Effects of CuO/ZnO/Al $_2O_3$ catalyst modification using Zr, Mn and Si for methanol synthesis via CO $_2$ hydrogenation

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Chemical Engineering Department of Chemical Engineering FACULTY OF ENGINEERING Chulalongkorn University Academic Year 2019 Copyright of Chulalongkorn University ผลของการปรับปรุงตัวเร่งปฏิกิริยา CuO/ZnO/Al₂O₃ ด้วย Zr Mn และ Si สำหรับการสังเคราะห์เม ทานอลโดยไฮโดรจิเนชันของคาร์บอนไดออกไซด์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเคมี ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2562 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	Effects of CuO/ZnO/Al_2O_3 catalyst modification using Zr,
	Mn and Si for methanol synthesis via $\rm CO_2$ hydrogenation
Ву	Miss Kamonlak Pongpanumaporn
Field of Study	Chemical Engineering
Thesis Advisor	Professor BUNJERD JONGSOMJIT, Ph.D.

Accepted by the FACULTY OF ENGINEERING, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of Engineering

		Dean of the FACULTY OF
		ENGINEERING
	(Professor SUPOT TEACHAVORASI	NSKUN, D.Eng.)
THESIS COMMIT	ПЕЕ	
	<u> </u>	Chairman
	(PIMPORN PONPESH, Ph.D.)	1
		Thesis Advisor
	(Professor BUNJERD JONGSOMJIT,	, Ph.D.)
	21422-2050[1192220	Examiner
	(SUPAREAK PRASERTHDAM, Ph.D.)	
	CHULALUNGKORN UNI	External Examiner
	(Assistant Professor Sasiradee Jan	tasee, D.Eng.)

กมลลักษณ์ พงศ์ภาณุมาพร : ผลของการปรับปรุงตัวเร่งปฏิกิริยา CuO/ZnO/Al₂O₃ ด้วย Zr Mn และ Si สำหรับการสังเคราะห์เมทานอลโดยไฮโดรจิเนชันของ คาร์บอนไดออกไซด์. (Effects of CuO/ZnO/Al₂O₃ catalyst modification using Zr, Mn and Si for methanol synthesis via CO₂ hydrogenation) อ.ที่ปรึกษาหลัก : ศ. ดร.บรรเจิด จงสมจิตร

ในปัจจุบันการกำจัดแก๊สคาร์บอนไดออกไซด์มีแนวโน้มที่จะเพิ่มความน่าสนใจของมนุษยชาติ หนึ่งในวิธีที่มีประสิทธิภาพที่สุดในการนำแก๊สคาร์บอนไดออกไซด์ไปใช้ประโยชน์คือการเปลี่ยนแก๊ส ้คาร์บอนไดออกไซด์ให้เป็นสารเคมีที่มูลค่าเพิ่ม ดังนั้นเมทานอลจึงถูกคัดสรรผ่านทางกระบวนการไฮโดร จิเนชันของคาร์บอนไดออกไซด์โดยการใช้ตัวเร่งปฏิกิริยา CuO/ZnO/Al₂O3 ในลำดับแรกตัวเร่งปฏิกิริยา CZA ถูกเตรียมด้วยวิธีเอิบชุบภายใต้สภาวะความแตกต่างของค่าความเป็นกรดเบส (7,8 และ 9) ระหว่าง การตกตะกอนร่วมพบว่าค่าความเป็นกรดเบสที่เหมาะสมคือ 8 (CZA-PH8) นำไปสู่พื้นที่ผิว ค่าเป็นเบส และค่าการรีดักชั่นที่สูง ค่าการเปลี่ยนแก๊สคาร์บอนไดออกไซด์และค่าการเลือกเกิดเมทานอลคือ 2.6% และ 10% ตามลำดับที่สภาวะ 250 °C ภายใต้ความดันบรรยากาศ อย่างไรก็ตามคาร์บอนมอนออกไซด์ เป็นผลิตภัณฑ์หลักสำหรับสภาวะนี้ ในส่วนที่สองความแตกต่างของตัวปรับปรุงเช่น Zr, Mn และ Si ถูกใช้ เพื่อที่จะปรับปรุงความว่องไวของตัวเร่งปฏิกิริยา CZA-PH8 เห็นได้ชัดว่าตัวปรับปรุง Mn เพิ่มค่าการ เปลี่ยนของคาร์บอนไดออกไซด์สูงถึง 4.7% โดยให้ค่าสูงสุดของผลได้เมทานอลที่สภาวะเดียวกัน อย่างไรก็ ตามค่าการเลือกเกิดเมทานอลมีค่า 9.86% ถูกค้นพบโดยการปรับปรุงด้วย Mn ในตัวเร่งปฏิกิริยา CZA-PH8 นอกจากนี้ตัวปรับปรุง Mn สามารถส่งเสริมค่าการเปลี่ยนคาร์บอนไดออกไซด์มากกว่าสองเท่าโดย ปราศจากการเปลี่ยนค่าการเลือกเกิดเมทานอล จึงสามารถสรุปได้ว่าตัวปรังปรุง Mn เป็นสารเคมีที่อำนวย ความความสะดวกในการกระจายตัวของ CuO และค่าความเป็นเบสของตัวเร่งปฏิกิริยา CZA ในส่วน สุดท้ายค่าความคงตัวของตัวเร่งปฏิกิริยา CZA-PH8 และ CZA-PH8-Mn จะถูกตรวจสอบความแตกต่าง ระหว่างตัวเร่งปฏิกิริยาที่ไม่ถูกใช้งานและถูกใช้งานหลักจากใช้ไป 5 ชั่วโมงและพบว่าตัวปรับปรุง Mn ้สามารถลดการเกาะกลุ่มตัวของ CuO นำไปสู่ความว่องไวที่เพิ่มขึ้นของ CZA-PH8 ที่ปรับปรุงด้วย Mn

สาขาวิชา วิศวกรรมเคมี ปีการศึกษา 2562

ลายมือชื่อนิสิต
ลายมือชื่อ อ.ที่ปรึกษาหลัก

6170105521 : MAJOR CHEMICAL ENGINEERING

KEYWORD:

methanol synthesis;CO2 hydrogenation; CuO/ZnO/Al2O3; CO2 utilization; Zr; Mn;Si

Kamonlak Pongpanumaporn : Effects of CuO/ZnO/Al₂O₃ catalyst modification using Zr, Mn and Si for methanol synthesis via CO_2 hydrogenation. Advisor: Prof. BUNJERD JONGSOMJIT, Ph.D.

Currently, the estimated CO₂ amount has tended to increase interesting of population. One of the most effective utilization ways of CO_2 is to convert CO_2 to higher valued chemicals. Thus, methanol was chosen to produce via CO₂ hydrogenation by using CuO/ZnO/Al₂O₃ (CZA) catalyst. In the first part, CZA was prepared by coimpregnation method under different pH (7, 8 and 9) during co-precipitation. It was found that the suitable pH was 8 (CZA-PH8) due to high surface area, high basicity, and reducibility. The CO₂ conversion and methanol selectivity were 2.6% and 10%, respectively at 250°C under atmospheric pressure. However, it should be noted that CO was the main product of this study. In the second part, different promoters such as Zr, Mn and Si were employed to improve the catalytic activity of CZA-PH8. It was found that Mn promoter apparently increased the CO₂ conversion up to 4.7% (giving the highest methanol yield of ca. 0.46% under the same condition. However, the methanol selectivity of ca. 10% was found over Mn-promoted CZA-PH8 catalyst. On the other hand, the Mn promoter can enhance the CO₂ conversion without a change in methanol selectivity. It can be concluded that Mn promoter is chemical promoters since it facilitates the dispersion of CuO and basicity of CZA catalyst. In the final part, the stability of CZA-PH8 and CZA-PH8-Mn catalysts was investigated. It was found that the differences between the fresh and spent catalysts were a decrease of agglomeration of CuO leading to higher activity of the CZA-PH8 with Mn promotion.

Field of Study:	Chemical Engineering	Student's Signature
Academic Year:	2019	Advisor's Signature

ACKNOWLEDGEMENTS

This work was supported by the Malaysia Thailand Joint Authority (MTJA) project for facility of methanol reaction construction and experimental lab scale, the author would like to appreciate my advisor, Professor Bunjerd Jongsomjit for supporting of knowledge such as contents of experimental, how to study in master degree and life planning.

Additionally, the author thank to committee: chairman Pimporn Ponpesh (Ph.D), examine Supareak Praserthdam (Ph.D) and external examine Sasiradee Jantasee for new knowledge of this project.

Finally, the author thanks to my family which support my life and motivation, my friend that create a cheerfulness for studying.

Kamonlak Pongpanumaporn

TABLE OF CONTENTS

Page
ABSTRACT (THAI)iii
iv
ABSTRACT (ENGLISH)iv
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
INTRODUCTION
1.1 Statement of problem
1.2. Objective of research
1.3. Scope of research
1.4 Research methodology
1.5 Research plan
BACKGROUND AND LITERATURE REVIEW
2.1 The reaction of methanol synthesis via CO_2 hydrogenation
2.2 Coke formation
2.3 Methanol
2.4 Cu, Zn, Al oxide
2.5 Zirconium
2.6 Manganese

2.7 Silica	14
2.8 Literature reviews	14
EXPERIMENT	35
3.1 Catalysts preparation	35
3.1.1 Preparation of different pH affected of CZA	35
3.1.2 Preparation of modifier CZA-Zr, CZA-Mn, CZA-Si	36
3.2 Catalysts characterizations	36
3.2.1. X-ray diffraction (XRD)	36
3.2.2. Scanning Electron Microscope (SEM)	37
3.2.3. Energy-dispersive X-ray spectroscopy (EDX)	37
3.2.4. N_2 physisorption	37
3.2.5. Temperature-programmed reduction (TPR)	37
3.2.6. Temperature-programmed desorption of carbon dioxide (CO_2 -TPD)	37
3.2.8. X-ray Photoelectron spectroscopy (XPS)	38
3.2.9. H ₂ -Chemisorption (H ₂ -Chem)	38
3.3 Activity test	39
RESULTS AND DISCUSSION	41
4.1. Effect of pH value in CZA catalyst preparation	41
4.1.1 Characterization	41
4.1.1.1 X – ray diffraction (XRD)	41
4.1.1.2. Scanning electron microscope (SEM) and energy-dispersive X	(-ray
spectroscopy (EDX)	42
4.1.1.3. N ₂ physisorption (BET)	44
4.1.1.4 Temperature-programmed reduction (TPR)	46

4.1.1.5 Temperature-programmed desorption of carbon dioxide (CO ₂ -TPE)) .7
4.1.1.6 Temperature-programmed desorption of ammonia (NH $_3$ -TPD)4	.9
4.1.1.7 X-ray photoelectron spectroscopy (XPS)5	1
4.1.2 Reaction performance5	4
4.2 The effect of Zr, Mn, and Si promoters5	7
4.2.1 Characterization5	7
4.2.1.1 X – ray Diffraction (XRD)5	7
4.2.1.2 N ₂ physisorption (BET)5	8
4.2.1.3 Temperature-programmed reduction (TPR)	0
4.2.1.4 Temperature-programmed desorption of carbon dioxide (CO_2 -TPE))
	1
4.2.1.5 Temperature-programmed desorption of ammonia (NH_3 -TPD) 6	3
4.2.1.6 X-ray photoelectron spectroscopy (XPS)6	5
4.2.1.7 H_2 -Chemisorption (H_2 -Chem)	7
4.2.2 Reaction performance	7
4.3 The stability of CZA catalyst	0
4.3.1 Characterization7	0
4.3.1.1 X – ray diffraction (XRD)7	0
4.3.1.2 Scanning Electron Microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX)	2
4.3.1.3 X-ray photoelectron spectroscopy (XPS)7	5
CONCLUSIONS AND RECOMMENDATIONS	8
Part 1: The effect of increasing pH value in CZA catalyst preparation7	8
Part 2: The effect of Mn, Zr, and Si promoters on CZA-PH8 catalyst7	8

Part 3: The stability of CZA catalyst	79
APPENDIX	81
APPENDIX.A CALCULATION OF CATALYSTS PERFORMANCE	81
A.1 CO ₂ Conversion by C balance	81
A.2 Methanol selectivity	81
A.3 Methanol Yield	81
A.4 CO ₂ reaction rate	81
A.5 CH ₃ OH production rate	81
A.6 CO ₂ reaction rate and CH ₃ OH production rate at time on stream	81
A.7 Activity of CZA catalyst	87
APPENDIX.B CALCULATION OF CRYTALLINE SIZE	91
B.1 The Scherrer's equation	91
APPENDIX.C CALBRATION	92
C.1 CO $_2$ calibration	92
C.2 CH ₃ OH calibration	92
C.3 NH ₃ -TPD calibration	93
C.4 CO ₂ -TPD calibration	93
APPENDIX.D SCANNING ELECTRON MICROSCOPE (SEM) AND ENERGY-DISPERSI	VE X-
RAY SPECTROSCOPY (EDX)	94
D.1 SEM-EDX of effect of metals promoters	94
D.2 SEM-EDX of effect of metals promoters in stability test	97
APPENDIX.E X-RAY PHOTOELECTRON SPECTROSCOPY	101
E.1 Chemical species of CZA-PH7 catalyst	101
E.2 Chemical species of CZA-PH8 catalyst	104

E.3 Chemical species of CZA-PH9 catalyst	
E.4 Chemical species of CZA-PH8-Zr catalyst	
E.5 Chemical species of CZA-PH8-Mn catalyst	
E.6 Chemical species of CZA-PH8-Si catalyst	
E.7 Chemical species of sCZA-PH8 catalyst	
E.8 Chemical species of sCZA-PH8-Mn catalyst.	
E.9 Position of binding energy(eV) and element of all species	
APPENDIX.F H2-CHEMISORPTION AND DISPERSION	
F.1 Calculation dispersion in H ₂ -chemisorption.	
REFERENCES	
VITA	

จุฬาลงกรณ์มหาวิทยาลัย CHULALONGKORN UNIVERSITY

LIST OF TABLES

		Page
Table	1 Properties of methanol	. 11
Table	2 The review Cu-based in Manufacturer	. 12
Table	3 Properties of Zirconium	. 13
Table	4 Properties of Manganese	. 13
Table	5 Properties of Silica	. 14
Table	6 The conditions and significant review	. 14
Table	7 List of chemical prepared catalyst	. 35
Table	8 The characterization data equipment of this study	. 38
Table	9 Condition of TCD detector	. 40
Table	10 Condition of FID detector	. 40
Table	11 Crystalline size of CZA catalysts.	. 42
Table	12 EDX elemental analysis without O element on surface of different CZA	
catalys	sts (wt%)	. 44
Table	13 surface properties of catalysts	. 44
Table	14 The amounts of basic sites of all CZA catalysts	. 48
Table	15 the amounts of basic sites of all CZA catalysts	. 50
Table	16 Property of XPS spectra and mass of Cu,Zn,Al,O species	. 52
Table	17 Catalyst activity of CZA catalysts (0 h = initial after proceeding of mixing	
reacta	nt 30 min)	. 56
Table	18 Crystalline size of CuO in CZA catalysts	. 57
Table	19 surface properties of catalysts	. 58
Table	20 The amounts of basic sites of metals loading of CZA catalysts	. 62

Table 21 the amounts of basic sites of metals loading of CZA catalysts
Table 22 The property of XPS spectra and mass of Cu, Zn, and Al,O species of the
effect of Zr, Mn, and Si promoters in CZA catalysts by X=Si, Mn, and Zr66
Table 23 H_2 -adsorption and Cu^0 dispersion of CZA catalyst67
Table 23 reaction test of CZA-PH8-X (X=Si, Mn, Zr) catalysts. (0 h = initial after
proceeding of mixing reactant 30 min)69
Table 24 Crystalline size of CZA catalysts. 71
Table 25 EDX elemental analysis Cu, Zn, Al, O, and C element on surface of fresh
CZA catalysts (CZA-PH8) and spent catalyst (sCZA-PH8)74
Table 26 The property of XPS spectra and mass of Cu,Zn,Al,O species of the effect
of activity test, before activity test; CZA-PH8 and after activity test; sCZA-PH877
Table 27 The property of XPS spectra and mass of Cu,Zn,Al,O species of the effect
of Zr,Mn promoter of the effect of activity test, before activity test; CZA-PH8-Mn and
after activity test; sCZA-PH8-Mn

Chulalongkorn University

LIST OF FIGURES

Page
Figure 1 The coke formation and coke removing reactions [6]8
Figure 2 The coke formation from hydrocarbon [7]9
Figure 3 The application of methanol feed stock [8]9
Figure 4 The Thai customer review of methanol importation and exportation
Figure 5 The reduced surface of the catalysts via hydrotalcite-like precursors and the
functionality of the various surface sites for CO_2 hydrogenation to methanol
Figure 6 XRD patterns of Cu/ZnO/Al ₂ O ₃ catalyst (a) before calcination, (b) after
calcination
Figure 7 The Schematic of methanol synthesis via CO_2 hydrogenation
Figure 8 XRD patterns of different Cu/Zn/Al catalysts ($ullet$) CuO ; (Δ) ZnO ; (O) Zincian
malachite, (Cu,Zn) ₂ (OH) ₂ CO ₃
Figure 9 SEM and EDX images of different pH of CZA catalysts, A; CZA-PH7, B; CZA-
PH8. C; CZA-PH9
Figure 10 N_2 physisorption of different pH of Cu/Zn/Al catalysts at -196 $^\circ\!C$ liquid $N_{2.}$
GHULALONGKORN UNIVERSITY 45
Figure 11 pore size distribution (BJH technique) of different pH of CZA catalysts 46
Figure 12 TPR profile of different pH of CZA catalysts46
Figure 13 CO ₂ -TPD profile of different pH of CZA catalysts
Figure 14 The amounts of basic sites by CO_2 -TPD of different pH of CZA catalysts48
Figure 15 NH_3 -TPD profile of different pH of CZA catalysts
Figure 16 The amounts of acid sites by NH_3 -TPD of different pH of CZA catalysts50
Figure 17 Typical XPS spectra of CZA catalyst (for CZA-PH7)51

