

Thai spelling correction and word normalization on social text using a two-stage
pipeline with neural contextual attention

Mr. Anuruth Lertpiya

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Engineering in Computer Engineering

Department of Computer Engineering
FACULTY OF ENGINEERING
Chulalongkorn University

Academic Year 2019
Copyright of Chulalongkorn University

การแก้คำผิดและทำให้เป็นมาตราฐานบนข้อความโซเชียลมีเดียภาษาไทยโดยการทำงานสองข้ันตอน
ด้วยโครงข่ายประสาทเทียมท่ีใช้กลไกจุดสนใจบนบริบท

นายอนุรุธ เลิศปิยะ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต
สาขาวิชาวิศวกรรมคอมพิวเตอร์ ภาควิชาวิศวกรรมคอมพิวเตอร์

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2562

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title Thai spelling correction and word normalization on

social text using a two-stage pipeline with neural
contextual attention

By Mr. Anuruth Lertpiya
Field of Study Computer Engineering
Thesis Advisor Ekapol Chuangsuwanich, Ph.D.

Accepted by the FACULTY OF ENGINEERING, Chulalongkorn University in
Partial Fulfillment of the Requirement for the Master of Engineering

Dean of the FACULTY OF
ENGINEERING

 (Professor SUPOT TEACHAVORASINSKUN, D.Eng.)

THESIS COMMITTEE

Chairman
 (Assistant Professor PEERAPON VATEEKUL, Ph.D.)

Thesis Advisor
 (Ekapol Chuangsuwanich, Ph.D.)

External Examiner
 (Thadpong Pongthawornkamol, Ph.D.)

iii

ABSTRACT (THAI) อนุรุธ เลิศปิยะ : การแก้คำผิดและทำให้เป็นมาตราฐานบนข้อความโซเชียลมีเดีย

ภาษาไทยโดยการทำงานสองขั้นตอนด้วยโครงข่ายประสาทเทียมท่ีใช้กลไกจุดสนใจบน
บริบท. (Thai spelling correction and word normalization on social text
using a two-stage pipeline with neural contextual attention) อ.ที่ปรึกษาหลัก
: ดร.เอกพล ช่วงสุวนิช

ระบบแก้ไขข้อความ (เช่นระบบแก้คำผิด) ถูกนำมาใช้เพ่ือปรับปรุงคุณภาพของข้อมูลตัว

อักษรบนระบบคอมพิวเตอร์โดยการตรวจจับและแก้ไขข้อผิดพลาด งานวิจัยก่อนหน้ายังไม่ได้รับ
การสำรวจโจทย์การแก้ไขคำผิดและการทำให้เป็นมาตรฐานของข้อความ (การแก้ไขข้อความ)
สำหรับข้อความโซเชียลมีเดียภาษาไทย ในวิทยานิพนธ์ฉบับนี้เราได้ศึกษาความสามารถของระบบ
แก้ไขข้อความในปัจจุบันบนโจทย์การแก้ไขคำผิดและการทำให้เป็นมาตรฐานของข้อความ บน
โซเชียลมีเดียภาษาไทย และ เสนอวิธีการที่ได้ถูกออกแบบมาสำหรับโจทย์นี้ เราพบว่าระบบแก้ไข
ข้อความภาษาไทยที่มีอยู่ในปัจจุบันมีประสิทธิภาพไม่เพียงพอสำหรับการแก้ไขคำผิดและความไม่
เป็นมาตรฐานของข้อความ ในขณะที่ระบบแก้ไขข้อผิดพลาดทางไวยากรณ์ภาษาอังกฤษมีปัญหา
การแก้ไขมากเกินไป (การเขียนข้อความใหม่) ดังนั้นเราจึงเสนอระบบแก้ไขข้อความ ซ่ึงใช้ระบบ
ประสาทเทียมที่งานสองขั้นตอนเพ่ือบรรเทาปัญหาการแก้ไขมากเกินไปในขณะที่ได้ประโยชน์จาก
ระบบประสาทเทียมแบบข้อความสู่ข้อความ ระบบของเราประกอบด้วยตัวตรวจจับข้อผิดพลาดที่
ใช้ระบบประสาทเทียม และตัวแก้ไขข้อผิดพลาดทางประสาทแบบข้อความสู่ข้อความที่ใช้กลไกจุด
สนใจบนบริบท สถาปัตยกรรมแบบใหม่นี้ช่วยให้ระบบประสาทเทียมแบบข้อความสู่ข้อความสร้าง
แก้ไขตามทั้งข้อความโดยคำนึงถึงบริบทโดยไม่จำเป็นต้องทำงานแบบหนึ่งขั้นตอนวิธีการของเรามี
ประสิทธิภาพดีกว่าระบบแก้ไขข้อความอ่ืนๆ ที่เราได้ประเมินทั้งหมด

สาขาวิชา วิศวกรรมคอมพิวเตอร์ ลายมือชื่อนิสิต ..
ปีการศึกษา 2562 ลายมือชื่อ อ.ที่ปรึกษาหลัก

iv

ABSTRACT (ENGLISH) # # 6170322321 : MAJOR COMPUTER ENGINEERING
KEYWORD: Spelling correction, Text generation, Text normalization, Thai

language, Natural language processing, Artificial neural networks,
Text processing, Machine learning

 Anuruth Lertpiya : Thai spelling correction and word normalization on
social text using a two-stage pipeline with neural contextual attention.
Advisor: Ekapol Chuangsuwanich, Ph.D.

Text correction systems (e.g., spell checkers) have been used to improve

the quality of computerized text by detecting and correcting errors. However, the
task of performing spelling correction and word normalization (text correction) for
Thai social media text has remained largely unexplored. In this thesis, we
investigated how current text correction systems perform on correcting errors and
word variances in Thai social texts and propose a method designed for this task.
We have found that currently available Thai text correction systems are
insufficiently robust for correcting spelling errors and word variances, while the text
correctors designed for English grammatical error correction suffer from
overcorrections (text rewrites). Thus, we proposed a neural-based text corrector
with a two-stage structure to alleviate issues of overcorrections while exploiting
the benefits of a neural Seq2Seq corrector. Our method consists of a neural-based
error detector and a Seq2Seq neural error corrector with contextual attention. This
novel architecture allows the Seq2Seq network to produce corrections based on
both the erroneous text and its context without the need for an end-to-end
structure. Our method outperformed all the other evaluated text correction
systems.

Field of Study: Computer Engineering Student's Signature
Academic Year: 2019 Advisor's Signature

v

ACKNOWLEDGE MENTS

ACKNOWLEDGEMENTS

I want to thank the joint research venture between Kasikorn Business—
Technology Group (KBTG) and the Faculty of Engineering, Chulalongkorn University. This
study would not be possible without the funding, linguistic and technical capability
from both parties. In addition, we would also like to thank the Faculty of Arts,
Chulalongkorn University, for their linguistic expertise.

I would like to thank my supervisor, Dr. Ekapol Chuangsuwanich. Your
invaluable advice, feedback, and encouragement are indispensable for the
development of this thesis.

I am very honored to have Asst. Prof. Peerapon Vateekul and Dr. Thadpong
Pongthawornkamol as the chairman and external examiner of my thesis committee. I
also would like to thank them for spending their precious time to examine and critique
my manuscript.

I would like to acknowledge the team of linguists from both the Faculty of
Arts, Chulalongkorn University, and KBTG. First, I would like to thank Assoc. Prof. Wirote
Aroonmanakun, Dr. Supawat Taerungruang, Ms. Sasiwimon Kalunsima, Dr. Tantong
Champaiboon, Dr. Nutcha Tirasaroj, and language-major students for the development
of the specification and annotation Thai User-generated web-content corpus.

I would also like my colleagues at KBTG for their guidance and support.
Special thanks to my fellow friends at Chulalongkorn University, for their advice, aid,
and encouragement.

Moreover, I would like to thank my parents for them for both their physical
and mental support. Without them, my thesis would not be where it is at today.

Anuruth Lertpiya

TABLE OF CONTENTS

 Page
 .. iii

ABSTRACT (THAI) ... iii

 .. iv

ABSTRACT (ENGLISH) .. iv

ACKNOWLEDGEMENTS ..v

TABLE OF CONTENTS ... vi

LIST OF TABLES ... ix

LIST OF FIGURES ... xi

1 INTRODUCTION .. 1

1.1 Aim and Objectives .. 2

1.2 Contributions ... 2

1.3 Thesis outline .. 3

1.4 Publication ... 3

2 Background knowledge .. 4

2.1 Introduction ... 4

2.2 Spell Checkers & Misspellings .. 4

2.3 Deep learning for Natural Language Processing ... 4

2.3.1 Deep learning .. 4

2.3.2 Recurrent neural networks ... 5

2.3.3 Sequence-to-Sequence neural networks .. 5

3 Related works .. 6

vii

3.1 Introduction ... 6

3.2 Text Correction Systems for Natural Language .. 6

3.3 Thai Text Correctors ... 7

3.4 English Grammatical Error Correction ... 8

3.5 Conclusion .. 8

4 Thai Text Correction task .. 9

4.1 Introduction ... 9

4.2 UGWC dataset .. 10

4.3 Evaluation criteria ... 12

4.4 Experiment setup .. 13

4.5 Chapter summary ... 14

5 Method .. 15

5.1 Introduction ... 15

5.2 Model .. 15

5.2.1 Error Detector .. 17

5.2.2 Error Corrector ... 18

5.2.2.1 Encoder 19

5.2.2.2 Decoder 21

5.3 Data Augmentation ... 22

5.4 Training .. 22

5.5 Chapter summary ... 23

6 Results and Discussion ... 24

6.1 Introduction ... 24

viii

6.2 Thai UGWC ... 24

6.3 SentencePiece as unit tokens .. 25

6.4 Detection stage ... 27

6.5 Correction stage .. 30

6.6 Detection sensitivity ... 33

6.7 Multi-pass correction .. 33

6.8 Publicly released Thai UGWC dataset .. 34

7 Conclusion .. 37

7.1 Limitations .. 37

7.2 Contributions ... 38

7.3 Future work .. 38

8 Appendix ... 39

8.1 Hyperparameters... 39

8.2 Error Analysis of Text Correction on Thai UGWC ... 39

8.2.1 End-to-end correction ... 39

8.2.2 Correction stage .. 41

8.2.3 Word tokenization on the correction stage .. 47

8.3 Evaluation on Conll-2014 .. 47

9 Research plan .. 50

REFERENCES ... 51

VITA .. 57

LIST OF TABLES

 Page
Table 1 Size of the UGWC dataset and the training-testing split 11

Table 2 Examples of different types of errors and their respective corrections 11

Table 3 Approximate number of errors in UGWC training set ... 11

Table 4 Evaluation of end-to-end error correction on the Thai UGWC test set by
various systems ... 26

Table 5 Detailed WER evaluation of correction methods on the Thai UGWC test set
 .. 26

Table 6 Inference time on the Thai UGWC test set by various systems 27

Table 7 Evaluation of retokenized output from our method with different unit token
types on the Thai UGWC test set .. 27

Table 8 Evaluation of our method with multi-pass correction at different detection
thresholds on the Thai UGWC test set .. 34

Table 9 Detection evaluation of our method on the test set of the publicly
released Thai UGWC datasets .. 35

Table 10 End-to-end evaluation of our method on the test set of the publicly
released Thai UGWC datasets .. 36

Table 11 Consolidated list of hyperparameters for our proposed method 40

Table 12 End-to-end error analysis of each model on the first sample line on the
TC task on the Thai UGWC dataset... 42

Table 13 End-to-end error analysis of each model on the second sample line on
the TC task on the Thai UGWC dataset ... 43

Table 14 End-to-end error analysis of each model on the second sample line on
the TC task on the Thai UGWC dataset (continue) ... 44

x

Table 15 Correction error analysis of abbreviation errors on the TC task on the Thai
UGWC dataset ... 44

Table 16 Correction error analysis of misspelling on the TC task on the Thai UGWC
dataset .. 45

Table 17 Correction error analysis of morphed, spoonerism, and slang on the TC
task on the Thai UGWC dataset ... 46

Table 18 Correction error analysis on retokenized erroneous text on the TC task on
the Thai UGWC dataset ... 47

Table 19 Evaluation of end-to-end error correction on the GEC Conll-2014 dataset
by various systems ... 48

Table 20 Evaluation of end-to-end error correction on the misspelling subset of GEC
Conll-2014 by various systems .. 49

LIST OF FIGURES

 Page
Figure 1 Overview of our text correction system... 16

Figure 2 Error detector operating on a sequence .. 18

Figure 3 Character LSTM embedding layer encoding a word token 18

Figure 4 Structure of the Seq2Seq text corrector .. 19

Figure 5 Structure of the encoder ... 20

Figure 6 Four types of error segments .. 28

Figure 7 Detection coverage of our method on the Thai UGWC test set 28

Figure 8 Types of error segments produced from the detection stage of our method
on the Thai UGWC test set .. 29

Figure 9 Coverage of the detection and false-positives produced from the detection
stage to our method on the Thai UGWC test set .. 29

Figure 10 Number of error segments produced for different types of errors on the
Thai UGWC test set .. 29

Figure 11 Normalized number of error segments produced for different types of
errors on the Thai UGWC test set ... 30

Figure 12 Correction coverage of our method on the Thai UGWC test set 31

Figure 13 Types of corrections produced by our method on the Thai UGWC test set
 .. 31

Figure 14 Breakdown of the remaining errors after executing our method on the Thai
UGWC test set ... 31

Figure 15 Coverage of the correction and the resulting number of errors from our
method on the Thai UGWC test set ... 32

xii

Figure 16 The number of error segments corrected for different types of errors on
the Thai UGWC test set ... 32

Figure 17 Normalized number of error segments corrected for different types of
errors on the Thai UGWC test set ... 32

Figure 18 Detection and end-to-end correction performances at different detection
sensitivities ... 34

1 INTRODUCTION
The fast and widespread adoption of social media as a means of communication has led

to an explosive increase in user-generated text data on the Internet. Natural language processing

(NLP) techniques are often used to keep up with the pace of rapidly growing data and introduce

new and exciting applications such as real-time disease surveillance (Lee, Agrawal, & Choudhary)

and monitoring the public perceptions of brands, products, and services (social listening).

