การเร่งปฏิกิริยาเอทานอลดีไฮเครชั้นเป็นไคเอทิลอีเทอร์บนตัวเร่งปฏิกิริยาแกมมาอะลูมินา ฟอสฟอรัสที่ปรับปรุงด้วยแพลเลเดียม

จุหาลงกรณ์มหาวิทยาลัย

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเคมี ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2560 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

CATALYTIC ETHANOL DEHYDRATION TO DIETHYL ETHER OVER PALLADIUM-MODIFIED PHOSPHORUS GAMMA ALUMINA CATALYSTS

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Chemical Engineering Department of Chemical Engineering Faculty of Engineering Chulalongkorn University Academic Year 2017 Copyright of Chulalongkorn University

Thesis Title	CATALYTIC ETHANOL DEHYDRATION TO DIETHYL ETHER OVER PALLADIUM- MODIFIED PHOSPHORUS GAMMA ALUMINA CATALYSTS
Ву	Mr. Chakkrit Khaochartchai
Field of Study	Chemical Engineering
Thesis Advisor	Professor Bunjerd Jongsomjit, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Dean of the Faculty of Engineering (Associate Professor Supot Teachavorasinskun, Ph.D.)

THESIS COMMITTEE

Chairman (Professor Muenduen Phisalaphong, Ph.D.)

Examiner

(Professor Joongjai Panpranot, Ph.D.)

External Examiner

(Assistant Professor Ekrachan Chaichana)

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University จักกฤช เก้าชาติชาย : การเร่งปฏิกิริยาเอทานอลดีไฮเครชันเป็นไคเอทิลอีเทอร์บนตัวเร่ง ปฏิกิริยาแกมมาอะ ลูมินาฟอสฟอรัสที่ปรับปรุงด้วยแพลเลเดียม (CATALYTIC ETHANOL DEHYDRATION TO DIETHYL ETHER OVER PALLADIUM-MODIFIED PHOSPHORUS GAMMA ALUMINA CATALYSTS) อ.ที่ปรึกษา วิทยานิพนธ์หลัก: ศ. คร.บรรเจิค จงสมจิตร, หน้า.

้ตัวเร่งปฏิกิริยาแกมมาอะลูมินาได้นำไปปรับปรุงด้วยฟอสฟอรัส โดยวิธีกระตุ้นด้วยกรด และปรับปรุงด้วยแพลเลเดียมโดยวิธีการเคลือบฝั่งแบบเปียก ตัวเร่งปฏิกิริยาที่ผ่านการปรับปรุง ้นำมาหากุณลักษณะด้วยวิธีต่างๆประกอบด้วย การกระเจิงรังสีเอ็กซ์ วิธีอินดักทีพลึกัพเพิลพลาสมา การส่องกราคด้วยกล้องจุลทรรศน์อิเล็กตรอน และวิธีเอกซเรย์สเปคโตรสโคปีแบบกระจายพลังงาน การดูดซับทางกายภาพด้วยในโตรเจน การคายซับของแอมโมเนียแบบโปรแกรมอุณหภูมิ การ ้วิเคราะห์การเปลี่ยนแปลงน้ำหนักของสาร โดยอาศัยคุณสมบัติทางกวามร้อน นอกจากนี้ตัวเร่ง ้ปฏิกิริยาที่ผ่านการปรับปรุงเหล่านี้นำมาทคสอบด้วยปฏิกิริยาการขจัคน้ำของเอทานอลในเครื่อง ปฏิกรณ์เกมีแบบเบคนิ่งเพื่อหาก่าร้อยละการเปลี่ยนแปลงสารตั้งต้น และก่าร้อยละการเกิดผลผลิต ้ของผลิตภัณฑ์ที่ความคันบรรยากาศในช่วงอุณหภูมิจาก 200 ถึง 400 องศาเซลเซียส จากผลการ ทคลองการปรับปรุงด้วยฟอสฟอรัสได้ลดปริมาณกรดปานกลางถึงแก่และเพิ่มปริมาณกรดอ่อน การ ปรับปรุงตัวเร่งปฏิกิริยาด้วยฟอสฟอรัสแสดงผลผลิตไดเอทิลอีเทอร์สูงที่สุดร้อยละ 38.41 ที่ ้อุณหภูมิ 350 องศาเซลเซียส นอกจากนี้การเติมฟอสฟอรัสบนตัวเร่งปฏิกิริยาช่วยลดปริมาณการ เกิดการ์บอนที่เกาะบนผิวตัวเร่งปฏิกิริยา การปรับปรุงแพลเลเดียมบนตัวเร่งปฏิกิริยามีแนวโน้มทำ หน้าที่เป็นตัวสนับสนุนของตัวเร่งปฏิกิริยาส่งผลให้เพิ่มก่าร้อยละการเปลี่ยนแปลงสารตั้งต้นที่ อุณหภูมิต่ำ อย่างไรก็ตามการมีแพลเลเดียมอยู่บนตัวเร่งปฏิกิริยาช่วยให้เกิดปฏิกิริยาการขจัด ไฮโครเจนซึ่งได้อะเซทัลดีไฮด์เป็นผลิตภัณฑ์หลักที่อุณหภูมิต่ำประมาณ 200 องศาเซลเซียส

ลายมือชื่อนิสิต	
ลายมือชื่อ อ.ที่ปรึกษาหลัก _	

ภาควิชา วิศวกรรมเคมี สาขาวิชา วิศวกรรมเคมี ปีการศึกษา 2560

5870993821 : MAJOR CHEMICAL ENGINEERING KEYWORDS: ETHANOL DEHYDRATION / DIETHYL ETHER / GAMMA ALUMINA / PALLADIUM

CHAKKRIT KHAOCHARTCHAI: CATALYTIC ETHANOL DEHYDRATION TO DIETHYL ETHER OVER PALLADIUM-MODIFIED PHOSPHORUS GAMMA ALUMINA CATALYSTS. ADVISOR: PROF. BUNJERD JONGSOMJIT, Ph.D., pp.

The gamma alumina $(\gamma$ -Al₂O₃) catalyst was modified with phosphorous (P) by acid activation technique and palladium (Pd) by the incipient wetness impregnation technique. The obtained catalysts were characterized with various techniques including X-ray diffraction (XRD), inductively coupled plasma (ICP), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX), N₂ physisorption, ammonia temperature-programmed desorption (NH₃-TPD), and thermogravimetric analysis (TGA). In addition, these modified catalysts were tested in ethanol dehydration reaction in a fixed-bed microreactor to determine ethanol conversion and product yield at the atmospheric pressure with temperatures ranging from 200-400°C. From the results, the phosphorous modification diminished the amount of moderate to strong acid sites leading to increased amount of weak acid sites. The phosphorous modified catalyst exhibited the highest diethyl ether yield of 38.41% at the temperature of 350°C. Furthermore, the phosphorous addition on catalyst significantly decreased the amount of coke deposition on the catalyst surface. The Pd-modified catalyst likely acted as the chemical promoter of catalyst resulting in increased ethanol conversion at low temperature. Nevertheless, the presence of Pd on catalysts enhanced the dehydrogenation reaction to produce acetaldehyde as a major product at low temperature ca. 200°C.

Department:	Chemical Engineering	Student's Signature
Field of Study:	Chemical Engineering	Advisor's Signature
Academic Year:	2017	

ACKNOWLEDGEMENTS

I would like to express my sincere thanks of gratitude to my thesis advisor, Professor Bunjerd Jongsomjit for his advice and guidance on this research. In addition, I am grateful to the chairman of the committee, Professor Muenduen Phisalaphong and members of the thesis committee Professor Joongjai Panpranot and Assistant Professor Ekrachan Chaichana for spending valuable time to review this thesis.

Furthermore, I thank the Grant for International Research Integration: Chula Research Scholar, Ratchadaphiseksomphot Endowment Fund for financial support of this project.

Finally, I would also like to thank my parents, co-worker, and friends in Center of Excellence on Catalysis and Catalytic Reaction Engineering laboratory who encouraged and helped me a lot in finalizing this project.

CONTENTS

	Page
THAI ABSTRACT	iv
ENGLISH ABSTRACT	v
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	X
LIST OF FIGURES	xi
CHAPTER 1 INTRODUCTION	1
1.1 General introduction	1
1.2 Research objectives	2
1.3 Research scopes	3
1.4 Research methodology	4
CHAPTER 2 THEORIES	6
2.1 Alumina	6
2.2 Phosphorus	8
2.3 Palladium	8
2.4 Ethanol dehydration reaction	9
CHAPTER 3 LITERATURE REVIEWS	12
3.1 Alcohol dehydration reaction over solid catalysts	12
3.2 Modified Alumina as solid catalysts for alcohol dehydration	16
CHAPTER 4 EXPERIMENTAL	19
4.1 Catalyst Preparation	19
4.1.1 Materials	19
4.1.2 Synthesis of phosphorus over Al ₂ O ₃ catalysts	19
4.1.3 Synthesis of Pd modified Al ₂ O ₃ -P catalysts	19
4.2 Ethanol dehydration reaction	20
4.2.1 Chemicals and reagents	20
4.2.1 Reaction test	20
4.3 Catalyst characterization	21

Page	
4.3.1 X-ray diffraction (XRD)21	
4.3.2 Inductively coupled plasma (ICP)	
4.3.3 Scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX)	
4.3.4 N ₂ physisorption	
4.3.5 Ammonia temperature-programmed desorption (NH ₃ -TPD)22	
4.3.6 Thermal gravimetric analysis (TGA)22	
4.4 Research plan23	
CHAPTER 5 RESULTS AND DISCUSSION	
Part I: The comparison of catalytic activities and catalyst characteristics of	
the Ai_2O_3 -P catalysis with different Pd loadings	
5.1.1 X-ray diffraction (XRD)	
5.1.2 Inductively coupled plasma (ICP)25	
5.1.3 Scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX)25	
5.1.4 N ₂ physisorption	
5.1.5 Ammonia temperature-programmed desorption (NH ₃ -TPD)34	
5.1.6 Reaction study	
5.1.7 Thermal gravimetric analysis (TGA)43	
Part II: The comparison of catalytic activities and catalyst characteristic	
between the chosen Pd modified over γ-Al ₂ O ₃ catalyst and the chosen Pd modified over Al ₂ O ₃ -P catalyst46	
5.2.1 Inductively coupled plasma (ICP)	
5.2.2 X-ray diffraction (XRD)	
5.2.3 Ammonia temperature-programmed desorption (NH ₃ -TPD)	
5.2.4 Reaction study	
5.2.5 Thermal gravimetric analysis (TGA)	
CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS	
6.1 Conclusions	
6.2 Recommendations	

	Page
REFERENCES	62
APPENDIX	65
APPENDIX A CALCULATION FOR CATALYST PREPARATION	66
APPENDIX B CALCULATION OF ACIDITY	68
APPENDIX C CALCULATION CURVE OF REACTANT AND PRODUCTS	69
APPENDIX D CHROMATOGRAM	72
APPENDIX E CALCULATION OF REACTANT CONVERSION, PRODUCT	
SELECTIVITY, PRODUCT YIELD	73
APPENDIX F CATALYTIC TESTING RESULTS	74
APPENDIX G LIST OF PUBLICATION	77
VITA	78

CHULALONGKORN UNIVERSITY

LIST OF TABLES

Table 2.1 Alumina properties 6
Table 2.2 Phosphorus properties 8
Table 2.3 Palladium properties
Table 4.1 The chemicals used in modified Al ₂ O ₃ catalysts 19
Table 4.2 The chemicals used in the reaction
Table 4.3 The operating conditions of gas chromatograph 21
Table 5.1 The amount of Pd composed in the catalyst bulk. 25
Table 5.2 The amount of each element on the surface of catalysts (wt%)
Table 5.3 The amount of each element on the surface of catalysts (at%). 30
Table 5.4 Comparing the amount of Pd loading in the catalyst bulk and catalyst surface.
Table 5.5 Textural properties of Al ₂ O ₃ , P-modified Al ₂ O ₃ and Pd modified Al ₂ O ₃ - P catalysts
Table 5.6 The surface acidity of Al ₂ O ₃ , P-modified Al ₂ O ₃ and Pd modified Al ₂ O ₃ - P catalysts
Table 5.7 The amount of coke formation in the spent catalysts
Table 5 8 The amount of Pd composed in the catalyst bulk
Table 5.9 The surface acidity of 0.5Pd-Al ₂ O ₃ and 0.5Pd-Al ₂ O ₃ -P catalysts
Table 5.10 The amount of coke formation in the spent catalysts
Table 5.11 The characteristics and catalyst performance of Al ₂ O ₃ -P, Pd-Al ₂ O ₃ -P and Pd-Al ₂ O ₃ catalysts compared with γ-Al ₂ O ₃ catalyst
Table F.1 Ethanol conversion, product selectivity from dehydration reaction ofethanol at temperature ranging of 200°C to 400°C74
Table F.2 Product yield from dehydration reaction of ethanol at temperature ranging of 200°C to 400°C

