 0.06 0.38

Immune Response ISG20* 5.15 0.37 28.00 0.45 6.02 2.80 8.94

Metabolism ALDOC* 1.07 0.02 2.30 0.01 1.57 0.61 2.97

12 (h) 24 (h) 48 (h)

increase > 2-fold decrease > 2-fold

increase > 5-fold decrease > 5-fold
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CHAPTER VI 

DISCUSSION 

The major cause of cervical cancer is persistent HPV infection, although a 

minor population (<1%) of HPV-negative cancer has been reported (Taghizadeh et 

al., 2017; Walboomers et al., 1999).  HPV16 causes the majority of all cervical cancer 

cases (zur Hausen, 2002) and the most extensively studied mechanism of HPV 

carcinogenesis involves the overexpression of the known oncoproteins, E6 and E7.  

These oncoproteins have been demonstrated to contribute towards malignant 

transformation by mainly targeting p53 and pRb tumour suppressor proteins 

(Mantovani & Banks, 2001; Munger et al., 1992).  Recent studies have indicated that 

other proteins of HPV such as E5 and E1, may also work in conjunction with E6 and 

E7 to drive the transformation of host cells (Maufort et al., 2010).  

E1 is a helicase and the only enzyme encoded by HPV (D'Abramo & 

Archambault, 2011).  E1 can interact with the host DNA replication machinery 

(Clower et al., 2006; Liu et al., 1998; Loo & Melendy, 2004), induce DNA damage, 

and compromise host defence (Castillo et al., 2014; Fradet-Turcotte et al., 2011).  

Interestingly, functions ranging from cell cycle arrest and proliferation inhibition, to 

induction of DNA damage have been attributed to E1, independent of the E6 and E7 

proteins (Fradet-Turcotte et al., 2011; Sakakibara et al., 2011).  It is likely that E1 has 

a role in regulating the host cell cycle.  In this thesis, to better understand the role of 

E1 in cervical carcinogenesis, the expression pattern of E1 was analysed by first 

determining the expression levels of E1 in HPV16 positive samples.  HPV16 E1 

mRNA was used to determine expression instead of E1 protein detection due to the 

absence of a good commercial E1 antibody.  The results revealed that E1mRNA 

expression significantly increased with disease severity (Figure 28).  These findings 

are similar to a previous study by Schmitt et al who demonstrated the levels of E1 

mRNA in LSIL patients were lower than those in HSIL and cancer patients (Schmitt 

et al., 2011).   Expression of mRNA might be expected to correlate with the copy 

number of HPV16 genome in the cells. However, CaSki cells (600 copies/cell) and 

SiHa cells (1-2 copies/cell) had almost the same levels of E1mRNA expression, 
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measured as 0.13 and 0.06 (E1mRNA/ β-actin ratio), respectively.  Thus, there is no 

correlation between E1mRNA expression and number of copies of HPV16 genome.  

A similar observation by Wang-Johanning et al (Wang-Johanning et al., 2002) also 

demonstrated that the expression of E6 and E7 mRNA in CaSki and SiHa cells are 

nearly identical, indicating that mRNA expression is governed by factors other than 

viral copy numbers.  Therefore, potential additional mechanisms that could account 

for E1 transcriptional activity were explored.   

 The physical state of the HPV genome has always been believed to be a key 

phenomenon in disease progression.  This holds true for HPV18 in which 98-100% of 

all cancer cases show complete integration of the viral genome in carcinoma; 

however, it has been shown in numerous studies that HPV16 shows a different 

integration pattern in conjunction with disease.  For example, Zhang, et al found a 

27.7% integration rate of HPV16 in precancerous lesions (Zhang, R. et al., 2014),   

and also detected a high number of samples with fully integrated HPV16 in normal 

samples (2/6, 33%), similar to a finding reported by Dutta et al, (27% integration in 

normal samples) (Dutta et al., 2015).  However, full integration was not found in 

precancerous stages (CIN1-3) and only at 26.32% in SCC (Table 2).   Although early 

integration was present, the majority of our samples contained the HPV16 genome in 

the episomal form (32/39, 82.05%), which was present in 73.68% of SCC cases, 

suggesting that the episomal form is important for HPV16 cervical cancer 

progression. Although integration-derived transcripts are more stable, episome-

derived oncogene transcripts that express E6 and E7 oncoproteins are sufficient to 

induce centrosome abnormalities and genomic instability in raft cultures (Duensing et 

al., 2001; Jeon & Lambert, 1995).  Using qPCR to differentiate between episomal and 

mixed forms, a total of 3 discrepancies (integrated form to mixed form) were found 

when compared to PCR.  This is as expected because qPCR has been shown to be 

more sensitive than conventional PCR, being able to detect low levels of E2 genes in 

the samples (Mackay et al., 2002). The physical state of the viral genome was 

compared to the expression levels of E1, and no significant correlation was found 

(Figure 29). Thus, the levels of E1 expressed from either the episomal or integrated 

form are enough to help maintain the viral episome and carcinogenic phenotype in 

cells that have already been transformed.   
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In response to this finding, other regulative factors that could influence E1 

expression were further investigated.  The methylation of the E2BS positions was of 

interest, because under normal conditions, E2 is able to bind to different binding sites 

and activate or repress the expression of viral genes, including E1. In this study the 

CpG positions near the repressor E2BS were explored.  Methylation of these E2BS 

positions inhibits E2 protein binding and reduces the ability of E2 to regulate the 

transcription of genes (Leung et al., 2015). The results indicate that methylation of the 

E2BS, does in fact increase significantly with disease progression (Figure 30).  

Oncoprotein overexpression is one of the main causes of cervical carcinogenesis, and 

it is possible that the hypermethylation of the repressor E2BS is a factor that supports 

oncoprotein overexpression in cancer patients.  As E1 is required to maintain the viral 

episomal form, it may indicate that the presence of the episomal form is important in 

HPV16 related cervical carcinogenesis.  The data showed that the episomal form of 

HPV16 was present in all normal, CIN 1, CIN 2/3 and SCC stages (Table 2).  It is 

possible that the presence of the episomal viral DNA in CIN 2/3 and SCC stages was 

able to induce hypermethylation of the viral genome compared to normal and CIN 1 

samples, but these samples still contained unmethylated (i.e. active) copies of viral 

genes, which can be expressed.  In addition to the physical state of the virus, viral 

copy number may also influence methylation status and gene expression.  The CaSki 

cell line which has approximately 600 copies of integrated HPV16, had a mean E2BS 

methylation of 65.8% (data from 4 positions showed 56%, 70%, 62% and 74%), 

while the SiHa cell line, which contained only 1-2 integrated copies,  had a mean 

E2BS methylation of 0.5% (data from 4 positions showed 1%, 0%, 1% and 0%).  

These results, suggest that the viral copy number affects methylation but not E1 

expression, similar to the E6/E7 expression phenomenon in which the expression 

level did not depend on viral copy number (Wang-Johanning et al., 2002).  It has been 

previously noted that SCC samples, which have multiple copies of HPV, are also 

highly- methylated (Chaiwongkot et al., 2013).  It is possible that our highly-

methylated samples also have multiple copies of the viral genome.  Unfortunately, the 

viral copy number for each sample was not determined due to limited sample 

amounts.  Overexpression of oncoproteins is the primary cause of HPV related 

cancers, and this study shows that the methylation in SCC samples for the repressor 
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E2BS increased by more than 3-fold compared to normal samples.  The significant 

increase in methylation levels of the repressor E2BS, at either each position or 

combined positions, supports the expression of oncogenic transcripts in transformed 

epithelium (Figure 30 and Figure 31).   In contrast to the early promoter, no 

significant difference in the late promoter (p670) methylation at each position was 

detected, whereas methylation levels of combined positions were related to disease 

progression (Figure 31).     

 In addition to the expression and regulation of E1, this study also explored 

additional genetic events which could possibly be associated with E1 carcinogenesis. 

A previous study in Europe determined a novel variant form of E1 which contained a 

63 bp duplication within the E1 ORF. This variant form has been further investigated 

and found to be associated with lower disease progression (Sabol et al., 2008).  The 

results presented in this thesis revealed that although the 63 bp genomic variant of 

HPV16 was observed in the Thai population, it is rare (4.2%).  However, all 63 bp 

positive samples were categorized as CIN 1 supporting the theory that this variant 

form of E1 is less virulent.  

Although elevated E1 expression and E2BS methylation were observed with 

disease progression, a direct correlation still remains to be established and studies 

measuring expression of full length E1 mRNA expression are warranted.  A recent 

study discovered a novel promoter for HPV16 E1, p14, and it would be interesting to 

study the E1 expression pattern of this novel promoter, in normal and CIN 1 samples, 

in addition to the CIN2+ samples, as previously described (Fedorova et al., 2016).  In 

addition, the lack of a reliable E1 antibody was a limiting factor in investigating E1 

protein expression in different clinical stages.  Despite these limiting factors, the 

results suggest that E1 expression is highly likely to play some role in carcinogenesis 

and therefore, E1 functional assays in vitro are needed.   

 Initial in vitro experiments were performed to determine the effect of HPV16 

E1 on cell proliferation and viability using HEK 293T cells transfected with either 

pEGFP or pEGFP-E1. After transfection, cells containing HPV16 E1 showed a 

significant decrease in cell proliferation by approximately 2-fold within 24 h post-

transfection (Figure 35, Table 4). A similar effect was demonstrated in a previous 

study, which revealed that HPV31 E1was able to decrease cell proliferation in assays 
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measured after 3 weeks of transfection (Fradet-Turcotte et al., 2010).  E1 consists of 4 

different functional domains: the N-terminal domain (ND) which contains the nuclear 

localization and export signals; the DNA binding domain (DBD) which binds to the 

viral replication origin; the oligomerization domain (OD) which is responsible for 

oligomerization and finally the ATPase helicase domain (HD). The role of each of 

these domains on cell proliferation was explored by mutagenesis.  Transfections using 

various E1-truncated-plasmid constructs including the complete E1 plasmid, indicated 

that only full-length HPV16 E1 significantly decreased cell proliferation (Figure 38, 

Table 6).  The requirement of full-length HPV16 E1 for decreased cell proliferation 

has been confirmed in another study by Fradet-Turcotte et al.  (Fradet-Turcotte et al., 

2011).  Therefore, mechanisms in which HPV16 E1 causes this phenomenon in HEK 

293 T cells were further explored.  

Decreases in cell proliferation or cell growth can be induced by cell cycle 

arrest and/or by cell death. In this thesis, death of E1-expressing cells increased in a 

time-dependent manner post-transfection, but only about 30% of cells were dead at 72 

h post-transfection (Figure 39).  Cell death can occur through two major pathways of 

apoptosis (programmed cell death) and necrosis.  The results obtained in this thesis 

indicated that E1 expressing cells induced both apoptotic and necrotic cell death 

mechanisms, although apoptotic cell death was slightly higher (Figure 40, Table 7). 