Figure 18 Cu, Zn, Al species of different pH of CZA catalysts	53
Figure 19 CO ₂ conversion of different pH of CZA catalysts	55
Figure 20 methanol selectivity of different pH of CZA catalysts	55
Figure 21 methanol yield of different pH of CZA catalysts	56
Figure 22 XRD patterns of of CZA-PH8 catalyst with different promoters (CZA-PH8-X	ζ,
X=Mn ,Si, and Zr) (•) CuO ; (Δ) ZnO ; (O) Zincian malachite, (Cu,Zn) ₂ (OH) ₂ CO ₃ ; (\blacklozenge)	
Cu	57
Figure 23 N_2 physisorption of loading metals of Cu/Zn/Al catalysts at boing points a -196 °C liquid N_2	at 59
Figure 24 Pore size distribution (BJH technique) of metals loading of CZA-PH8	
catalysts	59
Figure 25 TPR profile of metals loading of CZA catalysts	60
Figure 26 CO ₂ -TPD profile of metals loading of CZA catalysts	61
Figure 27 The amounts of basic sites by CO_2 -TPD of metals loading of CZA catalyst	S.
	62
Figure 28 NH_3 -TPD profile of metals loading of CZA catalysts	63
Figure 29 the amounts of acid sites by NH ₃ -TPD of metals loading of CZA catalysts.	.64
Figure 30 Cu species of metals loading of CZA catalysts	65
Figure 31 CO_2 conversion of loading metals of CZA catalysts	68
Figure 32 Methanol selectivity of loading metals of CZA catalysts	68
Figure 33 Methanol yield of loading metals of CZA catalysts	69
Figure 34 XRD patterns of fresh Cu/Zn/Al catalysts (CZA-PH8) and spent catalysts	
(sCZA-PH8) at pH 8 (\bullet) CuO ; (Δ) ZnO ; (\mathbf{O}) Zincian malachite, (Cu,Zn) ₂ (OH) ₂ CO ₃ ; (\blacklozenge	•)
Cu	70

gure 35 XRD patterns of fresh Cu/Zn/Al catalysts of metals loading (CZA-X,
=Mn,Si) at pH 8 and spend catalysts (sCZA-X, X=Mn,Si), ($ullet$) CuO ; (Δ) ZnO; (O)
incian malachite, (Cu,Zn) ₂ (OH) ₂ CO ₃ ; (\blacklozenge) Cu71
gure 36 SEM and EDX images of stability CZA-PH8, A; fresh CZA-PH8, B; spent sCZA-
H8
gure 37 Cu species of CZA-PH8 catalyst in fresh and spent catalyst75
gure 38 Chemicals species of CZA-PH8-Mn, sCZA-PH8-Mncatalyst in fresh and spent
atalyst

CHAPTER 1

INTRODUCTION

1.1 Statement of problem

Presently, the untimed wants of population tend to increase while fossil source has been decreasing. The greenhouse gas such as CO₂ is the main environmental pollution for global warming. The effect of this problem leads to utilization of CO₂. Generally, the CO₂ and H₂ can react and convert into high value chemicals. Methanol is the main feedstock of many industries. Methanol can produce benefic products for wide application in clean energy field and industrially used in chemical process such as FAME (fatty acid methyl ester) processing, MTBE (Methyl Tertiary Butyl Ether), formaldehyde, acetic acid, methyl methacrylate, chloromethane, electrical power generation and light olefin by MTO process[1, 2].

Hydrogenation is a common process for methanol production. Normally, the methanol synthesis is operated at high pressure with high temperature (3.5-10 MPa, 200-300 °C) by conventional CO hydrogenation. For the next generation, the CO₂ is promoted 80% of mixed feed in methanol synthesis via CO hydrogenation. Currently, the pure CO₂ hydrogenation is widely studied for alternative CO₂ utilization. In the same way, CO₂ reactant can produce methanol by the two major reactions; (1) CO₂ hydrogenation, (2) reverse water gas shift (RWGS) reaction. The involved reactions are as follows;

$(\bigcirc_2 + 3H_2 \longleftrightarrow (H_2)H + H_2)$	$\Lambda H_{000 \ \text{m}} = -49.58 \ \text{k} \ \text{mol}^{-1}$	(1)
$CO_2 \pm JH_2 \land \prime CH_3 OH \pm H_2 O$	Δ_{11298} K = -49.00 K 1100	(=)

To avoid the undesired product, a chosen catalyst should be neutral and basic function catalyst. The Cu-based catalyst is a way to industrially use. The CuO/ZnO/Al₂O₃ (CZA) is tertiary structure and conventional of general catalysts. The Cu is the main active site of tertiary, while ZnO can interact of H_2 adsorption and support a Cu active site. In common, Al_2O_3 is a third component of CZA used to

(2)

increase the stability and activity of Cu/Zn component. Therefore, CZA is appropriate for methanol synthesis.

In addition, the dropping of promoter significantly affects activity of CZA and stability at high temperature. The promoter of CZA can be divided into two categories. Firstly, noble metal (Pt, Au, Pd) can improve activity, as the little amount of Au tends to reduce CO side reaction by spillover of H_2 [3]. Whereas, noble metal is not approximate into economic and stability. Metal oxides (La, Mn, Ce, Zr, Mg, Y) are modifiers of CZA, the metal oxide is dropped into solution by a few weight ratios [4]. Zr is the most widely used for improving physical of CZA and increasing basicity. Mn has basic property, in which the relative major property results with decreasing of DME and Cu dispersion. In another way, the high surface area (SiO₂, TiO₂) can modify stability by strong interaction between CZA [5].

In this research, the main work is divided into 2 parts. Firstly, the tertiary catalyst was synthesized by adjusting the differences of pH during coprecipitation, and then tested in the reaction at suitable condition including various temperature ranges of 200-300 °C at atmospheric pressure. Secondly, the effect of Zr, Mn, Si will be studied on the suitable pH in first part of CZA catalysts. Furthermore, the characterization techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), N₂ physisorption, temperature-programmed reduction (TPR) and temperature-programmed desorption of carbon dioxide (CO₂-TPD), Temperature-programmed desorption of ammonia (NH₃-TPD) and X-ray Photoelectron spectroscopy (XPS) were conducted to determine the catalytic properties.

1.2. Objective of research

To study the effect of Zr, Mn, Si on catalytic properties of CZA catalyst in methanol synthesis via CO_2 hydrogenation.

1.3. Scope of research

1.3.1. Catalyst preparation

1.3.1.1. Preparation of CZA (40:40:20 wt.%) by co-precipitation with different pH (pH = 7,8,9).

1.3.1.2. Preparation of CZA-Zr, CZA-Mn, CZA-Si catalysts (Zr, Mn, Si = 0.3 wt.%) by co-precipitation.

1.3.2. Characterization of catalyst

1.3.2.1. X-ray diffraction (XRD)

1.3.2.2. Scanning electron microscopy (SEM)

1.3.2.3. Energy-dispersive X-ray spectroscopy (EDX)

1.3.2.4. N₂ physisorption

1.3.2.5. Temperature-programmed reduction (TPR)

1.3.2.6. Temperature-programmed desorption of carbon dioxide (CO $_2$ -

TPD)

1.3.2.7. Temperature-programmed desorption of ammonia (NH₃-TPD)

1.3.2.8. X-ray photoelectron spectroscopy (XPS)

1.3.2.9. H₂-Chemisorption (H₂-Chem)

1.3.3 Activity Test

1.3.3.1 Settling the condition by feeding reactants of CO₂:H₂ = 1:3, T = 250 °C for CZA, P = 1 atm, 5 hours.

1.3.3.2 Analysis of data by CO_2 conversion and CH_3OH selectivity measured by gas chromatograph (GC).

1.4 Research methodology

Part 1: The suitable condition of differences pH of CZA catalyst.

Part 2: The effect of Zr, Mn, Si modification

1.5 Research plan

Topic	2018		2019	
	1	2	1	2
1. Literature review				
2. Lab scale				
construction				
3. Test Lab scale				
4. Preparation of				
differences pH CZA	14000	122		
5. Characterization of				
differences pH CZA				
6. Test reaction of				
differences pH CZA				
7. Preparation of CZA-				
Zr, CZA-Mn, CZA-Si				
8. Characterization of	Al secces and			
CZA-Zr, CZA-Mn, CZA-Si	Equal of	Refer D		
9. Test reaction of				
CZA-Zr, CZA-Mn, CZA-Si	กลงกรณ์แห	าวิทยาลัย		
10. Thesis writing			rv -	

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 The reaction of methanol synthesis via CO₂ hydrogenation

The two major of CO_2 hydrogenation was followed by, (1) CO_2 hydrogenation and (2) Reverse water gas shift (RWGS) reaction. However, the side reaction is appeared by (3) Dehydration of Methanol to dimethyl ether by methanol reactant.

$$CO_2 + 3H_2 \leftrightarrow CH_3OH + H_2O \qquad \Delta H_{298 K} = -49.58 \text{ kJ mol}^{-1}$$
(1)

$$CO_2 + H_2 \leftrightarrow CO + H_2O \qquad \qquad \Delta H_{298 K} = +41.12 \text{ kJ mol}^{-1}$$
(2)

$$2CH_{3}OH \rightarrow CH_{3}OCH_{3} + H_{2}O \qquad \Delta H_{298 \, \text{K}} = -23.00 \, \text{kJ mol}^{-1}$$
(3)

The methanol synthesis via CO_2 hydrogenation is exothermic reaction while RWGS is endothermic reaction. Therefore, the reaction should operate at high temperature for association of CO_2 and reaction with H_2 . For another way of methanol synthesis, the CO hydrogenation was occurred by following (4). The high temperature in CO hydrogenation accelerates the deactivation of catalyst.

$$CO+2H_2 \leftrightarrow CH_3OH \qquad \qquad \Delta H_{298 \text{ K}} = -91.00 \text{ kJ mol}^{-1}$$
(4)

However, the methanol synthesis via CO_2 hydrogenation was presented in mainly two reaction at low temperature

$CO_2 + 3H_2 \leftrightarrow CH_3OH + H_2O$	Δ H _{298 K} = -49.58 kJ mol ⁻¹	(1)
$CO_2 + H_2 \leftrightarrow CO + H_2O$	Δ H _{298 K} = +41.12 kJ mol ⁻¹	(2)

2.2 Coke formation

Figure 1 The coke formation and coke removing reactions [6].

Severally, coke appeared at high temperature by effect of reactant gas, such CO, CO_2 , CH_3 into catalytic or non-catalytic. The coke formation was identified into three reaction as following, (1) The Boudouard reaction, (2) Reduction of CO, (3) Methane cracking.

$$2CO \rightarrow CO_2 + C \qquad \Delta H_{298 \ \text{K}} = -171 \ \text{kJ mol}^{-1} \qquad (1)$$

$$CO+ H_2 \leftrightarrow H_2O + C \qquad \Delta H_{298 \ \text{K}} = 131 \ \text{kJ mol}^{-1} \qquad (2)$$

$$CH_4 \rightarrow 2H_2 + C$$
 $\Delta H_{298 K} = 75 \text{ kJ mol}^{-1}$ (3)

The Boudouard reaction was formed at low temperature by approximated CO source, the CO was conversed to CO_2 and carbon graphite based on CO disproportion. Next reaction, the CO reacted with H₂ at high H₂ feed content. Finally, methane cracking is the most evidence of side reaction of methanol synthesis by supporting of methanation in CO_2 hydrogenation.

(Hydrocarbon)

Figure 2 The coke formation from hydrocarbon [7].

In addition, coke formation from hydrocarbon such methane was show in **Figure 2**. The result can discuss undersign of reaction at high content of methane by product. The illustration was supported the type of C_{α} which property of the first coke development, surface carbine is the general coke on surface catalyst. The accumulation contributes to C_{β} formation, the amorphous film can develop into approximate temperature range. To avoid this way, the reaction should lowest hydrocarbon and CO, CO_2 limit source.

2.3 Methanol

Figure 3 The application of methanol feed stock [8].

Methanol is the main feedstock of industrially. The commercial of methanol production is come from fossil source by CO and few CO₂ content at highly temperature and pressure. Also, the CO₂ hydrogenation can design at atmospheric pressure by suitable catalyst. The application of methanol was show in **Figure 3**, such as fatty acid methyl ester processing (FAME), methyl Tertiary Butyl Ether (MTBE), formaldehyde, acetic acid, methyl methacrylate, dimethyl ether (DME), dimethyltryptamine (DMT) or additive blending for gasoline.

	1111	3	
		113	
- CO 1000	13 <i>3/</i>	11	1

For Thailand, the methanol importation and exportation were presented by Figure 4, the methanol importation show that the methanol is trend to increase in year 2017, 2018 extremely. The result lead to unlimiting of widely use in methanol application while the methanol exportation has low quantity production.

UNULALUNUKUAN	UNIVENJI I
Properties	Specification
Chemical formula	CH ₃ OH
Appearance	Colorless liquid
Molar mass	32.04 g/mol
Density	0.792 g/cm ³
Melting point	-97.60 °C
Boiling point	64.70 °C
Vapor pressure	13.02 kPa (at 20 °C)

Table	1 Properties of methanol
-------	--------------------------

2.4 Cu, Zn, Al oxide

The Cu-base catalyst was widely use in methanol synthesis. The Cu is the main active site. ZnO is the support of catalyst and promote H_2 adsorption. Al_2O_3 is a third component of CZA used to increase a stability and activity of Cu/Zn component.

In addition, the CZA catalyst is a commercial catalyst that popular consider in industrial by following the **Table 2**,

Manufacturer	Cu	Zn	Al	Other
BASF K3-110	40	40	20	-
ICI 51-2	62	35	3	-
BASF	38.5	48.8	12.9	-
Dupont	50	19	31	-
Haldor Topsoe	>55	21 - 25	8 - 10	-
ICI	20 - 35	15 - 50	4 - 20	-
IFP	45 - 70	15 - 35	4 - 20	-
Lurgi	60 - 70	20 - 30	5 - 15	-
Shell	71	24	-	-
Sud Chemie	างกร65์มหาร์	โทย 22 ัย	12	-
Alfa Aesar-Johnson CHULA	50.6	22.5	4.6	-
Matthey				
Alfa Aesar- HiFUEL R120	50	25	25	-
AIST & JKK Crop.	68 - 86	45 - 21	2 - 20	-
Hyundai Heavy Industries	40 - 60	25 - 35	5 - 20	-
Co & KR	40 - 60	25 - 35	5 - 20	Zr 1 - 10

Table 2 The review Cu-based in Manufacturer

2.5 Zirconium

The Zr is the main used in CZA catalyst or photocatalysis. The effect of Zr in methanol synthesis can improve physical property such as Cu dispersion, reduce

crystalline site and increase activity of CZA. The Zr is appeared in metal oxide form, the precursor that most choice for preparation and environment solvent friendly is *Zirconium nitrate*.

Properties	Specification
Chemical formula	Zr(NO ₃) ₄
Appearance	Transparent plates
Molar mass	339.244 g/mol
Density	12
Melting point	°C
Boiling point	Decompose 100 °C
Solubility	Ethanol Hydrolysis with
	water,

Table 3 Properties of Zirconium

2.6 Manganese

The Mn is the most use in promoter of general catalyst. The basicity of Mn can improve the production of many reaction. The catalyst that relative with basic site is the specially of alcohols such as methanol. By product such as DME, coke, methane is formed by significant acidity of catalyst. Generally, Mn is the favorite nitrate of precursor.

ruble intoperates of manganese		
Properties	Specification	
Chemical formula	Mn(NO ₃) ₂	
Appearance	White powder	
Molar mass	178.95 g/mol	
Density	-	
Melting point	37 °C	
Boiling point	100 °C	

 Table 4 Properties of Manganese

Solubility	Water

2.7 Silica

The high surface area SiO_2 is the most use in support of catalyst. In addition, the Si metal oxide became to modifier of CZA catalyst. The strong interaction was selected to improve stability of catalyst at high temperature. The sintering is the most appearance of temperature effect. However, the SiO_2 can interacted with metal oxide active site of catalyst. The precursor of Si is TEOS in preparation promoter.