LIST OF FIGURES

Figure 2.1 Phase transformation of the crystalline alumina	7
Figure 2.2 Lewis acid formed of alumina (a) Brønsted acid formed of alumina	
(b)	7
Figure 2.3 Mechanism route of ethanol dehydration reaction.	10
Figure 2.4 Ethanol intramolecule dehydration to ethylene	11
Figure 2.5 Ethanol intermolecule dehydration to diethyl ether	11
Figure 5.1 XRD patterns of Al ₂ O ₃ , P-modified Al ₂ O ₃ and Pd modified Al ₂ O ₃ -P catalysts	24
Figure 5.2 SEM micrographs of all catalysts.	27
Figure 5.3 EDX mapping of micrographs of Al ₂ O ₃	27
Figure 5.4 EDX mapping of micrographs of Al ₂ O ₃ -P.	28
Figure 5.5 EDX mapping of micrographs of 0.05Pd-Al ₂ O ₃ -P	28
Figure 5.6 EDX mapping of micrographs of 0.1Pd-Al ₂ O ₃ -P	28
Figure 5.7 EDX mapping of micrographs of 0.3Pd-Al ₂ O ₃ -P	29
Figure 5.8 EDX mapping of micrographs of 0.5Pd-Al ₂ O ₃ -P	29
Figure 5.9 The nitrogen adsorption/desorption isotherms of studied catalysts	32
Figure 5.10 The pore size distributions of studied catalysts	33
Figure 5.11 Ethanol conversion of Al ₂ O ₃ , P-modified Al ₂ O ₃ and Pd modified Al ₂ O ₃ -P catalysts	35
Figure 5.12 Diethyl ether selectivity of Al ₂ O ₃ , P-modified Al ₂ O ₃ and Pd modified Al ₂ O ₃ -P catalysts	37
Figure 5.13 Diethyl ether yield of Al ₂ O ₃ , P-modified Al ₂ O ₃ and Pd modified Al ₂ O ₃ -P catalysts	38
Figure 5.14 Ethylene Selectivity of Al ₂ O ₃ , P-modified Al ₂ O ₃ and Pd modified Al ₂ O ₃ -P catalysts	39
Figure 5. 15 Ethylene yield of Al ₂ O ₃ , P-modified Al ₂ O ₃ and Pd modified Al ₂ O ₃ -P catalysts	40
Figure 5.16 Acetaldehyde selectivity of Al ₂ O ₃ , P-modified Al ₂ O ₃ and Pd modified Al ₂ O ₃ -P catalysts.	41

Figure 5.17 Acetaldehyde yield of Al ₂ O ₃ , P-modified Al ₂ O ₃ and Pd modified
AI_2O_3 -P catalysis42
Figure 5.18 TGA/DTA analysis of the fresh catalysts
Figure 5.19 TGA/DTA analysis of the spent catalysts
Figure 5.20 XRD patterns of 0.5Pd-Al ₂ O ₃ and 0.5Pd-Al ₂ O ₃ -P catalysts
Figure 5.21 Ethanol conversion of 0.5Pd-Al ₂ O ₃ and 0.5Pd-Al ₂ O ₃ -P catalysts
Figure 5.22 Diethyl ether selectivity of 0.5Pd-Al ₂ O ₃ and 0.5Pd-Al ₂ O ₃ -P catalysts49
Figure 5.23 Diethyl ether yield of 0.5Pd-Al ₂ O ₃ and 0.5Pd-Al ₂ O ₃ -P catalysts
Figure 5.24 Ethylene Selectivity of 0.5Pd-Al ₂ O ₃ and 0.5Pd-Al ₂ O ₃ -P catalysts51
Figure 5.25 Ethylene yield of 0.5Pd-Al ₂ O ₃ and 0.5Pd-Al ₂ O ₃ -P catalysts
Figure 5.26 Acetaldehyde selectivity of 0.5Pd-Al ₂ O ₃ and 0.5Pd-Al ₂ O ₃ -P catalysts53
Figure 5.27 Acetaldehyde yield of 0.5Pd-Al ₂ O ₃ and 0.5Pd-Al ₂ O ₃ -P catalysts
Figure 5.28 TGA/DTA analysis of the fresh catalysts
Figure 5.29 TGA/DTA analysis of the spent catalysts
Figure C.1 The calibration curve of ethanol
Figure C.2 The calibration curve of ethylene
Figure C.3 The calibration curve of diethyl ether
Figure C.4 The calibration curve of acetaldehyde71
Figure D.1 Chromatogram of the reagent before the reaction72
Figure D.2 Chromatogram of the reagent after the reaction

CHAPTER 1 INTRODUCTION

1.1 General introduction

Biomass is promising resource to replace by non-renewable sources, such as minerals, coal, gas and the petroleum. In the chemical industry, the main use of biomass is ethanol production [1]. Feedstocks for ethanol production in Thailand are sugarcane, molasses (by-products from cane sugar processing), and cassava roots. In the case of Thailand, bioethanol is produced domestically for mostly blending with fuel oil to produce gasohol. The development of competitors to traditional ICE vehicles, including hybrids and electrical vehicles has been considered. These vehicles have a significant impact on demand for ethanol. Thus, the ethanol production exceeds its consumption. It should potentially produce the value-added chemicals from ethanol [2, 3].

The catalytic dehydration of ethanol mainly carries on the production of ethylene, diethyl ether and small amount of acetaldehyde. The selective production of diethyl ether has further attention in present. Diethyl ether is a valuable chemical participated in product of the fuel and chemical industry. It is mostly used as solvent in fine chemistry, fragrance, pharmaceutical chemical processes, some processes involved in explosives synthesis and improving additive ignition in both diesel and gasoline engines to alleviate NO_x emission [4]. Consequently, in this research, we preferred to focus in transformation of ethanol to diethyl ether from dehydration reaction.

Solid catalysts with acid property were considered to have high activity for ethanol dehydration. Particularly, gamma alumina (γ -Al₂O₃) is the most important material used as catalyst and catalyst carrier for metal catalysts due to its distinctive chemical, mechanical and thermal properties [5]. Chen, G et al. [6] investigated the catalytic dehydration of bioethanol to ethylene over TiO₂/ γ -Al₂O₃ catalysts. The experimental compared with the undoped TiO₂ exhibited that the doped 10 wt% TiO₂ on catalysts was achieved high ethanol conversion, ethylene selectivity and yield, 99.96%, 99.4% and 72.7%, respectively. Liu, D. et al. [7] reported the catalytic dehydration of methanol to dimethyl ether over modified γ -Al₂O₃ catalyst. The Nb₂O₅

modification on γ -Al₂O₃ improved methanol conversion and increased the number of acid sites but reduced the strength of acid sites on catalyst. Ramesh, K. et al. [8] investigated the effect of phosphorus (P) modification on H-ZSM-5 for the selective dehydration of ethanol to ethylene. The phosphorous modification improved coke resistance properties of catalysts via mainly generating weak acid sites instead of strong acid sites on H-ZSM-5 catalyst resulting in very high ethanol conversion, ethylene selectivity and catalyst stability. Kamsuwan, T. et al. [9] determined the different Siand Al-based catalysts including HBZ, γ -Al₂O₃, χ - γ -Al₂O₃ and SSP with Pd modification for catalytic ethanol dehydration. The modification of Pd on solid catalysts increased the catalytic activity. The Pd-HBZ catalyst exhibited the highest diethyl ether yield of 48% at 250°C. In addition, γ -Al₂O₃ and χ - γ -Al₂O₃ catalysts with Pd modification tended to increase acetaldehyde yield at low temperature.

The previous studies observed that the low temperature of ethanol dehydration reaction obtained low ethanol conversion and diethyl ether yield. Therefore, noble metal addition on catalysts is used to increase catalytic activity. For noble metal species, palladium (Pd) was suitable to add into catalysts to improve the catalytic performance for diethyl ether production. As mentioned above, the purpose of this study is to investigate the catalyst characteristic and catalytic performance of Pd-modified over Al₂O₃-P catalyst by using incipient wetness impregnation technique. In the experiments, dehydration of ethanol reaction will be carried on using via using a fixed-bed flow microreactor to determine the ethanol conversion and product distribution.

1.2 Research objectives

1) To investigate the characteristics of Al_2O_3 -P catalyst with Pd addition of 0.05, 0.1, 0.3 and 0.5 wt% in ethanol dehydration.

2) To determine effect of Al_2O_3 -P catalyst with Pd addition of 0.05, 0.1, 0.3 and 0.5 wt% in ethanol dehydration.

3) To compare the characteristics and catalytic performance between the chosen Pd modified Al_2O_3 catalyst and the chosen Pd modified Al_2O_3 -P catalyst.

1.3 Research scopes

1) Synthesis of the phosphorous-modified Al₂O₃ catalysts with 5 wt% phosphorous loading using acid activation technique.

2) Modification of the Al₂O₃-P catalysts by varying Pd loading at 0.05-0.5 wt% using incipient wetness impregnation technique.

 3) Verification of characteristic of the Al₂O₃-P catalysts by varying Pd loading at 0.05-0.5 wt% by using method as following;

- X-ray diffraction (XRD)

- Inductively coupled plasma (ICP)

- Scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX)

- N₂ physisorption

- Ammonia temperature-programmed desorption (NH₃-TPD)
- Thermo gravimetric analysis (TGA).

4) Investigating reaction of Pd loading 0.05, 0.1, 0.3 and 0.5 wt% with Al₂O₃-P catalysts in ethanol dehydration reaction, which is carried out in a fixed-bed reactor under atmospheric pressure and temperature range of 200-400°C.

5) Determining the suitable of Pd loading 0.05, 0.1, 0.3 and 0.5 wt% with Al₂O₃-P catalysts and reaction condition, which achieve the highest diethyl ether yield.

6) Comparison of the catalytic performance between the chosen Pd modified Al_2O_3 catalyst and the chosen Pd modified Al_2O_3 -P catalyst, which is carried out in a fixedbed reactor under atmospheric pressure and temperature range of 200-400°C.

1.4 Research methodology

Part I: The comparison of catalytic activities and catalyst characteristic of the Al₂O₃-P catalysts with different Pd loadings.

Part II: The comparison of catalytic activities and catalyst characteristic between the chosen Pd modified over Al_2O_3 catalyst and the chosen Pd modified over Al_2O_3 -P catalyst.

CHAPTER 2 THEORIES

This chapter describes concerning theories consist of the properties of alumina, phosphorous and palladium, the ethanol dehydration mechanism and the literature reviews for catalytic ethanol dehydration.

2.1 Alumina

Alumina, Al₂O₃, is an important catalyst and support catalyst, which alumina could be used for the alcohol dehydration reaction and also used in many other chemical reactions such as isomerization, alkylation, and catalytic cracking, etc. Alumina is a solid inorganic chemical compound formed as shown in **Table 2.1**. The characterization of alumina has been performed high compression strength, high abrasion resistance, high chemical resistance, high thermal shock resistance, high degree of refractoriness, and high dielectric strength [10].

Table 2.1 Alumina properties

Properties	Specification	
Molar mass	$101.96 \text{ g.mol}^{-1}$	
State จุฬาลงกร	ณ์มา _{Solid} ายาลัย	
Structure	Octahedral	
Density	$3.95-4.1 \text{ g}\cdot\text{cm}^{-3}$	
Melting point	2072°C	
Boiling point	2977°C	

Alumina can be produced several metastable crystalline structures consisting of η -, γ -, δ -, θ -, β -, κ -, χ -, and α -alumina formed through thermal dehydration as shown in **Fig.2.1**. The type or structure of each alumina undergoes phase transformation with increasing calcination temperature of precursor hydroxide; they are different for gibbsite, bayerite, nordstrandite, boehmite or diaspore [11, 12].

In addition, alumina surface contains several hydroxyl groups: the linear ones are Lewis acid, and the bridged ones are Brønsted acids [13]. The calcinations temperature of alumina has been influenced on the acid-base properties of alumina surface. Besides, the existence of basic sites on alumina surface has indicated that the basic properties of alumina arise when alumina surface comes into contact with a sufficient quantity of water result in Lewis acid sites are transformed into Brønsted acid sites as shown in **Fig.2.2** [14, 15].

Figure 2.2 Lewis acid formed of alumina (a) Brønsted acid formed of alumina (b).

2.2 Phosphorus

Phosphorus (P) is extensively found in compounds in mineral, which the physical properties of phosphorus are shown in **Table 2.2** [16]. Generally, the two main forms of phosphorus are white phosphorus and red phosphorus. The white phosphorous is a poisonous waxy solid, glow in the dark and is spontaneously flammable when exposed to air, which exhibit the most activity to produce phosphoric acid. The red phosphorous is an amorphous non-toxic solid, which can alter in colour from orange to purple due to slight variations in its chemical structure and more passive in chemical reactions [17]. In this study, phosphorus as phosphoric acid form is modified on catalysts in order to increase catalytic activity and catalyst stability.

 Table 2.2 Phosphorus properties

Properties	Specification
Relative atomic mass	30.974
Atomic Radius	110 pm
Group, Block	Group 15 (pnictogens), p-block
State	Solid
Density	1.823 g⋅cm ⁻³
Melting point	44.15°C
Boiling point	280.5°C

2.3 Palladium

Palladium (Pd) is a soft and lustrous silver-white metal, which the physical properties of phosphorus are shown in **Table 2.3** [18]. Palladium is always found alongside other platinum group metals (PGMs). PGMs, including palladium, platinum, ruthenium, rhodium, iridium and osmium, naturally occur in placer deposits found in rocks such as dunite, chromite, and norite. Palladium, much like platinum, is very resistant to oxidation, corrosion and has excellent catalytic properties. In petrochemical, palladium form is a good catalyst and is used to catalyze for hydrogenation and dehydrogenation reactions [19]. In this study, small amount of palladium compound is used for promoter substance to add in solid catalyst in order to increasing the catalyst

activity by facilitating the desired process and escalating the catalyst selectivity by suppressing the undesired reactions.

Table 2.3 Palladium properties.

Properties	Specification
Relative atomic mass	106.42
Atomic Radius	116.42 pm
Group, Block	Group 10, d-block
State	Solid
Density	$12.023 \text{ g} \cdot \text{cm}^{-3}$
Melting point	1554.9°C
Boiling point	2963°C

2.4 Ethanol dehydration reaction

The ethanol dehydration reaction is mainly produced ethylene and by-product of diethyl ether under the condition of appropriate temperature 180°C to 500 °C. However, the reaction of ethanol dehydration can generate other by-products, such as acetaldehyde, hydrocarbons (methane, ethane, propylene, butylene) and light basegroups (CO₂, CO, H₂) [20].