Unfortunately, while decreased apoptosis after treatment with a pan-caspase inhibitor 

(QVD-OPH) was observed, this decrease did not reach statistical significance (Figure 

44).  One proposed explanation concerning E1 function was that accumulation of 

HPV31 E1 in the nucleus, via mutation of its nuclear export signal, was deleterious to 

cell growth (Fradet-Turcotte et al., 2011). Another study demonstrated that HPV18 E1 

induced double stranded DNA breaks compared to mock transfected cells (Reinson et 

al., 2013). Studies have shown that HPV recruits proteins involved in the ATM DNA 

damage pathway to nuclear foci and that activation of ATM is required for viral 

genome amplification (Gillespie et al., 2012; Moody & Laimins, 2009). In addition to 

causing DNA damage, another example of the negative effect of E1 on cell growth is 

that HPV31 E1 overexpression has been shown to cause S phase cell cycle arrest, 

leading to decreased cell growth (Fradet-Turcotte et al., 2011). In combination, these 

studies illustrate that HPV E1 proteins induce DNA damage, restrict cell growth and 
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recruit DNA repair protein to facilitate viral replication. Several studies have revealed 

that E1 is able to interact with various host cell proteins and so microarray analysis 

was performed on E1-transfected and vector-transfected cells in order to establish the 

role of E1 in regulation of gene expression in infected host cells (Castillo et al., 2014). 

Microarray results revealed that E1 significantly altered expression of many genes 

that are involved in cellular pathways such as ribosome biogenesis, MAPK, PI3K-

Akt, FoxO, NF-kappa B, and apoptosis signalling pathways. The expression of a total 

of 14 genes was increased in the ribosome pathway (Table 8) in E1 over-expressed 

cells, which indicates an increase in protein synthesis. In addition to their role in 

protein synthesis, numerous ribosomal proteins also have extra-ribosomal functions 

(Warner, 2009). For example, RPL36A, which was overexpressed in the microarray 

analysis, is upregulated in hepatocellular carcinoma and has been shown to be 

involved in increased cell proliferation (Kim et al., 2004). In addition to the 

upregulation of ribosomal proteins, a family of noncoding RNAs involved in 

ribosome biogenesis, termed snoRNAs, were highly upregulated following expression 

of E1 (Table 8). Pathways involved in cell proliferation and carcinogenesis were also 

regulated by E1 over-expression. For example, many genes in the MAPK, PI3K-Akt, 

FoxO, NF-kappa B, and apoptosis signalling pathways were dysregulated (Table 8). 

Consequently, RT real-time PCR was conducted to confirm microarray results. Since 

E1 is involved in cell proliferation, apoptosis and DNA damage, gene expression of 

“hallmark” genes in those pathways were selected and quantitated in HEK 293 T 

transfected with E1 at 12, 24, and 48 hours post-transfection (Table 10). Interestingly, 

E1 changed host gene expression in a time-dependent manner but genes in which 

expression was increased by E1, peaked at 24 hours post-transfection, such as ISG20, 

TNFRSF 10D, and RASD2 (Table 10).  

Interferons (IFNs) are produced in response to viral infections and increased 

production of interferons, stimulate the expression of genes that combat infection. 

ISG20 belongs to a group of interferon-stimulated genes and was the most intensively 

upregulated gene by E1 (28-fold at 24 hours and 6-fold at 48 hours). E1 also 

upregulated interferon alpha inducible protein 27 (IFI27) by 2.9-fold  (Table 9). This 
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is as expected and confirms the ability of the viral protein in inducing the transfected 

cells to elicit an innate immune response. 

TNFRSF10D, also known as Decoy Receptor 2 (DcR2), is a member of the 

tumour necrosis factor receptor superfamily. This protein functions as a TRAIL 

receptor but cannot induce apoptosis because it lacks the death domain (Degli-

Esposti, Mariapia A. et al., 1997). Consequently, DcR2 is considered an anti-

apoptotic protein because it competes with pro-apoptotic TRAIL receptors. DcR2 is 

also known to induce NF-κB activation and may promote cell growth (Degli-Esposti, 

M. A. et al., 1997). A recent study of cervical cancer cells treated with TRAIL and 

cisplatin showed that cancer cells with decreased decoy receptor expression showed 

higher activation of apoptosis than cells with normal levels of decoy receptor protein 

(Narayan et al., 2016). The data from both the RT real-time PCR and microarray 

analysis indicates that E1 elevates the expression TNFRSF10D mRNA from 12-48 h 

post transfection. These findings suggest that HPV16 E1 induces the expression of 

TNFRSF10D perhaps to promote cell survival. Another interesting gene upregulated 

by E1 is SBSN which codes for a novel oncoprotein, Suprabasin, which has been 

implicated as an oncoprotein in the highly-invasive glioblastoma and esophageal 

cancer. An in vivo study found that mice inoculated with cells over-expressing 

suprabasin had tumours that grew more rapidly and were heavier than those that 

developed in mice inoculated with vector-only expressing cells. Mice inoculated with 

suprabasin-silenced cells showed stunted tumour growth compared to the vector 

control (Zhu et al., 2016).  

Another gene significantly upregulated by E1 is RASD2, which codes for the 

Rhes protein, that is preferentially expressed in the striatum. Rhes is involved in 

activating Akt by binding to PI3K and facilitating the translocation of Akt to the 

plasma membrane, where it is subsequently phosphorylated and activated (Bang et al., 

2012).  Upregulated RASD2 gene might facilitate several cellular functions by 

phosphorylation through Akt.  These findings, together with those described above, 

suggest that E1 upregulated gene expression supports cell survival and growth 

between 12-24 h post-transfection.  As it is well known that E1 is expressed very 

early after HPV infection, E1-induced cellular gene expression may be essential to 

support the viral infected cells to survive.  Interestingly, activated expression of all 
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up-regulated genes declined after 48 h post-transfection (Table 10) suggesting that the 

cells were beginning to undergo cell death possibly due to high E1 overexpression in 

the cells.  

E1 also suppressed several cellular genes over the time period from 12 h to 72 

h post-transfection. These genes included CREB5, HIF 1A, JMJD1C, FOXO3, 

NFKB1, PIK3CA, TSC22D3, ATR, BRCA1 and CHEK1.  Three of these genes, 

CREB5, HIF 1A, NFKB1 are transcriptional factors. Cyclic-AMP Responsive 

Element Binding Protein 5 (CREB5) belongs to a family of transcription factors and 

inhibition of CREB5 expression by miR-449a was shown to cause cell cycle arrest 

and inhibition of cell cycle transition and proliferation. (Zhang, X. et al., 2016).  From 

the results in this thesis, low expression of CREB5 might be related to decreased cell 

proliferation due to cell cycle arrest, which leads to cell death via apoptosis.  

Hypoxia-inducible factor 1 alpha (HIF1A) ) is unstable under normoxic conditions 

but is expressed at higher levels and is stable under hypoxic conditions (Semenza, 

2004). Expression of HIF1A is also promoted by the PI3K and Akt signalling 

pathways. A common characteristic of solid tumours is hypoxia, and recent 

investigations into cancer biology have identified HIF1A as a tumour survival gene 

(Masoud, Georgina N. & Wei Li, 2015). HIF1A is able to aid tumorigenesis by 

inducing many downstream genes involved in metabolism and also pro-angiogenic 

genes such as vascular endothelial growth factor (VEGF) which stimulates blood 

vessel growth, bringing more oxygen to tumour cells leading to tumour growth 

(Masoud, G. N. & W. Li, 2015).  Nuclear factor-κB Subunit 1 (NFKB1) encodes for 

the DNA binding subunit of Nuclear factor-κB (NF-κB) protein complex which is a 

transcription factor with a wide range of downstream target genes. The NF-κB protein 

is involved in cell proliferation and induction of immune response mechanisms and 

has also been shown to regulate tumour growth and angiogenesis.  Although NF-κB 

protein is mostly regarded as a proliferation stimulating protein, it is also anti-

tumorigenic in certain tumours such as hepatocellular carcinoma (Xia et al., 2014).  

Decreased expression/activity of transcription factors, especially those involved in 

cell growth by HPV16 E1, would be beneficial to viral growth.   

Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha 

(PIK3CA), a subunit of Phosphatidylinositol 3-kinase which regulates many cellular 
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processes including cell growth, adhesion, apoptosis, and survival, is also involved in 

phosphorylating Akt. Expression of PIK3CA has been studied in many cancers, and a 

study of PI3KCA in cervical cancer indicated a high expression of PIK3CA in 

cervical tumour samples (Ma et al., 2000b). However, another study in lung cancer 

indicated that high expression of PIK3CA was correlated to increased patient survival 

after treatment with the tyrosine kinase inhibitor, Gefitinib (Cantley, 2002; Endoh et 

al., 2006; Ma et al., 2000a).   

Another group of genes that were regulated by E1 expression are involved in 

the DNA damage pathway. Jumonji Domain Containing 1C (JMJD1C) is a novel 

histone demethylase which has been shown to be decreased or absent in breast cancer 

cells (Watanabe et al., 2013). The protein is involved in regulating the BRCA1 branch 

of the DNA damage response. BRCA1 is a type of tumour suppressor protein which is 

required for DNA repair and plays a role in ensuring the stability of each cell’s 

genetic material(Wu et al., 2010)).  ATM and ATR proteins as well as their 

downstream proteins are mainly involved in DNA damage response (Awasthi et al., 

2015). Recent studies have shown that E1 induces DNA damage which increases 

expression of DNA damage response proteins, such as ATM, ATR, CHEK1 and 

CHEK2:  however, the opposite was observed in this study. ATM, ATR, CHEK1 and 

CHEK2 expression remained relatively unchanged at 12 and 24 h post transfection 

but decreased significantly 48 h post-transfection. Glucocorticoid-induced leucine 

zipper (GILZ) protein encoded by the TSC22D3 gene is involved in the Akt pathway 

and expression of this gene was suppressed by E1 by more than 7-fold. GILZ was 

able to disrupt the mTOR2C/AKT pathway in drug-resistant chronic myeloid 

leukemia cells leading to increased susceptibility to treatment (Joha et al., 2012a). 

GILZ also activated FoxO3a transcription of the pro-apoptotic protein, Bim (Joha et 

al., 2012b). E1 also decreased mRNA expression of ataxia telangiectasia and Rad3-

related (ATR) protein which is involved in DNA damage, but it did not have an effect 

on ataxia-telangiectasia-mutated protein (ATM) expression (Table 10). 

E1 also decreased the expression of genes coding for tumour suppressor 

proteins. For example, FOXO3 belongs to the FOXO subclass of the Forkhead family 

of transcriptional regulators and active FOXO proteins inhibit cell proliferation. 

Therefore, inactivation of FOXO proteins for example, by Akt phosphorylation, leads 
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to cell survival and growth (Zhang, X. B. et al., 2011).  Numerous studies have been 

conducted on the relationship of FOXO proteins and tumorigenesis (Yadav et al., 

2018). For example, one study of colorectal cancer patients and found that FOXO3 

expression was decreased in tumour tissue samples. Low FOXO3 expression was also 

correlated to decreased patient survival time (Bullock et al., 2013).  