Properties	Specification
Chemical formula	Si(OC ₂ H ₅) ₄
Appearance	Colorless liquid
Molar mass	208.33 g/mol
Density	0.933 g/mL
Melting point	-77 °C
Boiling point	168 °C
Solubility	Water, Ethanol

Table 5 Properties of Silica

จุหาลงกรณ์มหาวิทยาลัย

CHULALONGKORN UNIVERSITY

No.	Catalyst, reactor type and reaction condition	Significant result	Reference
1.	Catalyst : Cu/Zn/Al/Zr	- Water produced during methanol	The stability of Cu/ZnO-based
(2001)	- Co-precipitation method.	synthesis from a CO ₂ -rich feed	catalysts in methanol synthesis
	- Cu/ZnO/ZrO ₂ /Al ₂ O ₃ (40/30/25/5 wt.%)	accelerated the crystallization of Cu	from a CO_2 -rich feed and from
	- Cu/ZnO/ZrO ₂ /Al ₂ O ₃ - colloidal silica	and ZnO contained lead to	a CO-rich feed [9]
	- Calcined at 600 °C for 2 h.D	deactivation of the catalyst.	
	Reactor type : fixed-bed reactor	- The case of methanol synthesis	
	Reaction condition : 250 °C, 50 bar, feed	from a CO-rich feed, the catalysts	
	CO ₂ (22%), CO (3%) and H ₂ (75%)	both with and without silica were	
	- Reduced : gas mixture of $H_2(10\%)$ and He	deactivated very little.	
	(90%) at 300 °C for 2 h. pressure 50 bar.		
2.	Catalyst : Mg and Mn oxide additions	- The catalytic activity increase by	Effect of Mg and Mn oxide
(2003)	Cu/ZnO/ZrO ₂	CuZnZr < CuZnZrMg < CuZnZrMn.	additions on structural and
	- Decomposing the citrate complexes	- Dispersion of Cu determined with	adsorptive properties of
	- Calcinated on air for 1 h at 100, 200, 250	the XRD line broadening method	Cu/ZnO/ZrO ₂ catalysts for the
	and 300 °C.	and from the reactive adsorption of	methanol synthesis from CO_2
	Reactor type : fixed-bed reactor	N_2O increasing.	[10]

Table 6 The conditions and significant review

2.8 Literature reviews

No.	Catalyst, reactor type and reaction condition	Significant result	Reference
	Reaction condition : Pressure 80 bar,		
	temperature 220 °C, GHVS 5400 h^{-1} , reactant		
	mixture H_2 :CO ₂ = 1:3.		
	- Reduced : 10% ${ m H_2}$ in ${ m N_2}$ at 200 °C under		
	atmospheric pressure for 15 h.		
3.	Catalyst : Cu/ZnO/Al ₂ O ₃	- Hp-preparation, a significant Cu	Catalytic behavior of ternary
(2007)	- Homogeneous precipitation using hydrolysis	leaching was observed, but was	Cu/ZnO/Al ₂ O ₃ systems
	- pH 9.0 controlled by NaOH	effectively suppressed by lowering	prepared by homogeneous
	- Calcined at 300 °C for 3 h in air	the aging temperature from 90 to	precipitation in water-gas shift
	Reactor type : U-shaped Pyrex glass Reaction	80 ° C. A main crystal phase in	reaction [11]
	condition : CO/H ₂ O/H ₂ /CO ₂ /N ₂	the precursor was always Cu/Zn	
	(0.77/2.2/4.46/0.57/30 ml min−1) at 700 °C,	oimetallic aurichalcite.	
	atmospheric pressure.	- The formation of malachite	
	- Reduced with a mixed gas flow of $\rm H_2/N_2$ (5/30	caused a lowering in the activity	
	ml min ⁻¹) at 200 °C for 30 min	probably due to its monometallic	
		Cu property	

No.	Catalyst, reactor type and reaction condition	Significant result	Reference
4.	Catalyst : Cu/Zn/Al/Zr	- 5 mole% Zr showed the best	A Cu/Zn/Al/Zr Fibrous
(2007)	- co-precipitation.	activity and thermal stability with a	Catalyst that is an Improved
	- calcined at 350 °C for 4 h	methanol STY that was 81% higher	CO ₂ Hydrogenation to
	- PH -	than a commercial industrial	Methanol Catalyst [12]
	Reactor type : fixed-bed reactor	catalyst.	
	Reaction condition : $T = 240 \text{ °C}$, $P = 40$ bar, Sv =		
	9742 h ⁻¹ , Feed gas: H ₂ :CO ₂ = 3:1		
	- Reduced with a 5%H2/ 95%N ₂ mixture at		
	atmospheric pressure		
5.	Catalyst : Cu/ γ -Al ₂ O ₃ , Cu-V/ γ -Al ₂ O ₃	- After addition V, both the	Study of CO ₂ Hydrogenation
(2007)	- co-precipitation method.	catalytic activity of Cu-based	to Methanol over Cu-V/ Y -
	- 12 wt.% Cu, V supported on Y -Al2O3.	catalysts and the selectivity for	Al ₂ O ₃ Catalyst [13]
	- calcination at 500 °C for 4 h.	methanol were improved.	
	Reactor type : fixed-bed reactor	- The best conditions for reaction	
	Reaction condition : $T = 240 \text{ °C}$, $P = 30$ bar, GHSV	for the hydrogenation of CO_2 were	
	= 3600 h^{-1} and H_2 :CO ₂ = 3.1 (molar ratio).	as follows: 240 °C, 3600 h ⁻¹ and a	
	- Pretreated by H ₂ at a temperature of 300 °C	molar ratio of H_2 to CO_2 of 3:1.	
	for 3 h.		

No.	Catalyst, reactor type and reaction condition	Significant result	Reference
.9	Catalyst : Cu/ZnO/ZrO ₂	- Increasing of ageing time, the	The effect of ageing time on
(2007)	- Co precipitation	sodium content of the catalyst	co-precipitated Cu/ZnO/ZrO2
	- pH 7	decreases and finer crystallite	catalysts used in methanol
	- Calcined in air at 350 °C for 2 h.	structures are formed.	synthesis from CO_2 and H_2 [14]
	Reactor type : fixed-bed reactor	- The lower sodium contents and	
	Reaction condition : pressure 30 bar,	finer crystallite structures the BET	
	temperature 230–270 °C, mixing rate 1000 rpm,	surface area and the pore	
	flow rate 50 ml/min, composition of reactant gas	volume in small pores increased	
	$H_2:CO_2 = 3:1$	and reduction of Cu was	
	- Reduced in situ at 300 °C with 50 mL/min of	facilitated.	
	pure H ₂ (99.9%) for 4 h under atmospheric		
7.	Catalyst : Cu–ZnO/ZrO ₂	- Basic relationships among	Synthesis, characterization and
(2007)	(Zn/Cu at, 0-3; ZrO2, 42-44 wt.%)	surface area, dispersion, and	activity pattern of Cu-
	- Co precipitation	catalyst reducibility point to a	ZnO/ZrO2 catalysts
	- Reverse coprecipitation	strong promoting effect of ZnO	in the hydrogenation of
	- pH 7.0–7.5	on catalyst texture.	carbon dioxide to methanol
	- calcined in air at 350 °C for 4 h.	- The negative effect of water on	[7]
	Reactor type : fixed-bed reactor	the rate of methanol formation	

No.	Catalyst, reactor type and reaction condition	Significant result	Reference
	Reaction condition : 160–260 °C and 10–30 bar,	accounts for the poorer catalytic	
	$CO_2/H_2/N_2$ reaction mixture with molar ratio of	performance.	
	3/9/1 was fed at the rate of 40 stp mL/min (GHSV		
	= 4400 NL/(h· kg cat)) or 80 stp mL/min (GHSV =		
	8800 NL/(h・ kg cat))		
	- Reduced at 300 °C for 1 h in H_2 flow (100 stp		
	mL/min) at atmospheric pressure.		
8.	Catalyst : CuO/ZnO/Al ₂ O ₃	- The following " preparation	Correlations between
(2008)	- Co-precipitation	history" : precipitation	synthesis, precursor, and
	- Calcined at 300 °C under air for 3 h (heating	temperature of 70 °C, pH of 6–8,	catalyst structure and activity
	ramp 2 °C/min)	aging time of 20 – 60 min, and	of a large set of
	Reactor type : 49-channel parallel reactor	calcination at 300 °C.	CuO/ZnO/Al ₂ O ₃ catalysts for
	Reaction condition : $T = 245$ °C, $P = 45$ bar, 70	- Calcination temperatures above	methanol synthesis [8]
	vol% H_2 , 24 vol% CO, and 6 vol% CO ₂ .	300 °C resulted in the formation	
	equilibrated for 3 h.	of pure CuO phases.	
	- Reduced with a 5% ${\rm H_{2}/N_{2}}$ mixture at 245 °C		

No.	Catalyst, reactor type and reaction condition	Significant result	Reference
9.	Catalyst : Cu-MeO _x /Zr _a Ce _b O ₂ Me/Cu atomic ratio	- The effects of ceria promoter	Role of the ceria promoter
(2011)	of 0.30–0.35	and activation atmosphere on	and carrier on the functionality
	- Reverse co-precipitation.	the CO ₂ -hydrogenation	of Cu-based catalysts in the
	- Calcined in air at 350 °C (4 h).	functionality of Cu catalysts have	CO ₂ -to-methanol
_	Reactor type : fixed-bed reactor	been addressed. - ZnO as promoter of hoth	hydrogenation reaction [9]
	= 8.8 ML g ⁻¹ h ⁻¹ or 80 stp mL/min	dispersion and catalytic	
	- Reduction temperature at 350 °C for 8 h.	functionality of the metal copper	
	и N l	phase.	
10.	Catalyst : Cu/ZrO ₂ catalysts with various La	- The introduction of La, Zr^{4+} is	The influence of La doping on
(2011)	ERS	substituted partially by La^{3+} and	the catalytic behavior of
	- The urea-nitrate combustion method.	$La_2Zr_2O_7$ is formed.	Cu/ZrO ₂ for methanol
	- Calcined in air at 500 °C for 5 h.	- Increasing of La loading, the	synthesis from CO ₂
	Reactor type : fixed-bed reactor	density of basic site of La-	hydrogenation [10]
	Reaction condition : a mixture (CO ₂ :H ₂ :N ₂ =	Cu/ZrO ₂ catalysts increase.	
	22:66:12, molar), pressure to 30 bar, temperature	- Maximum yield is obtained at	
	140 °C	the La loading of 5%.	
	- Reduce 10% $\rm H_2/N_2~$ 30 ml/min, 300 °C for 3 h.		
No.	Catalyst, reactor type and reaction condition	Significant result	Reference
--------	--	-------------------------------------	---------------------------------------
11.	Catalyst : Cu/ZnO/ZrO ₂	- The physicochemical properties	CO ₂ hydrogenation to
(2011)	- the urea-nitrate combustion method.	and catalytic activity of the	methanol over Cu/ZnO/ZrO ₂
	- calcined in air at a certain temperature (400–	catalysts are strongly influenced	catalysts prepared via a route
	800 °C) for 4 h.	by the calcination temperature.	of solid-state reaction [11]
	Reactor type : fixed-bed reactor	- the phase transformation of	
	Reaction condition : gas mixture (CO ₂ :H ₂ = 1:3,	zirconia from tetragonal to	
	molar ratio), pressure 30 bar, temperature 140 °C.	monoclinic occurs as the	
	- Reduced in a stream of 10% ${ m H_2/N_2}$ at 300 °C for	calcination temperature exceeds	
	3 h under atmospheric pressure.	600 °C.	
12.	Catalyst : Cu-Zn-Zr	- Irrespective of a high Cu loading	The changing nature of the
(2011)	- Co precipitation by NaHCO ₃ (CB).	(60 wt.%), the preparation	activesite of Cu-Zn-Zr catalysts
	- Complexation by citric acid (CT).	conditions significantly affect	for the CO ₂ hydrogenation
	- Geloxalate co-precipitation (OX).	structure, surface properties and	reaction to methanol [12]
	Reactor type : fixed-bed reactor	redox behavior.	
	Reaction condition : $CO_2/H_2/N_2 = 3/9/1$) in the		
	temperature range 180–240 °C, 30 bar.		

No.	Catalyst, reactor type and reaction condition	Significant result	Reference
13.	Catalyst : CuO-ZnO-Al ₂ O ₃ add TiO ₂	- TiO ₂ is improved CuO dispersion	Effect of promoter TiO_2 on the
(2011)	- Co precipitation	and enhanced the adsorption on	performance of CuO-ZnO-
	- (CuO/ZnO/Al ₂ O ₃ =5/4/1 with TiO ₂ mass ratio x=	the surface of catalyst, leading to	Al_2O_3 catalyst for CO_2 catalytic
	0, 2, 4, 6 and 8)	easier reduction of CuO and	hydrogenation to methanol
	- Calcined in air 50 °C for 4 h.	lower concentration of strong	[13]
	Reactor type : fixed-bed reactor	acid sites.	
	Reaction condition : temperature 230 °C, H ₂ /CO ₂	- TiO ₂ can enhance the	
	= 3, 26 bar	dispersion of CuO and ZnO in the	
	- Reduced by hydrogen (10% in nitrogen) at 260	catalyst, leading to better	
	°C and an atmospheric pressure for 2 h.	adsorption CO ₂ .	
14.	Catalyst : CuO/ZnO/Al ₂ O ₃ /M = 5/4/1/0.02	- CuO-ZnO-Al2O3 catalysts	Effect of promoter SiO_2 , TiO_2
(2012)	(M represents SiO2, TiO2 or SiO2-TiO2, SiO2/TiO2	modified with SiO2, TiO2 or SiO2-	or SiO ₂ -TiO ₂ on the
	= 1/1, mass ratio)	TiO2 exhibited better catalytic	performance of CuO-ZnO-
	- Co-precipitation method	performances than the catalyst	Al ₂ O ₃ catalyst for methanol
	- Calcined at 350 °C for 4 h	without promoter.	synthesis from CO ₂
	Reactor type : a tubular stainless steel, fixed-bed	- SiO2, TiO2 or SiO2-TiO2	hydrogenation [5]
	reactor	enhanced CuO dispersion in the	
	Reaction condition : $T = 260 ^{\circ}$ C, $P = 26 \text{bar}$,	catalyst body.	

No.	Catalyst, reactor type and reaction condition	Significant result	Reference
	H_2 :CO ₂ = 3:1 (volume ratio) and SV= 3600 hr ⁻¹ .	- Promoter SiO ₂ -TiO ₂ showed well	
	- Reduced at 270 °C and atmospheric pressure	performance than SiO_2 or TiO_2 .	
	for 2 h by a hydrogen stream (10 vol.% $\rm H_2/\rm N_2)$		
15.	Catalyst : Hydrotalcite-like compounds with	- The modifier (Mn, La, Ce, Zr and	Influence of modifier (Mn, La,
(2013)	mol% ratios of Cu:Zn:Al = 50:25:25 and	Y) leads to higher BET specific	Ce, Zr and Y) on the
	Cu:Zn:Al:X = 50:25:22.5:2.5 (X represents Mn, La,	surface area, Cu surface area and	performance of Cu/Zn/Al
	Ce, Zr and Y)	Cu dispersion.	catalysts via hydrotalcite-like
	- co-precipitation method	- The Mn, La, Ce, Zr and Y is	precursors for CO ₂
	- The pH 10.0 ± 0.2.	favorable for the production of	hydrogenation to methanol [4]
	- Calcined in air at 500 °C for 4 h.	methanol.	
	Reactor type : fixed-bed reactor	- The Y- and Zr-modified	
	Reaction condition : 230–270 K, 50 °C, H_2 :CO ₂ =	Cu/Zn/Al catalysts exhibit the	
	3:1 (molar ratio), GHSV= 12,000 mL gcat ⁻¹ h ⁻¹ .	highest CO ₂ conversion and	
	- Reduction at 300 °C for 8 h.	CH ₃ OH selectivity.	

No.	Catalyst, reactor type and reaction condition	Significant result	Reference
16.	Catalyst : Cu/Zn/Al/Zr	- The pure and crystalline	Influence of Zr on the
(2013)	- The Cu^{2^+} :Zn ²⁺ :(Al ³⁺ +Zr ⁴⁺) atomic ratio 2:1:1	Cu/Zn/Al/Zr hydrotalcite-like	performance of Cu/Zn/AV/Zr
	Zr ⁴⁺ :Al ³⁺ atomic composition 0:1 to 0.7:0.3.	compounds can be formed by	catalysts via hydrotalcite-like
	- co-precipitation method	the replacement of Al^{3+} with Zr^{4+} .	precursors for CO ₂
	- pH 10.0 ± 0.2.	- Increasing of Zr^{4+} :(Al ³⁺ +Zr ⁴⁺)	hydrogenation to methanol
	- Calcined 500 °C for 4 h.	atomic ratio, exposed Cu surface	[15]
	Reactor type : fixed-bed reactor	area and the dispersion of Cu.	
	Reaction condition : 230–270 °C, 50 bar,	- The best performance is	
	$n(H_2):n(CO_2) = 3:1$, and GHSV = 4000 h ⁻¹ .	obtained with $Zr^{4+}/(Al^{3+}+Zr^{4+}) =$	
	- Reduced in pure H ₂ at a flow rate of 80 mL	0.3.	
	min ⁻¹ under atmospheric pressure.		
17.	Catalyst : CuZnCe, CuZnZr, Cu–ZnO	- The suitable condition on Cu-	Effects of oxide carriers on
(2013)	- Reverse coprecipitation under ultrasound	ZnO/ZrO ₂ system, at 10% of CO ₂	surface functionality and
	irradiation.	conversion per pass (T= 240 °C; P	process performance of the
	- Varied calcine temperature.	= 50 bar).	Cu-ZnO system in the
	Reactor type : fixed-bed reactor		synthesis of methanol via CO ₂
	Reaction condition : $180-240$ °C and at $1-50$ bar ,		hydrogenation [16]
	$\mathrm{CO}_{2}/\mathrm{H}_{2}/\mathrm{N}_{2}$ (23/69/8) mixture at a rate of 80–500		

No.	Catalyst, reactor type and reaction condition	Significant result	Reference
18.	Catalyst: CuZnCe, CuZnZr, CuZnAl	- Oxide carrier controls texture	How oxide carriers control the
(2013)	- Reverse co-precipitation under ultrasounds	and adsorption properties of the	catalytic functionality of the
	irradiation	Cu–ZnO system.	Cu–ZnO system in the
	Reactor type : fixed-bed reactor	- Methanol is a primary reaction	hydrogenation of CO ₂ to
	Reaction condition : 180–240 °C at 30–50 bar	product at low temperature and	methanol [17]
	using a gas-liquid feed automated plant.	extent of CO ₂ conversion.	
	CO ₂ /H ₂ /N ₂ (23/69/8) mixture. D	- The catalytic activity depends	
	(GHSV, 8800–55,000 NL kgcat ⁻¹ h ⁻¹) 80–500 STP	on a synergism of metal and	
	mL/min.	basic oxide sites, pointing to a	
	- Reduced at 300 °C in $\rm H_2$ flow (100 stp mL/min)	dual-site reaction path.	
	at atmospheric pressure (1 h)		
19.	Catalyst : Fluorine-modified Cu/Zn/Al catalyst	- The pure and fluorine-modified	Influence of fluorine on the
(2013)	- co-precipitation method.	Cu/Zn/Al catalysts were	performance of fluorine-
	- Cu ^{2+:} Zn ²⁺ :Al ³⁺ = 2:1:1	synthesized by calcination of the	modified Cu/Zn/Al catalysts
	- The pH 10.0 ± 0.2.	corresponding Cu/Zn/Al HTlcs and	for CO_2 hydrogenation to
	- calcined in air at 500 °C for 4 h.	tested for the CO_2 hydrogenation to	methanol [18]
	Reactor type : fixed-bed reactor	methanol.	
	Reaction condition : 230–270 K, 50 bar,	- Fluorine-modified Cu/Zn/Al	

No.	Catalyst, reactor type and reaction condition	Significant result	Reference
	n(H2):n(CO2) = 3:1, GHSV = 4000 h-1 .	catalyst had the higher CH ₃ OH	
	- Reduce at 330 °C for 8 h.	yield compared with the fluorine-	
		free catalyst.	
20. (2014)	Catalyst : Zr-doped Cu-Zn-Zr-Al (CZZA) CZA (Cu/ZnO/Al ₂ O ₃ = 4/3/3), CZZA (Cu/ZnO/ZrO ₂ /Al ₂ O ₃ = 4/3/1.5/1.5), CZZ (Cu/ZnO/ZrO ₂ = 4/3/3) by weight. (Cu/ZnO/ZrO ₂ = 4/3/3) by weight. - Co-precipitation method - Calcined in air at 400 ° C for 5 h. - Reduced in the flow of 5% H ₂ in nitrogen at 250 ° C for 4 h	- The doped Zr in Cu-Zn based catalyst promoted the hydrogen reduction of oxidized Cu surface, generated by water vapor to increase the concentration of metallic Cu, which is the active site for the methanol formation.	Development of highly stable catalyst for methanol synthesis from carbon dioxide [19]

No.	Catalyst, reactor type and reaction condition	Significant result	Reference
21.	Catalyst : La-M-Cu-Zn-O (M = Y, Ce, Mg, Zr)	- The addition of Ce, Mg and Zr,	Methanol synthesis from CO ₂
(2014)	- Sol-gel method.	catalysts with smaller particles,	hydrogenation over La-M-Cu-
	- Calcined under air at 400 ° C for 2 h	lower reduction temperature,	Zn-O (M = Y, Ce, Mg, Zr)
	Reactor type : fixed-bed reactor	higher Cu dispersion, larger	catalysts derived from
	Reaction condition : 250 ° C, 50 bar,	amount of hydrogen desorption	perovskite-type precursors [20]
	$n(H2):n(CO2) = 3:1, GHSV = 3600 h^{-1}$	at low temperature and higher	
	- Reduction at 350 ° C for 8 h.	concentration of basic sites.	
22.	Catalyst : Cu-Zn-Al catalyst	- The test results show that the	Promoting effect of a Cu–Zn
(2014)	- Reverse precipitation method.	modified ternary Cu-Zn-Al	binary precursor on a ternary
	- Cu : Zn : Al = 6.75 : 2.25 : 1	catalysts with binary Cu–Zn	Cu–Zn–Al catalyst for
	- Calcined at 350 °C for 4 h	precursor exhibit higher space	methanol synthesis from
	- The pH = 7.0-7.5.	time yields.	synthesis gas [21]
	Reactor type : fixed-bed reactor	- The characterization results	
	Reaction condition : CO : H_2 : CO ₂ : N_2 (volume	indicate that the addition of	
	ratio) = 14 : 76 : 5 : 5, 50 bar, 225 °C, and the	binary Cu–Zn precursor	
	space velocity of 10,000 h ⁻¹ .	optimized the ratio of Cu^0 to Cu^+	
		in the modified ternary Cu–Zn–Al	
		catalyst.	