Based on mainly ethanol dehydration reaction consists of two reactions ways occur to ethylene and diethyl ether. as follows;

 $C_2H_5OH = C_2H_4 + H_2O...\Delta H + 44.9 \text{ kJ/mol} (1)$

 $2C_2H_5OH = C_2H_5OC_2H_5 + H_2O....\Delta H- 25.1 \text{ kJ/mol} (2)$

 $C_2H_5OH = CH_3CHO + H_2...\Delta H + 82.5 \text{ kJ/mol} (3)$

The reaction (1) is dehydration of ethanol to ethylene (endothermic reaction favored thermodynamically at high temperatures), whereas the reaction (2) is dehydration of ethanol to diethyl ether (exothermic reaction favored at low or moderate temperature) [21, 22]. In addition, acetaldehyde can be obtained by dehydrogenation reaction as shown in the third reaction [23].

The mechanism of ethanol dehydration reaction mainly considers the generation of ethylene and ether, which can be summarized as three kinds of routes: (1) parallel reactions, (2) a series of reactions, and (3) a parallel series reaction depending on the catalysts and reactants used as shown in **Fig. 2.3** [24].

1) Parallel reactions

2) A series of reactions

 $C_2H_5OH \Longrightarrow C_2H_5OC_2H_5 \Longrightarrow C_2H_4$

3) A parallel series reactions

 C_2H_5OH $C_2H_5OC_2H_5 \longrightarrow C_2H_4$

Figure 2.3 Mechanism route of ethanol dehydration reaction[24].

There are mainly three competitive mechanisms of ethanol catalytic dehydration to olefins under different reaction conditions such as E1, E2 and E1cB mechanism is shown in **Fig 2.4**. The reactions of E1, E2, and E1cB are elimination reactions, which A and B are the acidic and basic centers of the catalyst, respectively [24].

The E1 reaction is a single-molecule elimination reaction, normally mechanism proceeds via a carbocation intermediate on acidic catalysts, in which protonation of alcoholic oxygen is followed by the C-O cleavage to form water and a carbocation intermediate. Then, deprotonation of the adjacent C of the carbocation intermediate on the base leads to the formation of ethylene [25, 26].

The E2 reaction is a bimolecular elimination reaction, which mechanism involves the concerted cleavage of C–O and C–H bonds in alcohol using a pair of acid and base catalyst sites to produce the ethylene [24].

The E1cB reaction is a single-molecule conjugate base elimination reaction, mechanism proceeds via a carbanion intermediate on base catalysts, on which C-H bond cleavage takes place first to form carbanion or alkoxy intermediates. This is followed by the elimination of the hydroxyl group on the acid to produce the ethylene [25].

Figure 2.4 Ethanol intramolecule dehydration to ethylene[24].

The mechanism of dehydration reaction of ethanol to diethyl ether, represented by two different pathways termed the associative pathway and the dissociative pathway as shown in **Fig 2.5**. Both pathways occurred at Brønsted acid sites. The associative pathway relates adsorption of two alcohol molecules, which react and form the ether directly. The dissociative pathway relates initial alcohol adsorption, and followed by water elimination, which leading to adsorbed alkyl group and water. The alkyl group reacts with a second alcohol molecule to form the ether [22].

Figure 2.5 Ethanol intermolecule dehydration to diethyl ether[22].

CHAPTER 3 LITERATURE REVIEWS

This chapter describes concerning theories consist of the properties of alumina, phosphorous and palladium, the ethanol dehydration mechanism and the literature reviews for catalytic ethanol dehydration.

3.1 Alcohol dehydration reaction over solid catalysts

The literature reviews of alcohol dehydration reaction over solid catalyst were sequenced from publication years as shown following;

Xu, M. et al. (1997) [27] studied the catalytic dehydration of methanol to dimethyl ether (DME) over 10 wt% Pd/Cab-O-Sil catalysts. As the reaction temperature was increased from 225°C to 280°C, methanol conversion increased from 38% to 77%, while DME selectivity decreased from 78% to 47%. In addition, the effects of hydrogen on the catalytic activity and selectivity in the catalytic system were found that the presence of hydrogen inhibited the catalytic activity via reducing the rate of surface carbonaceous species formation but increased the stability of the catalyst.

Takahara, I. et al. (2005) [28] reported the dehydration of ethanol into ethylene over solid acid catalysts. The solid acid catalysts H-mordenites (HM20 and HM90), H-ZSM5 zeolites (ZSM5-25 and ZSM5-90), H-beta-zeolite (HB25), H-Y zeolite (HY5.5) and silica–alumina (SA) were produced via diethyl ether at temperatures ranging from 453 to 573 K under atmospheric pressure. The results found that the catalyst activity in the following order: HM20>HM90>ZSM5-25>HB25>ZSM5decreases 90>HY5.5>SA. The percentage of Brønsted acid sites on HM20, HM90, ZSM5-25, ZSM5-90, HB25, HY5.5 and SA were estimated to be 83%, 95%, 94%, 92%, 33%, 83%, and 50%, respectively. There are concluded that H-mordenites were the most active for the dehydration and the catalyst activity during the dehydration could be correlated with the number of strong Brønsted acid sites.

Li, Y. et al. (2007) [7] reported the influence of varying the reaction temperature, feed flow rate, and concentration of ethanol in catalytic dehydration of

ethanol to ethylene over γ -Al₂O₃ catalyst. In the reaction temperature range 410°C to 440°C described that the selectivity of the γ -Al₂O₃ catalyst increases at the initial of reaction, and then remains constant, while the yield of ethylene is not affect the reaction temperature. As the feed flow rate decreases, the selectivity increases to closely 100%, but the conversion decreases. According to the experimental results, the optimum temperature is about 420°C, the optimum feed flow rate is about 1.0 mL/min, and the optimum concentration of ethanol is in the range 50% to 100%.

Varisli, D. et. Al. (2007) [29] determined ethylene and diethyl-ether production by dehydration reaction of ethanol over different heteropolyacid catalysts, namely silicotungstic acid (STA), molybdophosphoric acid (MPA) and tungstophosphoric acid (TPA). The increasing of reaction temperature from 140°C to 250°C caused the significant increase in ethylene yield while at lower temperatures the main product is diethyl-ether. The presence of water vapor in the dehydration reaction resulted in decrease the catalyst activity. The activity trend was obtained as STA > TPA > MPA due to higher number of protons and the higher stability of STA than TPA at temperatures over 200°C.

Zhang, D. et al. (2008) [30] reported the effect of Phosphorus (P) Content on the Catalytic Performance of P-modified HZSM-5 catalysts in dehydration of ethanol to ethylene. The P contents were 1.9, 3.2, 3.4, 3.6 and 5.1 wt%, which correspond to P/Al atomic ratios of 0.5, 0.9, 0.95, 1.0 and 1.5 respectively. In the catalyst containing 3.4 wt% P, the main product is ethylene at 573–713 K, due to the presence of weak acid sites after P modification.

Ramesh, K. et al. (2009) [31] reported structure and reactivity of phosphorous modified H-ZSM-5 catalysts for ethanol dehydration. The influence of H_3PO_4 on the catalytic performance of modified H-ZSM-5 catalysts for the selective dehydration of ethanol were prepared by dry impregnation method with varying H_3PO_4 loadings from 5 to 20 wt%. The modified catalysts were performed highly active and selective towards ethylene during ethanol dehydration at 673 K. The selectivity was depended on the content of H_3PO_4 , reaction temperature and WHSV.

Bi, J. et al. (2010) [32] investigated the dehydration of bio-ethanol into ethylene over nanoscale HZSM-5 zeolite catalyst. In a fixed-bed reactor at 240°C, the experiment compared with microscale HZSM-5 zeolite catalyst, nanoscale HZSM-5 zeolite catalyst exhibits good stability and coke resistance.

Ramesh, K. et al. (2010) [8] investigated the influence of Phosphorus (P) modification on H-ZSM-5 for the selective dehydration of ethanol to ethylene. The P-modified H-ZSM-5 catalysts were varying P loadings from 0 to 7.43 wt% with wet impregnation method. The experiments were found that 7.43P-ZSM-5 catalyst exhibited very high ethanol conversion, ethylene selectivity and catalyst stability compare to bulk H-ZSM-5 catalysts due to P-modified improved coke resistance properties of catalysts. The total acidity of the catalyst was decreased with P content due to the addition P-modified on H-ZSM-5 resulted in the strong acid sites was suppressed by generating mainly weak acid sites.

Han, Y. et al. (2011) [33] investigated the effect of calcination temperature on the catalytic performance of the dehydration of aqueous ethanol on Mo/HZSM-5. Base on calcined temperature at 450, 500, 550, 600 and 700°C, the results found that 5 wt% Mo/HZSM-5 catalyst calcined at 500°C exhibited the highest weak and medium acidity and excellent catalytic performance in ethanol dehydration reaction compared with the original HZSM-5.

Rahmanian, A. and H.S. Ghaziaskar (2013) [34] reported the aluminium phosphate –hydroxyapatite catalyst for continuous dehydration of ethanol to diethyl ether (DEE) under sub and supercritical condition. The experiments were exhibited that the AlPO₄/HAP is more active than HAP for dehydration of ethanol to diethyl ether in both sub and supercritical conditions. Consequently, AlPO₄/HAP catalysts in supercritical conditions were optimized the reaction temperature, pressure, and flow rate to execute the highest diethyl ether yield, selectivity, and liquid selectivity. As mentioned, the optimum conditions of 340°C, 200 bar and 0.17 mL min⁻¹ of ethanol flow rate were achieved conversion of ethanol to diethyl ether, diethyl ether yield, selectivity and liquid selectivity of 78%, 75%, 96% and 97%, respectively.

Krutpijit, C. (2016) [35] reported the catalytic ethanol dehydration to ethylene over montmorillonite clays (MMT) with mineral acid activation including H₂SO₄ (SA-MMT), HCl (HA-MMT) and HNO₃ (NA-MMT). The compared acid-activated results performed that HCl activation, HA-MMT exhibited the highest activity with conversion of ethanol and ethylene yield of 82% and 78% at reaction temperature of 400°C. The apparent HCl activation was increased weak acid sites and acid density relate to enhanced Brønsted acid site of catalyst. Moreover, the MMT and HA-MMT exhibited slight deactivation due to carbon deposition for the stability experiment.

Chanchuey, T and Autthanit C. (2016) [36] investigated the effect of mesoporous Al-SSP and Mo-doped Al-SSP catalysts for the catalytic dehydration of ethanol to ethylene. The influence of mesoporous Al-SSP, 1% Mo/Al-SSP and 5% Mo/Al-SSP catalysts revealed that acidity was the key factor effect to catalytic activity correlate with the amount of Mo loading and concentration of Al on surface catalyst. Increasing of Mo loading in Al-SSP resulted in enhanced weak acids sites. In contrast to the excessive amount of Mo doping (5% Mo/Al-SSP) apparently resulted in decreased amount of Al at catalyst surface leading to low ethanol conversion. The compared of modified Al-SSP catalysts, 1% Mo/Al-SSP catalyst exhibited the highest ethanol conversion and ethylene yield of 90% at reaction temperature of 300°C with slight amounts of diethyl ether (DEE) and acetaldehyde.

หาลงกรณ์มหาวิทยาลัย

Kamsuwan, T. (2017) [37] investigate the characteristics and catalytic properties of H-beta zeolite (HBZ) catalyst with ruthenium (Ru-HBZ) and platinum (Pt-HBZ) modification for diethyl ether production during catalytic dehydration of ethanol. The compared diethyl ether yield of modified catalysts found that the Ru-HBZ catalyst exhibited the highest diethyl ether yield of 47% at 250°C. The Ru-HBZ and Pt-HBZ modification were displayed high dispersed forms and well distributed in the catalyst granule, which facilitated to contacting reactants for catalytic reaction. Moreover, the existing noble metal precursor on catalysts was facilitated to decrease weak acid sites leading to increased diethyl ether yields and intrinsic activity of the catalysts.

3.2 Modified Alumina as solid catalysts for alcohol dehydration

Chen, G et al. (2007) [6] investigated the catalytic dehydration of bioethanol to ethylene over TiO_2/γ -Al₂O₃ catalysts in microchannel reactors. The modified catalysts are compared with the undoped TiO_2 in reaction temperatures of 400–500°C. The experimental results demonstrate that the doped 10 wt% TiO_2 on catalysts with was achieved high ethanol conversion, ethylene selectivity and yield, 99.96%, 99.4% and 72.7%, respectively.

Khom-in, J. et al. (2008) [38] investigated dehydration of methanol to dimethyl ether over nanocrystalline Al₂O₃ with mixed χ - and γ -crystalline phases. The mixed catalysts with various phase composition of 0, 10, 20, 50, 80, 90 and 100% χ -phase were prepared by using solvothermal method for methanol dehydration reaction to dimethyl ether. The comparison of pure γ -Al₂O₃, χ -Al₂O₃ and mixed χ/γ -phase was found that γ -Al₂O₃ catalyst containing 20 wt% of χ -phase exhibited the highest yield (86%) with good stability for DME synthesis, which performed higher density and strength of surface acidity than pure γ -Al₂O₃, χ -Al₂O₃.