However, social text also introduces challenges not previously found in traditional written media

(e.g., news, published articles), such as a wide variety of language usage from users with varying

levels of language proficiency, the diverse culture of Internet users, and a lack of formality and

professionalism in the written texts (Farzindar & Inkpen; Lertpiya et al.). Natural language text

correction systems (e.g., spell checkers and grammatical error correctors) are used to help

improve writing quality by providing feedback on the correctness of written text and proposing

corrections to the authors. The published literature related to Thai text correction has primarily

focused on postprocessing results from optical character recognition (OCR) systems (Kruatrachue,

Somguntar, & Siriboon; Meknavin, Kijsirikul, Chotimongkol, & Nuttee; Rodphon, Siriboon, &

Kruatrachue; Watcharabutsarakham). However, the large quantity of data on social media, which

is input via other interfaces (e.g., physical and virtual keyboards), does not strictly exhibit the

same types of errors as do data from OCR systems. Moreover, the text correction systems

developed and employed in free open source software (FOSS) have yet to be evaluated on

social texts.

In this thesis, we investigate how to perform spelling correction and word normalization

tasks effectively on Thai communicational text collected from social media. Henceforth, we

collectively refer to the tasks of spelling correction and word normalization as the text correction

task (TC), refer to Thai communicational text collected from social media sites as Thai user-

generated web content (Thai UGWC) and the spelling errors and correctable variances of words in

the TC task as errors. The types of errors that naturally occur in Thai UGWC and the types of

errors we aim to correct in Thai TC are covered in Chapter 4.2. The contributions of this thesis are

as follows.

First, we evaluate the currently existing techniques for Thai text correction, as well as

techniques borrowed from a similar task, English grammatical error correction (GEC). We

examined a variety of text correction techniques, ranging from dictionary-based (i.e., Hunspell

2

(Hunspell)) and statistically based methods (i.e., PyThaiNLP (PyThaiNLP)) to modern systems

featuring sequence-to-sequence neural networks employed in state-of-the-art English GEC

systems (i.e., Bi-GRU Seq2Seq (Grundkiewicz & Junczys-Dowmunt), Copy-Augmented Transformer

(Zhao, Wang, Shen, Jia, & Liu)).

Second, we propose a text correction system designed for the TC task. Our proposed

method features a two-stage structure containing a neural-based error detector and a neural

sequence-to-sequence (Seq2Seq) error corrector with contextual attention. This novel neural

architecture enables the Seq2Seq corrector to produce corrections based on both the detected

errors and the text surrounding the error (context) without requiring an end-to-end (E2E)

structure. As reported in Chapter 4.2, relying solely on the Seq2Seq corrector can lead to

overcorrections (text is rewritten as opposed to simply corrected).

1.1 Aim and Objectives
This study aims to learn how to effectively perform the spelling correction and word

normalization task on Thai social media text (the Text Correction task). The objectives of this

research are as follows:

• Evaluate how well publicly available tools and methods for text correction perform

on the spelling correction and word normalization task on Thai social media text.

• Propose a novel method for performing the spelling correction and word

normalization task on Thai social media text.

• Evaluate our method on the publicly available version of our Text Correction

dataset.

1.2 Contributions
This study focuses on the four contributions: evaluating the current literature on Thai

text spelling correction and text normalization (text correction task), propose a method for the

Thai text correction task, evaluate our proposed method on a multitude of datasets, and

conduct error analysis to examine our model further.

• Study the currently existing tools and methods for text correction and adapt it to

the spelling correction and word normalization task on Thai social media text.

3

o The scope of text correction is limited to the five types of errors that

naturally exist in Thai social media texts: misspelled words, morphed words,

slangs, spoonerisms, and incorrect abbreviation notations.

• Design and implement a Text Correction method for the Thai social media text.

o Explore the characteristic of our method for text correction and apply

techniques to improve the performance.

• Compare our method with the currently existing tools and methods researched.

• Perform error analysis on our method as well as other text correction methods

presented

1.3 Thesis outline
The remainder of this thesis is structured as follows. Chapter 2 overviews the background

knowledge relating to this study. Chapter 3 discusses works relating to Thai spelling correction

and text normalization (Thai TC). Chapter 4 outlines our TC tasks (spelling correction and word

normalization) task on Thai UGWC as well as the development of our Thai UGWC dataset.

Chapter 5 describes our proposed two-stage TC system for Thai UGWC. Chapter 6 discusses the

results of other models we experimented with alongside those of our proposed method. Finally,

Chapter 7 reiterates our contributions and concludes the thesis.

1.4 Publication
The methods and some of the results in this thesis have been previously published

(Lertpiya, Chalothorn, & Chuangsuwanich).

4

2 Background knowledge

2.1 Introduction
This chapter covers the background knowledge relating to the Thai text correction task

(Thai TC). The first section introduces the concept of spell checkers. The second section outlines

the building blocks of deep learning models in natural language processing.

2.2 Spell Checkers & Misspellings
Spell checkers are defined as systems for identifying non-word errors (words that do not

exist in the dictionary). In addition to identifying the errors, the spell checker often produces a

sequence of correction candidates for the identified error. Where the candidates are ordered

according to the probability of the candidate being the proper correction to the error, these spell

checkers are sometimes referred to as spelling corrector.

Traditionally, spell checkers are relatively simple since user written text is matched

against an internal dictionary. Thus, the task of building spell checkers is considered an

engineering problem, where performance (wolfgarbe) or the performance-accuracy trade-off

(Atkinson) is the primary concern. However, in languages where minor spelling errors often result

in a valid dictionary word (e.g., Thai), spell checkers are also expected to detect real-word errors

(errors that are valid words in the dictionary) (Meknavin et al.; Watcharabutsarakham).

A wide variety of methods have been proposed for non-English spelling correction:

including dictionary-based, rule-based, statistically based, deep-learning-models and statistical

machine translation models (Zukarnain, Abbas, Wayan, Trisetyarso, & Kang). Hunspell (Hunspell)

(dictionary-based) is the most widely adopted spell checker; it is used by LibreOffice,

OpenOffice.org, Mozilla Firefox 3, Mozilla Thunderbird, and Google Chrome. However, Hunspell’s

popularity is likely due to the large number of languages it supports (56 languages).

2.3 Deep learning for Natural Language Processing
2.3.1 Deep learning

Deep learning (DL) is a sub-branch of machine learning (ML) where models are primarily

based on deep neural networks (DNN), hence the name. The advantage of DNN stems primarily

from representation learning. Whereas traditional ML methods use statistical methods to model

5

the task on low-level features and handcrafted higher-level features, DL utilizes DNN to extract

higher-level features automatically. At the cost of requiring more data and higher computation

cost. For NLP, these two downsides are often offset by the availability of text data on the

Internet and compute accelerators (e.g., graphic processing units).

2.3.2 Recurrent neural networks

Recurrent neural networks (RNNs) are a type of DNN where part of the input and outputs

of the networks is connected to itself. RNNs are typically used for sequence modeling tasks, due

to its ability to process a sequence of input of arbitrary lengths. RNNs have a variety of different

structures, for example, Long-short-term-memory (LSTM) (Hochreiter & Schmidhuber), and Gated-

Recurrent-Unit (GRU) (Cho et al.). These unique structures allow the RNN to handle sequence

modeling tasks better. For example, the introduction of LSTM is to improve modeling tasks with

long-term dependencies by reducing the issues of vanishing gradients, by not having non-linear

functions across its long-term memory channel.

2.3.3 Sequence-to-Sequence neural networks

A sequence-to-sequence neural network (Seq2Seq) a neural network that takes a

sequence of inputs and produces a sequence of outputs. Seq2Seq networks consisting of two

main sub-structures: an encoder and a decoder. The encoder encodes the input sequence into

some representation. Then that encoded representation is decoded by the decoder into the

output sequence. Seq2Seq networks are employed tasks such as Machine Translation,

Grammatical Error Correction.

6

3 Related works

3.1 Introduction
In this chapter, we explore previous works related to our Text Correction (TC) task on

Thai User-generated Web Content (UGWC). Similar to most Thai NLP task, works on Thai TC are

often adaptations of existing works on other languages (i.e., English). Thus, it is quite useful is to

understand the overall trends of text correction systems, as well as to know the current state of

both Thai and English. This chapter is split into three parts: an overview of text correction

systems, the Thai text correction literature, and the English grammatical error correction

literature.

3.2 Text Correction Systems for Natural Language
In the context of this study, we will separate text correction systems in two types: two-

stage correction systems, and end-to-end correction systems.

Two-stage systems separate the text correction task into two phases: error detection

(detector) and error correction (corrector). The primary rationale of this specific structure is to

reduce the computational cost of performing correction by first identifying potentially erroneous

areas of the text (Meknavin et al.). For example, the detector in dictionary-based systems

(Hunspell; PyThaiNLP) classifies whether a token is an error by searching its dictionary. The

reliance on prebuilt dictionaries limits the detectable errors to non-word errors only (words not

in the dictionary). More statically complex models have been proposed to achieve better error

detection (Lertpiya et al.; Meknavin et al.; PyThaiNLP; Watcharabutsarakham). In the error

correction stage, one or more tokens are chosen as a correction for each of the errors identified.

The corrector in dictionary-based systems may suggest words based on spelling similarity and use

some form of tie-breaking (e.g., the prior probability of a word derived from word frequency

encoded in the dictionary). The accuracy of dictionary-based correctors suffers since context is

often necessary to select the proper substitution. The use of language models (LMs) has been

proposed to overcome this issue and produce context-dependent corrections. However, Thai text

correction systems only utilize traditional LM implemented using tri-grams (Meknavin et al.).

End-to-end systems (E2E) combine the detection and correction stages into a single step.

As such, the corrector produces a correction for every word in the input. In the event where the

word is already correct, the corrector is expected to output the same token. A popular approach

7

in modern text correction literature (i.e., English grammatical error correction task) is reformulating

the error correction task as a machine translation task (MT). Error correction is formulated as a

translation from an “erroneous/informal” language into a “correct/formal” language. Techniques

from statistical machine translation (Grundkiewicz & Junczys-Dowmunt), and subsequently, neural

machine translation (NMT) (Chollampatt & Ng; Grundkiewicz & Junczys-Dowmunt; Junczys-

Dowmunt, Grundkiewicz, Guha, & Heafield) have been employed with great success compared to

the traditional two-stage systems. Then more specialized architectures (Chollampatt & Ng; Zhao

et al.) and techniques for data augmentation and training (Kiyono, Suzuki, Mita, Mizumoto, & Inui;

Zhao et al.) emerged later.

3.3 Thai Text Correctors
Publicly available works for Thai TC can be grouped into two categories: published

literature and FOSS.

The published literature on Thai TC has focused heavily on correcting errors produced

by optical character recognition (OCR) systems (Kruatrachue et al.; Meknavin et al.; Rodphon et

al.; Watcharabutsarakham). In contrast, text correction for text input via human-computer

interfaces (HCIs), such as keyboards, is an underresearched area (Zukarnain et al., 2019). FOSS text

correctors (e.g., Aspell (Atkinson), Hunspell (Hunspell), PyThaiNLP (PyThaiNLP)) are primarily

meant for correcting text from HCIs.

Most Thai TC systems are two-stage systems. A variety of statistical models have been

proposed for the detection stage: dictionary (Hunspell), character-gram (Lertpiya et al.;

Watcharabutsarakham), WinNow (Meknavin et al.), and conditional random fields (CRF)

(PyThaiNLP). However, the works on correction models include only dictionary-based (Hunspell)

and statistical language models using part-of-speech (POS) trigrams (Meknavin et al.). The current

statistical methods used in error detectors cannot detect errors that require extended context

(Watcharabutsarakham, 2005) or require manual feature engineering to address out-of-vocabulary

tokens (Meknavin et al.).

On the other hand, E2E systems for Thai TC based on token-passing algorithms rely

exclusively on prebuilt dictionaries (Kruatrachue et al.; Rodphon et al.). Thus, these methods

cannot address out-of-vocabulary tokens (i.e., names) at all.

8

3.4 English Grammatical Error Correction
The GEC task is an extension to the spelling correction task whose goal is to

automatically produce a grammatically correct sentence when given an erroneous sentence—

without changing the meaning. The most notable standard benchmark dataset for this task is the

Conll-2014 shared task (Ng et al.), which consists of essays written by English as a second

language (ESL) learners and the corresponding corrections annotated by teachers (language

owners).

Significant and recent advancements on the GEC task is the reformulation of GEC into

MT. This reformulation has proved highly successful and has shifted the area of research from

two-stage systems (referred to as “classifier systems” in the GEC literature) to end-to-end

systems (Junczys-Dowmunt & Grundkiewicz; Rozovskaya & Roth).