Moreover, some genes were suppressed after 24 h post-transfection such as 

CDC25C and DDIT4.  Cell division cycle 25C (CDC25C) belongs to the CDC25 

group of phosphatases that regulate cell cycle by activating cyclin dependent kinase 1 

(CDK1) (Boutros et al., 2007). During DNA damage, CDC25C is inhibited by the 

DNA damage response proteins CHK1 and CHK2, in order to promote cell cycle 

arrest and inhibition of CDKs. Because CDC25 proteins are tightly regulated during 

the DNA damage response, misregulation of these proteins may lead to genome 

instability (Boutros et al., 2007).  E1 decreased the expression of DDIT4 by 

approximately 3-fold. DDIT4 gene encodes for a protein called Regulated in 

Development and DNA damage response 1 (Redd1), which induces 

dephosphorylation of Akt (Dennis et al., 2014) and could lead to decreased cell 

growth and DNA repair, or even cell death. The most down-regulated gene by E1 was 

INHBE which codes for a preprotein which is processed to form the beta E subunit of 

either inhibin or activin. Both proteins are known to regulate a wide range of cellular 

processes including apoptosis, growth, and immune response (Mayo, 1994). Because 

it is not possible to determine the final product of INHBE (i.e. either inhibin or activin 

which has opposing actions) by measuring mRNA, the effect of the decrease in 

INHBE expression on the cell cannot be determined. Interestingly, early E1 

transfection increased INHBE compared to vector control cells, and then expression 

markedly decreased at 48 h post-transfection. It is possible that the helicase function 

of E1 cause excessive damage to the host genome, inducing cell death. When DNA 

damage occurs the apoptosis and other response pathways are activated.  For example, 

p53, a protein involved in DNA damage response and also a major tumour suppressor 

protein is activated following DNA damage. However, p53 is also targeted and 

degraded by the oncoprotein HPV E6.  Therefore the combined effects of decreased 

apoptosis caused by E6 and DNA damage by E1 may possibly lead to genome 

instability and transformation of the infected cells.  Collectively, gene expression 
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analysis following E1 transfection signified its importance in host gene expression 

and pathway regulation. 

It is generally believed that carcinogenesis occurs as a result of inhibition of 

apoptosis (Hanahan & Weinberg, 2011). The E6 and E7 proteins of HPV have been 

termed oncoproteins because they function to block apoptosis and support cell growth 

(Moody & Laimins, 2010). Interestingly, a recent study suggested that apoptosis 

drives carcinogenesis by sending survival signals to surrounding cells (Ichim & Tait, 

2016). For example, breast-, colorectal-, non-small cell lung-cancer patients with high 

expression of the anti-apoptotic protein BCL-2 are associated with favourable 

prognoses (Meterissian et al., 2001; Neri et al., 2006). In mice, breast cancer 

xenograph models showed that apoptotic tumour cells stimulate tumour regrowth and 

proliferation in a caspase-dependent manner. During apoptosis, caspases activate 

calcium-independent phospholipase A2 (iPLA2) which increases production of 

arachidonic acid, which is converted by cyclooxygenase 1 (COX-1) and 

cyclooxygenase 2 (COX-2) to prostaglandin E2 (PGE2) (Greenhough et al., 2009). 

Moreover, cervical cancer (CaSki) mice xenograph models have also shown 

significantly increased COX-2, EGFR, and p-Akt (Yoysungnoen et al., 2016). Results 

in this thesis also found an increased expression of the COX-2 gene by E1 (Table 10) 

which increases proliferation through the MAPK, and PI3K-Akt pathway. E1 not only 

increased the expression of genes involved in cell survival, but it also induced cell 

death and apoptosis. This suggests that HPV16 E1 may also induce carcinogenesis in 

a similar manner, since E1 is expressed at higher levels in cervical cancer patients.  

Although this study was able to determine that HPV16 E1 affects many host 

cell pathways there were limitations in this study:  

1. The cell line used in the transfection system is not a cervical cancer cell line 

and therefore may have different properties and respond differently 

compared to cells originating from the cervix. Thus in this study HEK 

293T cells may not truly represent cervical cells in terms of their 

mechanisms resist/promote apoptosis and/or DNA repair. 

2. The changes in host gene expression were not confirmed at the protein 

level. 
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3. The expression level of E1 in transfected cells could not be controlled at 

levels that are found in cancer patients. To illustrate this, in CaSki cells 

which have 600 copies of HPV16 integrated into its genome, RNA seq 

found approximately 12,000 RNA transcripts of all early genes 

combined (Chaiwongkot, personal communication). However, for 

HEK 293T cells transfected with pEGFP-E1, RNA seq quantitated 

more than 3,000,000 transcripts of HPV16 E1 alone.  Therefore, the 

precise function of E1 during viral infection and cancer could not be 

concluded. 

4. It is unclear whether E1 would cause extensive cell death under normal 

carcinogenic conditions because this study did not co-transfect E1 with 

other proteins involved in HPV carcinogenesis. For example, HPV E6 

acts to reduce apoptosis by binding and degrading p53 while HPV E7 

promotes cell cycle progression. It is possible that under optimal 

conditions and the presence of other HPV proteins, E1 may act 

synergistically to the other oncoproteins in order to drive 

carcinogenesis.  

 However, a major advantage of this study is that gene expression experiments 

were carried out by sorting on only E1 positive cells without the need for chemical 

selection. In addition, kinetic expression of E1 was performed which revealed the 

effect of E1 distinguished host gene expression relative to time. In conclusion, the 

dysregulation of gene expression can be attributed to the role of E1 alone. 
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Conclusion 

In conclusion, HPV16 E1 was demonstrated to have significant positive 

correlation with cancer progression by using the novel ddPCR method to detect and 

quantify the amount of HPV16 E1 mRNA in all stages of cervical specimens, i.e., 

normal, precancerous, and cancerous stages.  The detection of HPV16 E1 mRNA was 

shown to be a promising biomarker for monitoring cervical cancer. The level of 

methylation at the E2BS (early promoter p97 of position (p) 37, 43 and 58) were also 

demonstrated to be beneficial as a prognostic marker.  This study detected a high 

number of samples with fully integrated HPV16 in Normal samples (2/6, 33%), but 

no full integration was found in precancerous stages (CIN1-3) and only 26.32% in 

SCC. Although early integration was present, the majority of the samples contained 

the HPV16 genome in the episomal form (32/39, 82.05%).  The episomal form was 

present in 73.68% of SCC cases, suggesting the episomal form is important for 

HPV16 cervical cancer progression.  It was noted that no correlation between physical 

state of HPV genome and HPV16 E1 mRNA was found.  The 63 bp duplication in 

HPV16 E1 was presented in the Thai population and related to low grade lesions. 

Role of HPV16 E1 protein was explored using in vitro transfection system. This study 

illustrated for the first time that the presence of HPV16 E1 protein alone was able to 

dysregulate many cellular signalling pathways early after protein expression (within 

12 hours post-transfection). HPV16 E1 was able to upregulate genes involved in 

innate immune response, cell proliferation and survival, and downregulated genes 

involved in cell cycle control. However, overexpression of HPV16 E1 for long 

durations within the cell (after 24 hours post transfection) was detrimental to the host 

cell leading to cell death by either apoptosis or necrosis or both.  Collectively, data 

from this study suggests that E1 may play a role in cancer development probably by 

deregulating cellular gene expression.  In addition, HPV16 E1 itself may also interact 

with some cellular proteins to support the oncoprotein HPV16 E6 and E7 functions. 

However, HPV16 E1 transfection experiments did not provide a definitive 

carcinogenic pathway, which warrants further studies.  
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Further studies 

 

In order to determine a clinically relevant cut-off point in using E1 as a 

biomarker for cervical cancer progression a larger cohort must be recruited. 

To better understand the role of E1 in cervical carcinogenesis, HPV negative 

cervical cancer cells that do not have deficiencies in proteins involved in DNA 

damage response and apoptotic proteins should be used. In addition, the expression 

E1 should be controlled at a level similar to E1 protein expression in CIN/cancer 

cells. Expression control can be achieved through the use of a weaker promoter or 

translation control using a tunable synthetic translation inhibition (REF Feedback 

Control of Protein Expression in Mammalian Cells by Tunable Synthetic 

Translational Inhibition). For example, a tunable synthetic translation inhibition 

system can be achieved by using a RNA/protein interaction translation switch (Figure 

47). Once the expression level of E1 is controlled, the effect of E1 on host cell 

processes can be more accurately evaluated.  

In addition, the presence of other viral proteins may also play an important 

role in carcinogenesis. Co-transfection experiments with E1 in the presence of either 

E6 or E7 or both E6 and E7 may give better insight into the synergistic effects of 

these proteins.  
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Figure 47. Schematic diagram of the feedback repression construct. 

The protein of interest is linked to the protein L7Ae, which regulates the translation of 

its own mRNA which in turn regulates the fused protein of interest. (Stapleton et al., 

2012). 

 

 

 

 

 

 

 

 

REFERENCES 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 126 

 

REFERENCES 

 

 

Abbas, A., Lichtman, A. H., & Pillai, S. (2014). Cellular and Molecular Immunology: 

Elsevier Saunders. 

Amador-Molina, A., Hernandez-Valencia, J. F., Lamoyi, E., Contreras-Paredes, A., & 

Lizano, M. (2013). Role of innate immunity against human papillomavirus 

(HPV) infections and effect of adjuvants in promoting specific immune 

response. Viruses, 5(11), 2624-2642. doi:10.3390/v5112624 

American Cancer Society. (2016). The American Cancer Society Guidelines for the 

Prevention and Early Detection of Cervical Cancer.   Retrieved from 

https://www.cancer.org/cancer/cervical-cancer/prevention-and-early-

detection/cervical-cancer-screening-guidelines.html 

Arbyn, M., Castellsague, X., de Sanjose, S., Bruni, L., Saraiya, M., Bray, F., & 

Ferlay, J. (2011). Worldwide burden of cervical cancer in 2008. Ann Oncol, 

22(12), 2675-2686. doi:10.1093/annonc/mdr015 

Ashkenazi, A., & Dixit, V. M. (1998). Death receptors: signaling and modulation. 

Science, 281(5381), 1305-1308.  

Awasthi, P., Foiani, M., & Kumar, A. (2015). ATM and ATR signaling at a glance. 

Journal of Cell Science, 128(23), 4255-4262. doi:10.1242/jcs.169730 

Badal, V., Chuang, L. S., Tan, E. H., Badal, S., Villa, L. L., Wheeler, C. M., Li, B. F., 

& Bernard, H. U. (2003). CpG methylation of human papillomavirus type 16 

DNA in cervical cancer cell lines and in clinical specimens: genomic 

hypomethylation correlates with carcinogenic progression. J Virol, 77(11), 

6227-6234.  

Bang, S., Steenstra, C., & Kim, S. F. (2012). Striatum specific protein, Rhes regulates 

AKT pathway. Neurosci Lett, 521(2), 142-147. 

doi:10.1016/j.neulet.2012.05.073 

Barber, G. N. (2015). STING: infection, inflammation and cancer. Nat Rev Immunol, 

15(12), 760-770. doi:10.1038/nri3921 

Berg, M., & Stenlund, A. (1997). Functional interactions between papillomavirus E1 

and E2 proteins. J Virol, 71(5), 3853-3863.  