No.	Catalyst, reactor type and reaction condition	Significant result	Reference
23.	Catalyst : Au/Cu–Zn–Al, Cu–Zn–Al	- The CZA composition promoted	Studies on Au/Cu–Zn–Al
(2015)	- Cu–Zn–Al (2:1:1)	by 1 wt.% gold showed the	catalyst for methanol
	- The target gold loadings were 0.5, 1 and 3 wt.%	highest of CO ₂ conversion (28.0%	synthesis from CO_2 [3]
	- Co-precipitation method	mass) and methanol yield (16.6%	
	- pH 10-10.5 by injecting the 0.5 M Na ₂ CO ₃	mass) at H_2 :CO ₂ = 6:1 and GHSV	
	solution	7000 h ⁻¹ .	
	The target gold loadings were 0.5, 1 and 3 wt.%	- The cooperative behavior	
	- Deposition- precipitation (DP) method	between copper and gold exists	
	- Calcined at 350 ° C for 12 h under static air.	in the form of copper-gold	
	Reactor type : stainless steel tube reactor	interface. The hydrogen spillover	
	Reaction condition : 200 ° C, $H_2/CO_2 = 3/1$	and enhanced adsorption	
	- treated with hydrogen gas at 300 ° C for 2 h	capacities for CO and H_2	
24.	Catalyst : CuO/ZnO	- The CZ-filament has stronger	Hydrogenation of CO_2 to
(2015)	Filament-like ZnO and rod-like ZnO	interactions between ZnO and	CH ₃ OH over Cu/ZnO catalysts
	- Cu/Zn atomic ratio of 2	Cu, and more oxygen vacancies	with different ZnO
	Reactor type : fixed-bed reactor	due to more exposed polar (002)	morphology [22]
	Reaction condition : 240 °C, 30 bar, 0.54 mol/(g-cat	face in filament-like ZnO, which	
	h) and molar feed composition of $CO_2/H_2 = 1/3$.	exhibits the higher activity	

No.	Catalyst, reactor type and reaction condition	Significant result	Reference
	- Reduced in H2 flow at 270 °C for 1 h under		
	atmospheric pressure.		
25.	Catalyst : CuO/ZnO/Al ₂ O ₃	- It is found that the combustion	Hydrogenation of CO_2 to
(2016)	Cu/Zn/Al atomic ratio 60/25/15	processes and physicochemical	CH ₃ OH over CuO/ZnO/Al ₂ O ₃
	- Mechanical milling and combustion method	properties of catalysts depend	catalysts prepared via a
	- The pH 7.5-8.0.	strongly on the type and amount	solvent-free routine [23]
	Reactor type : fixed-bed reactor	of fuel.	
	Reaction condition : 240 °C, 30 bar, 3600 h^{-1} and	- CZA-C-1.25 catalyst shows the	
	molar feed composition of $CO_2/H_2 = 1/3$.	highest catalytic activity for the	
	- Reduced in H_2 flow at 270 °C for 1 h under	hydrogenation of CO_2 to	
	atmospheric pressure.	methanol.	
26.	Catalyst : CZZA/rGO (graphene oxide)	- The CZZA/rGO catalysts showed	A graphene-supported copper-
(2016)	- Co-precipitation method.	only Cu and Cu ₂ O diffraction peaks	based catalyst for the
	- CuO/ZnO/ZrO ₂ / Al ₂ O ₃) mass ratio of 4/3/1.5/1.5	because rGO provided a reducing	hydrogenation of carbon
	- Calcined at 400 °C for 5 h in air	atmosphere during the catalyst	dioxide to form methanol [24]
	- The pH 7	preparation process.	
	Reactor type : fixed-bed reactor	- The H_2 and CO_2 adsorption	
	Reaction condition : temperature 200 to 280 °C,	increased with the use of rGO.	

No.	Catalyst, reactor type and reaction condition	Significant result	Reference
	pressure range from 10 to 20 bar, space velocity		
	range from 6075 to 10935 $\mathrm{h^{-1}}$ using CO $_2/\mathrm{H}_2$ (1/3)		
	- Reduced in the flow of 10% ${ m H_2/N_2}$ [100 cm 3		
	(STP)/min] at 250 °C for 2 h.		
27.	Catalyst : Cu/Zn/AV/Zr, fluorine-modified	- The fluorine-modified Cu/ZnO/	Fluorinated Cu/Zn/Al/Zr
(2016)	Cu/ZnO/ Al ₂ O ₃ /ZrO ₂	Al ₂ O ₃ /ZrO ₂ catalysts with	hydrotalcites derived
	- Co-precipitation method.	different fluorine content were	nanocatalysts for CO ₂
	- Cu:Zn:Al:Zr = 2:1:0.7:0.3	then obtained by calcination and	hydrogenation to methanol
	- Calcined in air at 500 °C for 4 h.	reduction of fluorinated	[25]
	- The pH = 10.0 ± 0.2.	hydrotalcite.	
	Reactor type : fixed-bed reactor	- Cu/ZnO/Al ₂ O ₃ /ZrO ₂ catalysts	
	Reaction condition : 230 °C, 50 bar, GHSV= 8500	greatly improved the fraction of	
	mL gcat ⁻¹ h ⁻¹ and $H_2/CO_2/N_2 = 73/24/3$.	strongly basic sites, and then	
	- Reduced in situ in pure H2 under atmospheric	dramatically increased the CH ₃ OH	
	pressure at 280 °C for 6 h.	selectivity. When F/Al > 0.83.	

No.	Catalyst, reactor type and reaction condition	Significant result	Reference
28.	Catalyst : Cu/ZnO/Al ₂ O ₃ /ZrO ₂ , Cu ²⁺ :Zn ²⁺ :Al ³⁺ :Zr ⁴⁺	- Zincian malachite was formed	Highly efficient Cu-based
(2017)	= 2:1:1.2:0.1	as the main phase at the low pH,	catalysts via hydrotalcite-like
	- Co-precipitation method at 293 K	and both zincian malachite and	precursors for CO_2
	- pH range of 6.0–11.0	HTl phases detected at pH 8.	hydrogenation to methanol
	- Calcined in air at 500 °C for 5 h.	- Compared with the material	[26]
	Reactor type : fixed-bed reactor	resulting for well-crystallized	
	Reaction condition : 190 °C, 50 bar, $H_2/CO_2/N_2 =$	zincian malachite (pH 7.0), the	
	73/24/3, GHSV = 4000 h ⁻¹ .	BET specific surface area and Cu	
	- Reduced in pure H ₂ at a flow-rate of 80 mL	surface area from phase-pure	
	min ⁻¹ under atmospheric pressure.	hydrotalcite precursors (pH ≥ 9).	
29.	Catalyst : CuO/ZnO/Al ₂ O ₃ catalysts	- The increasing of metal loading,	Preparation and CO ₂
(2017)	- ammonia deposition-precipitation (ADP) method	the amount, size and thickness of	hydrogenation catalytic
	- CuO/ZnO/ZrO ₂ / Al ₂ O ₃) mass ratio of 4/3/1.5/1.5	layered particles increased	properties of alumina
	- calcined at 350 °C in air for 4 h.	maximum for the catalst with Cu	microsphere supported Cu-
	- The pH of the suspension was 11–12	and ZnO 33.61 wt.%.	based catalyst by deposition-
	Reactor type : fixed-bed reactor	- The CO ₂ conversion and yield	precipitation method [27]
	Reaction condition : 40 bar, $H_2/CO_2/N_2 = 73/24/3$,	increased with the increase of	
	and WHSV= 1500 mL gcat ⁻¹ h ⁻¹	the weight of Cu and ZnO.	

No.	Catalyst, reactor type and reaction condition	Significant result	Reference
	- Reduced at 240 °C under atmospheric pressure for 6 h in pure $\rm H_2$ at a flow rate of 80 mL min ⁻¹ .		
30.	Catalyst : CuO/ZnO/Al ₂ O ₃	- The most active catalyst was	Component ratio dependent
(2018)	- Co-precipitation.	obtained at $CuO/ZnO = 2.7$ and	Cu/Zn/Al structure sensitive
	- Calcination at 320 °C for 3 h.	$CuO/Al_2O_3 = 9.$	catalyst in $CO_2/$ CO
	- The pH = 7	- CuO/ZnO = 1.8 compared to	hydrogenation to methanol
	Reactor type : fixed-bed reactor	the best synthesized sample,	[28]
	Reaction condition : The feed gas (100 m//min)	contains interwoven nano-twins	
	consisted of 81.11 vol% H ₂ , 9.94 vol% CO, and	consisting of four different	
	8.95 vol% CO ₂ . 50 bar and 250 °C.	species.	
	- Reducing gas mixture (5% $\rm H_2$ in 95% $\rm N_2)$ at 240		
	°C and atmospheric pressure for 12 h.		
31.	Catalyst : CuO/ZnO/ZrO ₂ @SBA-15	- CuO/ZnO/ZrO ₂ @SBA-15	Highly efficient
(2019)	- Co-precipitation method at 20 °C	composites with good for	CuO/ZnO/ZrO ₂ @SBA-15 nano
	- pH range of 6.0–11.0	methanol synthesis from CO ₂	catalysts for methanol
	- Calcined in air at 500 °C for 5 h.	hydrogenation by impregnation-	synthesis from the catalytic
	Reactor type : fixed-bed reactor	sol-gel auto combustion	hydrogenation of CO ₂ [29]
	Reaction condition : $(CO_2:H_2:N_2 = 22.5:67.5:10)$	approach with different active	

No.	Catalyst, reactor type and reaction condition	Significant result	Reference
	pressure at 30 bar.	Cu/Zn molar ratio (1.0 and 2.5	
	- Reduced 10% v/v ${\rm H_2/N_2}$ at 300 °C for 2 h under	mol mol ⁻¹).	
	atmospheric pressure.	- The results of 50 h high	
	C	performance and stability for	
		CZZS_20_1 catalyst.	
32.	Catalyst : A Zr-modified CuO/ZnO/Al ₂ O ₃ (CZZA)	- Zr modified CZA catalysts were	Enhanced catalytic
(2020)	catalyst, CuO/ZnO/ZrO ₂ /Al ₂ O ₃	synthesized by the co	performance of Zr modified
	- Co-precipitation	precipitation method. The effects	CuO/ZnO/Al ₂ O ₃ catalyst for
	- Calcined at 500 °C for 5 h	of Al and Zr loading were	methanol and DME synthesis
	Reactor type : fixed-bed reactor	investigated in both methanol	via CO_2 hydrogenation [30]
	Reaction condition : 200–260 °C, with pressure of	and DME synthesis from CO_2	
	27.6 bar, 6 mL/min CO $_2$, 18 mL/min H $_2$, and	hydrogenation.	
	space velocity of 823 h ⁻¹ . The long-term stability	- The optimized catalyst	
	tests for methanol synthesis were conducted at	composition for methanol and	
	220 °C, 27.6 bar, 6 mL/min CO ₂ , 18 mL/min H ₂ ,	DME synthesis was 4:2:1:0.5 for	
	and 823 h ⁻¹ space velocity.	an atomic ratio of Cu/Zn/Zr/Al.	
	- Reduced at 250 °C for 10 h, with 20 mL/min of		
	pure H ₂		

Gao, Li et al. 2013. [4] studied the effect of Mn, La, Ce, Zr and Y promoter on CZA catalysts via CO_2 hydrogenation. The CO_2 -TPD was suggested the surface basicity of CZA in three type of surface basic site.

Figure 5 The reduced surface of the catalysts via hydrotalcite-like precursors and the functionality of the various surface sites for CO_2 hydrogenation to methanol.

Zhang, Zhang et al. 2012. [5] studied the addition of TiO_2 , SiO_2 , TiO_2 -SiO₂ on CZA catalysts, the results showed that,

- TiO₂-SiO₂ can improve dispersion of CuO, ZnO and well BET surface area. In the same way, the highly dispersion of ZnO has a benefit to CuO-ZnO interaction.
- (2) TiO_2 -SiO₂ lea to increasing of CuO reduction temperature.

Baltes, C., et al. (2008). [8] investigated the "preparation history" of coprecipitation at 70 °C and pH of 6-8, aging time 20-60 min and calcination at 300 °C. The results showed that the postprecipitation can confirm in strong activity of catalyst and hydroxy carbonates is occure 20 min ca.

Atake, Nishida et al. 2007. [11] investigated the active sites on the homogeneous of CZA catalysts as following reduction-oxidation between Cu⁰ to Cu⁺

 $2Cu^{0} + H_{2}O \longrightarrow Cu_{2}^{+}O + H_{2}$ (1) $Cu_{2}^{+}O + CO \longleftrightarrow 2Cu^{0} + CO_{2}$ (2)

Li, Yuan et al. 2014. [19] studied the reducibility of CuO by TPR characterization. The main peak of CuO is appeared at 250 °C by following

CuO ightarrow Cu

 $CuO \rightarrow Cu_2O \rightarrow Cu$

In addition, the Zr promoter can improve the surface area of CZA catalyst by following the BET surface area 106.3 m^2/g and small pore diameter 16.6 nm.

Wu, Saito et al. 2001 [31] studied the colloidal silica and metal oxide Mn, Ga, Zr. The addition of SiO_2 affected in physical properties such increasing of surface area and prevented deactivation of catalysts.

Wang, Zhao et al. 2011 [32] studied the CZA catalyst via decomposition preparation of M(Cu,Zn)-ammonia. The significant results show that the XRD of before calcination and after calcination have different phase by precursor show Aurichalcite and Malachite. While, the XRD after calcination show the CuO, ZnO. The evidence was conclusion in phase transformation in calcination process.

Figure 6 XRD patterns of Cu/ZnO/Al $_2O_3$ catalyst (a) before calcination, (b) after calcination

Chapter 3

EXPERIMENT

This chapter is divided into three sections. Firstly, the preparation is presented by different synthesis of CZA via co-precipitation method and promoting with Zr, Mn, Si metal oxide into CZA catalyst. After that, the physical and chemical properties of each catalyst was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), N₂ physisorption, temperature-programmed reduction (TPR, temperature-programmed desorption of carbon dioxide (CO₂-TPD), temperature-programmed desorption of ammonia (NH₃-TPD) for basicity or acidity, and X-ray Photoelectron spectroscopy (XPS) for chemical states. Finally, the performance of catalysts was determined by activity test. The results were presented in activity and stability of catalysts.

3.1 Catalysts preparation

Table	7 List of chemical prepared catalyst	ì
	O Show was	

Table 7 List of chemical prepared catalyst					
Chemicals	Formula	Grade	Manufacture		
Aluminum nitrate nonahydrate	Al(NO ₃) ₃ •9H ₂ O	≥98%	Sigma- Aldrich		
Zinc nitrate hexahydrate	$Zn(NO_3)_2 \cdot 6H_2O$	98%	Sigma- Aldrich		
Copper(II) nitrate hemi(pentahydrate)	Cu(NO ₃) ₂ •2.5H ₂ O	98%	Sigma- Aldrich		
Zirconium(IV) oxynitrate hydrate	$ZrO(NO_3)_2 \cdot xH_2O$	99%	Sigma- Aldrich		
Manganese(II) nitrate tetrahydrate	Mn(NO ₃) ₂ •4H ₂ O	≥97%	Sigma- Aldrich		
Tetraethyl orthosilicate	Si(OC ₂ H ₅) ₄	≥96%	TCI japan		
Sodium hydrogen carbonate	NaHCO ₃	-	Sigma- Aldrich		

3.1.1 Preparation of different pH affected of CZA

The CZA was prepared by co-precipitation method. The metal oxide was synthesized by nitrate precursors including Cu(NO₃)₂·2.5H₂O, Zn(NO₃)₂·6H₂O, Al(NO₃)₃•9H₂O. The catalyst was prepared by mixing of DI water as solvent at 80 °C. The weight ratio of Cu:Zn:Al is 40:40:20. The NaHCO₃ was dropped into precursor solution for adjusting of different pH at 7,8, and 9. The mixture solution was stirred for 120 min. The precipitate solution was centrifuged and filtered DI water out. The cake in co-precipitation was dried overnight at 110 °C. The dried cake was calcined at 300 °C around 3 hours.