3.5 Conclusion
In this chapter, we covered works relating to the Thai TC task. We overviewed the text

correction systems in terms of architectures (i.e., two-stage correction systems, and end-to-end

correction systems) and research communities (i.e., Thai Text Correction, and English Grammatical

Error Correction).

9

4 Thai Text Correction task

4.1 Introduction
This chapter describes the Thai Text Correction (Thai TC) task, our user-generated web

content (UGWC) dataset, as well as our experimental setup for evaluating various methods on

the Thai TC task. The text task presented in this chapter was previously published (Lertpiya et

al.).

The goal of TC systems is to correct errors in the input text without altering the meaning.

In the scope of this research, we are only interested in correctable errors in UGWC. Details on the

different types of errors that occur in UGWC (and which are correctable) are covered in Chapter

4.2. In our task, errors are defined as words not in The Royal Institute Dictionary (Society) or a

word (or a sequence of words) that falsely represents the original intent of the author (e.g., “sea”

in “I sea the light.”). Such errors originate from two primary sources: the input method and

nonstandard language usage by the authors.

Textual data input via different methods suffers from different types of errors. One type

can be introduced from unreliable input methods. For example, artifacts from OCR systems (i.e.,

similar-looking characters being mistaken for another character), incorrect keyboard decoding

(typos: striking improper keys), and even from false corrections by automatic correction systems

(e.g., autocorrect on virtual keyboards on touch screen enabled devices). In this work, we

primarily correct errors that originate from texts input by Internet users (i.e., keyboard decoding

errors).

The demographics of the authors also play a role in the types of errors in a text. Errors

can be attributed to nonstandard language use by the authors: intentional use of nonstandard

words or nonstandard word spellings (e.g., morphed words, spoonerisms, and slang) and

unintentional spelling errors (e.g., misspellings). For example, the characteristics of errors that

occur in a business letter differ from those in a social media post.

In this chapter, we will outline our UGWC dataset, and the experimental setup used to

evaluate a variety of methods (including ours detailed in Chapter 5) on the Thai Text Correction

(Thai TC) Task. The first section details our UGWC dataset. The second section outlines the

evaluation metrics used for each experiment. The third section outlines the experiments

performed on our Thai TC task. The results of each experiment are later detailed in Chapter 6.

10

For experimentations on the publicly released version of the Thai TC task as well as

Conll-2014 (Ng et al.), see Chapter 6.8.

4.2 UGWC dataset
Our UGWC dataset is an expanded version of our previous UGWC dataset (Lertpiya et al.)

and is constructed from text data collected from users of online social media platforms. This

data differs from data collected from other online outlets (e.g., news sites) where the content is

typically created by professionals and is often curated. Due to privacy concerns, the UGWC

dataset for spelling correction and word normalization will be only partially released by

Chulalongkorn University for future research purposes. The dataset consists of both longer bodies

of text (e.g., discussions on public forums) and shorter conversational dialogues (e.g., posts and

comments on social media). The dataset items have a mean length of 66 words and a median

length of 19 words. Details on the size of our data are shown in Table 1. Errors and the

corresponding corrections were annotated by language-major students from the Faculty of Arts of

Chulalongkorn University. Errors typically involve one or more of the six main types of errors:

misspelled words, morphed words, slang, spoonerism, incorrect abbreviation, and others. Errors in

non-Thai languages are ignored (annotated as correct), and lines of text consisting purely of other

languages were filtered out before data annotation. Real-world examples of each type of error

and the respective corrections are shown in Table 2. The approximate number of errors in the

training set is shown in Table 3. The numbers are an approximation since the word tonkenizer

may produce in accurate tokenization due to the errors present. Meanwhile, error segments

merges multiple consegutive errors into one. Explanations of each type of error and their English

equivalents are outlined below.

Misspelled words are words whose spelling deviates from the standard spelling

(according to The Royal Institute Dictionary) of the intended word. In this study, misspelled words

are not limited to words that do not appear in the dictionary. For example, the word “sea” in “I

cannot sea in the dark” is a misspelling of the intended word “see”, although the word “sea” is

a valid word in the dictionary.

11

Table 1 Size of the UGWC dataset and the training-testing split
 Tokens Error tokens Error Segments Lines

Train + Dev 7,211,994 247,921 179,803 108,597

Train 6,894,886 236,404 171,487 103,597

Dev 317,108 11,517 8,316 5,000

Test 635,822 22,665 16,537 10,000

Table 2 Examples of different types of errors and their respective corrections

Type of Error Error Correction Type of Error Error Correction

Misspelling ทุ๊กคน ทุกคน Morphed ครัช ครับ

 คว่ำบัตร คว่ำบาตร ตั๊ลลา๊คคคค น่ารัก

Abbreviation มค ม.ค. Spoonerism พับกบ พบกับ

 พน พรุ่งนี ้

Slangs ตีเนียน No Correction Other โรบินสัน No Correction

 อ่อย ทอดสะพาน

Table 3 Approximate number of errors in UGWC training set
 Error tokens Error Segments Error Segments (%)

Misspelling 133,045 102,048 59.5%

Morphed 58,857 44,911 26.2%

Abbreviation 33,580 20,022 11.7%

Spoonerism 318 200 0.1%

Slangs 122 91 0.1%

Other 10,482 4,216 2.5%

Morphed words are words intentionally morphed to emphasize emotions or replicate

human speech. For example, by intentionally misspelling the phrase “sooo gooood” the author

may intend to imitate vowel stresses as they might occur in a verbal conversation.

12

Slangs can consist of either new words (e.g., “Frenemy”, which is a combination of

“friend” and “enemy”) or repurposed words that take new meanings (e.g., the verb “ride” is

sometimes used as a noun to refer to a “car”).

Spoonerisms are a form of wordplay on sound commonly found in informal Thai

dialogue. An English example would be writing “beautiful world” as “weautiful borld”.

Incorrect abbreviation notations include abbreviated words that are misspelled (e.g.,

“USA.” instead of “USA” or “U.S.A.”) and words that are abbreviated despite not having an

official abbreviation (e.g., “brb”, which is an unofficial abbreviation of “be right back”).

“Other” errors include words that do not exist in the dictionary, words that do not have

an official spelling in Thai (i.e., named entities), and words that imitate sounds (e.g., “ahh”,

“eww”, and “aww”).

For our TC task, we are interested only in correctable errors. Thus, slang with no

correction and “other” errors are not considered. The UGWC contains three separate sets of

samples: a training set, a development set, and a test set, as shown in Table 1.

4.3 Evaluation criteria
Word-error-rate (WER) and generalized language evaluation understanding (GLEU)

(Napoles, Sakaguchi, Post, & Tetreault) were adopted as the metrics for the TC task. WER is the

standard evaluation metric used in past literature on Thai TC (Meknavin et al., 1998a, 1998b).

GLEU (Napoles et al., 2015, 2016) was developed as an evaluation metric for English GEC and has

a high correlation with human preference by extending BLEU (Papineni, Roukos, Ward, & Zhu).

Because GLEU evaluates words based on n-grams instead of individual tokens, it tends to favor

grouped errors over scattered ones, whereas WER treats all errors equally. For the English GEC

and spelling correction tasks, we employed the standard M2 and GLEU for comparability with the

existing literature (Chollampatt & Ng; Grundkiewicz & Junczys-Dowmunt; Junczys-Dowmunt et al.;

Kiyono et al.; Ng et al.; Zhao et al.). Our initial goal was to adopt both correction metrics from

English GEC for our Thai TC task. However, we dropped M2 (Dahlmeier & Ng) due to a

combination of M2's high computational complexity and the Thai language's lack of explicit

sentence boundaries (Aroonmanakun). We found that a single paragraph of text can take upwards

of an hour to evaluate.

13

4.4 Experiment setup
We evaluated five methods on the Thai UGWC dataset: an industry-standard spell

checker (i.e., Hunspell), a well-known Thai NLP toolchain (i.e., PyThaiNLP), two models from the

English GEC task (i.e., Bi-GRU (Grundkiewicz & Junczys-Dowmunt) and the copy-augmented

transformer (Norvig)), and our proposed method. We categorize the approaches into two groups:

two-stage error correction (i.e., Hunspell, PyThaiNLP, and ours) and end-to-end (E2E) error

correction (i.e., Bi-GRU and copy-augmented transformer). The configurations used for each

method are outlined below, and the hyperparameter tuning is detailed in Appendix 9.2.

Hunspell (Hunspell) was evaluated using both the provided prebuilt Thai dictionary and

a dictionary constructed from the training data. The constructed dictionary was built from the

words in the corrected text of the UGWC training set. We experimented with multiple cut-off

thresholds for a word to be added to the dictionary; however, we report using only the best

performing threshold (𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ≥ 1)

PyThaiNLP is a popular toolchain in the Thai NLP community that employs techniques

adapted from state-of-the-art research on other languages. PyThaiNLP has a ready-to-use text

correction module that uses a two-stage approach. PyThaiNLP employs a detector that uses

passive-aggressive CRF (Crammer, Dekel, Keshet, Shalev-Shwartz, & Singer) and a Norvig corrector

(Norvig).

Two neural sequence-to-sequence models were evaluated: the bidirectional GRU (Bi-

GRU) network (Grundkiewicz & Junczys-Dowmunt) and the copy-augmented transformer (Zhao et

al.). Bi-GRU represents a baseline for a neural Seq2Seq model, because Bi-GRU is a strictly neural-

based MT method that achieved relatively good performance at its time of publication. In

contrast, the copy-augmented transformer represents the current state-of-the-art architecture

from the English GEC task; it employs specifically designed techniques to perform text corrections

(i.e., the copy substructure and pretraining on augmented data). For the Bi-GRU model, where the

model is meant to operate on SentencePiece tokens (SP) (Kudo & Richardson), the SP tokens are

encoded from tokenized Thai text and space tokens are used to denote word boundaries, the

existing space characters are escaped (replaced with special characters).

14

4.5 Chapter summary
In this chapter, we covered the Thai Text Correction (Thai TC) task, from the details of

our dataset to the experimental setup used to evaluate various methods on the Thai TC task.

 Our dataset is built from UGWC (social text) containing mainly five types of errors and

variances (i.e., misspellings, morphed words, slangs, spoonerisms, and incorrection abbreviation

annotations). We have chosen two evaluation metrics for the Thai TC task: word-error-rate (WER)

and generalized language evaluation understanding (GLEU). Then, we detailed our experimental

setup for evaluating models on Thai TC.

15

5 Method

5.1 Introduction
This chapter outlines our proposed two-stage TC method for Thai TC. The method

presented in this chapter was previously published in (Lertpiya et al.). This chapter is split into

three subsections: model description, data augmentation, and training. The model section details

the structure of our proposed text correction system. The data augmentation section describes

the data augmentation techniques applied during training. Moreover, the training section outlines

the techniques we found to be effective in improving model performance.

5.2 Model
This chapter describes the two-stage corrector: the error detection stage and the error

correction stage. A structural overview of the entire pipeline is shown in Figure 1. The “ ” (space)

character between two words in the error segment is added for visual clarity. “<BEGIN>” and

“<END>” tokens are omitted to reduce clutter. The inputs and outputs of each stage and the

details of the models are outlined below.

The input to the error detection stage is a sequence of words containing potentially

erroneous input text 𝑤⃗⃗ = {𝑤1, 𝑤2, … , 𝑤𝑁}, where 𝑁 is the total number of words. The

detection stage uses the error detector to predict a sequence of labels of the same length 𝑙 =

{𝑙1, 𝑙2, … , 𝑙𝑁}, where a prediction 𝑙𝑖 denotes the prediction of the corresponding word 𝑤𝑖. A

word is labeled either erroneous or correct 𝑙𝑖 ∈ {𝑒𝑟𝑟𝑜𝑟, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡}, where the erroneous label

denotes correctable errors as defined in Chapter 4.2.

16

Figure 1 Overview of our text correction system

The error correction stage is given the same input sequence 𝑤⃗⃗ = {𝑤1, 𝑤2, … , 𝑤𝑁} and

error detection prediction 𝑙 . The error correction stage should produce the appropriate corrected

sequence 𝑤∗⃗⃗⃗⃗ ⃗ = {𝑤1
∗, 𝑤2

∗, … , 𝑤𝑀
∗ } while leaving every correct input word unaltered. The error

correction stage achieves this by extracting error segments from the error detection result. An

error segment is a contiguous sequence marked as erroneous. The correction stage then uses the

error corrector to produce a sequence of correction words to replace each error segment. The

sequence-to-sequence structure of our error corrector allows the correction stage to produce a

corrected sequence that may differ in length from the input sequence 𝑁 ≠ 𝑀. For example,

given the input “p | ัง | ใช้ | ไม่ | ได้ | อีก | หรอ | ครับ” where the 1st, 2nd, and 7th words labeled as

erroneous, the correction stage would extract two error segments: “p | ัง” and “หรอ”. Given the

correction “ยัง” and “หรือ”, the correction stage will produce the corrected sequence “ยัง | ใช้ | ไม่

| ได้ | อีก | หรือ | ครับ”

The error correction stage is given the same sequence of words containing erroneous

text and the prediction from the detection stage. The error correction stage then produces a new

sequence 𝑤∗⃗⃗⃗⃗ ⃗ where every word 𝑤𝑖 marked as correct 𝑙𝑖 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is left unaltered. The error

17

correction stage does this by extracting error segments from the detection data. An error segment

is a contiguous sequence marked as errors by the detector. The text corrector produces a

correction based on the erroneous text and the context text the error. For example, extracting

from this sequence “p | ัง | ใช้ | ไม่ | ได้ | อีก | หรอ | ครับ” where the 1st, 2nd, and 7th words are

erroneous, would result in two error segments corresponding to “p | ัง” and “หรอ” respectively.