Liu, D. et al. (2011) [7] reported the catalytic dehydration of methanol to dimethyl ether over modified γ -Al₂O₃ catalyst. The γ -Al₂O₃ catalyst was modified with metal oxide (Nb₂O₅) to improve catalytic activity and stability for dimethyl ether (DME) from methanol. In various Nb₂O₅ loading as 1, 5 and 10 wt% found that the γ -Al₂O₃ catalyst containing 10 wt% of Nb₂O₅ exhibited the highest surface area and catalytic activity compared with untreated γ -Al₂O₃ catalyst. The modified Nb₂O₅ was improved methanol conversion and increased the number of acid sites but reduced the strength of acid sites on catalyst.

Valdez, R. et al. (2012) [39] reported the result of the acidity of alumina over Pt- and Pd-based catalysts for 2-propanol dehydration reactions. The Pt-and Pd-based catalysts has been prepared through wet impregnation showed that the basic Pt/Al₂O₃ is performed conversion of 100% and 100% selectivity towards to DIPE at temperature of 523 K. In addition, the weakly acidic Pt–Pd/Al₂O₃ sample also presented a conversion of 100% and 100% selectivity towards to Propene at temperature of 523 K.

Then, the application of Pt and the bimetallic catalysts could be reduced deactivate and extend reaction time.

Janlamool, J. (2015) [40] investigated the oxidative dehydrogenation of ethanol over AgLi–Al₂O₃ catalysts containing different phases of alumina, namely pure gamma (CHI00), pure chi (CHI100) and equally mixed phases (CHI50). The experiment reveals that the mixed phases of chi and gamma alumina in AgLi–CHI50 catalyst exhibit high activity in oxidative dehydrogenation of ethanol. The AgLi–CHI50 catalyst was important increased amounts of weak basic sites, $Ag_n^{\delta+}$ clusters and moderate interaction of $Ag_n^{\delta+}$ with alumina to enhanced the catalytic activity.

Wannaborworn, M. (2015) [41] reported the comparative study of solvothermal and sol-gel-derived nanocrystalline alumina catalysts for ethanol dehydration. The results of different preparation method were described alumina synthesized by solvothermal method exhibited the highest activity due to high surface area, large amount of acid site, and high ratio of weak acid sites to strong acid sites. Furthermore, the Fe loading 10% wt on alumina catalyst was improved the acetaldehyde selectivity due to the ethanol dehydrogenation pathway normally occurred over Fe species.

Kamsuwan, T. (2016) [42] investigated the catalytic dehydration of ethanol over three different Al-based solid acid catalysts including H-beta zeolite (HBZ), modified H-beta zeolite with γ -Al₂O₃ (Al-HBZ) and mixed γ - χ phase of Al₂O₃ (M-Al) catalysts. The compared Al-based solid acid catalysts, HBZ exhibited the highest ethanol conversion to achieve ethylene yield of 99.4% at reaction temperature of 400°C. The H-beta zeolite (HBZ) was exhibited the largest amount of weak acid sites relate to Brønsted acid site of catalysts.

Inmanee, T. and Pinthong, P. (2017) [43] reported the effect of calcination temperatures and Mo modification on Nanocrystalline $(\gamma - \chi)$ -Al₂O₃ catalysts for catalytic ethanol dehydration. The compared mixed phase $(\gamma - \chi)$ -Al₂O₃ at different calcination temperatures including 400°C (M-Al-400), 600°C (M-Al-600), 800°C (M-Al-800), and 1000°C (M-Al-1000) revealed that the calcined catalyst (M-Al-600) exhibited the highest catalytic activity to achieve the highest ethylene yield of 98.75%

at 350°C. The total acidity was significantly decreased with increasing the calcination temperature because the hydroxyl group on catalyst surface was released with increasing the calcination temperature, leading to lower acidity. Furthermore, the Mo modification on mixed phase alumina catalyst was enhanced dehydrogenation reaction pathway to acetaldehyde due to the Mo sites dominantly performed as the active site for dehydrogenation of ethanol to acetaldehyde.

CHAPTER 4 EXPERIMENTAL

This chapter describes the research methodology comprise of catalyst preparation, ethanol dehydration reaction experiment and catalyst characterization techniques including X-ray diffraction (XRD), inductively coupled plasma (ICP), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX), N₂ physisorption, ammonia temperature-programmed desorption (NH₃-TPD) and thermo gravimetric analysis (TGA).

4.1 Catalyst Preparation

4.1.1 Materials

Table 4.1 The chemicals used in modified Al₂O₃ catalysts.

Chemicals	Supplier					
Commercial gamma alumina (γ-Al ₂ O ₃)	Alfa Aesar					
Orthophosphoric acid 85% (H ₃ PO ₄)	Carlo Erba					
Tetraamminepalladium (II) nitrate 10%	Aldrich					
[Pd(NH ₃) ₄ (NO ₃) ₂]						

4.1.2 Synthesis of phosphorus over Al₂O₃ catalysts

The phosphorous modified over Al₂O₃ catalysts were prepared by acid activation technique. The amount of 85 wt% phosphoric acid dissolved in deionized water as 100 ml was added in solution and stirred at room temperature for 30 minutes to achieve good homogeneity. Then, the obtained samples were filtered, dried in an oven at 110°C overnight and calcined at 600°C for 6 h to obtain the catalyst powder having 5 wt% of phosphorous on Al₂O₃.

4.1.3 Synthesis of Pd modified Al₂O₃-P catalysts

The Pd modified over Al₂O₃-P catalysts were prepared by the incipient wetness impregnation technique with an aqueous tetraamminepalladium (II) nitrate solution. The procedure of modified catalyst preparation was based on 1 g of catalyst used. At

beginning, tetraamminepalladium (II) nitrate was dissolved in deionized water, and then gradually dropped the aqueous solution equal to the pore volume of Al_2O_3 -P catalyst with 0.05-0.5 wt% loadings of Pd. After the impregnation, the prepared catalyst was dried at 110°C overnight and calcined at 600°C for 6 h.

4.2 Ethanol dehydration reaction

4.2.1 Chemicals and reagents

Table 4.2 The chemicals used in the reaction.

Chemicals	Supplier				
Ethanol (99.99%)	Merck				
Ultra high purity nitrogen gas (99.99%)	Linde				
Ultra high purity hydrogen gas (99.99%)	Linde				
Air zero (Grade balance nitrogen)	Linde				

4.2.1 Reaction test

The catalytic dehydration of ethanol reaction was operated in a borosilicate glass fixed-bed reactor with an inside diameter of 0.7 cm. In the experiments, both 0.05 g of catalyst and 0.01 g of quartz wool were packed into the reactor. Then, the catalyst was pre-treated in argon (50 mL/min) at 200°C for 1 h under atmospheric pressure to remove moisture on surface of catalyst. The ethanol dehydration reaction was carried out at temperature ranging from 200°C to 400°C by feeding the vaporized ethanol into the reactor. The products were analyzed by using Shimadzu GC14B gas chromatograph with flame ionization detector (FID), which had the operating conditions as shown in **Table 4.3**.

Shimadzu GC-14B
FID
DB-5
Nitrogen (99.99 vol%)
Hydrogen (99.99 vol%)
Initial: 40°C
Final: 40°C
150°C
150°C
8 min.

Table 4.3 The operating conditions of gas chromatograph.

4.3 Catalyst characterization

4.3.1 X-ray diffraction (XRD)

The bulk crystalline phase and X-ray diffraction (XRD) patterns of the catalysts were determined by using a SIEMENS D5000 X-ray diffractometer with CuK_{α} radiation source ($\lambda = 1.54439$ Å) and Ni filter in the 20 range of 10° to 90°.

4.3.2 Inductively coupled plasma (ICP)

The phosphorus and Pd contents in the catalysts were measured by Perkin Elmer OPTIMA 2000 TM instrument. The instrument was used energy from inductive coupled plasma to stimulate the transition of atoms from ground state to excited state and collected the energy released when returning to ground state by DBI-CCD (Dual backside-illuminated charge-coupled device).

4.3.3 Scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX)

The morphologies of the catalysts were determined by JEOL mode JSM-6400 scanning electron microscope and the elemental distribution over the catalysts surface were determined by Link Isis Series 300 program energy dispersive X-ray spectroscopy, respectively.

4.3.4 N₂ physisorption

The surface area (using the stand BET method), average pore volume, average pore size (using the BJH desorption analysis) and hysteresis loop (using the adsorption desorption isotherms) of the catalysts were investigated using a Micromeritics ASAP 2000 automated system. The samples were thermally treated at 110°C for 24 h before the analysis.

4.3.5 Ammonia temperature-programmed desorption (NH₃-TPD)

The acid properties of the catalysts were determined by using a Micromeritics Chemisorp 2750 Pulse for temperature-programmed desorption of ammonia (NH₃-TPD). In the experiment, a quartz wool and 0.1 g of sample and were loaded in quartz tube and pre-treated at 200°C by using heating rate of 10°C/min. After cooled the temperature down to 40°C, the sample was saturated with 15% NH₃ for 30 minutes and heated up from 40°C to 800°C with heating rate of 10°C/min. The amount of ammonia in effluent was measured by TCD signal as function of temperature.

4.3.6 Thermal gravimetric analysis (TGA)

The spent catalysts were determined coke deposition by Diamond Thermogravimetric and Differential Analyzer, TA Instruments SDT Q600 for Thermal gravimetric analysis in the temperature range of 25°C to 800°C under air atmosphere with heating rate of 10 °C/min.

4.4 Research plan

(Research Plan)	Year 2017						Year 2018							
	5	6	7	8	9	10	11	12	1	2	3	4	5	6
Reviewed the theories and Literatures related to														
ethanol dehydration reaction														
Safety training for chemical laboratory	-		+											
Considered the variables associated with the														
experiment	-													
Prepared Catalyst														
- 5 wt% phosphorous loading on Al ₂ O ₃			←				+							
- 0.05, 0.1, 0.3 and 0.5 wt% Pd loading on $\rm Al_2O_3\text{-}P$														
Characterized the catalysts			-											
Al_2O_3 , Al_2O_3 -P, Pd- Al_2O_3 -P and Pd- Al_2O_3														
Studied the catalysts activities via ethanol					-						•			
dehydration reaction														
Analyzed the results and discussion.								-				+		
Concluded the results and determined the														
problems and proposed solutions to the problem											┥		-	
Prepared the report and published Research					•	-						-	•	
Presentation the report													•	+

จุฬาลงกรณํมหาวิทยาลัย Chulalongkorn University

CHAPTER 5 RESULTS AND DISCUSSION

Part I: The comparison of catalytic activities and catalyst characteristics of the Al₂O₃-P catalysts with different Pd loadings

The studies of P-modified on Al_2O_3 and Pd-modified on Al_2O_3 -P catalysts including the characteristic and catalytic activity are presented in **Section 5.1.1** to **Section 5.1.7** as following;

5.1.1 X-ray diffraction (XRD)

Figure 5.1 XRD patterns of Al₂O₃, P-modified Al₂O₃ and Pd modified Al₂O₃-P catalysts

The X-ray diffraction (XRD) patterns of Pd-modified over Al₂O₃-P catalysts are shown in **Figure 5.1**. The characteristic sharp peaks of gamma alumina catalysts (γ -
Al₂O₃), were noticed at 2 θ of 46° and 67° [38]. In XRD results, the phosphorous and palladium compound on catalysts presented similar XRD patterns of γ -Al₂O₃. This revealed that the crystalline structure of modified catalysts did not change with modified catalysts. In addition, the phosphorous and Pd loading on catalysts cannot be observed because they were in highly dispersed form on catalysts, which the crystallite size is less than 3-5 nm.

5.1.2 Inductively coupled plasma (ICP)

The various Pd contents were doped by the incipent wetness impregnation on Al_2O_3 -P catalysts. The amount of Pd composition was determined in the catalyst bulk, which was carried on the contained amount of metal by inductively coupled plasma (ICP) as shown in **Table 5.1**

Catalysts	Amount of Pd in catalyst bulk (wt%)
0.05Pd-Al ₂ O ₃ -P	0.08
0.1Pd-Al ₂ O ₃ -P	0.13
0.3Pd-Al ₂ O ₃ -P	0.35
0.5Pd-Al ₂ O ₃ -P	0.55

Table 5.1 The amount of Pd composed in the catalyst bulk.

Ghulalongkorn University

5.1.3 Scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX)

The morphologies of Pd-modified over Al₂O₃-P catalysts were determined by scanning electron microscope (SEM) as shown in **Figure 5.2**. From SEM results, they were apparently irregular shape of examined catalysts. The amount of phosphorous and palladium doping into catalyst did not affect the morphology of catalysts related to the XRD pattern results as seen on **Section 5.1.1**.

Figure 5.2 SEM micrographs of all catalysts.

The elemental dispersion of Al₂O₃, P-modified Al₂O₃ and Pd-modified Al₂O₃-P catalysts was performed through energy dispersive X-ray spectroscopy (EDX) technique. The elements such that Al, O, P and Pd were displayed in elemental distribution mapping (EDX mapping) of all catalysts. In the figure, dense of dots was related to the amount of existed element. The EDX mappings of each catalyst are shown in **Figure 5.3** to **Figure 5.8**

Figure 5.3 EDX mapping of micrographs of Al₂O₃.

Figure 5.4 EDX mapping of micrographs of Al₂O₃-P.

Figure 5.5 EDX mapping of micrographs of 0.05Pd-Al₂O₃-P.

Figure 5.6 EDX mapping of micrographs of 0.1Pd-Al₂O₃-P.

Figure 5.7 EDX mapping of micrographs of 0.3Pd-Al₂O₃-P.

Figure 5.8 EDX mapping of micrographs of 0.5Pd-Al₂O₃-P.