3.1.2 Preparation of modifier CZA-Zr, CZA-Mn, CZA-Si

The Zr, Mn, Si promoters were doped into approximate CZA in part 3.2.1. by co-precipitation method. Each precursor modifier was prepared using $ZrO(NO_3)_2 \cdot xH_2O$, $Mn(NO_3)_2 \cdot 4H_2O$, and $Si(OC_2H_5)_4$. The catalyst was prepared by mixing of DI water as solvent at 80 °C. The weight ratio of Cu:Zn:Al is the same weight ratio as mentioned above. The weight ratio of Zr, Mn, Si modifiers is 0.3. The NaHCO₃ was dropped into precursor solution for suitable pH. The mixture solution was stirred for 120 min. The precipitate solution was centrifuged and filtered DI water out. The cake in co-precipitation was dried overnight at 110 °C. The dried cake was calcined at 300 °C around 3 hours.

3.2 Catalysts characterizations

The physico-chemical property was identified by nine techniques as follows. 3.2.1. X-ray diffraction (XRD) LONGKORN UNIVERSITY

XRD is the technique to analyze crystal structure. The ternary structure was identified and shown the crystallite phase composition by X-ray diffraction with 2θ range of 20°- 80° with the wavelength of 0.15046 nm. The crystallite size is calculated using Scherrer's equation as follows:

$$D = \frac{K\lambda}{\beta \cos\theta}$$

The Scherrer's equation was used to calculate by κ is unity constant factor, λ as wavelength, θ is the position of observe peak and β is X-ray diffraction broadening in half peak.

3.2.2. Scanning Electron Microscope (SEM)

Morphology was determined by SEM. The surface structure can be preferred with physical dispersion of CZA and the shape of agglomeration of metal species on catalyst surface.

3.2.3. Energy-dispersive X-ray spectroscopy (EDX)

EDX is an advantage of studied element dispersion on surface indicating the elemental distribution in the catalyst granules.

3.2.4. N₂ physisorption

The N_2 physisorption was used to determine the surface area by Brunauer-Emmett-Teller (BET) analysis.

3.2.5. Temperature-programmed reduction (TPR)

The technique of examine reduction behavior of oxide metal in catalyst. TPR can be preferred at approximation temperature of reduction. 0.05 g of catalyst was preheated to 300 °C and 1 hour. The reducing was conducted with 10% H_2 /Ar between 30 – 500 °C.

3.2.6. Temperature-programmed desorption of carbon dioxide (CO₂-TPD)

This technique was used to analysis the basicity of catalysts by carbon dioxide gas. For this technique, the 0.10 g catalyst was loaded and pretreated with carrier flow 25 mL/min at 250 °C for 30 min and adsorbed CO_2 at 30 °C in 1 hour. Next step, the desorbed of CO_2 was heated to 500 °C by heating rate of 10 °C /min.

3.2.7. Temperature-programmed desorption of ammonia (NH₃-TPD)

This technique was used to analysis the acidity of catalysts by ammonia gas. The 0.10 g of catalyst was loaded and pretreated with carrier flow 25 mL/min at 250 °C for 30 min and adsorbed NH_3 analysis gas at 30 °C in 1 hour. Finally, the desorbed of NH_3 was heated to 500 °C by heating rate of 10 °C /min. 3.2.8. X-ray Photoelectron spectroscopy (XPS)

X-ray Photoelectron spectroscopy analysis technique was used to analyzed chemicals state of CZA catalysts by X-ray Photoelectron. Cu, Zn, Al, O, C species was detected between intensity and binging energy eV. CZA catalyst was determined in 0-1200 eV.

3.2.9. H₂-Chemisorption (H₂-Chem)

 H_2 -Chemisorption was used to analysis the active site of catalyst by H_2 adsorption between active site and support. Cu⁰ active site was detected and reported in form of pulse H_2 gas injection by 20 μ L.

Technique	Characterization	Contact
XRD	Crystallinity	Department of Geology
	Morphology, element of surface	Center of Excellence on
SEM-EDX	catalyst	Catalysis and Catalytic
		Reaction Engineering
	Single point: surface area	Center of Excellence on
BET	Multi point: pore volume, pore	Catalysis and Catalytic
	diameter	Reaction Engineering
	Reducibility	Center of Excellence on
H ₂ -TPR		Catalysis and Catalytic
		Reaction Engineering
	Basicity site	Center of Excellence on
CO ₂ -TPD		Catalysis and Catalytic
		Reaction Engineering
	Acidity site	Center of Excellence on
NH ₃ -TPD		Catalysis and Catalytic
		Reaction Engineering
VDS	Chemical states	Center of Excellence on
AF3		Catalysis and Catalytic

Table	8 The charac	terization data	equipment	of this	study

		Reaction Engineering	
	Active site of catalyst	Center of Excellence on	
H ₂ -Chem		Catalysis and Catalytic	

3.3 Activity test

Figure 7 The Schematic of methanol synthesis via CO₂ hydrogenation.

In the first part, CZA 0.1 g catalyst having different pH during preparation (designated as CZA-PH7, CZA-PH8, and CZA-PH9) was loaded into the reactor with quartz wool. The reactor used is fix-bed microreactor (O.D. 12 mm, I.D. 10 mm, height 50 cm). Firstly, the catalyst was pretreated by N₂ for estimated moisture at 250 °C and 30 min. Secondly, the reduced condition was designed by 20% H₂ balance N₂ at 50 ml/min at 300 °C and 1 bar. Finally, the catalyst was test for methanol synthesis by temperature 250 °C and time on stream in 5 hours. the feed ratio of reaction test is 1:3 by volume of CO₂:H₂ at atmospheric pressure. The analysis gas was detected by multi detector TCD and FID GC-2014. The temperature giving high CO₂ conversion and high CH₃OH selectivity was chosen for second part.

In the second part, the effects of Zr, Mn, Si modification were determined by time on stream in suitable condition obtained from the first part. The condition was as followed; in 4 hours for time on stream of stability. The analysis gas was measured by GC-2014 with the setting value as shown in **Table 9,10**.

Gas Chromatograph	Shimadzu GC 2014
GC type	Multi-detector
Detector 1	TCD
Pack-bed reactor	Shincarbon
Carrier gas	Herium gas
Injector temperature	170 °C
Column temperature	Initial 150 °C
(Link FID)	Hold 240 °C
	Cool dowm 150 °C
Detector temperature	150 °C
Time analysis	15 min

 Table 9 Condition of TCD detector

Table 10 Condition of FID detector

Gas Chromatograph	Shimadzu GC 2014
GC type จุฬาลงกรณ์มห	Multi-detector
Detector 2 ALONGKORN	FID IVERSITY
Capillary column	Rtx-5
Carrier gas	Nitrogen gas
	Hydrogen gas
	Air zero gas
Injector temperature	170 °C
Column temperature	Initial 150 °C
(Link TCD)	Hold 240 °C
	Cool dowm 150 °C
Detector temperature	150 ℃
Time analysis	1 min

CHAPTER 4

RESULTS AND DISCUSSION

This chapter is divided into 3 sections including 4.1 effect of pH on the catalyst preparation, 4.2 effect of promoters, and 4.3 stability of the chosen catalysts. Details of each section are as follows;

4.1. Effect of pH value in CZA catalyst preparation.

4.1.1 Characterization

4.1.1.1 X – ray diffraction (XRD)

Figure 8 XRD patterns of different Cu/Zn/Al catalysts (\bullet) CuO ; (Δ) ZnO ; (O) Zincian malachite, (Cu,Zn)₂(OH)₂CO₃.

X – ray diffraction patterns of CZA catalysts with different pH in coprecipitation are presented in **Figure 8**. The results appeared a strong dispersion of CuO phase at $2\theta = 35.5^{\circ}$, 38.5° and 31.8° , 48° , 56.6° , 62.8° of ZnO phase on CZA catalysts. Moreover, it obtained zincian malachite or rassasite, $(Cu,Zn)_2(OH)_2CO_3$ at 23.6° and 27.5°, suggesting a precursor of nitrate solution at CZA-PH7 and CZA-PH9 in step of catalyst preparation. For this reason, CZA-PH8 tended to have well dispersion of CuO active site more than CZA-PH7 and CZA-PH9. As a result, the residue of zincian malachite or rassasite can reduce at pH 8 of preparation condition. Crystalline sizes based on the Scherrer equation of all CZA catalysts are listed in **Table 11**. Therefore, the pH value only had only slight effect on the crystallite size of CuO. It was found that CZA-PH8 exhibited slightly smallest size among other catalysts. The dispersion of Al species was in the highly dispersed form. Thus, it was invisible in the XRD patterns.

Samples	D _{avg,CuO} (nm)
CZA-PH7	6.91
CZA-PH8	6.13
CZA-PH9	6.54
2 // // // // // // // // // // // // //	111111000

 Table 11 Crystalline size of CZA catalysts.

4.1.1.2. Scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX)

SEM and EDX were used to determine a surface property of different pH in CZA catalysts as shown in **Figure 9**. The effect of pH is shown by different morphology of each catalyst. The morphology of CZA-PH7 is presented as amorphous shape indicating that the precipitation was likely incomplete. However, CZA-PH8 and CZA-PH9 appear in spherical shape of catalyst. It is observed that CZA-PH8 is presented a fine crystalline granule compared to other catalysts.

EDX images are also presented showing all elemental distribution of CZA catalysts as seen in **Figure 9**. It was found that the distribution for all elements were similarly well distributed. As a result, the different pH in co-precipitation had an effect on morphology as seen from SEM images.

Figure 9 SEM and EDX images of different pH of CZA catalysts, A; CZA-PH7, B; CZA-PH8. C; CZA-PH9.

In addition, EDX was also used to determine an elemental distribution and amounts on near-surface of catalyst by scattering techniques and presented in percent weight of all element as listed in **Table 12**. The element can present a component of catalyst in ratio of Cu:Zn:Al = ca.40:40:20

Table 12 EDX elemental analysis without O element on surface of different CZAcatalysts (wt%).

Samples	Cu	Zn	Al
CZA-PH7	43.1	40.8	16.1
CZA-PH8	38.0	42.0	20.0
CZA-PH9	34.8	42.2	22.9

4.1.1.3. N₂ physisorption (BET)

N₂ physisorption is a technique which identifies surface area and pore structure of catalysts by multilayer point of N₂. Surface area and pore volume and pore size of catalysts are presented in **Table 13**. Surface area (SA) of catalysts with different pH value decreased at pH 9 during co-precipitation and being constant (ca. 36 m²/g) for CZA-PH7, CZA-PH8. Additionally, pore volume (PV) was found to be in range of 0.07-0.10 cm³/g. The pore size of different pH prepared CZA catalysts increased with increasing pH values.

Table 13 surface properties of catalysts

Sample	SA (m²/g)	PV (BJH, cm³/g)	PS (nm)
CZA-7	35.52 Store	0.07	08.04
CZA-8	35.95	0.10	11.37
CZA-9	21.62	0.07	12.28

For another, N_2 Physisorption isotherm of different pH value was followed in Figure 10. It shown that hysteresis loop of isotherm, it defined Type 4 of N_2 Physisorption isotherm, pore size is mesopores structure (2-50 nm) by comparison pore size of CZA-PH7, CZA-PH8, CZA-PH9 catalysts.

Figure 10 N₂ physisorption of different pH of Cu/Zn/Al catalysts at -196 °C liquid N₂.

In addition, pore size distribution is shown in **Figure 11**. It presented a pore diameter range of different pH values in catalysts by BJH method. The result revealed the broad pore size distribution in CZA-PH8. This property suggested the large pore volume to promote the good dispersion of high active metal on surface catalyst.

Figure 12 TPR profile of different pH of CZA catalysts.

From Figure 12, the H₂-TPR peaks presented the reducibility of CuO species on different CZA catalysts. The phase of Cu oxide was reduced within a temperature peak range of 254-334 °C. It may refer to a type of Cu oxide active site of Cu⁺, Cu²⁺ by following peak of deconvolution. The pattern of reducibility was presented in 2 forms of 2 oxide species type as follows.

CuO**→**Cu

CuO→Cu₂O→Cu

As a result of the first part, it showed interaction of Cu⁺ and Cu²⁺ on ZnO support. The ability of reduction was easy and occurred at low temperature in the range that CZA-PH9>CZA-PH8> CZA-PH7. However, CZA-PH9 was found to have lower surface area than CZA-PH7, CZA-PH8. This led to lower reducibility of CuO species on CZA-PH9 than other catalysts.

The reduction of Zn oxide species did not appear of this experimental condition because it occurred at very high temperature [19]. The deconvolution peak at 285 $^{\circ}$ C inhibited the interaction between Al₂O₃ and CuO. Thus, CZA-PH7 exhibited higher interaction of Al₂O₃ and CuO.

4.1.1.5 Temperature-programmed desorption of carbon dioxide (CO₂-TPD)

Figure 13 CO₂-TPD profile of different pH of CZA catalysts.

This technique was performed to determine the basicity of catalyst, which can facilitate the adsorption of CO₂. Firstly, the CO₂-TPD patterns are shown in **Figure 13**. It presented the three CO₂ desorption peaks of α , β , γ peaks, which refer to weak, moderate, and strong basic site of CZA catalysts. It can be observed that weak basic site was dominant for all CZA catalysts in this study. For weak basic site [33], they investigated the basicity of bicarbonate on surface of CZA. The moderate peak was presented interaction between metal and oxygen pair and adsorption of bidentate

carbonated and strong basic site was shown the adsorption of unidentate carbonates. In addition, the number of basis sites is shown in **Figure 14** by deconvolution of CO_2 -TPD profiles. It showed the higher strong basic site increased in the following; CZA-PH8> CZA-PH9 > CZA-PH7, whereas the total basic sites were as follows; CZA-PH8~ CZA-PH7>CZA-PH9.

Figure 14 The amounts of basic sites by CO₂-TPD of different pH of CZA catalysts.Table 14 The amounts of basic sites of all CZA catalysts.

Samples	Number of total basic	Number of basic sites (μ molg ⁻		
	sites (μ molg ⁻¹)	site $lpha$	site eta	site γ
CZA-PH7	1408.19	101.62	1282.83	23.74
CZA-PH8	1428.39	29.11	1340.59	58.69
CZA-PH9	664.66	20.26	603.2	41.20

4.1.1.6 Temperature-programmed desorption of ammonia (NH₃-TPD)

Figure 15 NH₃-TPD profile of different pH of CZA catalysts.

The NH₃-TPD profile is presented in **Figure 15** of different pH values of CZA catalysts. The peaks were separated into 3 peaks of desorption, which denoted acid site of weak acid, moderate or medium acid and strong acid site (denote: α, β, γ), respectively. The number of amount acid site suggested with deconvolution of three-character acidity in NH₃-TPD profile. Zhang et al.[33] suggested that the moderate or strong acidity site became weakly peak led the catalyst had a well amount of basicity on CO₂ hydrogenation to methanol synthesis. It suggested that CO₂ can adsorb on surface of CZA catalyst with the lowest amount of acid site or decreasing of moderate strong acid site. This evidence supported that the lowest of acidity is essentially suitable for CO₂ hydrogenation reaction via CZA catalysts.

For one thing, the effect of pH condition can be explained by deconvolution of α,β,γ peak. The results revealed that CZA-PH7 had low amount acid site and not appear of γ peak. CZA-PH9 was found to have the lowest total amount of acid site.

However, γ peak was the highest for all CZA catalysts. The results of low amount of acid site are shown with the order of CZA-PH7>CZA-PH9>CZA-PH8 and lowest γ peak is in the order of CZA-PH7>CZA-PH8>CZA-PH9. It should be noted that CZA-PH8 exhibited the highest total number of basicity among CZA catalysts, which can be presumable that it exhibits the highest activity for CO₂ hydrogenation. As a result, CZA-PH8 catalysts was selected to promote with different metals in the next part.

Figure 16 The amounts of acid sites by NH₃-TPD of different pH of CZA catalysts.Table 15 the amounts of basic sites of all CZA catalysts.

Samples	Number of total acid sites	Number of acid sites (μ molg ⁻¹)			
	$(\mu molg^{-1})$	site $lpha$	site eta	site γ	
CZA-PH7	904.02	56.53	847.49	-	
CZA-PH8	1527.01	85.58	1091.33	49.57	
CZA-PH9	891.54	22.09	766.64	102.80	

4.1.1.7 X-ray photoelectron spectroscopy (XPS)

Figure 17 Typical XPS spectra of CZA catalyst (for CZA-PH7).

The XPS technique was performed to analyze a chemical state of CZA catalysts as shown in **Figure 17** (see all XPS spectra in **APPENDIX.D**). The XPS spectra presented Cu species at 935.3 and 954.5 eV of binding energy. Xiao et al.[26] reported a Cu²⁺ species on catalyst surface of CZA and suggested the presence of Cu²⁺ ions of cupric oxide in CZA catalyst. Additionally, Cu2p_{1/2} was found in a part of different pH values. This suggested the existence of Cu²⁺ on CZA catalyst.

The deconvolution was used to determine a shape of XPS spectra by estimating the area of intensity of XPS signal and binding energy. Data are presented in Table 6. As a result, the different pH values were found to have a main peak of Cu^{2+} in state of $Cu2p_{3/2}$ and $Cu2p_{1/2}$ as the state of Cu^{2+} in excite state in form Cu^{0} ($Cu^{2+}\rightarrow Cu^{0}$). The effect of different pH can increase Cu^{2+} on surface catalyst by following a peak of $Cu2p_{1/2}$ and $Cu2p_{3/2}$ in case of pH 7 and 8 as seen in Figure 18. In addition, Cu^{2+} on CZA-PH9 tended to decrease. This phenomenon was related with

the lowest surface properties on pH 9 condition. In addition, the peaks of ZnO and AlO were located at 1022.6, 1045.7 eV for ZnO and 74.9 eV for AlO. These peaks represented Zn^{2+} and Al^{3+} that being dispersed on surface of CZA catalysts.

In case of different pH value, it discovered only a slight change of XPS spectra by following a deconvolution of XPS profiles. It showed that the main Cu^{2+} species on surface catalyst became main active site of CZA catalysts, whereas CZA-PH9 was found to have the lowest Cu^{2+} active site on ZnO support.