And the appropriate correction would be “ยัง” and “” which will produce the corrected

sequence “ยัง | ใช้ | ไม่ | ได้ | อีก | หรือ | ครับ”. By grouping up the errors into segments and using a

corrector that produces a sequence of words, our method avoids the issue where the erroneous

word in the original text does not have a one-to-one mapping to the words in the correction.

5.2.1 Error Detector

Our error detector is a bidirectional-LSTM (bi-LSTM) (Hochreiter & Schmidhuber; Schuster

& Paliwal) binary sequence tagger. An illustration of the detector is shown in Figure 2. The model

consists of a word embedding layer (with a size of 64), a character embedding layer (with a size

of 128), a character bi-LSTM encoder (32 nodes in each direction), a two-layer bi-LSTM (64 nodes

in each layer and direction), and an output dense projection layer with a softmax activation

function. The character-level embeddings are produced from the concatenation of the character

encoder bi-LSTM last hidden state in both directions, as shown in Figure 3. The sequence tagger

estimates the probability of each input word as either erroneous or correct. The detection

threshold is selected based on the error detection 𝐹1-score on the development set (detailed in

Chapter 6.6). The vocabulary of the error detector is created by selecting the 𝑛 most common

words from the corrected text of our training data. This approach minimizes the number of

erroneous words in our vocabulary because the presence of label noise causes a small number

of words in the corrected text to be erroneous. We selected the 24,576 (3 × 213) most common

words as our vocabulary. Words not in our vocabulary are replaced with a special out-of-

vocabulary (OOV) token. We also explored using of subword units to handle OOV by evaluating

our model with SentencePiece tokens (Kudo & Richardson) rather than word tokens. In the

SentencePiece variant of our model, the vocabulary size is also 24,576 tokens. During training, the

detection model is optimized using Adam (Kingma & Ba) with a learning-rate of 0.002 on the

cross-entropy loss. See Appendix 9.2 for a consolidated list of hyperparameters.

18

Figure 2 Error detector operating on a sequence

Figure 3 Character LSTM embedding layer encoding a word token

5.2.2 Error Corrector

Our proposed error corrector is an autoregressive sequence-to-sequence (Seq2Seq)

neural network. An illustration of the overall structure is shown in Figure 4. For each error

segment, the corrector is given the error segment in characters and the context of the error

segment in words. The context is the input sequence with a portion of the error segment

replaced with a special ERR token. The corrector then produces a sequence of words as a

correction for the error segment. The difference between our model a typical Seq2Seq network is

our context-aware encoder, which includes a contextual attention layer. Details of the encoder

and the decoder of the corrector are provided later in this thesis. The corrector shares the same

vocabulary as the error detector. Corrections containing OOV tokens are discarded, and the error

segment is left unaltered. The corrector is optimized using Adam (Kingma & Ba) with a learning

rate of 0.002 on the cross-entropy loss. The main hyperparameters are 𝑚 = 24 and 𝑛 = 128.

See Appendix 9.2 for a consolidated list of hyperparameters.

19

Figure 4 Structure of the Seq2Seq text corrector

5.2.2.1 Encoder

The context-aware encoder is composed of 2 embedding layers, 3 bi-LSTM encoders,

and a contextual attention layer, as illustrated in Figure 5. The contextual attention layer allows

the corrector to encode both the erroneous sequence and the context sequence into the

encoded sequence. The encoder was inspired by the query-to-context attention mechanism in

BiDAF, which is a proven architecture originally proposed for the machine comprehension task

(Seo, Kembhavi, Farhadi, & Hajishirzi). BiDAF is used to model a sequence generation task for two

input sequences of varying lengths. The encoder in BiDAF computes two attention matrices:

query-to-context (Q2C) and context-to-query (C2Q), which are combined along with the encoded

query into a single encoded sequence that represents both the query and the context. Our

context-aware encoder encodes the context by performing dot-product attention from the

erroneous sequence to the context sequence. This approach is similar to the Q2C attention in

BiDAF. Our erroneous sequence is equivalent to the query sequence in BiDAF, and our context

sequence is equivalent to the context sequence in BiDAF. The encoded context represents the

information in the context relevant to decoding the erroneous characters. Our preliminary

experiments showed that the corrector performed better when utilizing only BiDAF's Q2C

encoder rather than the full array of encoders in BiDAF. Our experiments were developed using

the AllenNLP framework (Gardner et al.) and the BiDAF implementation in AllenNLP (AllenNLP) as

a reference. The details of each layer of our context-aware encoder are described below.

Error encoding. The erroneous character tokens 𝑒 = {𝑒1, 𝑒2, … , 𝑒𝐽} of the error segment

are embedded with the character embedding layer. The embedding layer projects each character

20

into a 2m vector space, which produces a matrix 𝐸(𝑒) ∈ 𝑅𝟚𝑚×𝐽 . The character embeddings are

then encoded by the “error encoder” (a bidirectional LSTM with m nodes in each direction) into

an erroneous-encoding matrix 𝐸(𝑙) ∈ 𝑅𝟚𝑚×𝐽.

Context encoding. The contextual word tokens 𝑐 = {𝑐1, 𝑐2, … , 𝑐𝐾} are embedded with

the word embedding layer. The word embeddings project each word into a 2𝑚 vector space,

which produces a matrix 𝐶(𝑒) ∈ 𝑅𝟚𝑚×𝐾 . The word embeddings are then encoded by the

“context encoder” (a bidirectional LSTM with m nodes in each direction) into a context-encoding

matrix 𝐶(𝑙) ∈ 𝑅𝟚𝑚×𝐾.

Figure 5 Structure of the encoder

21

Contextual encoding. The erroneous-encoding matrix 𝐸(𝑙) and the context-encoding

matrix 𝐶(𝑙) are then input to the contextual attention layer, which computes the contextual

embeddings matrix 𝑍(𝑒) ∈ 𝑅𝟜𝑚×𝐽. The contextual embedding 𝑧𝑗
(𝑒)

∈ 𝑅𝟚𝑚 is a concatenation of

the error encoding 𝑒𝑗
(𝑙)

∈ 𝑅𝟚𝑚 and the error-to-context vector 𝑥𝑗 ∈ 𝑅𝟚𝑚 as shown in Eq 2. The

error-to-context matrix 𝑋(𝑒) ∈ 𝑅𝟚𝑚×𝐽 is the attention of error encoding on the context encoding

computed from the similarity matrix 𝑆 ∈ 𝑅𝐾×𝐽 as shown in Eq 1.

𝑆 ∈ 𝑅𝐾×𝐽 𝑠𝑘𝑗 = 𝑐𝑘
(𝑙)𝑇

⋅ 𝑒𝑗
(𝑙)

∈ 𝑅

𝐴 ∈ 𝑅𝐾×𝐽 𝑎𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠𝑗) ∈ 𝑅𝐾

𝑋(𝑒) ∈ 𝑅𝟚𝑚×𝐽 𝑥𝑗 = (𝐶(𝑙)𝑇 ⋅ 𝑎𝑗)
𝑇

∈ 𝑅𝟚𝑚 (1)

𝑍(𝑒)  ∈  𝑅𝟜𝑚 ×  𝑧𝑗
(𝑒)

= [𝑒𝑗
(𝑙)

; 𝑥𝑗] ∈ 𝑅𝟜𝑚 (2)

Subsequently, the contextual embeddings 𝑍(𝑒) ∈ 𝑅𝟜𝑚×𝐽 are encoded by the

“contextual encoder” (a bidirectional LSTM layer containing n nodes in each direction) into a

contextual-encoding matrix 𝑍(𝑙) ∈ 𝑅𝟚𝑛×𝐽.

5.2.2.2 Decoder

The decoder is a typical LSTM decoder (a unidirectional LSTM containing 2n nodes) with

an attention mechanism (Bahdanau, Cho, & Bengio) that observes contextual encoding, as shown

in Figure 4. The decoder produces a correction for the error segment. Because the corrector is an

autoregressive network, the decoder operates by predicting a token 𝑤𝑡
(𝑐) given the token

predicted from the previous timestep 𝑤𝑡−1
(𝑐) ; therefore, the tokens before and after the actual

correction words are special tokens, as shown in Eq 3, where 𝐿 is the number of words in the

correction.

𝑤∗⃗⃗⃗⃗ ⃗ = {𝐵𝐸𝐺𝐼𝑁,𝑤1
∗, 𝑤2

∗, … , 𝑤𝐿
∗, 𝐸𝑁𝐷} (3)

The decoding process is repeated until the timestep following the end of the correction

sequence 𝑡 = 𝐿 + 1, where the network is expected to output a special 𝐸𝑁𝐷 token to indicate

the end of the sequence. The hidden state ℎ0 ∈ 𝑅𝟚𝑛 of the decoder LSTM is initialized with the

final hidden state of the “contextual encoder”. The input to the LSTM decoder is a

concatenation of the word embeddings and the context vector, as shown in Eq 4. The token

produced from the previous timestep 𝑤𝑡−1
(𝑐) is embedded with the word embedding layer, which

produces word embeddings 𝑒𝑡
(𝑒)

∈ 𝑅𝟚𝑛. The context vector 𝑒𝑡
(𝑐) ∈ 𝑅𝟚𝑛 is computed with dot-

product attention from the previous hidden state ℎ𝑡−1 to the encoded sequence 𝑍(𝑙). The

22

embedding 𝑒𝑡 is a concatenation between the word embeddings and the context vector, as

shown in Eq 4.

𝑒𝑡 = [𝑒𝑡
(𝑒)

; 𝑒𝑡
(𝑐)

] ∈ 𝑅𝟜𝑛 (4)

ℎ𝑡 , 𝑐𝑡 = 𝐿𝑆𝑇𝑀𝑑𝑒𝑐𝑜𝑑𝑒𝑟(ℎ𝑡−1, 𝑐𝑡−1, 𝑒𝑡)

The decoder is trained with teacher forcing. Thus, during training, the decoder's input is

derived from data instead of the output from the previous timestep.

5.3 Data Augmentation
We experimented with injecting noise into the dataset during model pretraining to help

increase the number of erroneous examples in the training set. Our method was inspired by the

data augmentation technique employed in the copy-augmented transformer (Zhao et al.).

However, we inject character errors rather than word errors. We inject three types of errors: a

random character deletion, a random character substitution, and a random character insertion.

Each type of error possesses a 3% probability of appearing at every position in the text. When a

character is replaced or inserted, the replacement character is chosen at random based on the

distribution of that character in the training set.

5.4 Training
This chapter describes the training routine, which is shared by both the detection and

the correction stages. Any details that differ between the two models are outlined in their

corresponding section under Chapter 5.2.

The dataset is separated into three sets: a training set, a development set, and a test set.

The test set is used only to report the model performance after training and to conduct the error

analyses reported in this thesis. The details of each set for UGWC are covered in Chapter 4.2,

while details on other tasks are listed in their corresponding experiments.

We evaluated three training configurations: training only on the training set, training only

on the noise-injected training set, and models pretrained on the noise-injected training set and

fine-tuned on the original training set. During fine-tuning, we reduced the learning rate to 0.0005

for both the detector and the corrector.

During training and pretraining, the models are validated (evaluated on the development

set) to prevent overfitting between epochs. The corrector is evaluated after a fixed number of

23

iterations (i.e., 25,000 error segments) instead of finishing the whole epoch. Early stopping

patience is 20 epochs for the detector and 20 groups (of 25,000 error segments) for the corrector.

The models were evaluated using their respective loss functions. We found that neither using the

𝐹1-score for the detector validation nor accuracy for the corrector validation resulted in

improved performances.

5.5 Chapter summary
In this chapter, we covered our proposed method of performing Thai TC on UGWC data.

Our proposed method is a two-stage corrector, for additional details of the different types of text

correctors see Chapter 3.2. A two-stage corrector is comprised of a detector and a corrector. The

detector is responsible for identifying the erroneous portions of the text, which is then corrected

by the correction stage. Unlike traditional two-stage correctors, our correction stage features the

contextual attention layer, which allows the corrector to produce the correction based on both

the erroneous portion of the text and the surrounding text.

24

6 Results and Discussion

6.1 Introduction
In this chapter, we outline and discuss the results of our experiments, detailed in

Chapter 4.4. First, Text Correction approaches were evaluated on the Thai UGWC. Second, we

further explore how our method performs with SentencePiece tokens. Third, each stage of our

proposed pipeline (i.e., detection stage, correction stage) is evaluated in isolation. Fourth, we

investigate how detection sensitivity should be tuned for optimal performance. Fifth, we examine

how iterative correction affects the results of our method. Lastly, we will evaluate our method

on the publicly available version of our Thai UGWC dataset. The results presented from Chapter

6.2 to 6.6 were previously published in (Lertpiya et al.).

6.2 Thai UGWC
The TC results on the Thai UGWC dataset are shown in Table 4. We categorized the

results into two groups: off-the-shelf ready-to-use models and models trained on the UGWC

training set. Two off-the-shelf models were evaluated: Hunspell with its prebuilt dictionary

(Hunspell), PyThaiNLP (PyThaiNLP). Furthermore, we evaluated three trained models: Hunspell

(dictionary-based) (Hunspell), Bi-GRU (Neural Seq2Seq) (Grundkiewicz & Junczys-Dowmunt), and

the copy-augmented transformer (Neural Seq2Seq with Augmentation) (Zhao et al.). Samples of

the corrections produced by the individual models are shown in Appendix 9.1.1. The time

required by each model to perform inference on the test set is shown in Table 6. Below, we

discuss the shortcomings of the methods that struggled with the Thai TC task before reporting

the overall results.