Bergvall, M., Melendy, T., & Archambault, J. (2013). The E1 proteins. Virology, 

445(1-2), 35-56. doi:10.1016/j.virol.2013.07.020 

Bogovac, Z., Lunar, M. M., Kocjan, B. J., Seme, K., Jancar, N., & Poljak, M. (2011). 

Prevalence of HPV 16 genomic variant carrying a 63 bp duplicated sequence 

within the E1 gene in Slovenian women. Acta Dermatovenerol Alp Pannonica 

Adriat, 20(3), 135-139.  

Bonne-Andrea, C., Tillier, F., McShan, G. D., Wilson, V. G., & Clertant, P. (1997). 

Bovine papillomavirus type 1 DNA replication: the transcriptional activator 

E2 acts in vitro as a specificity factor. J Virol, 71(9), 6805-6815.  

Boutros, R., Lobjois, V., & Ducommun, B. (2007). CDC25 phosphatases in cancer 

cells: key players? Good targets? Nat Rev Cancer, 7(7), 495-507. 

doi:10.1038/nrc2169 

https://www.cancer.org/cancer/cervical-cancer/prevention-and-early-detection/cervical-cancer-screening-guidelines.html
https://www.cancer.org/cancer/cervical-cancer/prevention-and-early-detection/cervical-cancer-screening-guidelines.html


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 127 

Breyer, R. M., Bagdassarian, C. K., Myers, S. A., & Breyer, M. D. (2001). Prostanoid 

receptors: Subtypes and signaling. Annual Review of Pharmacology and 

Toxicology, 41, 661-690. doi:DOI 10.1146/annurev.pharmtox.41.1.661 

Brosh, R. M., Jr. (2013). DNA helicases involved in DNA repair and their roles in 

cancer. Nat Rev Cancer, 13(8), 542-558. doi:10.1038/nrc3560 

Bullock, M. D., Bruce, A., Sreekumar, R., Curtis, N., Cheung, T., Reading, I., 

Primrose, J. N., Ottensmeier, C., Packham, G. K., Thomas, G., & Mirnezami, 

A. H. (2013). FOXO3 expression during colorectal cancer progression: 

biomarker potential reflects a tumour suppressor role. Br J Cancer, 109(2), 

387-394. doi:10.1038/bjc.2013.355 

Burd, E. M. (2003). Human papillomavirus and cervical cancer. Clin Microbiol Rev, 

16(1), 1-17.  

Burk, R. D., Harari, A., & Chen, Z. (2013). Human papillomavirus genome variants. 

Virology, 445(1-2), 232-243. doi:10.1016/j.virol.2013.07.018 

Burke, J. R., Hura, G. L., & Rubin, S. M. (2012). Structures of inactive 

retinoblastoma protein reveal multiple mechanisms for cell cycle control. 

Genes Dev, 26(11), 1156-1166. doi:10.1101/gad.189837.112 

Burke, J. R., Liban, T. J., Restrepo, T., Lee, H. W., & Rubin, S. M. (2014). Multiple 

mechanisms for E2F binding inhibition by phosphorylation of the 

retinoblastoma protein C-terminal domain. J Mol Biol, 426(1), 245-255. 

doi:10.1016/j.jmb.2013.09.031 

Cantley, L. C. (2002). The phosphoinositide 3-kinase pathway. Science, 296(5573), 

1655-1657. doi:10.1126/science.296.5573.1655 

Caserta, T. M., Smith, A. N., Gultice, A. D., Reedy, M. A., & Brown, T. L. (2003). Q-

VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic 

properties. Apoptosis, 8(4), 345-352.  

Castillo, A., Wang, L., Koriyama, C., Eizuru, Y., Jordan, K., & Akiba, S. (2014). A 

systems biology analysis of the changes in gene expression via silencing of 

HPV-18 E1 expression in HeLa cells. Open Biol, 4(10). 

doi:10.1098/rsob.130119 

Chaiwongkot, A., Vinokurova, S., Pientong, C., Ekalaksananan, T., Kongyingyoes, 

B., Kleebkaow, P., Chumworathayi, B., Patarapadungkit, N., Reuschenbach, 

M., & von Knebel Doeberitz, M. (2013). Differential methylation of E2 

binding sites in episomal and integrated HPV 16 genomes in preinvasive and 

invasive cervical lesions. Int J Cancer, 132(9), 2087-2094. 

doi:10.1002/ijc.27906 

Chen, G., & Stenlund, A. (2002). Sequential and ordered assembly of E1 initiator 

complexes on the papillomavirus origin of DNA replication generates 

progressive structural changes related to melting. Mol Cell Biol, 22(21), 7712-

7720.  

Chipuk, J. E., & Green, D. R. (2008). How do BCL-2 proteins induce mitochondrial 

outer membrane permeabilization? Trends Cell Biol, 18(4), 157-164. 

doi:10.1016/j.tcb.2008.01.007 

Choi, E. M., Kwak, S. J., Kim, Y. M., Ha, K. S., Kim, J. I., Lee, S. W., & Han, J. A. 

(2005). COX-2 inhibits anoikis by activation of the PI-3K/Akt pathway in 

human bladder cancer cells. Exp Mol Med, 37(3), 199-203. 

doi:10.1038/emm.2005.27 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 128 

Clower, R. V., Fisk, J. C., & Melendy, T. (2006). Papillomavirus E1 protein binds to 

and stimulates human topoisomerase I. J Virol, 80(3), 1584-1587. 

doi:10.1128/JVI.80.3.1584-1587.2006 

Cullen, A. P., Reid, R., Campion, M., & Lorincz, A. T. (1991). Analysis of the 

physical state of different human papillomavirus DNAs in intraepithelial and 

invasive cervical neoplasm. J Virol, 65(2), 606-612.  

D'Abramo, C. M., & Archambault, J. (2011). Small molecule inhibitors of human 

papillomavirus protein - protein interactions. Open Virol J, 5, 80-95. 

doi:10.2174/1874357901105010080 

de Villiers, E. M., Fauquet, C., Broker, T. R., Bernard, H. U., & zur Hausen, H. 

(2004). Classification of papillomaviruses. Virology, 324(1), 17-27. 

doi:10.1016/j.virol.2004.03.033 

Degli-Esposti, M. A., Dougall, W. C., Smolak, P. J., Waugh, J. Y., Smith, C. A., & 

Goodwin, R. G. (1997). The novel receptor TRAIL-R4 induces NF-kappaB 

and protects against TRAIL-mediated apoptosis, yet retains an incomplete 

death domain. Immunity, 7(6), 813-820.  

Degli-Esposti, M. A., Dougall, W. C., Smolak, P. J., Waugh, J. Y., Smith, C. A., & 

Goodwin, R. G. (1997). The Novel Receptor TRAIL-R4 Induces NF-κB and 

Protects against TRAIL-Mediated Apoptosis, yet Retains an Incomplete Death 

Domain. Immunity, 7(6), 813-820. doi:https://doi.org/10.1016/S1074-

7613(00)80399-4 

Demeret, C., Goyat, S., Yaniv, M., & Thierry, F. (1998). The human papillomavirus 

type 18 (HPV18) replication protein E1 is a transcriptional activator when 

interacting with HPV18 E2. Virology, 242(2), 378-386. 

doi:10.1006/viro.1997.9023 

Dennis, M. D., Coleman, C. S., Berg, A., Jefferson, L. S., & Kimball, S. R. (2014). 

REDD1 enhances protein phosphatase 2A-mediated dephosphorylation of Akt 

to repress mTORC1 signaling. Sci Signal, 7(335), ra68. 

doi:10.1126/scisignal.2005103 

Dias, D., Van Doren, J., Schlottmann, S., Kelly, S., Puchalski, D., Ruiz, W., Boerckel, 

P., Kessler, J., Antonello, J. M., Green, T., Brown, M., Smith, J., Chirmule, 

N., Barr, E., Jansen, K. U., & Esser, M. T. (2005). Optimization and validation 

of a multiplexed Luminex assay to quantify antibodies to neutralizing epitopes 

on human papillomaviruses 6, 11, 16, and 18. Clinical and Diagnostic 

Laboratory Immunology, 12(8), 959-969. doi:10.1128/Cdli.12.8.959-969.2005 

Doorbar, J., Egawa, N., Griffin, H., Kranjec, C., & Murakami, I. (2015). Human 

papillomavirus molecular biology and disease association. Rev Med Virol, 25 

Suppl 1, 2-23. doi:10.1002/rmv.1822 

Du, C., Fang, M., Li, Y., Li, L., & Wang, X. (2000). Smac, a mitochondrial protein 

that promotes cytochrome c-dependent caspase activation by eliminating IAP 

inhibition. Cell, 102(1), 33-42.  

Duensing, S., Duensing, A., Crum, C. P., & Munger, K. (2001). Human 

papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome 

synthesis is an early event in the evolving malignant phenotype. Cancer Res, 

61(6), 2356-2360.  

Dutta, S., Chakraborty, C., Dutta, A. K., Mandal, R. K., Roychoudhury, S., Basu, P., 

& Panda, C. K. (2015). Physical and methylation status of human 

https://doi.org/10.1016/S1074-7613(00)80399-4
https://doi.org/10.1016/S1074-7613(00)80399-4


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 129 

papillomavirus 16 in asymptomatic cervical infections changes with malignant 

transformation. J Clin Pathol, 68(3), 206-211. doi:10.1136/jclinpath-2014-

202611 

Ellisen, L. W., Ramsayer, K. D., Johannessen, C. M., Yang, A., Beppu, H., Minda, 

K., Oliner, J. D., McKeon, F., & Haber, D. A. (2002). REDD1, a 

developmentally regulated transcriptional target of p63 and p53, links p63 to 

regulation of reactive oxygen species. Mol Cell, 10(5), 995-1005.  

Endoh, H., Yatabe, Y., Kosaka, T., Kuwano, H., & Mitsudomi, T. (2006). PTEN and 

PIK3CA expression is associated with prolonged survival after gefitinib 

treatment in EGFR-mutated lung cancer patients. J Thorac Oncol, 1(7), 629-

634.  

Enemark, E. J., & Joshua-Tor, L. (2006). Mechanism of DNA translocation in a 

replicative hexameric helicase. Nature, 442(7100), 270-275. 

doi:10.1038/nature04943 

Fedorova, M., Vinokurova, S., Pavlova, L., Komel'kov, A., Korolenkova, L., 

Kisseljov, F., & Kisseljova, N. (2016). Human papillomavirus types 16 E1 

mRNA is transcribed from P14 early promoter in cervical neoplasms. 

Virology, 488, 196-201. doi:10.1016/j.virol.2015.11.015 

Ferlay, J., Forman, D., Mathers, C. D., & Bray, F. (2012). Breast and cervical cancer 

in 187 countries between 1980 and 2010. Lancet, 379(9824), 1390-1391. 

doi:10.1016/S0140-6736(12)60595-9 

Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. 