According to EDX mapping, the results were depicted well distribution of phosphorous and palladium on catalysts corresponding with XRD patterns, which cannot detect sharp peak of P and Pd modified on the studied catalysts. The amount of each element was quantitatively summarized in terms of weight percent and atomic percent in **Table 5.2** and **Table 5.3**

	Amount of element on surface (wt%)						
Catalysts	Al O P Pd Pd						
Al ₂ O ₃	60.88	39.12	-	-	-		
Al ₂ O ₃ -P	50.79	37.49	11.71	-	-		
$0.05Pd-Al_2O_3-P$	47.02	37.49	12.66	2.83	0.060		
0.1Pd-Al ₂ O ₃ -P	48.48	38.53	9.99	2.99	0.062		
0.3Pd-Al ₂ O ₃ -P	48.53	37.35	10.97	3.16	0.065		
0.5Pd-Al ₂ O ₃ -P	48.56	48.56 36.74		3.5	0.072		
	US.	SIS/1/2					

 Table 5.2 The amount of each element on the surface of catalysts (wt%).

 Table 5.3 The amount of each element on the surface of catalysts (at%).

2	Am	ount of el	ement on	surface ((at%)
Catalysts	Al	0	Р	Pd	Pd/Al
Al ₂ O ₃	48.6	51.4	<u><u><u></u> <u></u></u></u>	_	-
Al ₂ O ₃ -P	40.89	50.9	8.21	-	-
0.05Pd-Al ₂ O ₃ -P	38.55	51.83	9.04	0.59	0.015
0.1Pd-Al ₂ O ₃ -P	39.44	52.87	7.08	0.62	0.016
0.3Pd-Al ₂ O ₃ -P	39.82	51.68	7.84	0.66	0.017
0.5Pd-Al ₂ O ₃ -P	40.08	51.14	8.05	0.73	0.018

 Table 5.4 Comparing the amount of Pd loading in the catalyst bulk and catalyst surface.

Catalysts	Amount of Pd in bulk catalyst measured by ICP technique (wt%)	Amount of Pd on catalyst surface measured by EDX technique (wt%)
0.05Pd-Al ₂ O ₃ -P	0.08	2.83
0.1Pd-Al ₂ O ₃ -P	0.13	2.99
0.3Pd-Al ₂ O ₃ -P	0.35	3.16
0.5Pd-Al ₂ O ₃ -P	0.55	3.5

The amount of Pd addition was compared to bulk catalysts measured by ICP and catalyst surface measured by EDX. The results in **Table 5.4** presented that Pd contents were located at the catalyst surface due to Pd doping had larger size than pore size of catalysts suggesting the amount of Pd obtained from EDX technique were greater than bulk catalysts measured by ICP technique.

5.1.4 N₂ physisorption

The textural properties such as surface area, pore volume and pore size of Al₂O₃, P-modified Al₂O₃ and Pd-modified Al₂O₃-P catalysts are summarized in **Table 5.5**.

Catalysts	CatalystsSurface Area ^a Pore Volume ^b Pore Size ^b (m ² /2)(m ² /2)(mm)									
	(m²/g)	(cm ³ / g)	(nm)							
γ -Al ₂ O ₃	119	0.267	7.2							
Al ₂ O ₃ -P	94	0.247	8.4							
$0.05Pd-Al_2O_3-P$	82	0.214	8.5							
0.1Pd-Al ₂ O ₃ -P	83	0.224	8.0							
$0.3Pd-Al_2O_3-P$	85	0.216	8.5							
$0.5Pd-Al_2O_3-P$	81	0.226	8.3							

Table 5.5 Textural properties of Al₂O₃, P-modified Al₂O₃ and Pd modified Al₂O₃-P catalysts.

^a determined from BET method ^b determined from BJH adsorption method

UHULALONGKORN UNIVERSITY

According to results of N₂ physisorption presented in **Table 5.5**, BET surface area and pore volume were obviously decreased with loading of phosphorous. These results can be ascribed to blocking of pores by phosphorous species catalyst surface and inside channels. In addition, the Pd loading on catalysts slightly decreased catalyst surface and pore volume occurring Pd clogged up on surface and diffused in the support.

The nitrogen adsorption/desorption of studied catalysts is shown in **Figure 5.9**. All samples displayed the hysteresis loop of type H1 occurring at high relative pressure $(P/P_0>0.6)$ indicating that they are mesoporous structure corresponding to Type IV as described by IUPAC. The H1 hysteresis indicates larger mesopore and broad pore size distribution with uniform cylindrical shapes [44].

Figure 5.10 The pore size distributions of studied catalysts.

Pore size distribution was calculated by BJH method as shown in **Figure 5.10**. The samples of Al₂O₃, P-modified Al₂O₃ and Pd modified Al₂O₃-P catalysts exhibited unimodal pore size distribution that pore diameter was in range of 7-9 nm indicating to mesopore structure related to nitrogen adsorption/desorption results as shown in **Figure 5.9**. The acid properties of catalysts are essential to determine the catalytic activity and product distribution via ethanol dehydration reaction. In **Table 5.6**, the NH₃ temperature programmed desorption (NH₃-TPD) was performed to determine surface acidity of all catalysts.

(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(p	Number of acid sites (µmol/g cat.)				
Weak acid sites	Moderate to strong acid sites	Total acid site				
245	1042	1287				
274	901	1175				
232	908	1140				
217	924	1141				
210	957	1167				
201	986	1187				
	Weak acid sites 245 274 232 217 210 201	Weak acid sites Moderate to strong acid sites 245 1042 274 901 232 908 217 924 210 957 201 986				

Table 5.6 The surface acidity of Al₂O₃, P-modified Al₂O₃ and Pd modified Al₂O₃-P catalysts.

From the results, there are two NH₃ desorption peaks for Al₂O₃, P-modified Al₂O₃ and Pd modified Al₂O₃-P catalysts. The peak at higher temperature above 250°C was due to desorption of ammonia chemisorbed at moderate to strong acid sites, whereas at lower temperature below 250°C was assigned to weak acid sites. The low temperature peak occurred due to the weak acid sites present as surface hydroxy groups and the high temperature peak occurred from structural acidity. The amount of acids sites was determined from NH₃-TPD curve by deconvolution according to the Gauss curve fitting method.

Compare with modified phosphorous and unmodified phosphorous catalysts, the phosphorous addition diminished moderate and strong acid sites to weak acid sites and also total acidity decreased. This is due to introduction of P resulted in modification of surface acidity likely to form P-O-Al. In addition, increasing Pd loading on catalysts resulted in gradually increased moderate and strong acid sites related to reduction of weak acid sites. The moderate and strong acidity was in the order 0.5Pd-Al₂O₃-P>0.3Pd-Al₂O₃-P>0.1Pd-Al₂O₃-P>0.05Pd-Al₂O₃-P.

5.1.6 Reaction study

The Al₂O₃-P catalysts with different Pd loading of 0.05, 0.1, 0.3 and 0.5 wt% were determined to study the catalytic performance in ethanol dehydration reaction at various reaction temperatures of 200, 250, 300, 350, 400 °C at atmospheric pressure. In this reaction study, the catalytic performance terms including ethanol conversion, product selectivity and product yield are presented in **Figure 5.11** to **Figure 5.17**, respectively.

The ethanol conversion of the Al₂O₃-P catalysts with different Pd loading is illustrated in **Figure 5.11** as follows;

Figure 5.11 Ethanol conversion of Al₂O₃, P-modified Al₂O₃ and Pd modified Al₂O₃-P catalysts.

All catalysts were investigated for ethanol dehydration at reaction temperature from 200 to 400°C in order to determine influence of Pd loading on Al₂O₃-P catalysts. For all studied catalysts, the ethanol conversion of catalysts increased with raising the reaction temperature.

The results of P-modified catalysts and unmodified catalysts showed that the modified catalysts with P in temperature 200-300°C have slightly increased ethanol conversion compared with unmodified catalysts. After increasing temperature above 300°C, the modified catalysts with P slightly decreased ethanol conversion less than unmodified catalysts. The γ -Al₂O₃ catalysts exhibited the highest ethanol conversion reaching 86.6% at temperature of 400 °C.

In addition, the results of Pd doping on Al₂O₃-P catalysts described in temperature 200°C to 300°C obviously increased ethanol conversion due to Pd precursor likely acted as chemical promoter of catalyst resulting in increased ethanol conversion at low temperature. At temperature over 300°C, it tended to decrease ethanol conversion compared with unmodified catalysts and Pd modification did not affect ethanol conversion at high temperature. The ethanol conversion results can be ordered as follows: 0.5Pd-Al₂O₃-P>0.3Pd-Al₂O₃-P>0.1Pd-Al₂O₃-P>0.05Pd-Al₂O₃-P.

There is summary for the results that Al_2O_3 catalyst presented the highest ethanol conversion at 400°C and 0.5Pd-Al_2O_3-P catalyst exhibited the highest conversion among Pd modified catalysts. The highest conversion of 0.5Pd/Al_2O_3-P catalyst reached 77.0% at temperature of 400°C.

Figure 5.12 Diethyl ether selectivity of Al₂O₃, P-modified Al₂O₃ and Pd modified Al₂O₃-P catalysts.

From **Figure 5.12**, it shows diethyl ether selectivity of all studied catalysts. The diethyl ether selectivity results of P-modified catalysts and Al₂O₃ catalyst increased at temperature from 200°C to 250°C and decreased with raising the reaction temperature above 250°C. The addition of phosphorous in catalysts tended to essentially enhance diethyl ether selectivity, which required only weak acid sites [43].

In addition, the diethyl ether selectivity of Pd modified catalysts enhanced with raising the reaction temperature. All Pd loading in Al₂O₃-P catalysts performed the highest diethyl ether selectivity at temperature of 350°C. On the other hands, the diethyl ether selectivity decreased due to its decompose to ethylene at high temperature of 400°C.

Figure 5.13 Diethyl ether yield of Al₂O₃, P-modified Al₂O₃ and Pd modified Al₂O₃-P catalysts.

Figure 5.13 shows the diethyl ether yield of P-modified Al₂O₃ and Al₂O₃ catalysts. It appeared that at temperature 350°C, it had the highest diethyl ether yield. Although Al₂O₃ and P-modified Al₂O₃ exhibited high diethyl ether selectivity at low temperature 200°C to 300°C as seen in **Figure 5.12**, ethanol conversion at these temperatures range was low resulting in less diethyl ether yield at low temperature 200°C to 300°C. The P-modified catalyst exhibited the highest diethyl ether yield of 38.41% at temperature of 350°C.

Moreover, the diethyl ether yield of Pd modified catalysts escalated with raising the reaction temperature. All Pd loading in Al_2O_3 -P catalysts exhibited the highest diethyl ether selectivity at temperature of 350°C. At high temperature 400°C, the diethyl ether selectivity decreased due to its decompose to ethylene at high temperature.

Figure 5.14 Ethylene Selectivity of Al₂O₃, P-modified Al₂O₃ and Pd modified Al₂O₃-P catalysts.

From **Figure 5.14**, it shows ethylene selectivity among all studied catalysts. For ethylene selectivity results, the P-modified catalysts and Al₂O₃ catalyst increased with increasing temperature. The Al₂O₃ catalyst exhibited the highest ethylene selectivity reaching 86.19% at temperature of 400°C due to the ethylene formation was favored by moderate and strong acid sites relate to surface acidity in **Table 5.6** [43].

In addition, Pd modified catalysts remarkably escalated ethylene selectivity with raising the reaction temperature in temperature range between 200°C to 300°C and decreased in temperature of 350°C due to the optimization temperature was produced for diethyl ether as seen in **Figure 5.13**. The increased ethylene selectivity at low temperature 200°C to 300°C was caused by catalytic activity of Pd as chemical promoter, that might completely enhance reaction of ethanol to ethylene. It was related to the ethanol conversion of Pd modified catalysts that increased at low temperature as shown in **Figure 5.11**.

Figure 5. 15 Ethylene yield of Al₂O₃, P-modified Al₂O₃ and Pd modified Al₂O₃-P catalysts.

From the calculation of ethylene yield of P-modified Al₂O₃ and Al₂O₃ catalysts, the results likewise tended to ethylene selectivity that increased with increasing temperature as seen in **Figure 5.14**. The Al₂O₃ catalyst exhibited the highest ethylene yield reaching 74.62% at temperature of 400°C.

The effect of Pd modified catalysts was found to have similar ethylene selectivity as well. At temperature 400°C, the Pd modified catalysts exhibited the highest ethylene yield over 0.5Pd-Al₂O₃-P at 42.96%.

Figure 5.16 Acetaldehyde selectivity of Al₂O₃, P-modified Al₂O₃ and Pd modified Al₂O₃-P catalysts.

Figure 5.16 shows acetaldehyde selectivity among all studied catalysts. The trend of acetaldehyde selectivity of Al₂O₃, P-modified Al₂O₃ and Pd modified Al₂O₃-P catalysts were similar where it decreased with increasing temperature. The presence of Pd on catalysts resulted in increased acetaldehyde selectivity at low temperature ranging from 200-250°C by dehydrogenation reaction. The acetaldehyde was main product at low temperature of 200°C.

Figure 5.17 Acetaldehyde yield of Al₂O₃, P-modified Al₂O₃ and Pd modified Al₂O₃-P catalysts.

From acetaldehyde yield results, the product yields were calculated from the product of ethanol conversion and acetaldehyde selectivity. For Al₂O₃ catalysts, the acetaldehyde yield increased with increasing temperature. For P-modified Al₂O₃ catalysts, the trend of acetaldehyde yield was similar to Al₂O₃ catalysts. For Pd modified Al₂O₃-P catalysts, Pd modification enhanced acetaldehyde yield at low temperature 200°C to 250°C. The highest acetaldehyde yield occurred by 0.5Pd-Al₂O₃-P catalyst reaching 6.82% at temperature of 250°C.