Correction systems with dictionary-based correctors (i.e., Hunspell (Hunspell), and

PyThaiNLP (PyThaiNLP)) often struggle to select a correct correction candidate. As a result, a

system with a more conservative error detector would produce less incorrect corrections.

Hunspell with its prebuilt dictionary performed the worst. Although we experimented with

multiple cut-off thresholds for creating the custom dictionary for Hunspell, the best result is

reported in Table 4.---the dictionary built from words in the corrected text from the training set

(𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ≥ 1). Although this model suffers from erroneous words in the dictionary, due to

label noise in the corrected text, compared to the provided dictionary, the errors left

uncorrected outweigh the potential errors introduced from corrections with false-positives.

25

Although the GEC literature may suggest that end-to-end (E2E) correction systems are

the natural step forward for text correction systems, our results showed that the basic E2E text

corrector is insufficient for correcting errors in Thai UGWC (see Bi-GRU (Grundkiewicz & Junczys-

Dowmunt) in Table 4). The error analysis showed that most of the errors made by Bi-GRU result

from the model getting stuck in a loop, thus repeatedly producing the same groups of tokens. To

combat this, we tried performing corrections on truncated inputs, which improves the score.

However, the Bi-GRU with the best performing input size (20 tokens for WER and 50 tokens for

GLEU) still suffered from looping and overcorrections (i.e., text being rewritten with a different

meaning). As a result, Bi-GRU performed significantly worse than did the simpler two-stage

correctors. In Table 4, Bi-GRU scores are reported from the model operating on SentencePiece

tokens with the original space characters escaped. However, we also experimented with

executing Bi-GRU on SentencePiece with untokenized Thai text, and that model still exhibits the

issues mentioned above. Some samples produced by executing Bi-GRU on SentencePiece on

untokenized Thai text are shown in Appendix 9.1.1.

The copy-augmented transformer (Zhao et al.) showed massive improvement over Bi-

GRU and even produced a positive word error rate reduction on the input text. However, the

error analysis showed that the copy-augmented model still suffers from overcorrections, primarily

randomly dropping words from the input and producing corrected text with a different meaning.

Table 5 shows a breakdown of the WER score; the copy-augmented model shows substantially

worse deletion and insertion error rates compared to our model, which confirms our analysis.

Our proposed method without data augmentation outperforms all the other models

evaluated on the Thai TC task. The results also showed that pretraining on the augmented

training set followed by fine-tuning further improves the correction performance. However,

training on an augmented training set without fine-tuning significantly degrades the correction

performance.

6.3 SentencePiece as unit tokens
In this chapter, we evaluate how our model performs with two different token types:

word tokens and SentencePiece tokens. SentencePiece (subword tokens) potentially allow a

model to operate on text with an open vocabulary. Because SentencePiece-based models do

not produce word boundaries, word tokenization is required to postprocess the results for

evaluation. To ensure a fair comparison between the two models, we also retokenized the

26

results from our word-based model. The results are shown in Table 7. In terms of GLEU, both

models scored similarly. However, the word model substantially outperformed the

SentencePiece model in terms of WER. The error analysis showed that when the word-based

model is unable to produce a correction (outputs an OOV token), the SentencePiece-based

model also produced incorrect corrections. Due to false-positives in the detection stage, not

correcting is the better option in such cases.

Table 4 Evaluation of end-to-end error correction on the Thai UGWC test set by various systems

Model Type GLEU WER (%) ∆WER (%)
Do nothing (source text) - 0.8845 3.77 0.00
Ideal correction (Oracle) - 1.0000 0.00 -100.00

Off the shelf
Hunspell Two-Stage 0.8267 8.11 +115.12

PyThaiNLP Two-Stage 0.8612 5.58 +48.01
Trained

Hunspell Two-Stage 0.8598 5.57 +47.75
Bi-GRU (180 token limit) End-to-End 0.4035 50.82 +1,247.92

Bi-GRU (50 token limit) End-to-End 0.7462 17.51 +364.38
Copy-Augmented Transformer* End-to-End 0.9374 2.58 -31.56
Copy-Augmented Transformer** End-to-End 0.9409 2.51 -33.42
Ours Two-Stage 0.9453 2.24 -40.66
Ours* Two-Stage 0.9361 2.83 -25.03

Ours** Two-Stage 0.9502 2.07 -45.21
Ours** (with Oracle Detection) Two-Stage 0.9774 1.08 -71.39

* Model is only trained on noise injected dataset.
** Model is pre-trained on noise injected dataset before fine-tuned on the regular training

Table 5 Detailed WER evaluation of correction methods on the Thai UGWC test set
Model Substitution (%) Deletion (%) Insertion (%) WER (%)
Do nothing
(source text)

2.84 0.64 0.27 3.77

Copy-augmented** 1.63 0.56 0.30 2.51

Ours** 1.44 0.33 0.28 2.07
** Model is pre-trained on noise injected dataset before fine-tuned on the regular training

27

Table 6 Inference time on the Thai UGWC test set by various systems
 Detection Correction End-to-end Lines per Second

CPU
Hunspell 0:00:02 0:11:15 0:11:17 14.79

Hunspell (Trained) 0:00:01 0:04:02 0:04:03 41.06
PyThaiNLP 0:04:18 4:16:37 4:20:55 0.65

Bi-GRU (20 token limit) - - 3:54:07 0.71
Copy-augmented - - 0:18:05 9.22

Ours 0:03:38 0:03:07 0:06:45 24.69
GPU

Bi-GRU (20 token limit) - - 0:23:12 7.18
Copy-augmented - - 0:04:19 38.61
Ours 0:01:23 0:01:23 0:02:46 60.20

The CPU timing information is on an Intel i7-7800X.
The GPU timing information is on an Nvidia Geforce GTX 1080 Ti.
Inference is performed line-by-line (without line-level parallelism).

Table 7 Evaluation of retokenized output from our method with different unit token types on
the Thai UGWC test set

 GLEU WER (%) ∆WER (%)
Retokenized source text 0.8870 3.55 0.00

Ours with Word as unit token** 0.9565 1.71 -51.72
Ours with SentencePiece as unit token** 0.9567 1.94 -45.24
** Model is pre-trained on noise injected dataset before fine-tuned on the regular training

6.4 Detection stage
This chapter examines the detection stage from two aspects: detection coverage of the

errors in the data and the error segments produced from the detection stage. An error segment

can be classified into four types: exact detection, overdetection, partial detection, and false-

positive detection. Figure 6 shows the four types of error segments. An exact detection occurs

when the predicted boundaries of an error segment match the true boundaries of the error

segment. Overdetection occurs when the predicted error segment covers an area larger than the

actual error segment. A partial detection occurs when a predicted error segment only partially

covers the actual error segment. Last, false-positive detection occurs when a predicted error

segment does not overlap with any actual error segments. From the perspective of the actual

28

errors in the data, reducing the detection threshold increases the detection coverage, as shown

in Figure 7. However, there is a trade-off between the detection coverage and the number of

false-positive detections, as shown in Figure 8 and Figure 9. Overdetection increases as the

threshold decreases; but Interestingly, partial detection remains roughly the same across all

detection thresholds. The evaluation broken down by error types is shown in Figure 10 and

Figure 11. The performance is consistent for misspelled words, morphed words, and incorrect

abbreviation notations but varies for spoonerisms and slang, which have smaller numbers of

samples.

Figure 6 Four types of error segments

Figure 7 Detection coverage of our method on the Thai UGWC test set

29

Figure 8 Types of error segments produced from the detection stage of our method on the Thai

UGWC test set

Figure 9 Coverage of the detection and false-positives produced from the detection stage to our

method on the Thai UGWC test set

Figure 10 Number of error segments produced for different types of errors on the Thai UGWC

test set

30

Figure 11 Normalized number of error segments produced for different types of errors on the

Thai UGWC test set

6.5 Correction stage
This chapter also examines the correction stage from two aspects: correction coverage of

the errors in the data and the error segments that are corrected in the correction stage.

Correction of a covering error segment (i.e., exact detection and overdetection) is corrected either

accurately or incorrectly. For false-negative detection, the error is uncorrected. For partial

detection, any correction is considered incorrectly corrected because portions of the erroneous

text lie outside the error segments. Figure 12 shows the correction coverage of our method.

From the perspective of the actual errors in the data, reducing the detection threshold tends to

increase the correction coverage. However, the correction coverage flattens out at lower

thresholds and even decrease slightly at a threshold of 0.1. Thus, a trade-off exists between the

correction coverage and the number of remaining errors in the corrected text, as shown in Figures

Figure 13, Figure 14, and Figure 15. A breakdown of the evaluation by error types is shown in

Figures Figure 16 and Figure 17. In-line with error detection, performance is consistent for

misspelled words, morphed words, and incorrect abbreviation notations but varies for

spoonerisms and slang.

31

Figure 12 Correction coverage of our method on the Thai UGWC test set

Figure 13 Types of corrections produced by our method on the Thai UGWC test set

Figure 14 Breakdown of the remaining errors after executing our method on the Thai UGWC test

set

32

Figure 15 Coverage of the correction and the resulting number of errors from our method on

the Thai UGWC test set

Figure 16 The number of error segments corrected for different types of errors on the Thai

UGWC test set

Figure 17 Normalized number of error segments corrected for different types of errors on the

Thai UGWC test set

33

6.6 Detection sensitivity
In this section, we evaluate how the detector performance correlates with the end-to-

end correction performance at different detection sensitivities. The detection stage is evaluated

as a typical detection task using the 𝐹1-score on the test set. The results are shown in Figure 18.

We found that the trend of the GLEU score follows the detection 𝐹1-score and that a threshold

of 0.4 performs best on both metrics. For all the results reported outside of this chapter, we

tuned the detection threshold on the development set, which sets the threshold = 0.5.

6.7 Multi-pass correction
In this section, we investigate how performing multiple correction pass with our method.

Prior research on English Grammatical Error Correction has shown that an error corrector may not

be able to correct all errors within a single correction pass (Ge, Wei, & Zhou). With the rationale

being that the model may be confused by the errors within the context. Thus, by first reducing

the error, the model should better correct the remaining errors.

The process for multi-pass correction is as follows. We initially perform correction as

detailed in Chapter 5; however, the corrected output is then fed back to be re-corrected. For

evaluation, this process is repeated for five iterations to ensure convergence of correction score.

Our method was evaluated on three groups multi-pass correction configurations: regular

correction, under-correction, over-correction. As concluded from our last section (Chapter 6.6),

our method produced the best overall correction when the detection stage’s threshold is tuned

to the using the 𝐹1 score on the detection task, that is, threshold = 0.5 (when tuned on the

development set). For regular correction, the same tuned threshold is chosen and fixed for each

iteration. And, in theory, allow the corrector to correct the remaining errors in the text. For under-

correction, the threshold is raised. For over-correction, the threshold is lowered. Based on our

results in Section 6.5, the detection threshold dictates the trade-off between the number of

existing errors corrected, and the number of errors introduced by the corrector.

The results for multi-pass correction are shown in Table 8. Multi-pass correction, when

applied directly to our method, does not yield any improvements in performance for any of the

detection thresholds. For over-correction and regular correction thresholds, the corrector

produces the best correction on the first iteration, whereas the subsequent iterations lead to

more errors being introduced. For under-correction thresholds, the corrector converges to some

34

correction score. However, the resulting correction is lower than that of a single pass correction

at the tuned threshold value. The higher correction score at 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.4 is explained in

Chapter 6.6.

Figure 18 Detection and end-to-end correction performances at different detection sensitivities

Table 8 Evaluation of our method with multi-pass correction at different detection thresholds
on the Thai UGWC test set

 Detection Threshold

 Over-correction Regular Under-correction
Iteration 0.3 0.4 0.5 0.6 0.7 0.8

1 0.9491 0.9504 0.9502 0.9490 0.9473 0.9432
2 0.9455 0.9484 0.9498 0.9496 0.9483 0.9451
3 0.9461 0.9486 0.9499 0.9497 0.9484 0.9453

4 0.9449 0.9480 0.9498 0.9496 0.9483 0.9453
5 0.9458 0.9484 0.9498 0.9496 0.9483 0.9453

6.8 Publicly released Thai UGWC dataset
In this section, we outline the results of our method on the two publicly released

versions of our Text Correction on the Thai UGWC dataset. First is a smaller version of our

dataset, containing 15,597 entries. Second is a text correction dataset with additional annotation

for transliteration, which contains 17,307 entries. Both released datasets are pre-shuffled. For

evaluation, without reordering the data, split the data into three sets (training set 75%,

development set 5%, and test set 20%). For the first set (without transliteration), the 11,697

leading entries are the training set, then the next 780 entries are the development set, and the

last 3120 entries are the test set. For the second set (with transliteration), the 12,980 leading

entries are the training set, then the next 865 entries are the development set, and the last 3,462

entries are the test set. Our method is trained and evaluated on each dataset, as detailed in

35

Chapter 5.4. Evaluation of the detection stage is shown in Table 9. And the end-to-end

evaluation is shown in Table 10.