M., Forman, D., & Bray, F. (2013a). GLOBOCAN 2012 v1.0, Cancer 

Incidence and Mortality Worldwide: IARC CancerBase No. 11.   Retrieved 

from http://globocan.iarc.fr/Pages/fact_sheets_population.aspx 

Ferlay, J., Steliarova-Foucher, E., Lortet-Tieulent, J., Rosso, S., Coebergh, J. W., 

Comber, H., Forman, D., & Bray, F. (2013b). Cancer incidence and mortality 

patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer, 49(6), 

1374-1403. doi:10.1016/j.ejca.2012.12.027 

Fradet-Turcotte, A., Bergeron-Labrecque, F., Moody, C. A., Lehoux, M., Laimins, L. 

A., & Archambault, J. (2011). Nuclear accumulation of the papillomavirus E1 

helicase blocks S-phase progression and triggers an ATM-dependent DNA 

damage response. J Virol, 85(17), 8996-9012. doi:10.1128/JVI.00542-11 

Fradet-Turcotte, A., Moody, C., Laimins, L. A., & Archambault, J. (2010). Nuclear 

export of human papillomavirus type 31 E1 is regulated by Cdk2 

phosphorylation and required for viral genome maintenance. J Virol, 84(22), 

11747-11760. doi:10.1128/JVI.01445-10 

Frattini, M. G., & Laimins, L. A. (1994). Binding of the human papillomavirus E1 

origin-recognition protein is regulated through complex formation with the E2 

enhancer-binding protein. Proc Natl Acad Sci U S A, 91(26), 12398-12402.  

Frazer, I. H. (2009). Interaction of human papillomaviruses with the host immune 

system: a well evolved relationship. Virology, 384(2), 410-414. 

doi:10.1016/j.virol.2008.10.004 

German, J. (1997). Bloom's syndrome. XX. The first 100 cancers. Cancer Genet 

Cytogenet, 93(1), 100-106.  

Gillespie, K. A., Mehta, K. P., Laimins, L. A., & Moody, C. A. (2012). Human 

papillomaviruses recruit cellular DNA repair and homologous recombination 

http://globocan.iarc.fr/Pages/fact_sheets_population.aspx


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 130 

factors to viral replication centers. J Virol, 86(17), 9520-9526. 

doi:10.1128/JVI.00247-12 

Graham, S. V. (2017). Keratinocyte Differentiation-Dependent Human 

Papillomavirus Gene Regulation. Viruses, 9(9). doi:10.3390/v9090245 

Green, D. R., & Kroemer, G. (2004). The pathophysiology of mitochondrial cell 

death. Science, 305(5684), 626-629. doi:10.1126/science.1099320 

Greenhough, A., Smartt, H. J., Moore, A. E., Roberts, H. R., Williams, A. C., 

Paraskeva, C., & Kaidi, A. (2009). The COX-2/PGE2 pathway: key roles in 

the hallmarks of cancer and adaptation to the tumour microenvironment. 

Carcinogenesis, 30(3), 377-386. doi:10.1093/carcin/bgp014 

Hall, M. C., & Matson, S. W. (1999). Helicase motifs: the engine that powers DNA 

unwinding. Mol Microbiol, 34(5), 867-877.  

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. 

Cell, 144(5), 646-674. doi:10.1016/j.cell.2011.02.013 

Harper, D. M., Franco, E. L., Wheeler, C., Ferris, D. G., Jenkins, D., Schuind, A., 

Zahaf, T., Innis, B., Naud, P., De Carvalho, N. S., Roteli-Martins, C. M., 

Teixeira, J., Blatter, M. M., Korn, A. P., Quint, W., Dubin, G., & 

GlaxoSmithKline, H. P. V. V. S. G. (2004). Efficacy of a bivalent L1 virus-

like particle vaccine in prevention of infection with human papillomavirus 

types 16 and 18 in young women: a randomised controlled trial. Lancet, 

364(9447), 1757-1765. doi:10.1016/S0140-6736(04)17398-4 

Howie, H. L., Katzenellenbogen, R. A., & Galloway, D. A. (2009). Papillomavirus E6 

proteins. Virology, 384(2), 324-334. doi:10.1016/j.virol.2008.11.017 

Hughes, F. J., & Romanos, M. A. (1993). E1 protein of human papillomavirus is a 

DNA helicase/ATPase. Nucleic Acids Res, 21(25), 5817-5823.  

Husman, A. M. D. R., Walboomers, J. M. M., Vandenbrule, A. J. C., Meijer, C. J. L. 

M., & Snijders, P. J. F. (1995). The Use of General Primers Gp5 and Gp6 

Elongated at Their 3' Ends with Adjacent Highly Conserved Sequences 

Improves Human Papillomavirus Detection by Pcr. Journal of General 

Virology, 76, 1057-1062.  

Ichim, G., & Tait, S. W. G. (2016). A fate worse than death: apoptosis as an 

oncogenic process. Nature Reviews Cancer, 16(8), 539-548. 

doi:10.1038/nrc.2016.58 

Igney, F. H., & Krammer, P. H. (2002). Death and anti-death: tumour resistance to 

apoptosis. Nat Rev Cancer, 2(4), 277-288. doi:10.1038/nrc776 

Jacobs, K. B., Yeager, M., Zhou, W., Wacholder, S., Wang, Z., Rodriguez-Santiago, 

B., Hutchinson, A., Deng, X., Liu, C., Horner, M. J., Cullen, M., Epstein, C. 

G., Burdett, L., Dean, M. C., Chatterjee, N., Sampson, J., Chung, C. C., 

Kovaks, J., Gapstur, S. M., Stevens, V. L., Teras, L. T., Gaudet, M. M., 

Albanes, D., Weinstein, S. J., Virtamo, J., Taylor, P. R., Freedman, N. D., 

Abnet, C. C., Goldstein, A. M., Hu, N., Yu, K., Yuan, J. M., Liao, L., Ding, 

T., Qiao, Y. L., Gao, Y. T., Koh, W. P., Xiang, Y. B., Tang, Z. Z., Fan, J. H., 

Aldrich, M. C., Amos, C., Blot, W. J., Bock, C. H., Gillanders, E. M., Harris, 

C. C., Haiman, C. A., Henderson, B. E., Kolonel, L. N., Le Marchand, L., 

McNeill, L. H., Rybicki, B. A., Schwartz, A. G., Signorello, L. B., Spitz, M. 

R., Wiencke, J. K., Wrensch, M., Wu, X., Zanetti, K. A., Ziegler, R. G., 

Figueroa, J. D., Garcia-Closas, M., Malats, N., Marenne, G., Prokunina-



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 131 

Olsson, L., Baris, D., Schwenn, M., Johnson, A., Landi, M. T., Goldin, L., 

Consonni, D., Bertazzi, P. A., Rotunno, M., Rajaraman, P., Andersson, U., 

Beane Freeman, L. E., Berg, C. D., Buring, J. E., Butler, M. A., Carreon, T., 

Feychting, M., Ahlbom, A., Gaziano, J. M., Giles, G. G., Hallmans, G., 

Hankinson, S. E., Hartge, P., Henriksson, R., Inskip, P. D., Johansen, C., 

Landgren, A., McKean-Cowdin, R., Michaud, D. S., Melin, B. S., Peters, U., 

Ruder, A. M., Sesso, H. D., Severi, G., Shu, X. O., Visvanathan, K., White, E., 

Wolk, A., Zeleniuch-Jacquotte, A., Zheng, W., Silverman, D. T., Kogevinas, 

M., Gonzalez, J. R., Villa, O., Li, D., Duell, E. J., Risch, H. A., Olson, S. H., 

Kooperberg, C., Wolpin, B. M., Jiao, L., Hassan, M., Wheeler, W., Arslan, A. 

A., Bueno-de-Mesquita, H. B., Fuchs, C. S., Gallinger, S., Gross, M. D., 

Holly, E. A., Klein, A. P., LaCroix, A., Mandelson, M. T., Petersen, G., 

Boutron-Ruault, M. C., Bracci, P. M., Canzian, F., Chang, K., Cotterchio, M., 

Giovannucci, E. L., Goggins, M., Hoffman Bolton, J. A., Jenab, M., Khaw, K. 

T., Krogh, V., Kurtz, R. C., McWilliams, R. R., Mendelsohn, J. B., Rabe, K. 

G., Riboli, E., Tjonneland, A., Tobias, G. S., Trichopoulos, D., Elena, J. W., 

Yu, H., Amundadottir, L., Stolzenberg-Solomon, R. Z., Kraft, P., Schumacher, 

F., Stram, D., Savage, S. A., Mirabello, L., Andrulis, I. L., Wunder, J. S., 

Patino Garcia, A., Sierrasesumaga, L., Barkauskas, D. A., Gorlick, R. G., 

Purdue, M., Chow, W. H., Moore, L. E., Schwartz, K. L., Davis, F. G., Hsing, 

A. W., Berndt, S. I., Black, A., Wentzensen, N., Brinton, L. A., Lissowska, J., 

Peplonska, B., McGlynn, K. A., Cook, M. B., Graubard, B. I., Kratz, C. P., 

Greene, M. H., Erickson, R. L., Hunter, D. J., Thomas, G., Hoover, R. N., 

Real, F. X., Fraumeni, J. F., Jr., Caporaso, N. E., Tucker, M., Rothman, N., 

Perez-Jurado, L. A., & Chanock, S. J. (2012). Detectable clonal mosaicism 

and its relationship to aging and cancer. Nat Genet, 44(6), 651-658. 

doi:10.1038/ng.2270 

Jeon, S., Allen-Hoffmann, B. L., & Lambert, P. F. (1995). Integration of human 

papillomavirus type 16 into the human genome correlates with a selective 

growth advantage of cells. J Virol, 69(5), 2989-2997.  

Jeon, S., & Lambert, P. F. (1995). Integration of human papillomavirus type 16 DNA 

into the human genome leads to increased stability of E6 and E7 mRNAs: 

implications for cervical carcinogenesis. Proc Natl Acad Sci U S A, 92(5), 

1654-1658.  

Joha, S., Nugues, A. L., Hetuin, D., Berthon, C., Dezitter, X., Dauphin, V., Mahon, F. 

X., Roche-Lestienne, C., Preudhomme, C., Quesnel, B., & Idziorek, T. 

(2012a). GILZ inhibits the mTORC2/AKT pathway in BCR-ABL(+) cells. 

Oncogene, 31(11), 1419-1430. doi:10.1038/onc.2011.328 

Joha, S., Nugues, A. L., Hetuin, D., Berthon, C., Dezitter, X., Dauphin, V., Mahon, F. 

X., Roche-Lestienne, C., Preudhomme, C., Quesnel, B., & Idziorek, T. 

(2012b). GILZ inhibits the mTORC2/AKT pathway in BCR-ABL(+) cells. 