5.1.7 Thermal gravimetric analysis (TGA)

The Al_2O_3 , P-modified Al_2O_3 and Pd-modified Al_2O_3 -P catalysts were determined the decomposition of catalysts by increasing the temperature of the samples under air atmosphere. The fresh and spent catalysts after ethanol dehydration examination were tested for the coke deposition as shown in **Figure 5.18** and **Figure 5.19** as follows;

Figure 5.18 TGA/DTA analysis of the fresh catalysts.

The decomposition of all fresh catalysts was depicted in **Figure 5.18**. The studied results were detected similar trend of TGA profiles. The weight loss (%) indicated the divided two stages of losing weight stages of at temperature below 200°C and temperature above 200°C. At the temperature lower than 200°C, it was represented to the removal of physically adsorbed water in the catalyst. While at the temperature above 200°C, it was attributed to decomposition of volatile species in the catalyst.

Figure 5.19 TGA/DTA analysis of the spent catalysts.

The examined spent catalysts results were performed as shown in **Figure 5.19**, which was used to measure the amount of coke deposited by thermal decomposition method. The thermal decomposition of spent catalysts was observed in the temperature

above 200°C, which indicated the coke formation on the catalyst surface, that could be eliminated in this temperature range. On the other words, the spent catalysts were regenerated with burning of coke deposited in atmospheric air at temperature range higher than 200°C. The evaluated amount of coke formation on the catalysts surface was displayed in **Table 5.7** as follows;

Catalysts	Temperature	Weight	The amount of coke
	(°C)	(%)	formation (%wt)
	- AN 11/1 / 1 / 1 / 1	9	
γ -Al ₂ O ₃	200	98.54	2.24
	800	96.3	
Al ₂ O ₃ -P	200	98.2	1.84
	800	96.36	
0.05Pd-Al ₂ O ₃ -P	200	97.79	1.84
	800	95.95	
0.1Pd-Al ₂ O ₃ -P	200	98.11	1.75
	800	96.36	
0.3Pd-Al ₂ O ₃ -P	จุฬาล200รณ์มหาวิเ	98.33	1.94
	CHULAL 8009KORN UN	96.39	
0.5Pd-Al ₂ O ₃ -P	200	97.70	1.98
	900	95.72	

Table 5.7 The amount of coke formation in the spent catalysts.

Based on the amount of coke deposition in **Table 5.7**, it noticed that the γ -Al₂O₃ was observed high quantitative of coke formation due to large quantity of strong acid sites corresponding to acidity techniques by NH₃-TPD results. Nevertheless, the phosphorous addition on catalyst significantly decrease the amount of coke deposition on catalyst surface. It can be attributed to the reduction of strong acid sites on catalyst, which possibly improved catalyst stability. In addition, the modification with Pd promoter was slightly different on amount of coke formation.

Part II: The comparison of catalytic activities and catalyst characteristic between the chosen Pd modified over γ -Al₂O₃ catalyst and the chosen Pd modified over Al₂O₃-P catalyst.

From the results in **Part I**, the studies of Pd modified on Al₂O₃-P catalysts enhanced catalytic activity at low temperature. The 0.5Pd-Al₂O₃-P catalyst exhibited the highest ethanol conversion and ethylene selectivity among all of Pd modified catalysts at temperature ranging of 200°C to 300°C. The question is when P is absent what the differences when Pd is solely doped on Al₂O₃. Thus, the experiment in **Part II** was conducted. Consequently, the characteristic and catalytic activity were compared between 0.5Pd-Al₂O₃ and 0.5Pd-Al₂O₃-P catalysts that described in the **Section 5.2.1** to **Section 5.2.5** as following;

5.2.1 Inductively coupled plasma (ICP)

The amount of Pd composition contained in the catalysts bulk was measured by inductively coupled plasma (ICP) as shown in **Table 5.8**. The sample results indicated amount of Pd composition in catalyst bulk, which nearly examined ICP results in **Part I**.

Table 5 8 The amount of Pd composed in the catalyst b	ulk
---	-----

Catalysts	Amount of Pd in catalyst bulk (wt%)
0.5Pd-Al ₂ O ₃	GKORN UNIVERS ^{0.54}
0.5Pd-Al ₂ O ₃ -P	0.55

5.2.2 X-ray diffraction (XRD)

The X-ray diffraction (XRD) patterns of $0.5Pd-Al_2O_3$ and $0.5Pd-Al_2O_3-P$ catalysts are depicted in **Figure 5.20**. The XRD results revealed the similar XRD patterns as seen in the results from **Part I**. The characteristic sharp peaks of gamma alumina catalysts (γ -Al₂O₃) were indicated at 2 θ of 46° and 67° [38]. In addition, Pd loading on catalysts cannot be noticed in XRD results because of its forms in well dispersed form on catalysts.

5.2.3 Ammonia temperature-programmed desorption (NH₃-TPD)

The surface acidity and strength of acid sites of studied catalysts are the crucial factor for catalytic activity of ethanol dehydration. The NH₃-TPD profiles were calculated and summarized surface acidity for both Pd modified Al_2O_3 and Pd modified Al_2O_3 -P catalysts in **Table 5.9**.

Table 5.9 The surface acidity of 0.5Pd-Al₂O₃ and 0.5Pd-Al₂O₃-P catalysts.

	Number of acid sites (µmol/g cat.)					
Catalysts	Weak acid sites	Moderate to strong acid sites	Total acid sites			
$0.5Pd-Al_2O_3$	140	1107	1247			
0.5Pd-Al ₂ O ₃ -P	201	986	1187			

The NH₃-TPD profiles depicted two different desorption peak of acid sites. The desorption peak at low temperature below 250°C was attributed to weak acid sites and high temperature over 250°C was attributed to strong acid sites. All these profiles were deconvoluted by Gauss curve fitting method for numerical analysis. The NH₃-TPD results of Pd modification on catalysts revealed that Pd addition on Al₂O₃ catalyst increased moderate to strong acid sites. According to the NH₃-TPD results in **Part I**, phosphorous modification improved weak acid sites and reduced moderate to strong acid sites.

5.2.4 Reaction study

In this reaction study, the 0.5Pd-Al₂O₃ and 0.5Pd-Al₂O₃-P catalysts were investigated the ethanol conversion, product selectivity and product yield. The catalyst performance was tested in reaction temperature of 200, 250, 300, 350, 400°C as shown in **Figure 5.21** to **Figure 5.27**.

Figure 5.21 Ethanol conversion of 0.5Pd-Al₂O₃ and 0.5Pd-Al₂O₃-P catalysts

From the test performance in **Figure 5.21**, it presented ethanol conversion at reaction temperature from 200 to 400°C. The ethanol conversion of both 0.5Pd-Al₂O₃ and 0.5Pd-Al₂O₃-P catalysts obviously increased with increasing the reaction temperature. It was found that 0.5Pd-Al₂O₃-P catalyst exhibited higher ethanol conversion than 0.5Pd-Al₂O₃ catalyst. It ascribed to the large amount of weak acid sites in surface acidity as shown in **Table 5.9**. The 0.5Pd-Al₂O₃-P catalyst exhibited the highest ethanol conversion reaching 77.0% at temperature of 400°C.

Figure 5.22 Diethyl ether selectivity of 0.5Pd-Al₂O₃ and 0.5Pd-Al₂O₃-P catalysts.

Figure 5.22 represented diethyl ether selectivity of both studied catalysts. The diethyl ether selectivity of Pd-modified catalysts enhanced with increasing the reaction temperature. At temperature 350°C, both of Pd loading on studied catalysts exhibited the highest diethyl ether selectivity and decreased at high temperature of 400°C caused by its decomposition to ethylene. The 0.5Pd-Al₂O₃-P catalyst exhibited diethyl ether selectivity higher than 0.5Pd-Al₂O₃ catalyst, which the presence of phosphorous enhanced more quantity of weak acid sites [43].

Figure 5.23 Diethyl ether yield of 0.5Pd-Al₂O₃ and 0.5Pd-Al₂O₃-P catalysts.

Figure 5.23 shows the diethyl ether yield for both 0.5Pd-Al₂O₃ and 0.5Pd-Al₂O₃-P catalysts. It can be observed that the diethyl ether yield increased with raising the reaction temperature for both catalysts. However, the 0.5Pd-Al₂O₃-P catalyst presented slightly higher diethyl ether yield than the unmodified P catalyst. The highest diethyl ether yield of 33.3% can be obtained from 0.5Pd-Al₂O₃-P catalyst at temperature of 350°C. This can be attributed to higher weak acid sites in the P modification catalysts.

The ethylene selectivity of studied catalysts is illustrated in **Figure 5.24**. At low temperature, both of the Pd-modified catalysts increased with raising the reaction temperature. For $0.5Pd-Al_2O_3$ catalyst, it remarkably exhibited the highest ethylene selectivity reaching 74.36% at temperature of 250° corresponding to high amount of moderate to strong acid sites favored to ethylene formation. In addition, phosphorous modification on catalyst played in role of reaction pathway into the diethyl ether caused by weak acid sites related to surface acidity in **Table 5.9** [43].

The ethylene yield was calculated by ethanol conversion and ethylene selectivity, which is illustrated in **Figure 5.25**. Both 0.5Pd-Al₂O₃ and 0.5Pd-Al₂O₃-P catalysts presented similar trend of ethylene yield. The 0.5Pd-Al₂O₃ catalyst exhibited the highest ethylene yield reaching 43.8% at temperature of 400°. Consequently, the Pd addition without phosphorous modification catalyst was suitable to produce ethylene at high temperature.

For the side reaction of ethanol dehydration, acetaldehyde selectivity of studied catalysts is shown in **Figure 5.26**. Both of 0.5Pd-Al₂O₃ and 0.5Pd-Al₂O₃-P catalysts had similar trend of acetaldehyde selectivity, which decreased with increasing temperature. At low temperature, the acetaldehyde selectivity was observed due to the presence of Pd on catalysts enhanced the dehydrogenation reaction. As the results, acetaldehyde was a major product at low temperature ca. 200°C.

The product yields were calculated from the product of ethanol conversion and acetaldehyde selectivity as shown in **Figure 5.27**. The acetaldehyde yield of 0.5Pd-Al₂O₃ catalyst was almost constant at low temperature around 200°C to 300°C and decreased at temperature of 350°C as similar to 0.5Pd-Al₂O₃-P catalyst. The highest acetaldehyde yield was observed by 0.5Pd-Al₂O₃-P catalyst reaching 6.82% at temperature of 250°C, which compared to acetaldehyde yield of 0.5Pd-Al₂O₃ catalyst.

5.2.5 Thermal gravimetric analysis (TGA)

The coke decomposition of 0.5Pd-Al₂O₃ and 0.5Pd-Al₂O₃-P catalysts was investigated by thermal gravimetric analysis. The fresh and spent catalysts were tested for the coke deposition in **Figure 5.28** and **Figure 5.29**.

Figure 5.29 TGA/DTA analysis of the spent catalysts.

From the TGA profiles showed similar trend of all catalyst results. The weight loss below 200°C was attributed to the moisture elimination. The weight loss over 200°C was attributed to burning of coke deposition on the catalyst.

Catalysts	lysts Temperature Weight		The amount of coke
	(°C)	(%)	formation (%)
0.5Pd-Al ₂ O ₃	200	97.97	2.47
	800	95.5	
0.5Pd-Al ₂ O ₃ -P	200	97.70	1.98
	900	95.72	
		12 2	

Table 5.10 The amount of coke formation in the spent catalysts.

The amount of coke deposition on studied catalysts was evaluated and shown in **Table 5.10**. It noticed that the 0.5Pd-Al₂O₃ catalyst exhibited high amount of coke deposition with 2.47% due to large quantity of strong acid sites corresponding to acidity as determined by NH₃-TPD results as mentioned **Table 5.9**. Significantly, the phosphorous modification reduced the amount of coke deposition on catalyst surface. It was caused by reduction of strong acid sites and increase of weak acid sites on catalyst with phosphorous modification, then improved stability of catalyst as well.

From the results of **Part I** and **Part II**, the catalyst performance can be concluded for better understanding the effect of phosphorous and palladium modification on alumina catalysts.

- Phosphorous modification on catalysts could essentially enhance diethyl ether selectivity because phosphorous improved weak acid sites on surface acidity. [42] [43] The weak acid sites was necessary for diethyl ether product. The P-modified catalyst exhibited the highest diethyl ether yield of 38.41% at temperature of 350°C.

- Pd modification on Al₂O₃-P catalysts affected ethylene selectivity that noticeably escalated with raising the reaction temperature in temperature range 200°C to 300°C. The increase of ethylene selectivity at low temperature 200°C to 300°C was caused by high amount of moderate to strong acid sites that favored to ethylene formation. However, the side reaction as acetaldehyde occurred at low temperature of 200°C to 300°C due to the presence of Pd on catalysts as well.

- Pd modification on Al₂O₃ catalysts were exhibited ethylene selectivity better than Pd modification on Al₂O₃-P corresponding to higher amount of moderate to strong acid sites. The highest ethylene selectivity of Pd modification on Al₂O₃ catalysts reaching 74.36% at temperature of 250°. Nevertheless, the acetaldehyde selectivity was detected at low temperature of 200°C to 300°C as similar to Pd modification on Al₂O₃-P catalysts.

CHULALONGKORN UNIVERSITY

All results obtained can be summarized the characteristics and catalyst performance of Al₂O₃-P, Pd-Al₂O₃-P and Pd-Al₂O₃ catalysts as shown in **Table 5.11**

Table 5.11 The characteristics and catalyst performance of Al_2O_3 -P, Pd- Al_2O_3 -P and Pd- Al_2O_3 catalysts compared with γ - Al_2O_3 catalyst.