 Table 16 Property of XPS spectra and mass of Cu,Zn,Al,O species.

Samples	Position of binding energy(eV)				Mass (%)						
	Cu2p _{3/2}	Cu2p _{1/2}	Zn2p _{3/2}	Zn2p _{1/2}	Al2p	Cu	Zn	Al	0		
CZA-PH7	935.3	954.5	1022.6	1045.7	74.9	13.01	31.40	7.33	48.27		
CZA-PH8	935.3	954.5	1022.6	1045.7	74.9	16.66	27.79	6.43	49.11		
CZA-PH9	935.3	954.5	1022.6	1045.7	74.9	10.22	33.77	6.63	49.40		

จุฬาลงกรณํมหาวิทยาลัย Chulalongkorn University

Figure 18 Cu, Zn, Al species of different pH of CZA catalysts.

The chemical state depending on pH value after reaction test was investigated in **Figure 18**. The results showed a decreasing of deconvolution peak in $Cu2p_{1/2}$ and $Cu2p_{3/2}$. The chemical state of CZA-PH8 and CZA-PH9 was found a changing of Cu^{2+} by physical property.

4.1.2 Reaction performance

The reaction performance of CuO/ZnO/Al₂O₃ (CZA) catalysts was followed by time on stream in 5 hours. The effects of increasing pH value (7,8,9) in catalysts preparation were explained in this part. The activity test of CZA catalyst expressed with CO₂ conversion, methanol selectivity and methanol yield by calculation of mol reactant and methanol product in CO₂ hydrogenation to methanol synthesis.

Firstly, the effects of increasing pH value were shown by following CO_2 conversion of CZA-PH7, CZA-PH8, CZA-PH9 in **Figure 19**, respectively. The result showed that CZA-PH9 had the lowest CO_2 conversion at 0.84% as seen from Table 6 due to its lowest surface area and basic sites. In addition, CZA-PH7 and CZA-PH8 had similar CO_2 conversion and higher than CZA-PH9. The percent conversion is expressed in a best of CO_2 converted into CH₃OH or CO. As a result, the effects of pH at 7 and 8 is not significantly different with CO_2 conversion.

จหาลงกรณ์มหาวิทยาลัย

Figure 19 CO₂ conversion of different pH of CZA catalysts.

The methanol selectivity is shown in Fig.16. It was found the similar value in all catalysts in the part of different pH values at 9-11% for methanol selectivity by Table 17. The yield of methanol is illustrated in Figure 21. The catalysts activity can consuls by high methanol yield by following CZA-PH7 and CZA-PH8. As a result, the highest methanol yield was supported a suitable pH of catalyst. For the next part, CZA-PH8 was considered to promote with Zr, Mn, Si by the result of highest CuO dispersion, highest basicity and high methanol yield.

> 30 - CZA-PH7 CZA-PH8 25 CZA-PH9 Methanol selectivity (%) 20 15 10 5 0 50 100 150 200 250 300 0 Time (min)

Figure 20 methanol selectivity of different pH of CZA catalysts.

Figure 21 methanol yield of different pH of CZA catalysts.

 Table 17 Catalyst activity of CZA catalysts (0 h = initial after proceeding of mixing reactant 30 min)

	CO ₂ conversion		CH ₃ OH selectivity		CO selectivity		CH ₃ OH yield	
	(%	b)		%) (%		(%)		6)
Samples	0 h	5 h	0 h	0 h	0 h	5 h	0 h	5 h
CZA-PH7	2.03	2.49	11.89	9.69	88.11	90.31	0.24	0.24
CZA-PH8	2.43	2.56	9.89	9.42	90.11	90.58	0.24	0.24
CZA-PH9	0.84	0.67	9.715	11.41	90.29	88.59	0.08	0.08

- 4.2 The effect of Zr, Mn, and Si promoters.
- 4.2.1 Characterization
- 4.2.1.1 X ray Diffraction (XRD)

Figure 22 *XRD patterns of* of CZA-PH8 catalyst with different promoters (CZA-PH8-X, X=Mn ,Si, and Zr) (\bullet) CuO ; (Δ) ZnO ; (**O**) Zincian malachite, (Cu,Zn)₂(OH)₂CO₃ ; (\blacklozenge) Cu.

For XRD patterns in second part, the effects of metal promoter on crystal structure of catalyst are shown in **Figure 22**. It obtained a significant result of development in CZA-PH8. The XRD pattern presented a well dispersion of Cu and Zn oxide metal in CZA-PH8-Mn as mentioned earlier and CZA-PH8-Si. Nevertheless, Si species tended to increase agglomeration of CZA-PH8 resulting in the presence of higher peak of CuO and ZnO. However, the promotion of Mn and Zr led to a decreasing of crystallite size from 6.13 to 4.42 and 4.08 nm, respectively, whereas the Zr, Mn, Si oxide phases were not detected in XRD patterns [4]. This is because they were introduced in small quantity and being in the highly dispersed forms.

 Table 18 Crystalline size of CuO in CZA catalysts.

Samples	D _{avg,CuO} (nm)
CZA-PH8	6.13
CZA-PH8-Si	6.42
CZA-PH8-Mn	4.42
CZA-PH8-Zr	4.08

4.2.1.2 N_2 physisorption (BET)

For metal promoters of CZA-PH8, it is shown that the effect of metals can improve surface area and pore volume of catalyst as seen in **Table 23**. Mn and Si promoters had a significant effect with increasing of SA (89.8 and 40.8 m²/g, respectively). As a result, Mn and Si metals improved surface area, pore volume and high pore side of CZA-PH8 catalyst leading to increased dispersion of CuO species.

 Table 19 surface properties of catalysts

	The second secon		
Sample	SA (m²/g)	PV (BJH, cm³/g)	PS (nm)
CZA-PH8	35.9	0.10	11.4
CZA-PH8-Si	40.8	0.23	16.8
CZA-PH8-Mn	89.8	0.33	10.8

Figure 23 N_2 physisorption of loading metals of Cu/Zn/Al catalysts at boing points at -196 $^\circ\!C$ liquid N_2

Figure 24 Pore size distribution (BJH technique) of metals loading of CZA-PH8 catalysts.

4.2.1.3 Temperature-programmed reduction (TPR)

Figure 25 TPR profile of metals loading of CZA catalysts.

TPR profile was used to examine a reducibility of increasing temperature at room temperature up to 500 °C. The effect of metal promoter is presented in F Figure 25. The deconvolution was divided into 3 peaks of reduction type. The development of metal promoter was observed relating to an effect of decreased interaction between metal-oxide on support catalyst. The promotion with metal facilitated the reduction by shift CuO \rightarrow Cu⁰ metals which shows description in first peak. In addition, the proper CuO interaction of CuO and Al₂O₃ tends to easily shift to low temperature by following at second peak. The third peak was identified as reduction of metal promoter. CZA-PH8-Si tended to easily reduce at 300 °C of reaction. However, Mn and Zr was not reduced at experimental condition. This may refer to the oxide form interaction on CZA surface catalyst. The result was shown a development of metal in reducibility property by a shift of temperature to lower than CZA-PH8 catalysts. It related with MnO on surface catalyst had ability to increasing of CO₂ adsorption. This reason can be explained as well as description in ZnO case. Nevertheless, Si modifier had a lower total amount of basic sites. Perhaps, the increasing of acid site was suggested to explain NH₃-TPD part.

4.2.1.4 Temperature-programmed desorption of carbon dioxide (CO₂-TPD)

The CO₂-TPD profiles of loading metals are shown in **Figure 26**. Gao et al. [4] reported a peak of basic site in a part of interaction between surface of catalyst and metal promoter. The moderate peak (β) related with metal-oxygen interaction. Therefore, CZA-Si catalyst had the lowest interaction of metal by easily increasing of strong basic sites. As a result, Mn promoter presented a highest total amount of basicity sites, while Zr had a total number of basic sites than CZA-PH8. The Mn promotion on CZA catalyst can adsorb CO₂ gas by relation of the highest total number of basic sites on surface area.

Figure 27 The amounts of basic sites by CO_2 -TPD of metals loading of CZA catalysts.

Samples	Number of total basic	Number of basic sites (μ molg ⁻¹)			
	sites (μ molg-1)	site $lpha$	site eta	site γ	
CZA-PH8	1428.39	29.11	1340.59	58.69	
CZA-PH8-Si	1197.81	56.12	905.82	235.87	
CZA-PH8-Mn	1542.34	97.35	1401.2	43.79	
CZA-PH8-Zr	1316.54	29.98	1233.7	52.86	

 Table 20 The amounts of basic sites of metals loading of CZA catalysts.

4.2.1.5 Temperature-programmed desorption of ammonia (NH₃-TPD)

Figure 28 NH₃-TPD profile of metals loading of CZA catalysts.

The effect of Si, Mn and Zr promoters developed a basicity of CZA-PH8 catalyst. As seen, **Figure 28** presented the three peaks of acid character type. The Mn promoter was observed a lower strong and modulate peak than CZA-PH8 and showed a high α peak of weakly acid site. The results related with evidence of temperature shift to lower in strong and moderate base of CZA-PH8-Mn. Nevertheless, Zr and Si promoters were shown the increasing of γ peak when compared with CZA-PH8 in **Table 22**.

The Mn promoter can reduce β,γ peaks of CZA-PH8 and become to weak acid site by shifting of lower temperature of β,γ peaks or increasing of α peak by deconvolution of NH₃-TPD profile. The result denoted that CO₂ adsorption in reaction test promoted with acid site at weak acid. The increasing of acid site related with H interaction on surface of CuO [34]. As a result, the accumulation of H may lead to undesirable of H₂O product.

Figure 29 the amounts of acid sites by NH₃-TPD of metals loading of CZA catalysts.

Samples	Number of total acid	Number of acid sites (μ molg ⁻¹)				
	sites (μ molg ⁻¹)	site $lpha$	site eta	site γ		
CZA-PH8	1527.01	85.58	1091.33	49.57		
CZA-PH8-Si	1234.98		1029.37	205.61		
CZA-PH8-Mn	จุฬาล 1020.18 มหาวิท	51.15	948.94	20.09		
CZA-PH8-Zr	1070.40	28.48	946.95	94.99		

 Table 21 the amounts of basic sites of metals loading of CZA catalysts.

4.2.1.6 X-ray photoelectron spectroscopy (XPS)

The effects of metals loading are presented in **Figure 30**. Mn^{2+} , Si^{4+} , and Zr^{4+} were observed in binging energy at 634.9, 104.3, 184.3 eV, respectively. The position of predominantly peak was observed at 935.3 eV suggesting Cu⁺ at surface area of

CZA catalyst promoted with metals. However, Mn and Si metals were observed a singly derivation of center position peak. The result was suggested that all catalysts consisted of Cu^{2+} . at 945.6 eV. The satellite was identified of XPS spectra and it remained the existed in the form of Cu(I) and Cu(II) oxidation states in CZA catalyst which was modified with metals [35]. As a result, Mn, Zr and Si had ability to reduce in form between Cu⁺ and Cu²⁺. Additionally, effect of metal promoters was prompted the shifting of peak to 79.1 eV. The results lead to Al oxide interaction of Si or Si species covered on Al oxide. For another, the deconvolution of Zn was singly shift of binding energy. However, it was observed that Zn^{2+} form decreasing on CZA-Zr.

Table 22 The property of XPS spectra and mass of Cu, Zn, and Al,O species of theeffect of Zr, Mn, and Si promoters in CZA catalysts by X=Si, Mn, and Zr.

		// // //						
Samples	Position of binding energy(eV)							
	Cu ²⁺		Satellite		Zn ²⁺		Al ³⁺	X×
	Cu2p _{3/2}	Cu2p _{1/2}	Cu2p _{3/2}	Cu2p _{1/2}	Zn2p _{3/2}	Zn2p _{1/2}	Al2p	X2p
CZA-PH8	935.3	954.5	-	-20	1022.6	1045.7	74.9	-
CZA-PH8-Si	938.2	955.5	945.6	966.2	1023.3	1046.4	75.5	104.3
CZA-PH8-Mn	937.2	957.1	945.6	964.0	1025.6	1047.8	79.1	634.9
CZA-PH8-Zr	935.7	956.4	944.0	963.6	1023.1	1046.0	76.9	184.3

4.2.1.7 H₂-Chemisorption (H₂-Chem)

 H_2 -chemisorption was used to measure the Cu⁰ metal active site by pulse of H_2 gas 20 μ L. The results are shown in Table 28. The Cu⁰ active sites of CZA-PH8 remarkably increased with Mn promoter. However, H_2 gas was poorly adsorbed CuO (1 1 1) main peak in XRD patterns (at 35.5°, 38.5°) at room temperature [36]. Therefore, Mn can promote Cu⁰ metal active site by increasing H_2 adsorption between CuO and Cu₂O.

Sample	H ₂ adsorption	Cu ⁰ dispersion	Cu ⁰ dispersion
	(µmol/g _{cat})	(×10 ⁶)	(%)
CZA-PH8	7.11	0.27	27
CZA-PH8-Mn	16.28	0.64	64

Table 23 H_2 -adsorption and Cu^0 dispersion of CZA catalyst.

4.2.2 Reaction performance

In second part, the selection of pH 8 (CZA-PH8) was introduced for promoting of different metals in part 2 by following the appropriate characterization of CZA catalyst in a topic of different pH value. Next step, the CZA-PH8 was promoted with Zr, Mn, and Si for studying the effect of metals to CZA-PH8. As a result, CO_2 conversion in part of metals loadding was observed in **Figure 32**. The developmenr of metals loading can improve CO_2 conversion of CZA-PH8 and show the highest increasing by CZA-PH8-Mn> CZA-PH8-Zr,>CZA-PH8-Si, respectively. In conclusion, the effect of metals can improve CZA calatsys by expression of different CO_2 conversion.

However, the results of various metals did not significant change the methanol selectivity by following in **Figure 32**. As a result, methanol selectivity of CZA-PH8 was almost consistent by adding of Si,Mn, and Zr. in addition, the suitable result of part 1 can explains as same as activity of CZA-PH7, CZA-PH8 and highest activity of CO_2 reaction in Mn metal loading.

Figure 31 CO_2 conversion of loading metals of CZA catalysts.

Figure 32 Methanol selectivity of loading metals of CZA catalysts.

Figure 33 Methanol yield of loading metals of CZA catalysts.

Table 24 reaction test of CZA-PH8-X (X=Si, Mn, Zr) catalysts. (0 h = initial after

proceeding of mixing reactant 30 min)								
	CO ₂ con	version	CH ₃ OH selectivity		CO selectivity		CH ₃ OH yield	
	(%	b)	(%)		(%)		(%)	
Samples	0 h	5 h	0 h	0 h	0 h	5 h	0 h	5 h
CZA-PH8	2.43	2.56	9.89	9.42	90.11	90.58	0.24	0.24
CZA-PH8-Si	3.58	3.30	4.18	3.73	95.82	96.27	0.15	0.12
CZA-PH8-Mn	4.74	4.70	9.38	9.86	90.62	90.14	0.44	0.46
CZA-PH8-Zr	4.22	4.11	9.03	9.99	90.97	90.01	0.38	0.41

proceeding of mixing reactant 30 min)

4.3 The stability of CZA catalyst

4.3.1 Characterization

4.3.1.1 X - ray diffraction (XRD)

XRD patterns of the fresh (CZA-PH8) and spent (sCZA-PH8) catalysts are illustrated in **Figure 34**. sCZA-PH8 catalyst showed a high agglomeration of crystallite size. It suggested high intensity of CuO, ZnO and Zincian malachite by CZA-PH8 reference. However, Cu metals phase at $2\theta = 43.4^{\circ}$ is shown approximate of reaction. It presented a success of some surface to change Cu²⁺ to Cu⁰. As a result, this reason investigated of CO₂ hydrogenation to methanol synthesis by increasing H₂ reactant adsorption.

After reaction test, sCZA-PH8-Mn is presented a small increasing of ZnO and CuO phase in XRD patterns. Cu metal is also presented in sCZA-PH8-Mn as seen in **Figure 35**. The Cu⁰ of spent sCZA-PH8-Mn catalyst was detected the highest peak.

This result can support a higher reducibility to promote the reaction. Thus, Mn promoter can inhibit an agglomeration of CZA-PH8 by well dispersion of CuO and ZnO resulting increased catalytic activity.

Figure 35 XRD patterns of fresh Cu/Zn/Al catalysts of metals loading (CZA-X, X=Mn,Si) at pH 8 and spend catalysts (sCZA-X, X=Mn,Si), (\bullet) CuO ; (Δ) ZnO; (**O**) Zincian malachite, (Cu,Zn)₂(OH)₂CO₃ ; (\blacklozenge) Cu.

Finally, the crystallite size of spent sCZA-PH8 was lower than fresh catalysts CZA-PH8 by a partial ZnO large crystallite size and cover in some surface of CuO. In addition, the result of spent Mn promoter was observed a singly changing of large crystallite size. As a result, Mn promoter had a significant effect to prevent a large crystallite size of metal active site.

Samples	D _{avg,CuO} (nm)
CZA-PH8	6.13
CZA-PH8-Mn	4.42

Table 25 Crystalline size of CZA catalysts.

sCZA-PH8	5.11
sCZA-PH8-Mn	4.83

4.3.1.2 Scanning Electron Microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX)

SEM and EDX determined a surface property of CZA catalysts during stability test as shown in **Figure 36**. The effect of morphology after stability test is shown by the similar morphology of catalysts by comparison of CZA-PH8 and sCZA-PH8.

EDX images is presented for all important elements of CZA catalysts in **Figure 36**. It was found that amount of all elements was similar. As a result, the activity test of catalyst in before and after reaction had a similar shape of spherical catalysts. On the other words, the morphology of CZA catalyst did not significantly change up on reaction condition after 5 h.

Figure 36 SEM and EDX images of stability CZA-PH8, A; fresh CZA-PH8, B; spent sCZA-PH8.

For another, EDX was used to determine an elemental distribution on surface catalyst by scattering techniques and presented in percent weight of each element in **Table 25**. The element can presented a component of catalyst in weight ratio of Cu:Zn:Al = 40:40:20 by following before and after reaction test in CZA-PH8. It was observed that Cu content had tended to increase. This fact related with XRD patterns, which promoted an agglomeration of CuO. Additionally, carbon (C) content was slightly increased from spent catalyst. C was identified the C in precursor of carbonated. However, the sCZA-PH8 was found an increasing of C contents form fresh catalyst. It referred to a coke in catalyst.