Oncogene, 31(11), 1419-1430. doi:10.1038/onc.2011.328 

Kawabe, T., Tsuyama, N., Kitao, S., Nishikawa, K., Shimamoto, A., Shiratori, M., 

Matsumoto, T., Anno, K., Sato, T., Mitsui, Y., Seki, M., Enomoto, T., Goto, 

M., Ellis, N. A., Ide, T., Furuichi, Y., & Sugimoto, M. (2000). Differential 

regulation of human RecQ family helicases in cell transformation and cell 

cycle. Oncogene, 19(41), 4764-4772. doi:10.1038/sj.onc.1203841 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 132 

Kim, J. H., You, K. R., Kim, I. H., Cho, B. H., Kim, C. Y., & Kim, D. G. (2004). 

Over-expression of the ribosomal protein L36a gene is associated with cellular 

proliferation in hepatocellular carcinoma. Hepatology, 39(1), 129-138. 

doi:10.1002/hep.20017 

King, L. E., Dornan, E. S., Donaldson, M. M., & Morgan, I. M. (2011). Human 

papillomavirus 16 E2 stability and transcriptional activation is enhanced by E1 

via a direct protein-protein interaction. Virology, 414(1), 26-33. 

doi:10.1016/j.virol.2011.03.002 

King, L. E., Fisk, J. C., Dornan, E. S., Donaldson, M. M., Melendy, T., & Morgan, I. 

M. (2010). Human papillomavirus E1 and E2 mediated DNA replication is not 

arrested by DNA damage signalling. Virology, 406(1), 95-102. 

doi:10.1016/j.virol.2010.06.033 

Kirkby, N. S., Lundberg, M. H., Harrington, L. S., Leadbeater, P. D. M., Milne, G. L., 

Potter, C. M. F., Al-Yamani, M., Adeyemi, O., Warner, T. D., & Mitchell, J. 

A. (2012). Cyclooxygenase-1, not cyclooxygenase-2, is responsible for 

physiological production of prostacyclin in the cardiovascular system. 

Proceedings of the National Academy of Sciences of the United States of 

America, 109(43), 17597-17602. doi:10.1073/pnas.1209192109 

Koopman, G., Reutelingsperger, C. P., Kuijten, G. A., Keehnen, R. M., Pals, S. T., & 

van Oers, M. H. (1994). Annexin V for flow cytometric detection of 

phosphatidylserine expression on B cells undergoing apoptosis. Blood, 84(5), 

1415-1420.  

Krueger, A., Baumann, S., Krammer, P. H., & Kirchhoff, S. (2001). FLICE-inhibitory 

proteins: regulators of death receptor-mediated apoptosis. Mol Cell Biol, 

21(24), 8247-8254. doi:10.1128/MCB.21.24.8247-8254.2001 

Lamarcq, L., Deeds, J., Ginzinger, D., Perry, J., Padmanabha, S., & Smith-McCune, 

K. (2002). Measurements of human papillomavirus transcripts by real time 

quantitative reverse transcription-polymerase chain reaction in samples 

collected for cervical cancer screening. Journal of Molecular Diagnostics, 

4(2), 97-102. doi:Doi 10.1016/S1525-1578(10)60687-3 

Langie, S. A., Koppen, G., Desaulniers, D., Al-Mulla, F., Al-Temaimi, R., Amedei, 

A., Azqueta, A., Bisson, W. H., Brown, D. G., Brunborg, G., Charles, A. K., 

Chen, T., Colacci, A., Darroudi, F., Forte, S., Gonzalez, L., Hamid, R. A., 

Knudsen, L. E., Leyns, L., Lopez de Cerain Salsamendi, A., Memeo, L., 

Mondello, C., Mothersill, C., Olsen, A. K., Pavanello, S., Raju, J., Rojas, E., 

Roy, R., Ryan, E. P., Ostrosky-Wegman, P., Salem, H. K., Scovassi, A. I., 

Singh, N., Vaccari, M., Van Schooten, F. J., Valverde, M., Woodrick, J., 

Zhang, L., van Larebeke, N., Kirsch-Volders, M., & Collins, A. R. (2015). 

Causes of genome instability: the effect of low dose chemical exposures in 

modern society. Carcinogenesis, 36 Suppl 1, S61-88. 

doi:10.1093/carcin/bgv031 

Leone, G., DeGregori, J., Yan, Z., Jakoi, L., Ishida, S., Williams, R. S., & Nevins, J. 

R. (1998). E2F3 activity is regulated during the cell cycle and is required for 

the induction of S phase. Genes & Development, 12(14), 2120-2130. doi:DOI 

10.1101/gad.12.14.2120 

Leung, T. W., Liu, S. S., Leung, R. C., Chu, M. M., Cheung, A. N., & Ngan, H. Y. 

(2015). HPV 16 E2 binding sites 1 and 2 become more methylated than E2 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 133 

binding site 4 during cervical carcinogenesis. J Med Virol, 87(6), 1022-1033. 

doi:10.1002/jmv.24129 

Li, N., Franceschi, S., Howell-Jones, R., Snijders, P. J., & Clifford, G. M. (2011). 

Human papillomavirus type distribution in 30,848 invasive cervical cancers 

worldwide: Variation by geographical region, histological type and year of 

publication. Int J Cancer, 128(4), 927-935. doi:10.1002/ijc.25396 

Liu, J. S., Kuo, S. R., Makhov, A. M., Cyr, D. M., Griffith, J. D., Broker, T. R., & 

Chow, L. T. (1998). Human Hsp70 and Hsp40 chaperone proteins facilitate 

human papillomavirus-11 E1 protein binding to the origin and stimulate cell-

free DNA replication. J Biol Chem, 273(46), 30704-30712.  

Longworth, M. S., & Laimins, L. A. (2004a). The binding of histone deacetylases and 

the integrity of zinc finger-like motifs of the E7 protein are essential for the 

life cycle of human papillomavirus type 31. J Virol, 78(7), 3533-3541.  

Longworth, M. S., & Laimins, L. A. (2004b). Pathogenesis of human 

papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev, 68(2), 

362-372. doi:10.1128/MMBR.68.2.362-372.2004 

Loo, Y. M., & Melendy, T. (2004). Recruitment of replication protein A by the 

papillomavirus E1 protein and modulation by single-stranded DNA. J Virol, 

78(4), 1605-1615.  

Lorincz, A. T. (1996). Hybrid Capture method for detection of human papillomavirus 

DNA in clinical specimens: a tool for clinical management of equivocal Pap 

smears and for population screening. J Obstet Gynaecol Res, 22(6), 629-636.  

Lorincz, A. T., Brentnall, A. R., Vasiljevic, N., Scibior-Bentkowska, D., Castanon, 

A., Fiander, A., Powell, N., Tristram, A., Cuzick, J., & Sasieni, P. (2013). 

HPV16 L1 and L2 DNA methylation predicts high-grade cervical 

intraepithelial neoplasia in women with mildly abnormal cervical cytology. Int 

J Cancer, 133(3), 637-644. doi:10.1002/ijc.28050 

Lowy, D. R., & Schiller, J. T. (2006). Prophylactic human papillomavirus vaccines. J 

Clin Invest, 116(5), 1167-1173. doi:10.1172/JCI28607 

Ma, Y. Y., Wei, S. J., Lin, Y. C., Lung, J. C., Chang, T. C., Whang-Peng, J., Liu, J. 

M., Yang, D. M., Yang, W. K., & Shen, C. Y. (2000a). PIK3CA as an 

oncogene in cervical cancer. Oncogene, 19(23), 2739-2744. 

doi:10.1038/sj.onc.1203597 

Ma, Y. Y., Wei, S. J., Lin, Y. C., Lung, J. C., Chang, T. C., Whang-Peng, J., Liu, J. 

M., Yang, D. M., Yang, W. K., & Shen, C. Y. (2000b). PIK3CA as an 

oncogene in cervical cancer. Oncogene, 19(23), 2739-2744. doi:DOI 

10.1038/sj.onc.1203597 

Mackay, I. M., Arden, K. E., & Nitsche, A. (2002). Real-time PCR in virology. 

Nucleic Acids Res, 30(6), 1292-1305.  

Mantovani, F., & Banks, L. (2001). The human papillomavirus E6 protein and its 

contribution to malignant progression. Oncogene, 20(54), 7874-7887. 

doi:10.1038/sj.onc.1204869 

Marongiu, L., Godi, A., Parry, J. V., & Beddows, S. (2014). Human Papillomavirus 

16, 18, 31 and 45 viral load, integration and methylation status stratified by 

cervical disease stage. BMC Cancer, 14, 384. doi:10.1186/1471-2407-14-384 

Martin, G. M. (1985). Genetics and aging; the Werner syndrome as a segmental 

progeroid syndrome. Adv Exp Med Biol, 190, 161-170.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 134 

Masoud, G. N., & Li, W. (2015). HIF-1alpha pathway: role, regulation and 

intervention for cancer therapy. Acta Pharm Sin B, 5(5), 378-389. 

doi:10.1016/j.apsb.2015.05.007 

Masoud, G. N., & Li, W. (2015). HIF-1α pathway: role, regulation and intervention 

for cancer therapy. Acta Pharmaceutica Sinica. B, 5(5), 378-389. 

doi:10.1016/j.apsb.2015.05.007 

Massague, J. (2004). G1 cell-cycle control and cancer. Nature, 432(7015), 298-306. 

doi:10.1038/nature03094 

Maufort, J. P., Shai, A., Pitot, H. C., & Lambert, P. F. (2010). A role for HPV16 E5 in 

cervical carcinogenesis. Cancer Res, 70(7), 2924-2931. doi:10.1158/0008-

5472.CAN-09-3436 

Mayo, K. E. (1994). Inhibin and activin Molecular aspects of regulation and function. 

Trends Endocrinol Metab, 5(10), 407-415.  

Meterissian, S. H., Kontogiannea, M., Al-Sowaidi, M., Linjawi, A., Halwani, F., 

Jamison, B., & Edwardes, M. (2001). Bcl-2 is a useful prognostic marker in 

Dukes' B colon cancer. Annals of Surgical Oncology, 8(6), 533-537. doi:DOI 

10.1007/s10434-001-0533-3 

Moody, C. A., & Laimins, L. A. (2009). Human papillomaviruses activate the ATM 

DNA damage pathway for viral genome amplification upon differentiation. 

PLoS Pathog, 5(10), e1000605. doi:10.1371/journal.ppat.1000605 

Moody, C. A., & Laimins, L. A. (2010). Human papillomavirus oncoproteins: 

pathways to transformation. Nat Rev Cancer, 10(8), 550-560. 

doi:10.1038/nrc2886 

Morgan, D. O. (1995). Principles of CDK regulation. Nature, 374(6518), 131-134. 

doi:10.1038/374131a0 

Munger, K., Scheffner, M., Huibregtse, J. M., & Howley, P. M. (1992). Interactions 

of HPV E6 and E7 oncoproteins with tumour suppressor gene products. 

Cancer Surv, 12, 197-217.  

Nagao, S., Yoshinouchi, M., Miyagi, Y., Hongo, A., Kodama, J., Itoh, S., & Kudo, T. 

(2002). Rapid and sensitive detection of physical status of human 

papillomavirus type 16 DNA by quantitative real-time PCR. J Clin Microbiol, 

40(3), 863-867.  