Catalysts	Temperature (°C)	Ethanol conversion (%)	Ethylene selectivity (%)	Ethylene yield (%)	Diethyl selectivity (%)	Diethyl yield (%)	Acetaldehyde selectivity (%)	Acetaldehyde yield (%)	Coke formation (%)
γ-Al ₂ O ₃	200 to 300	0	0	0	0	0	0	0	0
	300 to 400	0	0	0	0	0	0	0	
Al ₂ O ₃ -P	200 to 300	+	-	-	+	+	-	+	-
	300 to 400	-	-	-	+	+	-	-	
Pd-Al ₂ O ₃ -P	200 to 300	+	+	+	-	-	+	+	-
	300 to 400	-	-	-	+	+	+	+	
Pd-Al ₂ O ₃	200 to 300	+	+	+	-	-	+	+	+
	300 to 400	-	-	-	+	+	+	+	1

O described to blank sample for the comparison of phosphorous and palladium addition on catalysts

+ described to increase catalytic performance and characteristic effect from blank sample

- described to decrease catalytic performance and characteristic effect from blank sample

The phenomena of ethanol conversion on catalyst surface is supposed on acid site and Pd site as shown in **Scheme 1** and **Scheme 2**. At temperature 200°C to 300°C, the Pd site dominantly enhanced the dehydrogenation of ethanol to acetaldehyde. In addition, the acid site acted the dehydration of ethanol to diethyl ether and ethylene, while Pd site was idle at temperature 350°C to 400°C.

Scheme 1 The phenomena of ethanol consumption on active site at temperature 200°C to 300°C.

Scheme 2 The phenomena of ethanol consumption on active site at temperature 350°C to 400°C.

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS

The overall results of γ -Al₂O₃ catalyst modified with phosphorous and palladium are investigated to determine the effect of characteristics and catalytic performance on ethanol dehydration reaction. The conclusions and recommendation are described in **Section 6.1** and **Section 6.2**, respectively.

6.1 Conclusions

According to results of **Part I** and **Part II**, the characteristics and catalyst performance are concluded on the effect of phosphorous and palladium modification on alumina catalysts.

1) The characteristics of phosphorous modification on the catalysts are described as follows;

- The amount of phosphorous doping into catalyst does not affect the morphology of catalysts.
- The phosphorous loading is in highly disperses form on catalysts
- The surface area and pore volume decrease with loading of phosphorous, which can attribute to blocking of pores by phosphorous species on catalyst surface and inside channels.
- The phosphorous addition increases weak acid sites, whereas moderate to strong acid sites decrease and total acidity diminishes as well.
- The phosphorous loading on catalyst significantly decreases the amount of coke deposition on catalyst surface.

2) The presence of phosphorous on catalysts enhance the dehydration reaction that produce diethyl ether.

3) The P-modified on Al_2O_3 catalyst exhibits the highest diethyl ether yield of 38.41% at temperature of 350°C.

4) The characteristics of Pd addition on P-modified alumina catalysts are elucidated as follows;

- The addition of Pd on catalysts does not influence on the morphology of catalysts.
- The Pd loading on catalysts is well distributed on catalysts.
- The Pd modification decreases the surface area and pore volume due to Pd contents clog up on surface and diffuse in the support.
- The increasing Pd loading on catalysts gradually decreases weak acid sites as well.
- The modification of Pd promoter is slightly different in the amount of coke formation.

5) The Pd loading on P-modified alumina catalysts escalated ethanol conversion and ethylene selectivity with raising the reaction temperature in temperature range between 200°C to 300°C.

6) The Pd doping on Al₂O₃-P catalysts obviously increases the ethanol conversion and ethylene selectivity at low temperature around 200°C to 300°C. The ethanol conversion and ethylene selectivity can descend order as follows: 0.5Pd-Al₂O₃-P>0.3Pd-Al₂O₃-P>0.3Pd-Al₂O₃-P>0.1Pd-Al₂O₃-P>0.05Pd-Al₂O₃-P.

7) The gamma alumina catalyst exhibits the highest ethylene yield reaching 74.62% at temperature of 400°C.

8) The characteristics of Pd addition on non-modified phosphorous catalysts are reported as follows;

- The Pd loading on catalysts presents the well disperse form on catalysts.
- The Pd contents display the slightly different amount of coke deposition.
- The modification of Pd species on Al₂O₃ catalyst eliminates weak acid sites.

9) The presence of Pd on catalysts enhances the dehydrogenation reaction at low temperature of 200°C.

10) The 0.5Pd-Al₂O₃ catalyst exhibits the highest ethylene yield reaching 43.79% at temperature of 400° compared to 0.5Pd-Al₂O₃-P catalyst.
6.2 Recommendations

The several techniques should be applied for verifying the characteristics of modified catalysts. However, the catalyst performance should improve in order to increase ethanol conversion and product selectivity. Thus, the recommendations are suggested for further experiments as follows:

1) The type of acid site such as Bronsted acid site and Lewis acid site should be indicated by pyridine adsorbed IR spectra method.

2) The XRF techniques should be used to compare with ICP techniques for error checking.

3) The catalytic stability of 0.5Pd-Al₂O₃ and 0.5Pd-Al₂O₃-P catalysts should be further studied.

4) Other noble metal modified in various loading should be considered for addition on gamma alumina catalysts.

5) The phosphorous loading on other solid catalysts should be examined in order to increase ethanol conversion and diethyl ether selectivity.

REFERENCES

- 1. Gallo, J.M.R., J.M.C. Bueno, and U. Schuchardt, *Catalytic Transformations of Ethanol for Biorefineries*. Journal of the Brazilian Chemical Society, 2014.
- 2. Preechajan.S., P.P., and Agricultural Specialist, *Biofuels Annual*. 2017.
- 3. Tunpaiboon.N., a.K.R., *Ethanol.* THAILAND INDUSTRY OUTLOOK 2017-19, 2018.
- 4. Phung, T.K. and G. Busca, *Diethyl ether cracking and ethanol dehydration: Acid catalysis and reaction paths.* Chemical Engineering Journal, 2015. **272**: p. 92-101.
- Rozita, Y., R. Brydson, and A.J. Scott, *An investigation of commercial gamma-Al2O3nanoparticles*. Journal of Physics: Conference Series, 2010. 241: p. 012096.
- 6. Chen, G., et al., Catalytic dehydration of bioethanol to ethylene over TiO2/γ-Al2O3 catalysts in microchannel reactors. Catalysis Today, 2007. 125(1-2): p. 111-119.
- Liu, D., et al., Catalytic dehydration of methanol to dimethyl ether over modified γ-Al2O3 catalyst. Fuel, 2011. 90(5): p. 1738-1742.
- 8. Ramesh, K., et al., Synthesis, Characterization, and Catalytic Activity of Phosphorus Modified H-ZSM-5 Catalysts in Selective Ethanol Dehydration. Catalysis Communications, 2010. 9: p. 4080-4090.
- 9. Kamsuwan, T., et.al, A comparative study of different Si- and Al based catalysts with Pd modification for catalytic ethanol dehydration. 2017.
- 10. Matori, K.A., et al., *Phase transformations of alpha-alumina made from waste aluminum via a precipitation technique*. Int J Mol Sci, 2012. **13**(12): p. 16812-21.
- 11. Santos, S.P., et al., *Standard Transition Aluminas. Electron Microscope Studies.* Materials Research, 2000. **3**: p. 104-114.
- 12. Samain, L., et al., *Structural analysis of highly porous γ-Al2O3*. Journal of Solid State Chemistry, 2014. **217**: p. 1-8.
- 13. Ros, S.D., et al., *Modeling the effects of calcination conditions on the physical and chemical properties of transition alumina catalysts.* Materials Characterization, 2013. **80**: p. 50-61.
- 14. Santacesaria, E., et al., *Basic Behavior of Alumina in the Presence of Strong Acids*. Ind. Eng. Chem., Prod. Res. Dev., 1977. **16**(1): p. 45-46.
- 15. VfT, J., et.al, *Acid Base property of Alumina Oxide*. Applied Catalysis, , 1983: p. 159-168
- 16. W. M. Haynes, e.a., *CRC Handbook of Chemistry and Physics*. CRC Press/Taylor and Francis, 2014.
- 17. Emsley, J., *Nature's Building Blocks: An A-Z Guide to the Elements*. Oxford University Press, 2011.
- 18. Coursey, J.S., et. al, *Atomic Weights and Isotopic Compositions (version 3.0)*. National Institute of Standards and Technology, 2010.
- 19. Jefferson, T., *National Accelerator Facility* Office of Science Education, 2014.

- Fan, D., D.-J. Dai, and H.-S. Wu, *Ethylene Formation by Catalytic Dehydration of Ethanol with Industrial Considerations*. Materials, 2012. 6(1): p. 101-115.
- Zhang, X., et al., *Comparison of four catalysts in the catalytic dehydration of ethanol to ethylene*. Microporous and Mesoporous Materials, 2008. **116**(1-3): p. 210-215.
- 22. Alharbi, W., et al., *Dehydration of ethanol over heteropoly acid catalysts in the gas phase*. Journal of Catalysis, 2014. **319**: p. 174-181.
- 23. Eckert, M., et al., *Acetaldehyde*, in *Ullmann's Encyclopedia of Industrial Chemistry*. 2006.
- 24. Zhang, M. and Y. Yu, *Dehydration of Ethanol to Ethylene*. Industrial & Engineering Chemistry Research, 2013. **52**(28): p. 9505-9514.
- 25. Sun, J. and Y. Wang, *Recent Advances in Catalytic Conversion of Ethanol to Chemicals*. ACS Catalysis, 2014. **4**(4): p. 1078-1090.
- 26. SHINOHARA, Y., et.al, Study of the Interaction of Ethanol with the Broensted and Lewis Acid Sites on Metal Oxide Surfaces Using the DV-X Method. J.Chem. Software,, 1998. 4: p. 41-50
- 27. Xu, M., et al., *Catalytic Dehydration of Methanol to Dimethyl Ether (DME) over Pd/Cab-O-Sil Catalysts.* Applied Catalysis A: General, 1997. **149**: p. 303-309.
- 28. Takahara, I., et al., *Dehydration of Ethanol into Ethylene over Solid Acid Catalysts*. Catalysis Letters, 2005. **105**(3-4): p. 249-252.
- 29. Varisli, D., T. Dogu, and G. Dogu, *Ethylene and diethyl-ether production by dehydration reaction of ethanol over different heteropolyacid catalysts.* Chemical Engineering Science, 2007. **62**(18-20): p. 5349-5352.
- Zhang, D., R. Wang, and X. Yang, *Effect of P Content on the Catalytic Performance of P-modified HZSM-5 Catalysts in Dehydration of Ethanol to Ethylene*. Catalysis Letters, 2008. **124**(3-4): p. 384-391.
- 31. Ramesh, K., et al., *Structure and reactivity of phosphorous modified H-ZSM-5 catalysts for ethanol dehydration*. Catalysis Communications, 2009. **10**(5): p. 567-571.
- 32. Bi, J., et al., *High effective dehydration of bio-ethanol into ethylene over nanoscale HZSM-5 zeolite catalysts*. Catalysis Today, 2010. **149**(1-2): p. 143-147.
- 33. Han, Y., et al., *Molybdenum oxide modified HZSM-5 catalyst: Surface acidity and catalytic performance for the dehydration of aqueous ethanol.* Applied Catalysis A: General, 2011. **396**(1-2): p. 8-13.
- Rahmanian, A. and H.S. Ghaziaskar, Continuous dehydration of ethanol to diethyl ether over aluminum phosphate-hydroxyapatite catalyst under sub and supercritical condition. The Journal of Supercritical Fluids, 2013. 78: p. 34-41.
- 35. Krutpijit, C. and B. Jongsomjit, *Catalytic Ethanol Dehydration over Different Acid-activated Montmorillonite Clays.* J Oleo Sci, 2016. **65**(4): p. 347-55.
- 36. Chanchuey, T., C. Autthanit, and B. Jongsomjit, *Effect of Mo-Doped Mesoporous Al-SSP Catalysts for the Catalytic Dehydration of Ethanol to Ethylene*. Journal of Chemistry, 2016. **2016**: p. 1-8.

- 37. Kamsuwan, T., P. Praserthdam, and B. Jongsomjit, *Diethyl Ether Production during Catalytic Dehydration of Ethanol over Ru- and Pt- modified H-beta Zeolite Catalysts.* J Oleo Sci, 2017. **66**(2): p. 199-207.
- Khom-in, J., et al., Dehydration of methanol to dimethyl ether over nanocrystalline Al2O3 with mixed γ- and χ-crystalline phases. Catalysis Communications, 2008. 9(10): p. 1955-1958.
- 39. Valdez, R., et al., *Effect of the acidity of alumina over Pt, Pd, and Pt–Pd (1:1)* based catalysts for 2-propanol dehydration reactions. Fuel, 2013. **105**: p. 688-694.
- 40. Janlamool, J. and B. Jongsomjit, *Oxidative dehydrogenation of ethanol over AgLi–Al2O3 catalysts containing different phases of alumina*. Catalysis Communications, 2015. **70**: p. 49-52.
- 41. Wannaborworn, M., P. Praserthdam, and B. Jongsomjit, A Comparative Study of Solvothermal and Sol-Gel-Derived Nanocrystalline Alumina Catalysts for Ethanol Dehydration. Journal of Nanomaterials, 2015: p. 1-11.
- 42. Kamsuwan, T. and B. Jongsomjit, A Comparative Study of Different Al-based Solid Acid Catalysts for Catalytic Dehydration of Ethanol. Engineering Journal, 2016. **20**(3): p. 63-75.
- 43. Inmanee, T., P. Pinthong, and B. Jongsomjit, *Effect of Calcination Temperatures and Mo Modification on Nanocrystalline* (γ - χ)-Al2O3 Catalysts for Catalytic Ethanol Dehydration. Journal of Nanomaterials, 2017. **2017**: p. 1-9.
- 44. Sing, K.S.W. and R.T. Williams, *Physisorption Hysteresis Loops and the Characterization of Nanoporous Materials*. Adsorption Science & Technology, 2016. **22**(10): p. 773-782.