Table 26 EDX elemental analysis Cu, Zn, Al, O, and C element on surface of freshCZA catalysts (CZA-PH8) and spent catalyst (sCZA-PH8)

Samples	Cu	Zn	Al	0	С			
CZA-PH8	28.7	39.1	11.6	17.23	3.4			
sCZA-PH8	31.9	34.5	14.0	14.4	5.2			
จุหาลงกรณ์มหาวิทยาลัย								

CHULALONGKORN UNIVERSITY

4.3.1.3 X-ray photoelectron spectroscopy (XPS)

Figure 38 Chemicals species of CZA-PH8-Mn, sCZA-PH8-Mncatalyst in fresh and spent catalyst.

XPS spectra was used to determine a difference of before and after stability test as seen in **Figure 37**. The result suggested a specious by the same in first and second part of CZA catalyst. Kattel et al. [37] suggested the effect of accumulation of O species. It can dissociate to CO and O intermediates on ZnO or Cu⁰ metal site. This fact promoted mechanism of HCOO and O intermediate of changing methanol. Therefore, CZA-PH8 was selected to promote with O species decreasing on catalyst. However, the Cu²⁺ and Zn²⁺ were higher decreasing. This result led to inactive form of CuO and ZnO on surface catalyst with largely active site.

For a part of after reaction test by following a high methanol yield and CO_2 conversion of CZA-PH8-Mn, it was observed a specious property to CZA catalysts. The Mn promoter was shifted to high binding energy. This result was denoted in Mn-Al interaction or MnO contamination on Al^{2+} . The proposal was identified by O

species. For another, O species was observed singly changing of binding energy. It promoted MnO interaction of CZA catalyst and Cu^{2+} was not observed a changing of deconvolute peak. This reason suggested to stability of Cu^{2+} active site to Cu^{0} .

 Table 27 The property of XPS spectra and mass of Cu,Zn,Al,O species of the effect

 of activity test, before activity test; CZA-PH8 and after activity test; sCZA-PH8

Samples	Position of binding energy(eV)						Mass	(%)	
	Cu2p _{3/2}	Cu2p _{1/2}	Zn2p _{3/2}	Zn2p _{1/2}	Al2p	Cu	Zn	Al	0
CZA-PH8	935.3	954.5	1022.6	1045.7	74.9	16.66	27.79	6.43	49.11
sCZA-PH8	937.2	957.1	1025.6	1047.8	76.9	14.82	25.59	15.02	44.57

Table 28 The property of XPS spectra and mass of Cu,Zn,Al,O species of the effectof Zr,Mn promoter of the effect of activity test, before activity test; CZA-PH8-Mn andafter activity test; sCZA-PH8-Mn

Samples	Position of binding energy(eV)							
	Cı	1 ²⁺	Sate	ellite	Zn ²⁺		Al ³⁺	X×
	Cu2p _{3/2}	Cu2p _{1/2}	Cu2p _{3/2}	Cu2p _{1/2}	Zn2p _{3/2}	Zn2p _{1/2}	Al2p	X2p
CZA-Mn	937.2	957.1	945.6	964.0	1025.6	1047.8	79.1	634.9
sCZA-Mn	937.8	957.3	946.8	965.6	1026.0	1048.5	78.3	647.1

จุหาลงกรณ์มหาวิทยาลัย

CHULALONGKORN UNIVERSITY

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

In conclusion, the effect of pH value in suitable catalyst and effect of metals loading was identifying into 3 part

Part 1: The effect of increasing pH value in CZA catalyst preparation.

From this first part, the effect of different pH during co-precipitation can be elucidated up on physical and chemical properties of CZA catalysts. It can be concluded that;

- (1) CZA-PH8 was found to have higher dispersion of CuO based on the XRD results resulting in small crystallite size of CuO and ZnO.
- (2) BET surface area was proposed a slight change of for CZA-PH7 and CZA-PH8. However, CZA-PH9 was found to have the lowest surface area.
- (3) The main active site of Cu is reported in form Cu⁰ and the CZA-PH8 exhibited the highest reducibility among other catalysts.
- (4) CZA-PH8 and CZA-PH9 exhibited high amount of basic site. This property can improve the adsorption of CO_2 gas by carbonate group on surface. However, CZA-PH9 had lower surface area.
- (5) NH₃-TPD was investigated and high acidity was denoted decreasing of activity of CZA catalyst.
- (6) XPS revealed that Cu^{2+} species is mainly in all CZA catalysts.

Part 2: The effect of Mn, Zr, and Si promoters on CZA-PH8 catalyst.

In conclusion, relation of characterization and reaction test is summarized the part of the effect of Zr, Mn, and Si promoters as follows;

The modification of Zr, Mn, and Si can decrease crystallite size to 3.43 4.42. The Mn and Zr was found to have a well dispersion of CuO, ZnO.
 Leading to low agglomeration as seen by XRD patterns.

- (2) Mn promoter was found to exhibit the highest surface area. It had relation with high CuO, ZnO dispersion in XRD part and Mn promoter improve Cu^0 dispersion as measured by H₂-Chemisorption.
- (3) The shifting of moderate acidity site became to weak acid is an important property for not promoting H_2 saturation to undesirable H_2O product. This phenomenon was appeared with Mn promotion. This reason introduced basicity of Mn promotion.
- (4) Reaction test showed a good activity by Mn promoter. It can improve CZA-PH8 expressing the highest CO_2 conversion and methanol yield at 4.70% and 0.46%, respectively. The Mn promoter was selected to study the stability test in next part.

Part 3: The stability of CZA catalyst

In conclusion, the effect of stability can be explained in the different of previous part.

- sCZA-PH8 was detected an accumulation of CuO and ZnO in XRD pattern. The Mn promotion was found a successful development of active site, which related to prevent active site sintering.
- (2) Mn promoter had an effect to promote Cu⁰ metal on XRD pattern and it facilitated reducibility, which was corresponding to high activity of CZA catalyst.
- (3) The promotion of Mn can increase CO_2 conversion and methanol yield by stability of Cu^{2+} on reaction condition.

Recommendations

- (1) C contents in CZA surface was found a stable in catalyst. It could to using and identified that C content in fresh catalyst is carbonates or coke species by TGA.
- (2) Mn, Zr and Si can load with various contents, at experiment the Mn is the best of this reaction condition.
- (3) The effect of reduction could to study by relative with temperature reaction for interaction metal Mn, Zr.
- (4) CO can react to methanol by CO hydrogenation. Therefore, the ratio of mixing CO:CO₂:H₂ was interested to next generation.
- (5) H_2 -chemisoption may not determine the real total Cu^0 active site. Therefore, N_2O is recommended to observing fully Cu^0 metal.

APPENDIX

Time	CO ₂ reaction rate	CH₃OH production rate
(h)	(mol/g cat.h)×10 ⁻⁷	(mol/g cat.h)×10 ⁻⁷
0	-	-
0.5	37.74	4.49
1	21.56	2.30
1.5	15.60	1.53
2	10.92	1.13
2.5	11.15	0.91
3	7.12	0.75
3.5	5.61	0.63
4	8.352	0.56
4.5	4.91	0.50
5	4.79	0.44
5.5	4.23	0.41

Table A.6.1 CO_2 reaction rate and CH_3OH production rate of CZA-PH7 catalyst

จุฬาลงกรณ์มหาวิทยาลัย CHULALONGKORN UNIVERSITY

Time	CO ₂ reaction rate	CH ₃ OH production rate	
(h)	(mol/g cat.h)×10 ⁻⁷	(mol/g cat.h)×10 ⁻⁷	
0	-	-	
0.5	45.37	4.49	
1	23.08	2.30	
1.5	14.96	1.53	
2	10.00	1.13	
2.5	10.16	0.91	
3	6.73	0.75	
3.5 🚄	6.13	0.63	
4	5.30	0.56	
4.5	5.02	0.50	
5	4.08	0.44	
5.5	4.35	0.41	

Table A.6.2 CO_2 reaction rate and CH_3OH production rate of CZA-PH8 catalyst

Time	CO ₂ reaction rate	CH₃OH production rate	
(h)	(mol/g cat.h)×10 ⁻⁷	(mol/g cat.h)×10 ⁻⁷	
0	-	-	
0.5	14.61	1.42	
1	5.40	0.68	
1.5	5.05	0.47	
2	3.73	0.33	
2.5	1.84	0.27	
3	2.35	0.23	
3.5	1.96	0.19	
4	1.58	0.16	
4.5	1.07	0.15	
5	1.50	0.14	
5.5	1.05	0.12	

Table A.6.3 $\rm CO_2$ reaction rate and $\rm CH_3OH$ production rate of CZA-PH9 catalyst

Time	CO ₂ reaction rate	CH ₃ OH production rate
(h)	(mol/g cat.h)×10 ⁻⁷	(mol/g cat.h)×10 ⁻⁷
0	-	-
0.5	64.76	2.71
1	34.85	1.22
1.5	15.92	0.84
2	20.69	0.62
2.5	13.32	0.46
3	8.71	0.39
3.5	9.44	0.33
4	6.50	0.29
4.5	5.25	0.27
5	4.19	0.23
5.5	5.41	0.21

Table A.6.4 $\rm CO_2$ reaction rate and $\rm CH_3OH$ production rate of CZA-PH8-Si catalyst

CO ₂ reaction rate	CH₃OH production rate
(mol/g cat.h)×10 ⁻⁷	(mol/g cat.h)×10 ⁻⁷
-	-
84.73	7.95
37.63	3.99
28.53	2.65
23.27	2.04
18.64	1.64
15.04	1.37
13.60	1.18
8.72	1.05
9.16	0.91
10.39	0.84
7.65	0.75
	CO ₂ reaction rate (mol/g cat.h)×10 ⁻⁷ - 84.73 37.63 28.53 23.27 18.64 15.04 13.60 8.72 9.16 10.39 7.65

Table A.6.5 CO_2 reaction rate and CH_3OH production rate of CZA-PH8-Mn catalyst

Time	CO ₂ reaction rate	CH ₃ OH production rate
(h)	(mol/g cat.h)×10 ⁻⁷	(mol/g cat.h)×10 ⁻⁷
0	-	-
0.5	78.11	7.054
1	39.16	3.62
1.5	25.52	2.38
2	14.87	1.86
2.5	17.29	1.47
3	13.70	1.23
3.5	11.84	1.06
4	7.43	0.93
4.5	7.44	0.83
5	9.19	0.75
5.5	6.91	0.69

Table A.6.6 CO_2 reaction rate and CH_3OH production rate of CZA-PH8-Zr catalyst

A.7	Activity	of	CZA	catalyst	
-----	----------	----	-----	----------	--

Table A.7.1 The activity of CZA-PH7.

Time (min)	CO_2 conversion	CH ₃ OH selectivity	CO selectivity	CH₃OH yield
	(%)	(%)	(%)	(%)
0	2.02	11.89	88.10	0.24
30	2.31	10.65	89.35	0.25
60	2.51	9.79	90.21	0.25
90	2.34	10.38	89.62	0.24
120	2.99	8.17	91.83	0.24
150	2.29	10.53	89.47	0.24
180	2.11	11.30	88.70	0.24
210	3.59	6.76	93.24	0.24
240	2.37	10.11	89.89	0.24

270	2.57	9.20	90.80	0.24
300	2.49	9.69	90.31	0.24

 Table A.7.2 The activity of CZA-PH8.

Time (min)	CO_2 conversion	CH ₃ OH selectivity	CO selectivity	CH ₃ OH yield
	(%)	(%)	(%)	(%)
0	2.43	9.89	90.11	0.24
30	2.47	9.95	90.05	0.25
60	2.40	10.21	89.79	0.25
90	2.14	11.33	88.67	0.24
120	2.72	8.96	91.04	0.24
150	2.16	11.13	88.87	0.24
180	2.30	10.34	89.66	0.24
210	2.27	10.65	89.35	0.24
240	2.42	9.89	90.11	0.24
270	2.18	10.82	89.18	0.24
300	2.56	9.42	90.58	0.24

Table A.7.3 The activity of CZA-PH9.

Time (min)	CO ₂ conversion	CH ₃ OH selectivity	CO selectivity	CH ₃ OH yield
	(%)	(%)	(%)	(%)
0	0.84	9.71	90.29	0.08
30	0.62	12.54	87.46	0.08
60	0.88	9.37	90.63	0.08
90	0.86	8.75	91.25	0.08
120	0.53	14.50	85.50	0.08
150	0.82	9.60	90.40	0.08
180	0.81	9.63	90.37	0.08
210	0.73	10.33	89.67	0.08
240	0.56	13.92	86.08	0.08

270	0.87	9.19	90.81	0.08
300	0.67	11.41	88.59	0.08

Table A.7.4 The activity of CZA-PH8-Si.

Time (min)	CO_2 conversion	CH ₃ OH selectivity	CO selectivity	CH₃OH yield
	(%)	(%)	(%)	(%)
0	3.58	4.18	95.82	0.15
30	3.86	3.50	96.50	0.14
60	2.64	5.26	94.74	0.14
90	4.58	3.01	96.99	0.14
120	3.68	3.44	96.56	0.13
150	2.89	4.48	95.52	0.13
180	3.66	3.53	96.47	0.13
210	2.88	4.45	95.55	0.13
240	2.62	5.07	94.93	0.13
270	2.32	5.52	94.48	0.13
300	3.30	3.73	96.27	0.12

 Table A.7.5 The activity of CZA-PH8-Mn.

Time (min)	CO ₂ conversion	CH ₃ OH selectivity	CO selectivity	CH ₃ OH yield
	(%)	(%)	SH Y (%)	(%)
0	4.74	9.38	90.62	0.44
30	4.21	10.61	89.39	0.45
60	4.78	9.30	90.70	0.45
90	5.20	8.76	91.24	0.46
120	5.21	8.82	91.18	0.46
150	5.04	9.12	90.88	0.46
180	5.32	8.68	91.32	0.46
210	3.90	11.75	88.25	0.46
240	4.61	9.91	90.09	0.46

270	5.81	8.11	91.89	0.47
300	4.70	9.86	90.14	0.46

 Table A.7.6 The activity of CZA-PH8-Zr.

Time (min)	CO_2 conversion	CH ₃ OH selectivity	CO selectivity	CH₃OH yield
	(%)	(%)	(%)	(%)
0	4.22	9.03	90.62	0.38
30	4.23	9.25	89.39	0.39
60	4.14	9.33	90.70	0.39
90	3.21	12.48	91.24	0.40
120	4.67	8.52	91.18	0.40
150	4.44	8.90	90.88	0.40
180	4.48	8.98	91.32	0.40
210	3.21	12.54	88.25	0.40
240	3.62	11.15	90.08	0.40
270	4.97	8.16	91.89	0.41
300	4.11	9.99	90.14	0.41

APPENDIX.B CALCULATION OF CRYTALLINE SIZE

B.1 The Scherrer's equation

$$\mathsf{D} = \frac{\mathbf{K}\lambda}{\boldsymbol{\beta}\mathbf{cos}\boldsymbol{\theta}}$$

- D = Crystallite size (°A)
- K = Crystallite shape factor = 0.9

 λ = X – ray wavelength, 1.5418 °A for CuK α

- θ = Observes peak angel (degree)
- $\beta = X ray$ diffraction broadening (radian)

91
APPENDIX.C CALBRATION

$C.1 CO_2$ calibration

Figure C.1.2 The calibration of CH $_3$ OH by using sample loops (μ mol)

Figure C.1.3The calibration of NH₃-TPD.

Figure C.1.4 The calibration of CO₂-TPD.

APPENDIX.D SCANNING ELECTRON MICROSCOPE (SEM) AND ENERGY-DISPERSIVE X-RAY SPECTROSCOPY (EDX)

D.1 SEM-EDX of effect of metals promoters.

Figure D.1.1 SEM-EDX of all elements of A; CZA-PH8-Zr, B; CZA-PH8-Mn, C; CZA-PH8-

Si.

Table D.1.1 EDX of CZA-PH8-Zr

		W No
Element	Wt%	At%
СК	04.67	12.11
ОК	22.03	42.89
ΑΙΚ	15.90	18.36
ZrL	07.77	02.66
CuK	24.50	12.01
ZnK	25.13	11.98
Matrix	Correction	ZAF

Table D.1.2 EDX of CZA-PH8-MI

Element	Wt%	At%
СК	01.73	05.34
ОК	15.41	35.63
AIK	14.32	19.63
MnK	00.97	00.65
CuK	30.60	17.81
ZnK	36.98	20.93
Matrix	Correction	ZAF

Table D.1.3 EDX of CZA-PH8-Si

Element	Wt%	At%
СК	04.30	10.14
ОК	25.14	44.47
ΑΙΚ	23.52	24.67
SiK	00.13	00.14
CuK	22.30	09.93
ZnK	24.60	10.65
Matrix	Correction	ZAF

D.2 SEM-EDX of effect of metals promoters in stability test.

Figure D.2.1 SEM-EDX of all elements of stability A; CZA-PH8-Mn (fresh catalyst), B; sCZA-PH8-Mn (spent catalyst).

Figure D.2.2 SEM-EDX of all elements of stability A; CZA-PH8-Si (fresh catalyst), B; sCZA-PH8-Si (spent catalyst).

Table D.2.1 EDX of sCZA-PH8-Mi	n
--------------------------------	---

Element	Wt%	At%
СК	01.97	05.65
ОК	18.52	39.96
AIK	15.78	20.19
MnK	00.86	00.54
CuK	30.87	16.77
ZnK	31.99	16.89
Matrix	Correction	ZAF

Table D.2.1 EDX of sCZA-PH8-Si

		1/1/1	
Element	Wt%	At%	
СК	04.94	14.19	
ОК	17.53	37.77	
AIK	08.68	11.09	
SiK	00.14	00.17	
CuK	34.28	18.60	รณมหาวทยาล
ZnK	34.43 UHU	18.16	GKORN UNIVER
Matrix	Correction	ZAF	

E.1 Chemical species of CZA-PH7 catalyst.

Figure E.1.1 XPS spectra of Cu species on CZA-PH7.

Figure E.1.2 XPS spectra of Zn species on CZA-PH7.

Figure E.1.4 XPS spectra of O species on CZA-PH7.

Figure E.1.5 XPS spectra of C species on CZA-PH7.