Narayan, G., Xie, D., Ishdorj, G., Scotto, L., Mansukhani, M., Pothuri, B., Wright, J. 

D., Kaufmann, A. M., Schneider, A., Arias-Pulido, H., & Murty, V. V. (2016). 

Epigenetic inactivation of TRAIL decoy receptors at 8p12-21.3 commonly 

deleted region confers sensitivity to Apo2L/trail-Cisplatin combination 

therapy in cervical cancer. Genes Chromosomes Cancer, 55(2), 177-189. 

doi:10.1002/gcc.22325 

Nasu, K., & Narahara, H. (2010). Pattern recognition via the toll-like receptor system 

in the human female genital tract. Mediators Inflamm, 2010, 976024. 

doi:10.1155/2010/976024 

Nave, B. T., Ouwens, M., Withers, D. J., Alessi, D. R., & Shepherd, P. R. (1999). 

Mammalian target of rapamycin is a direct target for protein kinase B: 

identification of a convergence point for opposing effects of insulin and 

amino-acid deficiency on protein translation. Biochem J, 344 Pt 2, 427-431.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 135 

Negrini, S., Gorgoulis, V. G., & Halazonetis, T. D. (2010). Genomic instability--an 

evolving hallmark of cancer. Nat Rev Mol Cell Biol, 11(3), 220-228. 

doi:10.1038/nrm2858 

Neri, A., Marrelli, D., Roviello, F., DeMarco, G., Mariani, F., DeStefano, A., Megha, 

T., Caruso, S., Corso, G., Cioppa, T., & Pinto, E. (2006). Bcl-2 expression 

correlates with lymphovascular invasion and long-term prognosis in breast 

cancer. Breast Cancer Research and Treatment, 99(1), 77-83. 

doi:10.1007/s10549-006-9183-2 

Nishimura, A., Ono, T., Ishimoto, A., Dowhanick, J. J., Frizzell, M. A., Howley, P. 

M., & Sakai, H. (2000). Mechanisms of human papillomavirus E2-mediated 

repression of viral oncogene expression and cervical cancer cell growth 

inhibition. J Virol, 74(8), 3752-3760.  

Pardee, A. B., Dubrow, R., Hamlin, J. L., & Kletzien, R. F. (1978). Animal cell cycle. 

Annu Rev Biochem, 47, 715-750. doi:10.1146/annurev.bi.47.070178.003435 

Parkin, D. M., & Bray, F. (2006). Chapter 2: The burden of HPV-related cancers. 

Vaccine, 24 Suppl 3, S3/11-25. doi:10.1016/j.vaccine.2006.05.111 

Peitsaro, P., Johansson, B., & Syrjanen, S. (2002). Integrated human papillomavirus 

type 16 is frequently found in cervical cancer precursors as demonstrated by a 

novel quantitative real-time PCR technique. J Clin Microbiol, 40(3), 886-891.  

Pirami, L., Giache, V., & Becciolini, A. (1997). Analysis of HPV16, 18, 31, and 35 

DNA in pre-invasive and invasive lesions of the uterine cervix. J Clin Pathol, 

50(7), 600-604.  

Plummer, M., Schiffman, M., Castle, P. E., Maucort-Boulch, D., Wheeler, C. M., & 

Group, A. (2007). A 2-year prospective study of human papillomavirus 

persistence among women with a cytological diagnosis of atypical squamous 

cells of undetermined significance or low-grade squamous intraepithelial 

lesion. J Infect Dis, 195(11), 1582-1589. doi:10.1086/516784 

Polager, S., & Ginsberg, D. (2009). p53 and E2f: partners in life and death. Nat Rev 

Cancer, 9(10), 738-748. doi:10.1038/nrc2718 

Rajeevan, M. S., Swan, D. C., Duncan, K., Lee, D. R., Limor, J. R., & Unger, E. R. 

(2006). Quantitation of site-specific HPV 16 DNA methylation by 

pyrosequencing. J Virol Methods, 138(1-2), 170-176. 

doi:10.1016/j.jviromet.2006.08.012 

Reinson, T., Toots, M., Kadaja, M., Pipitch, R., Allik, M., Ustav, E., & Ustav, M. 

(2013). Engagement of the ATR-dependent DNA damage response at the 

human papillomavirus 18 replication centers during the initial amplification. J 

Virol, 87(2), 951-964. doi:10.1128/JVI.01943-12 

Ristimaki, A., Sivula, A., Lundin, J., Lundin, M., Salminen, T., Haglund, C., Joensuu, 

H., & Isola, J. (2002). Prognostic significance of elevated cyclooxygenase-2 

expression in breast cancer. Cancer Research, 62(3), 632-635.  

Roos, W. P., & Kaina, B. (2006). DNA damage-induced cell death by apoptosis. 

Trends Mol Med, 12(9), 440-450. doi:10.1016/j.molmed.2006.07.007 

Roos, W. P., & Kaina, B. (2013). DNA damage-induced cell death: from specific 

DNA lesions to the DNA damage response and apoptosis. Cancer Lett, 332(2), 

237-248. doi:10.1016/j.canlet.2012.01.007 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 136 

Sabol, I., Matovina, M., Gasperov, N. M., & Grce, M. (2008). Identification of a 

novel human papillomavirus type 16 E1 gene variant with potentially reduced 

oncogenicity. J Med Virol, 80(12), 2134-2140. doi:10.1002/jmv.21304 

Sakakibara, N., Mitra, R., & McBride, A. A. (2011). The papillomavirus E1 helicase 

activates a cellular DNA damage response in viral replication foci. J Virol, 

85(17), 8981-8995. doi:10.1128/JVI.00541-11 

Schmitt, M., Dalstein, V., Waterboer, T., Clavel, C., Gissmann, L., & Pawlita, M. 

(2011). The HPV16 transcriptome in cervical lesions of different grades. Mol 

Cell Probes, 25(5-6), 260-265. doi:10.1016/j.mcp.2011.05.003 

Secchiero, P., Barbarotto, E., Gonelli, A., Tiribelli, M., Zerbinati, C., Celeghini, C., 

Agostinelli, C., Pileri, S. A., & Zauli, G. (2005). Potential pathogenetic 

implications of cyclooxygenase-2 overexpression in B chronic lymphoid 

leukemia cells. American Journal of Pathology, 167(6), 1599-1607. doi:Doi 

10.1016/S0002-9440(10)61244-8 

Semenza, G. L. (2004). Hydroxylation of HIF-1: Oxygen sensing at the molecular 

level. Physiology, 19, 176-182. doi:10.1152/physiol.00001.2004 

Sheng, H. M., Shao, J. Y., Morrow, J. D., Beauchamp, R. D., & DuBois, R. N. (1998). 

Modulation of apoptosis and Bcl-2 expression by prostaglandin E-2 in human 

colon cancer cells. Cancer Research, 58(2), 362-366.  

Sherr, C. J., & Roberts, J. M. (1999). CDK inhibitors: positive and negative regulators 

of G(1)-phase progression. Genes & Development, 13(12), 1501-1512. 

doi:DOI 10.1101/gad.13.12.1501 

Skinner, H. D., Zheng, J. Z., Fang, J., Agani, F., & Jiang, B. H. (2004). Vascular 

endothelial growth factor transcriptional activation is mediated by hypoxia-

inducible factor 1 alpha, HDM2, and p70S6K1 in response to 

phosphatidylinositol 3-kinase/AKT signaling. Journal of Biological 

Chemistry, 279(44), 45643-45651. doi:10.1074/jbc.M404097200 

Stanley, M. A. (2012). Epithelial cell responses to infection with human 

papillomavirus. Clin Microbiol Rev, 25(2), 215-222. doi:10.1128/CMR.05028-

11 

Stapleton, J. A., Endo, K., Fujita, Y., Hayashi, K., Takinoue, M., Saito, H., & Inoue, 

T. (2012). Feedback control of protein expression in mammalian cells by 

tunable synthetic translational inhibition. ACS Synth Biol, 1(3), 83-88. 

doi:10.1021/sb200005w 

Stein, R. A. (2011). DNA methylation profiling: a promising tool and a long road 

ahead for clinical applications. Int J Clin Pract, 65(12), 1212-1213. 

doi:10.1111/j.1742-1241.2011.02804.x 

Stokoe, D., Stephens, L. R., Copeland, T., Gaffney, P. R., Reese, C. B., Painter, G. F., 

Holmes, A. B., McCormick, F., & Hawkins, P. T. (1997). Dual role of 

phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. 

Science, 277(5325), 567-570.  

Swiss Institute of Bioinformatics. (2010). Papillomaviridae.    

Taghizadeh, E., Taheri, F., Abdolkarimi, H., Ghorbani Renani, P., & Gheibi Hayat, S. 

M. (2017). Distribution of Human Papillomavirus Genotypes among Women 

in Mashhad, Iran. Intervirology, 60(1-2), 38-42. doi:10.1159/000477848 

Tan, S. H., Leong, L. E., Walker, P. A., & Bernard, H. U. (1994). The human 

papillomavirus type 16 E2 transcription factor binds with low cooperativity to 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 137 

two flanking sites and represses the E6 promoter through displacement of Sp1 

and TFIID. J Virol, 68(10), 6411-6420.  

Terenzi, F., Saikia, P., & Sen, G. C. (2008). Interferon-inducible protein, P56, inhibits 

HPV DNA replication by binding to the viral protein E1. EMBO J, 27(24), 

3311-3321. doi:10.1038/emboj.2008.241 

Thierry, F. (2009). Transcriptional regulation of the papillomavirus oncogenes by 

cellular and viral transcription factors in cervical carcinoma. Virology, 384(2), 

375-379. doi:10.1016/j.virol.2008.11.014 

Turvey, S. E., & Broide, D. H. (2010). Chapter 2: Innate Immunity. The Journal of 

allergy and clinical immunology, 125(2 Suppl 2), S24-S32. 

doi:10.1016/j.jaci.2009.07.016 

Veressimo Fernandes, J., & Fernandes, T. (2012). Human Papillomavirus: Biology 

and Pathogenesis. 

Verhagen, A. M., Ekert, P. G., Pakusch, M., Silke, J., Connolly, L. M., Reid, G. E., 

Moritz, R. L., Simpson, R. J., & Vaux, D. L. (2000). Identification of 

DIABLO, a mammalian protein that promotes apoptosis by binding to and 

antagonizing IAP proteins. Cell, 102(1), 43-53.  