On the public text correction task, our method was able to produce output with lower

word-error-rates and higher fluency scores (GLEU). With the augmented model without fine-

tuning performing the worse, and the augmented + fine-tuned model performing the best.

Results on the public task are in-line with the full-size dataset reported in Chapter 6.2. However,

on the public text correction with transliteration, employing augmentation and fine-tuning did not

result in better detection performance.

Table 9 Detection evaluation of our method on the test set
of the publicly released Thai UGWC datasets

Model Precision Recall F1
Public Text Correction
Detection 0.910 0.899 0.905
Detection* 0.899 0.892 0.896
Detection** 0.905 0.908 0.907

Public Text Correction (with Transliteration)
Detection 0.922 0.900 0.911
Detection* 0.894 0.911 0.902
Detection** 0.901 0.907 0.904
* Model is only trained on noise injected dataset.
** Model is pre-trained on noise injected dataset before fine-tuned on the regular training

36

Table 10 End-to-end evaluation of our method on the test set
of the publicly released Thai UGWC datasets

Detector Corrector GLEU WER (%) ∆WER (%)
Text Correction

Do nothing 0.484 16.04 0.000%
Oracle 1.000 0.00 -100.000%

Ours Ours 0.886 4.55 -71.600%
Oracle Ours 0.956 2.14 -86.641%
Ours* Ours* 0.883 4.72 -70.579%

Ours** Ours** 0.896 4.10 -74.404%
Oracle Ours** 0.966 1.59 -90.106%

Text Correction (with Transliteration)
Do nothing 0.484 16.04 0.000%
Oracle 1.000 0.00 -100.000%
Ours Ours 0.865 6.50 -59.489%
Oracle Ours 0.937 3.40 -78.814%
Ours* Ours* 0.872 6.50 -59.473%
Ours** Ours** 0.873 6.32 -60.586%

Ours Ours** 0.875 5.97 -62.779%
Oracle Ours** 0.948 2.68 -83.267%
* Model is only trained on noise injected dataset.
** Model is pre-trained on noise injected dataset before fine-tuned on the regular training

37

7 Conclusion
In this study, we investigated how various text correction systems and our proposed

method performed on our Thai text correction (Thai TC) task.

Our investigation into the various techniques showed that most systems struggle when

applied to Thai TC. Traditional two-stage Thai text correction systems, which rely on a dictionary-

based corrector, suffer because they select improper candidates during the correction stage. As a

result, these systems are unable to produce an output with error levels below those of the

input. However, these results are in-line with the current use of these systems because spell

checkers require human intervention to select the proper correction. On the other hand, the

basic end-to-end correction systems (E2E) (i.e., Bi-GRU Seq2Seq (Grundkiewicz & Junczys-

Dowmunt)) suffer other issues when applied to Thai TC and perform much worse. However,

moving to a more advanced E2E system (i.e., copy-augmented transformer (Zhao et al.)) showed

that a Seq2Seq corrector with a substructure that encourages copying could enable a corrector

to produce text corrections that are better than the original input text.

Our proposed model is a neural-based two-stage error correction system with a novel

context-aware correction stage. We investigated how the detection stage affects the overall

correction performance and how to tune the proposed text correction system for optimal

correction performance. Our proposed system outperformed all the existing tested techniques

on the TC task on the Thai UGWC dataset.

7.1 Limitations
When compared to traditional methods (e.g., Hunspell (Hunspell)), the vocabulary of

deep-learning-based methods (e.g., our method, Bi-GRU (Grundkiewicz & Junczys-Dowmunt),

copy-augmented transformer (Zhao et al.)) are not as easily extendable. Every new word must be

introduced in the form of example sentences, as is opposed to a dictionary. Also, the number of

examples required for the model to generalize is not apparent.

In terms of our experiment, our method is evaluated a specific type of data (i.e., Thai

user-generated web-content). As such, further experimentation is required to determine the

performance of a text corrector on other domains.

38

7.2 Contributions
In this section, we will cover the completed works during the development of this thesis,

in addition to the findings of the study.

With cooperation with Faculty of Arts of Chulalongkorn University, Faculty of Engineering

of Chulalongkorn University, and Kasikorn Labs, we developed the annotations guidelines for a

variety of Thai natural language processing task (including the Thai Text Correction in this thesis)

as well as annotated a corpus build on User-generated web content (social text). The overall

details of the corpus were published in (Lertpiya et al., 2018). Additional details of the text

correction task are covered in Chapter 4.2.

This study was conducted to develop fundamental natural language processing (NLP)

services to enhance KBank’s NLP capabilities, where the text correction task is one of six

fundamental NLP tasks. Thus, in addition to the research of the text correction method (detailed

in this thesis), we also developed a web API to increase model ease of use.

Partially of our Thai user-generated web-content is the first publicly available dataset on

the text correction task for Thai text.

7.3 Future work
In this work, proposed a handcrafted procedure for performing data augmentation for

model pretraining. In future work, a learning-based method for data augmentation (e.g., back-

translation (Kiyono et al.)) could further improve the correction performance.

 From our observation, we found that large portions of errors and variance in the Text

Correction task (as defined in Chapter 4) are filler words. As such, further investigation is needed

for adapting text correctors as preprocessing of another task.

In addition, we found during error analysis (outlined in Appendix 0) that reducing error

propagation from word tokenization can also increase correction performance, thus further

research into error resilient word tokenization could benefit the text correction task.

39

8 Appendix

8.1 Hyperparameters
In this section, we cover the process and results of hyperparameters tuning on our

method on the Thai Text Correction (Thai TC) task.

On the Thai text correction task, we obtained the hyperparameter values for both our

method and the other neural-based methods evaluated in this thesis (i.e., Bi-GRU (Grundkiewicz &

Junczys-Dowmunt) and copy-augmented transformer (Norvig)) using grid-search for optimal

performance. Table 11 shows a consolidated list of the hyperparameters for our method. The

search range for each component of our error detector was 32-512, with multiple-of-2

increments. For our corrector, the search ranges for “m” and “n” are 16-40 with increments of 8

and 64-256 with multiples of 2 increments, respectively.

On the English spelling correction task (in Chapter 8.3), our hyperparameters remain the

same as on the Thai TC task, while the hyperparameters for other methods were set according to

their original papers (i.e., Bi-GRU (Grundkiewicz & Junczys-Dowmunt) and copy-augmented

transformer (Norvig)).

8.2 Error Analysis of Text Correction on Thai UGWC
8.2.1 End-to-end correction

In this chapter, we perform end-to-end error analyses on each of the results reported on

our text correction task on the Thai user-generated web content (text data collected from social

media) described in Table 4. We selected two lines (see Table 12, Table 13, and Table 14) to

illustrate the types of issues each correction system struggled with. “Annotation” is used to

denote the test set, while “Annotation-2” denotes another annotation by our linguist at KLabs.

For the bidirectional GRU (Bi-GRU) model (Grundkiewicz & Junczys-Dowmunt) on untokenized

text, where the model operated on the SentencePiece tokens (Kudo & Richardson), the results

are hand tokenized in favor of the model (leading to the lowest amount of errors). For models

with multiple configurations, only the best configuration is analyzed. That is, our pretrained and

fine-tuned model with words as the unit tokens, the Bi-GRU model with 50-token limits, the Bi-

GRU model with 20-token limits, the Bi-GRU model with 40-token limits (untokenized), and the

pretrained and fine-tuned copy-augmented transformer.

40

Table 11 Consolidated list of hyperparameters for our proposed method
Component Configuration

Error Detector
Vocabulary 24576 tokens

Word embeddings layer 64 nodes
Character embeddings layer 128 nodes

Character bi-LSTM Encoder 32 nodes (in each direction)
Bi-LSTM Encoder 2 layers × 32 nodes (in each direction)

Bi-LSTM Encoder dropout 0.5
Batch size 32

Optimizer Adam (Kingma & Ba)
Learning-rate 0.002
Fine-tuning learning-rate 0.0005

Early stopping patience 20 epochs
Error Corrector

Vocabulary 24576 tokens
𝑚 24
𝑛 128
Erroneous encoding (𝐸(𝑙)) dropout 0.5
Context encoding (𝐶(𝑙)) dropout 0.5
Batch size 32
Optimizer Adam (Kingma & Ba)

Learning-rate 0.002
Fine-tuning learning-rate 0.0005

Early stopping patience 20 groups*
* Error Corrector training procedures are detailed further in Chapter 5.4.

Error correction systems with dictionary-based correction (i.e., Hunspell, Hunspell

(trained), PyThaiNLP), struggle with choosing the proper correction even when the target word is

in the dictionary. Thus, the system with the most conservative detection stage (i.e., PyThaiNLP)

performs the best by introducing the fewest number of corrections. While Hunspell with the

provided dictionary corrects some error segments correctly, the introduced errors outweigh the

effect of the corrections made.

41

End-to-end correction systems (i.e., Bi-GRU, Copy-augmented Transformer) often produce

correct Thai sentences but with a different meaning. An analysis of the output suggested that the

model prefers to produce sentences or phrases that are common in the training dataset. While

the copy-augmented transfer's substructure should alleviate this issue, the model still suffers

from this issue, but to a lesser extent when compared to Bi-GRU.

8.2.2 Correction stage

In this chapter, we perform error analyses of our method correction stage on the Thai

user-generated web content (text data collected from social media). The incorrect output

produced from our method is shown in Table 15, Table 16, and Table 17. We analyze the

incorrect outputs produced from the correction stage, given an exact detection (as described in

Chapter 6.4). We sampled 15 corrections for “misspelling” since this is the majority of the errors

in the dataset. We sampled ten corrections for “morphed” and “abbreviation”. Due to a lack of

“slangs” and “spoonerism” errors, we only sampled the correct outputs produced, only nine

corrections were sampled for “slangs” and one correction for “spoonerism”.

42

Table 12 End-to-end error analysis of each model on the first sample line
on the TC task on the Thai UGWC dataset

Line 1

Source “พอ|ผม|โหลด|แอฟ|K Bank| |มา|แล้ว|ผม| |อยาก|เข้า|บัญช|ีอีก|อัน|อ่ะ|คับ”

Annotation “พอ|ผม|โหลด|แอป| |K Bank| |มา|แล้ว|ผม| |อยาก|เข้า|บัญช|ีอีก|อัน|อ่ะ|ครับ”
 From 3 To 4 “แอป| “ misspelling
 From 16 To 17 “ครับ” misspelling

Annotation-2 “พอ|ผม|ดาวน์โหลด|แอป| |K Bank| |มา|แล้ว|ผม| |อยาก|เข้า|บัญช|ีอีก|อนั|อ่ะ|ครับ”
 From 2 To 4 “ดาวน์โหลด|แอป| “ slang, misspelling
 From 16 To 17 “ครับ” misspelling

Ours “พอ|ผม|โหลด|แอป| |K Bank| |มา|แล้ว|ผม| |อยาก|เข้า|บัญช|ีอีก|อัน|อะ|ครับ”
 From 3 To 4 “แอป| “
 From 15 To 17 “อะ|ครับ” overcorrected: “Other” sound correction

Hunspell “พอ|ผม|โหลด|แอ|K Bank| |มา|แล้ว|ผม| |อยาก|เข้า|บัญช|ีอีก|อัน|อะ|คับ”
 From 3 To 4 “แอ” incorrect
 From 15 To 16 “อะ” overcorrected: “Other” sound correction

Hunspell (Trained) “พอ|ผม|โหลด|แอฟ|K Bank| |มา|แล้ว|ผม| |อยาก|เข้า|บัญช|ีอีก|อัน|อ่ะ|คับ”
 no correction: same as “Source”

PyThaiNLP “พอ|ผม|โหลด|แอฟ|K Bank| |มา|แล้ว|ผม| |อยาก|เข้า|บัญช|ีอีก|อัน|อ่ะ|คับ”
 no correction: same as “Source”

Bi-GRU (20 Token) “พอ|ผม|โหลด|แอป| |K Bank| |มา|แล้ว|ผม| |อยาก|เข้า|บัญช|ีอีก|อัน|อ่ะ|ครับ”
 From 3 To 4 “แอป| “
 From 16 To 17 “ครับ”

Bi-GRU (50 Token) “พอ|ผม|โหลด|แอพ|K| |Bank| |มา|แล้ว|ผม| |อยาก|เข้า|บัญช|ีอีก|อัน|อะ|ครับ”
 From 3 To 5 “แอพ|K| |Bank” incorrect, space token deleted
 From 15 To 17 “อะ|ครับ” overcorrection: “Other” sound correction

Bi-GRU
(untokenized)

“พอ|ผม|โหลด|แอฟ|K Bank| |มา|แล้ว|ผม| |อยาก|เข้า|บัญช|ีอีก|อัน|อะ|ครับ”

 From 15 To 17 “อะ|ครับ” overcorrected: “Other” sound correction

Copy-Augmented “พอ|ผม|โหลด|แอป|K Bank| |มา|แล้ว|ผม| |อยาก|เข้า|บัญช|ีอีก|อัน|อะ|ครับ”
 same as “Ours”
 From 3 To 4 “แอป| “
 From 15 To 17 “อะ|ครับ” overcorrected: “Other” sound correction

43

Table 13 End-to-end error analysis of each model on the second sample line

on the TC task on the Thai UGWC dataset
Line 2

Source “เช่น|โอน|เข้า|เวบ|น้ี|เพือ|เข้า|ใป|เล่น|ทัมอย่างใร|คับ”