Figure E.1.6 XPS spectra of all species on CZA-PH7

E.2 Chemical species of CZA-PH8 catalyst.

Figure E.2.1 XPS spectra of Cu species on CZA-PH8.

Figure E.2.2 XPS spectra of Zn species on CZA-PH8.

Figure E.2.3 XPS spectra of Al species on CZA-PH8.

Figure E.2.4 XPS spectra of O species on CZA-PH8.

Figure E.2.5 XPS spectra of C species on CZA-PH8.

Figure E.2.6 XPS spectra of all species on CZA-PH8.

E.3 Chemical species of CZA-PH9 catalyst.

Figure E.3.1 XPS spectra of Cu species on CZA-PH8.

Figure E.3.2 XPS spectra of Zn species on CZA-PH8.

Figure E.3.3 XPS spectra of Al species on CZA-PH8.

Figure E.3.4 XPS spectra of O species on CZA-PH8.

Figure E.3.5 XPS spectra of C species on CZA-PH8.

Figure E.3.6 XPS spectra of all species on CZA-PH8.

E.4 Chemical species of CZA-PH8-Zr catalyst.

Figure E.4.1 XPS spectra of Cu species on CZA-PH8-Zr.

Figure E.4.2 XPS spectra of Zn species on CZA-PH8-Zr.

Figure E.4.3 XPS spectra of Al species on CZA-PH8-Zr.

Figure E.4.4 XPS spectra of O species on CZA-PH8-Zr.

Figure E.4.5 XPS spectra of C species on CZA-PH8-Zr.

Figure E.4.6 XPS spectra of Zr species on CZA-PH8-Zr.

Figure E.4.7 XPS spectra of all species on CZA-PH8-Zr.

E.5 Chemical species of CZA-PH8-Mn catalyst.

Figure E.5.1 XPS spectra of Cu species on CZA-PH8-Mn.

Figure E.5.2 XPS spectra of Zn species on CZA-PH8-Mn.

Figure E.5.3 XPS spectra of Al species on CZA-PH8-Mn.

Figure E.5.4 XPS spectra of O species on CZA-PH8-Mn.

Figure E.5.5 XPS spectra of C species on CZA-PH8-Mn.

Figure E.5.6 XPS spectra of Mn species on CZA-PH8-Mn.

Figure E.5.7 XPS spectra of all species on CZA-PH8-Mn.

E.6 Chemical species of CZA-PH8-Si catalyst.

Figure E.6.1 XPS spectra of Cu species on CZA-PH8-Si.

Figure E.6.2 XPS spectra of Zn species on CZA-PH8-Si.

Figure E.6.4 XPS spectra of O species on CZA-PH8-Si.

Figure E.6.5 XPS spectra of C species on CZA-PH8-Si.

Figure E.6.6 XPS spectra of Si species on CZA-PH8-Si.

Figure E.6.7 XPS spectra of all species on CZA-PH8-Si.

E.7 Chemical species of sCZA-PH8 catalyst.

Figure E.7.1 XPS spectra of Cu species on sCZA-PH8.

Figure E.7.2 XPS spectra of Zn species on sCZA-PH8.

Figure E.7.3 XPS spectra of Al species on sCZA-PH8.

Figure E.7.4 XPS spectra of O species on sCZA-PH8.

Figure E.7.5 XPS spectra of C species on sCZA-PH8.

Figure E.7.6 XPS spectra of all species on sCZA-PH8. E.8 Chemical species of sCZA-PH8-Mn catalyst.

Figure E.8.1 XPS spectra of Cu species on sCZA-PH8-Mn.

Figure E.8.2 XPS spectra of Zn species on sCZA-PH8-Mn.

Figure E.8.3 XPS spectra of Al species on sCZA-PH8-Mn.

Figure E.8.4 XPS spectra of O species on sCZA-PH8-Mn.

Figure E.8.5 XPS spectra of C species on sCZA-PH8-Mn.

Figure E.8.6 XPS spectra of Mn species on sCZA-PH8-Mn.

Figure E.8.7 XPS spectra of all species on sCZA-PH8-Mn.

E.9 Position of binding energy(eV) and element of all species.

Table E.9.1 Position binding energy (eV) of XPS spectra of all species.

	Position of binding energy(eV)							
Sample	Cu 2p3/2	Cu2p1/2	Zn2p3/2	Zn2p1/2	Al2p	O1s	C1s	Ag3d
CZA-PH7	935.3	954.5	1022.6	1045.7	74.9	531.6	284.2	368.2
CZA-PH8	935.3	954.5	1022.6	1045.7	74.9	531.6	284.2	368.2
CZA-PH9	935.3	954.5	1022.6	1045.7	74.9	531.6	284.2	368.2
sCZA-PH8	937.2	957.1	1025.6	1048.8	77.8	533.7	286.2	368.2

Table E.9.2 Mass (%) of XPS spectra of all species.

	Mass (%)							
Sample	Cu	Zn	Al	0	С	Ag		
CZA-PH7	8.57	20.69	4.83	31.80	32.09	2.02		
CZA-PH8	11.24 🖌	18.74	4.34	33.12	31.46	1.11		
CZA-PH9	6.55	21.65	4.25	31.68	33.76	2.12		
sCZA-PH8	10.08	17.38	10.20	30.27	30.39	1.71		

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University
	Position of binding energy(eV)					
Sample	Cu	Cu	satellite	satellite	Zn	Zn
	2p3/2	2p1/2	Cu2p3	Cu2p4	2p 3/2	2p1/2
CZA-PH8-Zr	935.7	956.4	944	963.6	1023.1	1046
CZA-PH8-Mn	936.8	956.3	945.6	964	1022.6	1045.7
CZA-PH8-Si	938.2	957.7	945.6	966.2	1025.8	1049
sCZA-PH8-Mn	937.8	957.3	946.8	965.6	1026	1048

Table E.9.3 Position binding energy (eV) of XPS spectra of all species in effect of metal loading.

	///					
Sample	Position of binding energy(eV)					
Sample	Al2p	O1s	C1s	Ag3d		
CZA-PH8-Zr	75.4	532.2	284.5	368.2		
CZA-PH8-Mn	74.9	531.6	284.2	368.2		
CZA-PH8-Si	79.1	535.2	287.2	368.2		
sCZA-PH8-Mn	78.3	534.1	286.3	368.2		

CHULALONGKORN UNIVERSITY Table E.9.4 Mass (%) of XPS spectra of all species in effect of metal loading.

Sampla	Mass (%)						
Sample	Cu	Zn	Al	0	С	Ag	Х
CZA-PH8-Zr	18.81	26.08	9.29	27.94	15.04	1.32	1.51
CZA-PH8-Mn	15.09	22.59	8.82	25.35	22.12	1.33	4.52
CZA-PH8-Si	19.35	23.23	12.91	23.55	15.59	0.77	4.61
sCZA-PH8-Mn	14.43	14.19	9.29	25.77	31.32	1.33	3.67

APPENDIX.F H2-CHEMISORPTION AND DISPERSION

F.1 Calculation dispersion in H_2 -chemisorption.

Variables

Assumption: CuO + $H_2 \rightarrow Cu^0 + H_2O$

H_2 adsorption Integral area from first peak	= A1
H ₂ adsorption Integral area from Second peak	= A2
H ₂ adsorption Integral area from Third peak	= A3
H ₂ adsorption Integral area from X peak (X=1,2,3,4,)	= Ax
H ₂ adsorption Integral area from standard peak	= A0

(Area equality 3 times)

Volume of $\rm H_{2}$ injection

Calculation

Volume of H_2 adsorption	$[(A0-A1)+(A0-A2)+(A0-Ax)]\times 20$	uL
Mol of H ₂ adsorption	$= \frac{A0}{[(A0-A1)+(A0-A2)+(A0-Ax)]\times 20}$	μmol
Catalyst weight	A0×22.4	g _{cat}
Total H ₂ -Chemisorption	$\frac{[(A0-A1)+(A0-A2)+(A0-Ax)]\times 20}{[(A0-A1)+(A0-A2)+(A0-Ax)]\times 20}$	μ mol/g _{cat}
(Cu:H ₂ = 1:1)	- A0×22.4×0.5	, Scar

Dispersion

ิจุหาลงกรณ์มหาวิทยาลัย

Dispersion		= (mole of Cu ⁰ /g)/(mole of total/g)	
Catalyst weight		= 0.5	g
Cu loading		= 40	%wt.
Mw of Cu		= 63.55	g/mol
Mol of Cu ⁰		$= \frac{[(A0-A1)+(A0-A2)+(A0-Ax)]\times 20}{[(A0-A1)+(A0-A2)+(A0-Ax)]\times 20}$	μ mol/g _{cat}
Mol total Cu of CZ	A catalyst	$= \left(\frac{40}{100}\right) \times 63.55$	g _{cat} /mol
Dispersion (fraction	$) = \left[\frac{\left[(A0-A)\right]}{A}\right]$	$\frac{1) + (A0 - A2) + (A0 - Ax)] \times 20}{A0 \times 22.4 \times 0.5} \right] \times 10^{-6} / \left[\left(\frac{40}{100} \right) \times \right]$	63.55]

= 20 μ L

Sample	H ₂ adsorption	Cu ⁰ dispersion	Cu ⁰ dispersion	
	(μ mol/g _{cat})	$(\times 10^{6})$	(%)	
CZA-PH8	7.11	0.27	27	
CZA-PH8-Mn	16.28	0.64	64	

Table F.1.1 Cu^0 dispersion from H_2-Chemisorption (20 $\mu\text{L})$

Figure F.1.2 H_2 -Chemisorption of CZA-PH8-Mn

REFERENCES

- 1. Tijm, P.J.A., F.J. Waller, and D.M. Brown, *Methanol technology developments for the new millennium*. Applied Catalysis A: General, 2001. **221**(1): p. 275-282.
- 2. Li, J.L. and T. Inui, *Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures.* Applied Catalysis A: General, 1996. **137**(1): p. 105-117.
- 3. Pasupulety, N., et al., *Studies on Au/Cu–Zn–Al catalyst for methanol synthesis from CO2.* Applied Catalysis A: General, 2015. **504**: p. 308-318.
- 4. Gao, P., et al., Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Applied Catalysis A: General, 2013. **468**: p. 442-452.
- 5. Zhang, L., Y. Zhang, and S. Chen, *Effect of promoter SiO2, TiO2 or SiO2-TiO2 on the performance of CuO-ZnO-Al2O3 catalyst for methanol synthesis from CO2 hydrogenation.* Applied Catalysis A: General, 2012. **415-416**: p. 118-123.
- 6. Wittich, K., et al., *Catalytic Dry Reforming of Methane: Insights from Model Systems.* ChemCatChem, 2020. **n/a**(n/a).
- 7. Argyle, D.M. and H.C. Bartholomew, *Heterogeneous Catalyst Deactivation and Regeneration: A Review.* Catalysts, 2015. **5**(1).
- Ali, K.A., A.Z. Abdullah, and A.R. Mohamed, Recent development in catalytic technologies for methanol synthesis from renewable sources: A critical review. Renewable and Sustainable Energy Reviews, 2015. 44: p. 508-518.
- Wu, J., et al., The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2-rich feed and from a CO-rich feed. Applied Catalysis A: General, 2001. 218: p. 235-240.
- Słoczyński, J., et al., Effect of Mg and Mn oxide additions on structural and adsorptive properties of Cu/ZnO/ZrO2 catalysts for the methanol synthesis from CO2. Applied Catalysis A: General, 2003. 249(1): p. 129-138.
- 11. Atake, I., et al., *Catalytic behavior of ternary Cu/ZnO/Al2O3 systems prepared by homogeneous precipitation in water-gas shift reaction.* Journal of Molecular

Catalysis A: Chemical, 2007. 275(1): p. 130-138.

- 12. An, X., et al., A Cu/Zn/Al/Zr Fibrous Catalyst that is an Improved CO 2 Hydrogenation to Methanol Catalyst. Catalysis Letters - CATALYSIS LETT, 2007.
 118: p. 264-269.
- Zhang, Y., et al., Study of CO2 Hydrogenation to Methanol over Cu-V/γ-Al2O3
 Catalyst. Journal of Natural Gas Chemistry, 2007. 16(1): p. 12-15.
- 14. Raudaskoski, R., M.V. Niemelä, and R.L. Keiski, *The effect of ageing time on coprecipitated Cu/ZnO/ZrO2 catalysts used in methanol synthesis from CO2 and H2.* Topics in Catalysis, 2007. **45**(1): p. 57-60.
- 15. Gao, P., et al., Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Journal of Catalysis, 2013. **298**: p. 51-60.
- Arena, F., et al., Effects of oxide carriers on surface functionality and process performance of the Cu–ZnO system in the synthesis of methanol via CO2 hydrogenation. Journal of Catalysis, 2013. 300: p. 141-151.
- Arena, F., et al., How oxide carriers control the catalytic functionality of the Cu-ZnO system in the hydrogenation of CO2 to methanol. Catalysis Today, 2013.
 210: p. 39-46.
- Gao, P., et al., Influence of fluorine on the performance of fluorine-modified Cu/Zn/Al catalysts for CO2 hydrogenation to methanol. Journal of CO2 Utilization, 2013. 2: p. 16-23.
- Li, C., X. Yuan, and K. Fujimoto, *Development of highly stable catalyst for methanol synthesis from carbon dioxide.* Applied Catalysis A: General, 2014.
 469: p. 306-311.
- Zhan, H., et al., Methanol synthesis from CO2 hydrogenation over La–M–Cu– Zn–O (M = Y, Ce, Mg, Zr) catalysts derived from perovskite-type precursors.
 Journal of Power Sources, 2014. 251: p. 113-121.
- 21. Ding, W., et al., Promoting effect of a Cu–Zn binary precursor on a ternary Cu– Zn–Al catalyst for methanol synthesis from synthesis gas. RSC Advances, 2014.
 4: p. 30677.

- 22. Lei, H., et al., *Hydrogenation of CO2 to CH3OH over Cu/ZnO catalysts with different ZnO morphology.* Fuel, 2015. **154**: p. 161-166.
- Lei, H., Z. Hou, and J. Xie, Hydrogenation of CO2 to CH3OH over CuO/ZnO/Al2O3 catalysts prepared via a solvent-free routine. Fuel, 2016. 164: p. 191-198.
- Fan, Y.J. and S.F. Wu, A graphene-supported copper-based catalyst for the hydrogenation of carbon dioxide to form methanol. Journal of CO2 Utilization, 2016. 16: p. 150-156.
- 25. Gao, P., et al., *Fluorinated Cu/Zn/Al/Zr hydrotalcites derived nanocatalysts for CO2 hydrogenation to methanol.* Journal of CO2 Utilization, 2016. **16**: p. 32-41.
- Xiao, S., et al., Highly efficient Cu-based catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Catalysis Today, 2017. 281: p. 327-336.
- 27. Zhang, C., et al., Preparation and CO2 hydrogenation catalytic properties of alumina microsphere supported Cu-based catalyst by deposition-precipitation method. Journal of CO2 Utilization, 2017. **17**: p. 263-272.
- 28. Sadeghinia, M., A. Nemati Kharat Ghaziani, and M. Rezaei, *Component ratio* dependent Cu/Zn/Al structure sensitive catalyst in CO2/CO hydrogenation to methanol. Molecular Catalysis, 2018. **456**: p. 38-48.
- Mureddu, M., F. Ferrara, and A. Pettinau, Highly efficient CuO/ZnO/ZrO2@SBA-15 nanocatalysts for methanol synthesis from the catalytic hydrogenation of CO2.
 Applied Catalysis B: Environmental, 2019. 258: p. 117941.
- 30. Ren, S., et al., Enhanced catalytic performance of Zr modified CuO/ZnO/Al2O3 catalyst for methanol and DME synthesis via CO2 hydrogenation. Journal of CO2 Utilization, 2020. **36**: p. 82-95.
- 31. Samei, E., M. Taghizadeh, and M. Bahmani, *Enhancement of stability and activity of Cu/ZnO/Al2O3 catalysts by colloidal silica and metal oxides additives for methanol synthesis from a CO2-rich feed*. Fuel Processing Technology, 2012. **96**: p. 128-133.
- 32. Wang, D., et al., Characterization and performance of Cu/ZnO/Al2O3 catalysts prepared via decomposition of M(Cu, Zn)-ammonia complexes under sub-

atmospheric pressure for methanol synthesis from H2 and CO2. Journal of Natural Gas Chemistry, 2011. **20**(6): p. 629-634.

- 33. Zhang, L.-x., Y.-c. Zhang, and S.-y. Chen, *Effect of promoter TiO2 on the performance of CuO-ZnO-Al2O3 catalyst for CO2 catalytic hydrogenation to methanol.* Journal of Fuel Chemistry and Technology, 2011. **39**(12): p. 912-917.
- 34. Tisseraud, C., et al., The C• ZnO synergy in methanol synthesis from CO2, Part 2: Origin of the methanol and CO selectivities explained by experimental studies and a sphere contact quantification model in randomly packed binary mixtures on C• ZnO coprecipitate catalysts. Journal of Catalysis, 2015. 330: p. 533-544.
- 35. Roy, K., C.P. Vinod, and C.S. Gopinath, *Design and Performance Aspects of a Custom-Built Ambient Pressure Photoelectron Spectrometer toward Bridging the Pressure Gap: Oxidation of Cu, Ag, and Au Surfaces at 1 mbar O2 Pressure.* The Journal of Physical Chemistry C, 2013. **117**(9): p. 4717-4726.
- Forni, A., et al., *The chemisorption of hydrogen on Cu(111): A dynamical study.* International Journal of Quantum Chemistry, 1994. 52(4): p. 1067-1080.
- Kattel, S., et al., Active sites for CO₂ hydrogenation to methanol on Cu/ZnO catalysts. Science, 2017. 355(6331): p. 1296-1299.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

VITA

NAME	Kamonlak Pongpanumaporn
DATE OF BIRTH	11 January 1996
PLACE OF BIRTH	Nonthaburi
INSTITUTIONS ATTENDED	Chemical Engineering, Faculty of Engineering and Industrial
	Technology, Silpakorn
HOME ADDRESS	No. 92/300, Bangraknoi, Muang, Nonthaburi 11000.
จ พา	ลงกรณ์มหาวิทยาลัย
	LONGKORN UNIVERSITY