Viens, L. J., Henley, S. J., Watson, M., Markowitz, L. E., Thomas, C. C., Thompson, 

T. D., Razzaghi, H., & Saraiya, M. (2016). Human Papillomavirus-Associated 

Cancers - United States, 2008-2012. MMWR Morb Mortal Wkly Rep, 65(26), 

661-666. doi:10.15585/mmwr.mm6526a1 

Vinokurova, S., & von Knebel Doeberitz, M. (2011). Differential methylation of the 

HPV 16 upstream regulatory region during epithelial differentiation and 

neoplastic transformation. PLoS One, 6(9), e24451. 

doi:10.1371/journal.pone.0024451 

Wajant, H. (2002). The Fas signaling pathway: more than a paradigm. Science, 

296(5573), 1635-1636. doi:10.1126/science.1071553 

Walboomers, J. M., Jacobs, M. V., Manos, M. M., Bosch, F. X., Kummer, J. A., Shah, 

K. V., Snijders, P. J., Peto, J., Meijer, C. J., & Munoz, N. (1999). Human 

papillomavirus is a necessary cause of invasive cervical cancer worldwide. J 

Pathol, 189(1), 12-19. doi:10.1002/(SICI)1096-9896(199909)189:1<12::AID-

PATH431>3.0.CO;2-F 

Wang-Johanning, F., Lu, D. W., Wang, Y., Johnson, M. R., & Johanning, G. L. 

(2002). Quantitation of human papillomavirus 16 E6 and E7 DNA and RNA 

in residual material from ThinPrep Papanicolaou tests using real-time 

polymerase chain reaction analysis. Cancer, 94(8), 2199-2210. 

doi:10.1002/cncr.10439 

Warner, J. R. a. M. K. B. (2009). How Common Are Extraribosomal Functions of 

Ribosomal Proteins? Molecular Cell, 34(1), 3-11.  

Watanabe, S., Watanabe, K., Akimov, V., Bartkova, J., Blagoev, B., Lukas, J., & 

Bartek, J. (2013). JMJD1C demethylates MDC1 to regulate the RNF8 and 

BRCA1-mediated chromatin response to DNA breaks. Nat Struct Mol Biol, 

20(12), 1425-1433. doi:10.1038/nsmb.2702 

Williams, V. M., Filippova, M., Soto, U., & Duerksen-Hughes, P. J. (2011). HPV-

DNA integration and carcinogenesis: putative roles for inflammation and 

oxidative stress. Future Virol, 6(1), 45-57. doi:10.2217/fvl.10.73 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 138 

Woodman, C. B., Collins, S. I., & Young, L. S. (2007). The natural history of cervical 

HPV infection: unresolved issues. Nat Rev Cancer, 7(1), 11-22. 

doi:10.1038/nrc2050 

Wu, J., Lu, L. Y., & Yu, X. (2010). The role of BRCA1 in DNA damage response. 

Protein Cell, 1(2), 117-123. doi:10.1007/s13238-010-0010-5 

Xia, Y., Shen, S., & Verma, I. M. (2014). NF-kappaB, an active player in human 

cancers. Cancer Immunol Res, 2(9), 823-830. doi:10.1158/2326-6066.CIR-14-

0112 

Yadav, R. K., Chauhan, A. S., Zhuang, L., & Gan, B. (2018). FoxO transcription 

factors in cancer metabolism. Seminars in Cancer Biology. 

doi:https://doi.org/10.1016/j.semcancer.2018.01.004 

Yoysungnoen, B., Bhattarakosol, P., Changtam, C., & Patumraj, S. (2016). Effects of 

Tetrahydrocurcumin on Tumor Growth and Cellular Signaling in Cervical 

Cancer Xenografts in Nude Mice. Biomed Res Int, 2016, 1781208. 

doi:10.1155/2016/1781208 

Zhang, L., Zhou, F. F., & ten Dijke, P. (2013). Signaling interplay between 

transforming growth factor-beta receptor and PI3K/AKT pathways in cancer. 

Trends in Biochemical Sciences, 38(12), 612-620. 

doi:10.1016/j.tibs.2013.10.001 

Zhang, R., He, Y. F., Chen, M., Chen, C. M., Zhu, Q. J., Lu, H., Wei, Z. H., Li, F., 

Zhang, X. X., Xu, C. J., & Yu, L. (2014). Diagnosis of 25 genotypes of human 

papillomaviruses for their physical statuses in cervical precancerous/cancerous 

lesions: a comparison of E2/E6E7 ratio-based vs. multiple E1-L1/E6E7 ratio-

based detection techniques. J Transl Med, 12, 282. doi:10.1186/s12967-014-

0282-2 

Zhang, X., Liu, H., Xie, Z., Deng, W., Wu, C., Qin, B., Hou, J., & Lu, M. (2016). 

Epigenetically regulated miR-449a enhances hepatitis B virus replication by 

targeting cAMP-responsive element binding protein 5 and modulating 

hepatocytes phenotype. Sci Rep, 6, 25389. doi:10.1038/srep25389 

Zhang, X. B., Tang, N. M., Hadden, T. J., & Rishi, A. K. (2011). Akt, FoxO and 

regulation of apoptosis. Biochimica Et Biophysica Acta-Molecular Cell 

Research, 1813(11), 1978-1986. doi:10.1016/j.bbamcr.2011.03.010 

Zhu, J., Wu, G., Li, Q., Gong, H., Song, J., Cao, L., Wu, S., Song, L., & Jiang, L. 

(2016). Overexpression of Suprabasin is Associated with Proliferation and 

Tumorigenicity of Esophageal Squamous Cell Carcinoma. Sci Rep, 6, 21549. 

doi:10.1038/srep21549 

zur Hausen, H. (2002). Papillomaviruses and cancer: from basic studies to clinical 

application. Nat Rev Cancer, 2(5), 342-350. doi:10.1038/nrc798 

https://doi.org/10.1016/j.semcancer.2018.01.004


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 139 

 

 

 

 
VITA 
 

 

  

VITA 

 

Name: Fern Baedyananda 

Education: 

2011    

Bachelor of Science (Biological Sciences), University of California, Irvine,  

California, United States of America 

2013                    

Master of Public Health (Environmental and Occupational Health), Loma Linda  

University, Loma Linda, California, United States of America 

Presentation: 

Poster presentation in the 17th International Congress of Virology, International  

Union Microbiological Societies 2017, 17-21 July 2017, Singapore  

Publication:  

Baedyananda, F., Chaiwongkot, A., & Bhattarakosol, P. (2017).  

Elevated HPV16 E1 Expression Is Associated with Cervical Cancer Progression.  

Intervirology, 60(5), 171-180. doi:10.1159/000487048 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 140 

APPENDIX A 

REAGENTS, MATERIALS AND INSTRUMENTS 

Reagents 

Absolute ethanol     (Merck, Germany) 

Agarose      (Research organics, USA) 

APC-conjugated annexin V (Biolegend, USA) 

Cell counting kit  (Biolegend, USA) 

Dimethyl sulfoxide (DMSO)   (Sigma-Aldrich, Germany) 

DMEM medium (GE Healthcare Life Sciences, 

USA) 

DNA Ladder  (Apsalagen, Germany) 

DNase I      (Sigma-Aldrich, Germany) 

DNase/RNase-free water    (Apsalagen, Thailand) 

dNTP      (Fermentas, Canada) 

Droplet digital PCR master mix    (Bio-rad, USA) 

Ethylenediaminetetraacetic acid (EDTA)  (Sigma-Aldrich, Germany) 

Fetal bovine serum     (Gibco, USA) 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic  (Sigma-Aldrich, Germany) 

acid (HEPES) 

Isopropanol (Merck, Germany) 

LB broth powder  (OXOID, UK) 

LB agar powder  (OXOID, UK) 

NaHCO3       (Bio Basic, USA) 

Opti-MEM™ I Reduced Serum Media  (Gibco, USA) 

Penicillin/Streptomycin    (Gibco, USA) 

Phosphate buffered saline (PBS) (Apsalagen, Germany) 

Plasmid extraction  (Machery-Nagel, Germany)  

Primers (Integrated DNA Technologies, 

Singapore) 

Reverse transcription kit (Invitrogen, USA) 
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Sodium pyruvate     (Gibco, USA) 

SYBR
®
 Green gel stain    (Invitrogen, USA) 

Transfection reagent    (Roche, USA) 

Tris-boric acid EDTA buffer   (Research organics, USA) 

Tris-HCL      (Machery-Nagel, Germany) 

Trypan blue (Sigma-Aldrich, Germany) 

Trypsin  (Bio Basic, U.S.A.) 

Trypsin-EDTA (Gibco, USA) 

 

Materials 

Barrier tips     (Sorenson, USA) 

Cryotubes (2 mL)     (Sarstedt, Germany) 

DNase/RNase free clear tubes (1.5 mL)  (Axygen, USA) 

Filters (0.22 µM and 0.45 µM)   (Merck Millipore, USA) 

Pipette tips (Sorenson, USA) 

Round-bottom polystyrene tubes (5 mL)  (BD Falcon™, USA) 

Sterile serological pipettes (Eppendorf, Germany) 

Sterile tubes (15 mL and 50 mL) (Becton Dickinson, USA) 

Tissue culture flasks (Nunc™, Thermo Fisher 

Scientific, USA) 

Tissue culture plates (Nunc™, Thermo Fisher 

Scientific, USA) 

Instruments 

Autopipettes (Thermo Fisher Scientific, USA) 

BD FACSAria™ II flow cytometer (BD Biosciences, USA) 

Biosafety cabinet (Labconco, USA) 

Centrifuge  (Eppendorf, Germany) 

Confocal microscope  (Olympus, Japan) 

Droplet generator (Bio-rad, USA) 

Droplet reader (Bio-rad, USA) 

Electrophoresis chamber (MiniRun GE100, China) 

FlowJo® version 10 (FlowJo, LLC, USA) 
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Freezer (-80°C) (Thermo Fisher Scientific, USA) 

Incubator (Thermo Fisher Scientific, USA) 

Inverted fluorescence microscope (IX81) (Olympus, Japan) 

Inverted light microscope (Nikon, Japan) 

Liquid nitrogen tank (Chart/MVE, USA) 

Nalgene® Mr. Frosty cryopreserve box (Sigma-Aldrich, Germany) 

NanoDrop™ Spectrophotometer (Eppendorf, USA) 

Quantitative real time PCR (Applied Bioscience, USA) 

Refrigerated centrifuge (Allegra X-15R) (Beckman Coulter, USA) 

Thermal cycler  (Bio-rad, USA) 

Vortex mixer (Brand, Germany) 

Water bath incubator (Grant, UK)  
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APPENDIX B  

PREPARATION OF REAGENTS 

Cell culture 

 

 

1. Complete culture medium for SiHa and CaSki cells 

DMEM         180 mL 

Heat inactivated fetal bovine serum          20 mL 

2. Complete culture medium for HEK 293T cells 

DMEM         180 mL 

Heat inactivated fetal bovine serum        20 mL 

100 mM sodium pyruvate      200 µL 

3. 1M HEPES 

HEPES         23.83 g 

Deionized distilled water        100 ml 

Sterilized by autoclaving and stored at 4 °C 

4. 10% NaHCO3 

NaHCO3               10 g 

Deionized distilled water       100 ml 

Sterilized by autoclaving and stored at 4 °C 

5. 1X PBS 

10X PBS         100 ml 

Deionized distilled water       900 ml 

Sterilized by autoclaving and stored at room temperature 

 

Plasmid amplification 

1. LB broth 

LB broth powder            30 g 

Distilled water              1 L 

Sterilized by autoclaving 1. LB broth 
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2. LB agar 

LB agar powder             40 g 

Distilled water               1 L 

Sterilized by autoclaving 
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