APPENDIX A

CALCULATION FOR CATALYST PREPARATION

A) Calculation for preparation of phosphorous modified over Al₂O₃ catalyst by acid activation technique

➤ 5 wt% H₃PO₄ on Al₂O₃ catalyst was prepared as follows:

Chemical

Orthophosphoric acid 85% (H₃PO₄)

Molecular weight = 98 g/mol

Phosphorous atomic weight = 31 g/mole

Based on 1 g of catalyst used,

85 g of H₃PO₄ in 100 g of H₃PO₄ solution

5 g of H₃PO₄ in 5.88 g of H₃PO₄ solution

Density of $H_3PO_4 = 1.685$ g/mLกรณ์มหาวิทยาลัย

Thus, 5.88 g of H₃PO₄ solution equal to 3.49 mL

Therefore, added 3.49 mL of H_3PO_4 solution into deionized water in amount of 94.12 mL, then stirred the solution with Al_2O_3 catalyst at room temperature for 30 minutes to obtain 5 wt% H_3PO_4 on Al_2O_3 catalyst.

B) Calculation for preparation of palladium modified over Al₂O₃ catalyst by acid activation technique

> 0.5 wt% palladium on Al₂O₃-P catalyst was prepared as follows:

Chemical

Tetraamminepalladium (II) nitrate 10% [Pd(NH₃)₄(NO₃)₂]

Molecular weight = 298.5 g/mol

Palladium atomic weight = 106.5 g/mole

Based on 1 g of catalyst used, the composition of catalyst would be as follow;

1 g of catalyst	Consisted of palladium to 0.005 g
Palladium	= 0.005 g
Al ₂ O ₃ -P catalyst	= 1.000-0.005 g
Set .	= 0.995 g

In 100 g of Pd(NH₃)₄(NO₃)₂ solution, there is 3.57 g of Pd contents Thus, there is 0.005 g of Pd in 0.141 g of Pd(NH₃)₄(NO₃)₂ solution Density of Pd(NH₃)₄(NO₃)₂ solution = 1.038 g/mL

Thus, 0.141 g of Pd(NH_3)_4(NO_3)_2 solution equal to 0.136 mL or 136 μL

Pore volume of Al₂O₃-P catalyst = 247 μ L

Then, add deionized water in the amount of 111 μ L into 136 μ L of Pd(NH₃)₄(NO₃)₂ solution.

APPENDIX B CALCULATION OF ACIDITY

The acidity of the catalysts is determined from Ammonia temperatureprogrammed desorption (NH₃-TPD) by calculating area under TCD signal curve as a functional of temperature as follows:

Acidity of catalyst = $\frac{\text{Moles of desorp ammonia}}{\text{Amount of dry catalyst}} \times 100$

Where moles of ammonia desorbed

= Area underlying the curve of TCD signal x 300 μ mole (Ammonia desorbed in mole is calculated from the calibration curve of Micromeritics pulsechemisorp 2750 instrument)

Weight of dry catalyst = 0.1 gThe unit of the catalyst acidity is μ mole/g.catalyst

APPENDIX C CALCULATION CURVE OF REACTANT AND PRODUCTS

The calibration curves of reactant and products were used to calculate the amount of reactant and products obtained from dehydration reaction.

The calibration curves of the reactant and products including ethanol, diethyl ether, ethylene and acetaldehyde are depicted in **Figure C.1** to **Figure C.4** as follows:

Figure C.1 The calibration curve of ethanol.

Figure C.3 The calibration curve of diethyl ether.

Figure C.4 The calibration curve of acetaldehyde.

APPENDIX D CHROMATOGRAM

From the chromatograms depicted in Figure D.1 and Figure D.2

Peak position of ethanol	: 4.6 min.
Peak position of ethylene	: 4.1 min.
Peak position of acetaldehyde	: 4.4 min.
Peak position of diethyl ether	: 4.9 min.

		la_	11/22	1 21			
C LISA CHOM	ATOPAC (CH 1	DATA - 1 : @CHR	MI. COO	ATTEN=	2 SPEED	⊨ 5.0
C 183 CL .0M	TOPAC CH-1	Report	No6	DATA - I : @CHF	3M1.C00	18 01 08	4.517 13:35:20
** CALCUAT CH PKNO I I 3 I	ON REPORT 1ME 201 . 517	** AREA 332895	HETCHT 16 126557	MK IDAO	CONC 0. 99.	0224 9776	NAME
TOT	M	332970	126573		100		

Figure D.1 Chromatogram of the reagent before the reaction.

	State of the state of the	10-1				
RSA CI	COMATOPAC	CH-1 E	DATA-1: #CHR	M1.CO0	ATTEN= 2	SPEED= 5.0
r an						
1 A-9						
772-1572	Contractor and the		an parameter and the balance of	Proprieta de la companya de la compa	The second s	AND A REAL PROPERTY AND A REAL
- <u>F. Sir</u>						
R8A CH	COMATOPAC C	H=1 Report	No. =26	DATA=1:@CHR	2M1.CO0 18	04/08 16:31:46
R8A CH + CALCU	ROMATOPAC C	H=1 Report RT **	No. =26	DATA=1:@CHR	RM1.CO0 18/	04/08 16:31:46
R8A CH CALCU F PKNO	ATION REPO	H=1 Report RT ** AREA	No. =26 HE IGHT	DATA=1:@CHE MK IDNO	CONC	04/08 16:31:46 NAME
RSA CH RSA CH CALCU F PKNO I	ROMATOPAC C ATION REPO TIME 4.079	H=1 Report RT ** AREA 107091	No. =26 HE IGHT 39669	DATA=1:@CHE MK IDNO	MI.CO0 18/ CONC 22.904	04/08 16:31:46 NAME
RSA CH RSA CH CALCU PKNO 1 2	ATION REPO TIME 4,079 4,308	H=1 Report RT ** AREA 107091 11967	No. =26 HE IGHT 39669 4735	DATA 1 : @CHE MK IDNO V	CONC 22. 904 2. 555	04/08 16:31:46 NAME
RSA CH RSA CH I CALCU I PKNO I 2 3	ATION REPO TIME 4.079 4.308 4.54	H=1 Report RT ** AREA 107091 H1967 283263	No. =26 HE IGHT 39669 4735 112500	DATA 1: %CHF MK IDNO V	M1.C00 18/ CONC 22.904 2.555 60.584	04/08 16:31:16 NAME 17 06
RISA CH I CALCU I PKNO 1 2 3 4	ATION REPO TIME 4.079 4.308 4.54 4.841	H=1 Report RT ** AREA 107091 11967 283263 65230	No. =26 HE 1GHT 39669 4735 112500 28540	DATA-1:@CHE MK IDNO V V	CONC 22.904 2.555 60.584 13.951	04/08 16:31:16 NAME 17 06 14 13

Figure D.2 Chromatogram of the reagent after the reaction.

APPENDIX E

CALCULATION OF REACTANT CONVERSION, PRODUCT SELECTIVITY, PRODUCT YIELD

The catalytic performance in ethanol dehydration reaction was evaluated in terms of reactant conversion, product selectivity, product yield.

Reactant conversion

The conversion of reactant is defined as moles of reacted reactant with respect to moles of fed reactant:

Reactant conversion (%) = $\frac{\text{Moles of reacted reactant}}{\text{Moles of fed reactant}} \times 100$

Product selectivity

The selectivity towards each product is defined as moles of product formed with respect to total moles of product:

Product selectivity (%) = $\frac{\text{Moles of each product}}{\text{Total moles of product}} \times 100$

Product yield

The product yield of each product is defined in terms of reactant conversion and selectivity of each product.

Product yield (%) = Reactant conversion x Selectivity of each product

APPENDIX F

CATALYTIC TESTING RESULTS

Table F.1 Ethanol conversion, product selectivity from dehydration reaction of ethanolat temperature ranging of 200°C to 400°C.

	Temperature	Ethanol	Product selectivity (%)			
Catalysts	(°C)	(%)	Diethyl ether	Ethylene	Acetaldehyde	
	200	0.4	76.6	0.0	23.4	
	250	3.1	94.4	2.2	3.4	
γ-Al ₂ O ₃	300	23.0	89.1	9.7	1.2	
	350	61.7	58.9	40.2	0.9	
	400	86.6	11.7	86.2	2.2	
	200	0.9	86.3	0.0	13.8	
	250	3.8	95.2	2.3	2.6	
	300	25.4	90.6	8.3	1.1	
Al ₂ O ₃ -P	350	57.1	67.2	32.0	0.8	
	400	76.9	20.0	78.5	1.5	
	200	5.8	2.3	27.6	70.2	
	250	18.6	11.1	55.5	33.5	
0.05Pd-Al ₂ O ₃ -P	300	30.8	26.2	62.4	11.4	
	350	49.0	56.0	41.3	2.7	
	400	68.5	36.0	59.7	4.3	
	200	6.2	3.4	28.8	67.8	
	250	20.0	14.0	55.8	30.2	
0.1Pd-Al ₂ O ₃ -P	300	32.3	23.2	66.1	10.7	
	350	50.4	51.5	46.3	2.2	
	400	70.9	36.4	59.0	4.6	
	200	7.6	3.4	39.7	56.9	
	250	21.4	10.4	59.7	29.9	
0.3Pd-Al ₂ O ₃ -P	300	37.0	21.8	67.7	10.5	
	350	54.4	53.1	45.2	1.7	
	400	72.1	37.5	57.9	4.6	
	200	9.76	3.6	46.3	50.1	
	250	24.5	11.0	61.2	27.8	
0.5Pd-Al ₂ O ₃ -P	300	44.1	19.7	70.1	10.3	
	350	59.4	56.0	42.4	1.7	
	400	77.0	40.0	55.8	4.3	

	Temperature (°C)	Ethanol conversion (%)	Product selectivity (%)			
Catalysts			Diethyl ether	Ethylene	Acetaldehyde	
$0.5Pd-Al_2O_3$	200	4.2	0.8	45.3	53.9	
	250	14.3	4.3	74.4	21.4	
	300	30.6	163	71.3	12.5	
	350	50.2	53.6	45.1	1.4	
	400	71.6	38.8	61.2	5.0	

Table F.2 Product yield fro	m dehydration	reaction of	ethanol at	temperature	ranging
of 200°C to 400°C.					

Catalysts	Temperature	Product yield (%)			
	(°C)	Diethyl ether	Ethylene	Acetaldehyde	
γ-Al ₂ O ₃	200	0.27	0.0	0.08	
•	250	2.93	0.07	0.10	
	300	20.46	2.22	0.28	
	350	36.35	24.79	0.56	
	400	10.08	74.62	1.87	
Al ₂ O ₃ -P	200	0.80	0.0	0.13	
	250	3.66	0.09	0.10	
	300	23.04	2.11	0.29	
	350	38.41	18.28	0.45	
	400	15.37	60.34	1.13	
0.05Pd-Al ₂ O ₃ -P	200	0.13	1.61	4.09	
	250	2.06	10.29	6.21	
	300 States	8.05 VERS	19.20	3.51	
	350	27.45	20.26	1.31	
	400	24.66	40.93	2.95	
0.1Pd-Al ₂ O ₃ -P	200	0.21	1.77	4.17	
	250	2.79	11.15	6.04	
	300	7.50	21.38	3.45	
	350	25.97	23.35	1.12	
	400	25.79	41.86	3.24	
0.3Pd-Al ₂ O ₃ -P	200	0.26	3.03	4.33	
	250	2.24	12.78	6.39	
	300	8.05	25.08	3.90	
	350	28.88	24.54	0.93	
	400	27.04	41.72	3.33	

Catalysts	Temperature	Product yield (%)			
	(°C)	Diethyl ether	Ethylene	Acetaldehyde	
0.5Pd-Al ₂ O ₃ -P	200	0.35	4.52	4.89	
	250	2.68	14.99	6.82	
	300	8.68	30.93	4.53	
	350	33.29	25.19	0.99	
	400	30.77	42.96	3.31	
$0.5Pd-Al_2O_3$	200	0.03	1.9	2.26	
	250	0.61	10.66	3.07	
	300	4.97	21.79	3.82	
	350	26.90	22.62	0.68	
	400	24.21	43.79	3.59	

APPENDIX G LIST OF PUBLICATION

Proceeding

Chakkrit Khaochartchai and Bunjerd Jongsomjit, "Catalytic ethanol dehydration to diethyl ether over palladium-modified phosphorous gamma alumina catalysts". Proceeding of the 27th National Thai Institute of Chemical Engineering and Applied Chemistry Conference (TIChE 2017) "Innovative Chemical Engineering and Technology toward a Sustainable Future", Shangri-La hotel, Bangkok, Thailand, October 18-20, 2017.

VITA

Mr. Chakkrit Khaochartchai was born on April 26th, 1990 in Bangkok, Thailand. He finished high school from Suankularb Wittayalai Rangsit School in 2007, and He received the bachelor's degree in Engineering from the Department of Chemical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang in April 2014. He continued the Master of Engineering in Chemical Engineering, Faculty of Engineering, Chulalongkorn University in October 2015.