Annotation “เช่น|โอน|เข้า|เว็บไซต|์น้ี|เพื่อ|เข้า|ไป|เล่น|ทำ|อย่างไร|ครับ”
 From 3 To 4 “เว็บไซต์” misspelling (full word)
 From 5 To 6 “เพื่อ” misspelling
 From 7 To 8 “ไป” misspelling
 From 9 To 11 “ทำ|อย่างไร|ครับ” misspelling

Annotation-2 “เช่น|โอน|เข้า|เว็บ|น้ี|เพื่อ|เข้า|ไป|เล่น|ทำ|อย่างไร|ครับ”
 From 3 To 4 “เว็บ” misspelling
 From 5 To 6 “เพื่อ” misspelling
 From 7 To 8 “ไป” misspelling
 From 9 To 11 “ทำ|อย่างไร|ครับ” misspelling

Ours “เช่น|โอน|เข้า|เว็บไซต|์น้ี|เพื่อ|เข้า|ไป|เล่น|ทำ|อย่างไร|ครับ”
 same as “Annotation”
 From 3 To 4 “เว็บไซต์”
 From 5 To 6 “เพื่อ”
 From 7 To 8 “ไป”
 From 9 To 11 “ทำ|อย่างไร|ครับ”

Hunspell “เช่น|โอน|เข้า|เว็บ|น้ี|เพื่อ|เข้า|ใบปก|เล่น|อย่างทรมาน|คับ”
 From 3 To 4 “เว็บ”
 From 5 To 6 “เพื่อ”
 From 7 To 8 “ใบปก” incorrect
 From 9 To 10 “อย่างทรมาน” incorrect

Hunspell (Trained) “เช่น|โอน|เข้า|เวบ|น้ี|เพอ|เข้า|ใป|เล่น|ทัพอย่าง|คับ”
 From 5 To 6 “เพอ” incorrect
 From 9 To 10 “ทัพอย่าง” incorrect

PyThaiNLP “เช่น|โอน|เข้า|เวบ|น้ี|เพือ|เข้า|ใป|เล่น|ทัมอย่างใร|คับ”

Bi-GRU (20 Token) “เช่น|โอน|เข้า|เวบ|น้ี|เพื่อ|เข้า|ไป|เล่น|ทํา|อย่างไร|ครับ”
 From 5 To 6 “เพื่อ”
 From 7 To 8 “ไป”
 From 9 To 11 “ทํา|อย่างไร|ครับ”

Bi-GRU (untokenized) “เช่น|โอน|เข้า|บัญช|ีน้ี|ครับ”
 From 3 To 4 “บัญชี” overcorrected (meaning lost)
 From 5 To 11 “ครับ” overcorrected (meaning lost)

44

Table 14 End-to-end error analysis of each model on the second sample line

on the TC task on the Thai UGWC dataset (continue)
Line 2

Source “เช่น|โอน|เข้า|เวบ|น้ี|เพือ|เข้า|ใป|เล่น|ทัมอย่างใร|คับ”

Bi-GRU (50 Token) “เช่น|โอน|เข้า|เวบ|น้ี|เพื่อ|เข้า|ไป|เล่น|ทํา|อย่างไร|ครับ”
 same as “Bi-GRU (20 Token)”
 From 5 To 6 “เพื่อ”
 From 7 To 8 “ไป”
 From 9 To 11 “ทํา|อย่างไร|ครับ”

Copy-Augmented “เช่น|โอน|เข้า|เว็บ|น้ี|เพื่อ|เข้า|ไป|เล่น|ครับ”
 From 3 To 4 “เว็บ”
 From 5 To 6 “เพื่อ”
 From 7 To 8 “ไป”
 From 9 To 11 “ครับ” overcorrected (words dropped)

Table 15 Correction error analysis of abbreviation errors
on the TC task on the Thai UGWC dataset

 Error Types Issues with correction
Erroneous

text
Labels

Correction
produced

 Abbreviation
1 Official

abbreviation
Miscorrected

สว สูง|วัย สวย
2 พศ พ|.|ศ|. พี ่

3

Non-official
abbreviation +

incorrect
tokenization

Uncorrected ปิดจนท ปิด|เจ้าหน้าท่ี <OOV>

4

Label noise

Label: non-official abbreviation จขกท จขกท|. เจ้าของ|กระทู้
5 Label: overcorrection to English คซต call center คอลเซ็นเตอร์
6

Label: overcorrection to full word
ธ ธนาคาร ธ.

7 ชม ชั่วโมง ชม.

8

Official
abbreviation +

incorrect
tokenization Word tokenization inconsistency

ท่ีกทม ท่ี|กทม|. ท่ีกทม|.

9 Non-official
abbreviation

จขกท เจ้า|ของ|กระทู้ เจ้าของ|กระทู้

10 คห ความเห็น ความ|เห็น

45

Table 16 Correction error analysis of misspelling
on the TC task on the Thai UGWC dataset

 Error Types Issues with correction
Erroneous

text
Labels

Correction
produced

 Misspelling
1

Single-word

Corrected as non-existent word ล๊อค ล็อก ล็อค

2

Contextually incorrect
(real word error)

อยาง อยาก อย่าง

3 สตาง สตางค์ ส|.|ต่าง

4 ยอก|เลิด ยกเลิก ยอด

5 ไช่ ใช ่ ใช ้

6

Uncorrected

กาแลคซ่ี กาแล็กซี <OOV>

7
Single-word
+ incorrect
tokenization

ฅนล้า คนล้า <OOV>

8 นู๋พยายาม หนูพยายาม <OOV>

9

Dropping word(s)

ค่พอไป|ตืดต่อ
ค่ะ|พอ|ไป|

ติดต่อ
พอไป|ติดต่อ

10

Single-word
+ punctuation

+ incorrect
tokenization

สมัค|sm|s สมัคร| |sms สมัคร

11
Multi-word Partially correct

ย|ุตรุรก ี อยู่|ตุร|ก ี อยู่|กรณ ี

12 ใด้|หรอ ได|้หรือ ได|้หรอ

13
Multi-word

+ Label noise

Label: Contextually incorrect
(real word error)

(proper correction is อย่างไร|คะ)
งัย|ค้ะ ไง|ค่ะ ไงคะ

14 Label noise
Label: Corrected as non-

existent word
แอฟ แอพ แอป

15
Evaluation
limitation

Multiple possible spelling: both
the label and the correction

are correct
เวบ เว็บ เว็บไซต์

46

Table 17 Correction error analysis of morphed, spoonerism, and slang
on the TC task on the Thai UGWC dataset

 Error Types Issues with correction
Erroneous

text
Labels

Correction
produced

 Morphed
1

Single-word
Contextually incorrect

(real word error)

กิง จริง กิน

2 ปั้ง ปัง ท้ัง

3 คร้า ค่ะ คะ

4 Dropping word(s) ปะ หรือเปล่า เปล่า

5 Single-word +
incorrect

tokenization
Uncorrected

เจ้ามือหลังม่าน|
เมกา

เจ้ามือหลัง|ม่า|
นอเมริกา

<OOV>

6 โอ้ยยยรำคาญ โอ๊ย|รำคาญ โอ๊ย|<OOV>

7

Label noise

Label: Corrected as non-
existent word

เหยดดดด เหยด เย็ด

8 หรอ|เนี่ยยย เหรอ|เนี่ย เหรอ|น่ี

9 Label: Contextually incorrect
(real word error)

จ่ะ จ๊ะ จ้ะ

10
Evaluation
limitation

Multiple possible spelling: both
the label and the correction

are correct

ใด้|เหรอ ได|้หรือ ได|้เหรอ

 Slang
1

Single-word

Contextually incorrect
(real word error)

ค้า|ป ครับ คะ

2 ปะ ไหม เปล่า

3 Corrected as non-existent word ตร ู กู ตู

4

None: Good correction

ปั๋ว ผัว ผัว

5 มะ ไหม ไหม

6 คับ ครับ ครับ

7 ขนาดด ขนาด ขนาด

8 จอดดด จอด จอด

9 Single-word +
incorrect

tokenization

Word tokenization
inconsistency

เด๋วน้ี เดี๋ยว|นี ้ เดี๋ยวน้ี

 Spoonerism
1 Single-word None: Good correction สวีดัด สวัสดี สวัสดี

47

8.2.3 Word tokenization on the correction stage

In this chapter, we investigate how removing tokenization issues will impact the

correction stage. We hand tokenized input of problematic correction from Chapter 8.2.2. The

results are shown in Table 18. Six out of nine the problematic correction have been resolved,

two are left uncorrected, and the last missing a punctuation token.

Table 18 Correction error analysis on retokenized erroneous text
on the TC task on the Thai UGWC dataset

 Error Types
Issues with
correction

Retokenized
erroneous text

Labels
Correction
produced

 Abbreviation

3
False negative

detection
ปิด|จนท ปิด|เจ้าหน้าท่ี ปิด|จนท

8 None: Good correction ท่ี|กทม ท่ี|กทม|. ท่ี|กทม|.

 Misspelling
7

 None: Good correction

ฅน|ล้า คน|ล้า คน|ล้า

8 นู๋|พยายาม หนู|พยายาม หน|ูพยายาม

9 ค่|พอไป|ตืดต่อ ค่ะ|พอ|ไป|ติดต่อ ค่ะ|พอไป|ติดต่อ

10 Dropping word(s) สมัค|sms สมัคร| |sms สมัคร|sms

 Morphed

5 Uncorrected
เจ้ามือ|หลัง|ม่าน|เม

กา
เจ้ามือ|หลัง|ม่าน|

อเมริกา
เจ้ามือ|

หลัง|<OOV>

6 None: Good correction โอ้ยยยรำคาญ โอ๊ย|รำคาญ โอ๊ย|รำคาญ

 Slang

9 None: Good correction เด๋วน้ี เดี๋ยว|น้ี เดี๋ยว|น้ี

8.3 Evaluation on Conll-2014
In this chapter, we evaluate our method on the original as well as a modified version of

the Conll-2014 Grammatical Error Correction shared task (Ng et al., 2014). The results are shown

in Table 19 and Table 20. As expected, our method performs very poorly on the full GEC task

because performing GEC effectively requires the ability to rewrite large portions of the text. The

GLEU scored our method below doing nothing.

48

To evaluate only the spelling correcting capabilities of our model, we built a spelling

correction task using the Conll-2013 and Conll-2014 datasets by precorrecting any grammatical

errors and leaving only the spelling errors (corrections marked as “Mec” in the dataset). We

tested both our model and Bi-GRU (Grundkiewicz & Junczys-Dowmunt) under two training

regimes: with and without data augmentation on the training set. For the copy-augmented

transformer, we used the pretrained weights provided by the authors (which were trained on

augmented data according to their thesis (Zhao et al., 2019)) and fine-tuned it on the training set.

Our model outperformed both the Bi-GRU model and the copy-augmented transformer model

with respect to both M2 and GLEU scores on the spelling correction task. However, due to the

sparse nature of the misspelling errors in the test set (only 228 misspelled segments constituting

only 9.54% of all 2,391 erroneous segments) spanning 1,312 sentences, the resulting corrected

text from all the evaluated models received a lower M2 score than did the precorrected text

used as the input. Only our model (with augmentation and fine-tuning) produced an increased

GLEU score over the precorrected text.

Table 19 Evaluation of end-to-end error correction on
the GEC Conll-2014 dataset by various systems

Model M2 GLEU
Do nothing (source text) 0.0000 0.5663
Ideal correction (Oracle) 1.0000 0.8187
Literature
Bi-GRU 0.4276 -

SMT + Bi-GRU 0.5625 -
Copy-Augmented Transformer 0.5642 -
Copy-Augmented Transformer**** 0.6115 -
Reproduced

Bi-GRU without Lang 8 0.2158 0.5354
Bi-GRU 0.4288 0.5931
Ours** 0.0195 0.5630

* Model is only trained on noise injected dataset.
** Model is pre-trained on character-level noise injected dataset before fine-tuned on the
regular training
**** Model is pre-trained on word-level noise injected dataset before fine-tuned on the regular
training according to (Zhao et al., 2019)

49

Table 20 Evaluation of end-to-end error correction on
the misspelling subset of GEC Conll-2014 by various systems

Model Precision Recall M2 GLEU

Pre-corrected 0.9913 0.9048 0.9727 0.7520

Ideal correction (Oracle) 0.9917 0.9896 0.9900 0.7767

Bi-GRU 0.9266 0.8660 0.9138 0.7358

Bi-GRU* 0.8926 0.8623 0.8863 0.7356

Copy-Aug Transformer*** 0.8066 0.8552 0.8159 0.7382

Copy-Aug Transformer**** 0.8351 0.8587 0.8397 0.7409

Ours 0.9184 0.8982 0.9143 0.7487

Ours* 0.9073 0.9028 0.9064 0.7496

Ours** 0.9567 0.9082 0.9466 0.7539

Ours** + (Oracle Detection) 0.9436 0.9314 0.9411 0.7665

* Model is only trained on noise injected dataset.
** Model is pre-trained on character-level noise injected dataset before fine-tuned on the
regular training
*** Model is pre-trained on word-level noise injected dataset according to (Zhao et al., 2019)
**** Model is pre-trained on word-level noise injected dataset before fine-tuned on the regular
training according to (Zhao et al., 2019)

50

9 Research plan

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

65
66

67
68

69
70

71
72

73
74

75
76

77
78

79
80

81
82

83
84

To
p

ic
 s

e
le

ct
io

n

Li
te

ra
tu

re
 r

e
vi

e
w

D
at

a
Ex

p
lo

ra
ti

o
n

E
va

lu
a

te
 E

x
is

ti
n

g
 T

h
a

i

Im
p

le
m

e
n

t
b

as
e

lin
e

 m
o

d
e

l

Im
p

le
m

e
n

t
m

o
d

e
l 1

st
 it

e
ra

ti
o

n

Ex
p

e
ri

m
e

n
t

&
 E

va
lu

at
e

Im
p

le
m

e
n

t
m

o
d

e
l 2

n
d

 it
e

ra
ti

o
n

Ex
p

e
ri

m
e

n
t

&
 E

va
lu

at
e

D
at

a
A

u
gm

e
n

ta
ti

o
n

Ex
p

e
ri

m
e

n
t

&
 E

va
lu

at
e

Li
te

ra
tu

re
 r

e
vi

e
w

 2

Ev
al

u
at

e
 G

EC
 m

o
d

e
ls

Im
p

le
m

e
n

t
m

o
d

e
l 3

rd
 it

e
ra

ti
o

n

Ex
p

e
ri

m
e

n
t

&
 E

va
lu

at
e

D
at

a
A

u
gm

e
n

ta
ti

o
n

 2

Ex
p

e
ri

m
e

n
t

&
 E

va
lu

at
e

A
n

al
ys

e
 R

e
su

lt
s

o
n

 T
h

ai
 U

G
W

C

W
ri

te
 R

e
se

ar
ch

 P
ap

e
r

P
re

p
a

re
 p

ro
p

o
sa

l

P
ro

p
o

sa
l P

re
se

n
ta

ti
o

n

Jo
u

rn
al

 S
u

b
m

is
si

o
n

Li
te

ra
tu

re
 r

e
vi

e
w

 3

Ex
p

e
ri

m
e

n
t

&
 E

va
lu

at
e

 o
n

 P
u

b
lic

P
re

p
ar

e
 f

in
al

 d
o

cu
m

e
n

t

P
re

se
n

t
fi

n
al

 d
o

cu
m

e
n

t

Fe
b

M
ar

A
p

r
M

ay

20
19

20
20

Se
p

O
ct

N
o

v
D

e
c

Ja
n

A
p

r
M

ay
Ju

n
Ju

l
A

u
g

D
e

c

20
18

Ja
n

Fe
b

M
ar

Ta
sk

s
Se

p
O

ct
N

o
v

REFERENCES

REFERENCES

AllenNLP. (2019). AllenNLP Bidirectional Attention Flow Implementation. Retrieved from
https://github.com/allenai/allennlp/tree/v0.8.2/allennlp/models/reading_compr
ehension

Aroonmanakun, W. (2007). Thoughts on word and sentence segmentation in Thai.
Paper presented at the Proceedings of the Seventh Symposium on Natural
language Processing, Pattaya, Thailand, December 13–15.

Atkinson, K. (2018). GNU Aspell. Retrieved from http://aspell.net/
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning

to align and translate. arXiv preprint arXiv:1409.0473.
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., &

Bengio, Y. J. a. p. a. (2014). Learning phrase representations using RNN encoder-
decoder for statistical machine translation.

Chollampatt, S., & Ng, H. T. (2018a). A multilayer convolutional encoder-decoder
neural network for grammatical error correction. Paper presented at the Thirty-
Second AAAI Conference on Artificial Intelligence.

Chollampatt, S., & Ng, H. T. (2018b). Neural quality estimation of grammatical error
correction. Paper presented at the Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., & Singer, Y. (2006). Online passive-
aggressive algorithms. Journal of Machine Learning Research, 7(Mar), 551-585.

Dahlmeier, D., & Ng, H. T. (2012). Better evaluation for grammatical error correction.
Paper presented at the Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies.

Farzindar, A., & Inkpen, D. (2015). Natural language processing for social media.
Synthesis Lectures on Human Language Technologies, 8(2), 1-166.

Gardner, M., Grus, J., Neumann, M., Tafjord, O., Dasigi, P., Liu, N., . . . Zettlemoyer, L.
(2018). Allennlp: A deep semantic natural language processing platform. arXiv

https://github.com/allenai/allennlp/tree/v0.8.2/allennlp/models/reading_comprehension
https://github.com/allenai/allennlp/tree/v0.8.2/allennlp/models/reading_comprehension
http://aspell.net/

52

preprint arXiv:1803.07640.
Ge, T., Wei, F., & Zhou, M. (2018). Fluency boost learning and inference for neural

grammatical error correction. Paper presented at the Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers).

Grundkiewicz, R., & Junczys-Dowmunt, M. (2018). Near human-level performance in
grammatical error correction with hybrid machine translation. arXiv preprint
arXiv:1804.05945.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8), 1735-1780.

Hunspell. (2019). Hunspell. Retrieved from https://github.com/hunspell/hunspell
Junczys-Dowmunt, M., Grundkiewicz, R., Guha, S., & Heafield, K. (2018). Approaching

neural grammatical error correction as a low-resource machine translation task.
arXiv preprint arXiv:1804.05940.

Junczys-Dowmunt, M., & Grundkiewicz, R. J. a. p. a. (2016). Phrase-based machine
translation is state-of-the-art for automatic grammatical error correction. arXiv
preprint arXiv:1605.06353.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kiyono, S., Suzuki, J., Mita, M., Mizumoto, T., & Inui, K. (2019). An Empirical Study of
Incorporating Pseudo Data into Grammatical Error Correction. arXiv preprint
arXiv:1909.00502.

Kruatrachue, B., Somguntar, K., & Siriboon, K. (2002, 6-8 Nov. 2002). Thai OCR error
correction using genetic algorithm. Paper presented at the First International
Symposium on Cyber Worlds, 2002. Proceedings.

Kudo, T., & Richardson, J. (2018). Sentencepiece: A simple and language independent
subword tokenizer and detokenizer for neural text processing. arXiv preprint
arXiv:1808.06226.

Lee, K., Agrawal, A., & Choudhary, A. (2013). Real-time disease surveillance using Twitter

https://github.com/hunspell/hunspell

53

data: demonstration on flu and cancer. Paper presented at the Proceedings of
the 19th ACM SIGKDD international conference on Knowledge discovery and
data mining, Chicago, Illinois, USA.

Lertpiya, A., Chaiwachirasak, T., Maharattanamalai, N., Lapjaturapit, T., Chalothorn, T.,
Tirasaroj, N., & Chuangsuwanich, E. (2018, 15-17 Nov. 2018). A Preliminary Study
on Fundamental Thai NLP Tasks for User-generated Web Content. Paper
presented at the 2018 International Joint Symposium on Artificial Intelligence
and Natural Language Processing (iSAI-NLP).

Lertpiya, A., Chalothorn, T., & Chuangsuwanich, E. (2020). Thai Spelling Correction and
Word Normalization on Social Text Using a Two-Stage Pipeline With Neural
Contextual Attention. IEEE Access, 8, 133403-133419.
doi:10.1109/ACCESS.2020.3010828

Meknavin, S., Kijsirikul, B., Chotimongkol, A., & Nuttee, C. (1998a). Combining trigram and
Winnow in thai OCR error correction. Paper presented at the Proceedings of the
36th Annual Meeting of the Association for Computational Linguistics and 17th
International Conference on Computational Linguistics - Volume 2, Montreal,
Quebec, Canada.

Meknavin, S., Kijsirikul, B., Chotimongkol, A., & Nuttee, C. (1998b, 24-27 Nov. 1998).
Progress of combining trigram and Winnow in Thai OCR error correction. Paper
presented at the IEEE. APCCAS 1998. 1998 IEEE Asia-Pacific Conference on
Circuits and Systems. Microelectronics and Integrating Systems. Proceedings (Cat.
No.98EX242).

Napoles, C., Sakaguchi, K., Post, M., & Tetreault, J. (2015). Ground truth for grammatical
error correction metrics. Paper presented at the Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 2: Short
Papers).

Napoles, C., Sakaguchi, K., Post, M., & Tetreault, J. (2016). GLEU without tuning. arXiv
preprint arXiv:1605.02592.

54

Ng, H. T., Wu, S. M., Briscoe, T., Hadiwinoto, C., Susanto, R. H., & Bryant, C. (2014). The
CoNLL-2014 shared task on grammatical error correction. Paper presented at
the Proceedings of the Eighteenth Conference on Computational Natural
Language Learning: Shared Task.

Norvig, P. (2007). How to Write a Spelling Corrector. Retrieved from
https://norvig.com/spell-correct.html

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). BLEU: a method for automatic
evaluation of machine translation. Paper presented at the Proceedings of the
40th annual meeting of the Association for Computational Linguistics.

PyThaiNLP. (2019a). PyThaiNLP. Retrieved from https://github.com/PyThaiNLP/pythainlp
PyThaiNLP. (2019b). PyThaiNLP/spelling-check. Retrieved from

https://github.com/PyThaiNLP/spelling-check
Rodphon, M., Siriboon, K., & Kruatrachue, B. (2001, 26-28 Aug. 2001). Thai OCR error

correction using token passing algorithm. Paper presented at the 2001 IEEE
Pacific Rim Conference on Communications, Computers and Signal Processing
(IEEE Cat. No.01CH37233).

Rozovskaya, A., & Roth, D. (2016). Grammatical error correction: Machine translation
and classifiers. Paper presented at the Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers).

Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45(11), 2673-2681.

Seo, M., Kembhavi, A., Farhadi, A., & Hajishirzi, H. (2016). Bidirectional attention flow for
machine comprehension. arXiv preprint arXiv:1611.01603.

Society, O. o. t. R. (1999). The Royal Institute Dictionary 2542 B.E.: Nanmeebooks.
Watcharabutsarakham, S. (2005, 21-24 Nov. 2005). Spell Checker for Thai Document.

Paper presented at the TENCON 2005 - 2005 IEEE Region 10 Conference.
wolfgarbe. (2019). SymSpell. Retrieved from https://github.com/wolfgarbe/SymSpell
Zhao, W., Wang, L., Shen, K., Jia, R., & Liu, J. (2019). Improving grammatical error

correction via pre-training a copy-augmented architecture with unlabeled data.

https://norvig.com/spell-correct.html
https://github.com/PyThaiNLP/pythainlp
https://github.com/PyThaiNLP/spelling-check
https://github.com/wolfgarbe/SymSpell

55

arXiv preprint arXiv:1903.00138.
Zukarnain, N., Abbas, B. S., Wayan, S., Trisetyarso, A., & Kang, C. H. (2019). Spelling

Checker Algorithm Methods for Many Languages. Paper presented at the 2019
International Conference on Information Management and Technology
(ICIMTech).

VITA

VITA

NAME Anuruth Lertpiya

DATE OF BIRTH 11 September 1995

PLACE OF BIRTH Bangkok, Thailand

INSTITUTIONS ATTENDED Department of Computer Engineering, Faculty of
Engineering, Chulalongkorn University

HOME ADDRESS 52/17 Nuanchan Rd. Nuanchan, Bungkum, Bangkok 10230

PUBLICATION Lertpiya, A., Chaiwachirasak, T., Maharattanamalai, N.,
Lapjaturapit, T., Chalothorn, T., Tirasaroj, N., &
Chuangsuwanich, E. (2018, 15-17 Nov. 2018). A Preliminary
Study on Fundamental Thai NLP Tasks for User-generated
Web Content. Paper presented at the 2018 International
Joint Symposium on Artificial Intelligence and Natural
Language Processing (iSAI-NLP).
Lertpiya, A., Chalothorn, T., & Chuangsuwanich, E. (2020).
Thai Spelling Correction and Word Normalization on Social
Text Using a Two-Stage Pipeline With Neural Contextual
Attention. IEEE Access, 8, 133403-133419.
doi:10.1109/ACCESS.2020.3010828

	ABSTRACT (THAI)
	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Aim and Objectives
	1.2 Contributions
	1.3 Thesis outline
	1.4 Publication

	2 Background knowledge
	2.1 Introduction
	2.2 Spell Checkers & Misspellings
	2.3 Deep learning for Natural Language Processing
	2.3.1 Deep learning
	2.3.2 Recurrent neural networks
	2.3.3 Sequence-to-Sequence neural networks

	3 Related works
	3.1 Introduction
	3.2 Text Correction Systems for Natural Language
	3.3 Thai Text Correctors
	3.4 English Grammatical Error Correction
	3.5 Conclusion

	4 Thai Text Correction task
	4.1 Introduction
	4.2 UGWC dataset
	4.3 Evaluation criteria
	4.4 Experiment setup
	4.5 Chapter summary

	5 Method
	5.1 Introduction
	5.2 Model
	5.2.1 Error Detector
	5.2.2 Error Corrector
	5.2.2.1 Encoder
	5.2.2.2 Decoder

	5.3 Data Augmentation
	5.4 Training
	5.5 Chapter summary

	6 Results and Discussion
	6.1 Introduction
	6.2 Thai UGWC
	6.3 SentencePiece as unit tokens
	6.4 Detection stage
	6.5 Correction stage
	6.6 Detection sensitivity
	6.7 Multi-pass correction
	6.8 Publicly released Thai UGWC dataset

	7 Conclusion
	7.1 Limitations
	7.2 Contributions
	7.3 Future work

	8 Appendix
	8.1 Hyperparameters
	8.2 Error Analysis of Text Correction on Thai UGWC
	8.2.1 End-to-end correction
	8.2.2 Correction stage
	8.2.3 Word tokenization on the correction stage

	8.3 Evaluation on Conll-2014

	9 Research plan
	REFERENCES
	VITA

