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ABSTRACT (THAI)  อนุรุธ เลิศปิยะ : การแก้คำผิดและทำให้เป็นมาตราฐานบนข้อความโซเชียลมีเดีย

ภาษาไทยโดยการทำงานสองขั้นตอนด้วยโครงข่ายประสาทเทียมท่ีใช้กลไกจุดสนใจบน
บริบท. ( Thai spelling correction and word normalization on social text 
using a two-stage pipeline with neural contextual attention) อ.ที่ปรึกษาหลัก 
: ดร.เอกพล ช่วงสุวนิช 

  
ระบบแก้ไขข้อความ (เช่นระบบแก้คำผิด) ถูกนำมาใช้เพ่ือปรับปรุงคุณภาพของข้อมูลตัว

อักษรบนระบบคอมพิวเตอร์โดยการตรวจจับและแก้ไขข้อผิดพลาด  งานวิจัยก่อนหน้ายังไม่ได้รับ
การสำรวจโจทย์การแก้ไขคำผิดและการทำให้เป็นมาตรฐานของข้อความ (การแก้ไขข้อความ) 
สำหรับข้อความโซเชียลมีเดียภาษาไทย  ในวิทยานิพนธ์ฉบับนี้เราได้ศึกษาความสามารถของระบบ
แก้ไขข้อความในปัจจุบันบนโจทย์การแก้ไขคำผิดและการทำให้เป็นมาตรฐานของข้อความ  บน
โซเชียลมีเดียภาษาไทย และ เสนอวิธีการที่ได้ถูกออกแบบมาสำหรับโจทย์นี้  เราพบว่าระบบแก้ไข
ข้อความภาษาไทยที่มีอยู่ในปัจจุบันมีประสิทธิภาพไม่เพียงพอสำหรับการแก้ไขคำผิดและความไม่
เป็นมาตรฐานของข้อความ ในขณะที่ระบบแก้ไขข้อผิดพลาดทางไวยากรณ์ภาษาอังกฤษมีปัญหา
การแก้ไขมากเกินไป (การเขียนข้อความใหม่)  ดังนั้นเราจึงเสนอระบบแก้ไขข้อความ ซ่ึงใช้ระบบ
ประสาทเทียมที่งานสองขั้นตอนเพ่ือบรรเทาปัญหาการแก้ไขมากเกินไปในขณะที่ได้ประโยชน์จาก
ระบบประสาทเทียมแบบข้อความสู่ข้อความ  ระบบของเราประกอบด้วยตัวตรวจจับข้อผิดพลาดที่
ใช้ระบบประสาทเทียม และตัวแก้ไขข้อผิดพลาดทางประสาทแบบข้อความสู่ข้อความที่ใช้กลไกจุด
สนใจบนบริบท  สถาปัตยกรรมแบบใหม่นี้ช่วยให้ระบบประสาทเทียมแบบข้อความสู่ข้อความสร้าง
แก้ไขตามทั้งข้อความโดยคำนึงถึงบริบทโดยไม่จำเป็นต้องทำงานแบบหนึ่งขั้นตอนวิธีการของเรามี
ประสิทธิภาพดีกว่าระบบแก้ไขข้อความอ่ืนๆ ที่เราได้ประเมินทั้งหมด 
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ABSTRACT (ENGLISH) # # 6170322321 : MAJOR COMPUTER ENGINEERING 
KEYWORD: Spelling correction, Text generation, Text normalization, Thai 

language, Natural language processing, Artificial neural networks, 
Text processing, Machine learning 

 Anuruth Lertpiya : Thai spelling correction and word normalization on 
social text using a two-stage pipeline with neural contextual attention. 
Advisor: Ekapol Chuangsuwanich, Ph.D. 

  
Text correction systems (e.g., spell checkers) have been used to improve 

the quality of computerized text by detecting and correcting errors. However, the 
task of performing spelling correction and word normalization (text correction) for 
Thai social media text has remained largely unexplored. In this thesis, we 
investigated how current text correction systems perform on correcting errors and 
word variances in Thai social texts and propose a method designed for this task. 
We have found that currently available Thai text correction systems are 
insufficiently robust for correcting spelling errors and word variances, while the text 
correctors designed for English grammatical error correction suffer from 
overcorrections (text rewrites). Thus, we proposed a neural-based text corrector 
with a two-stage structure to alleviate issues of overcorrections while exploiting 
the benefits of a neural Seq2Seq corrector. Our method consists of a neural-based 
error detector and a Seq2Seq neural error corrector with contextual attention. This 
novel architecture allows the Seq2Seq network to produce corrections based on 
both the erroneous text and its context without the need for an end-to-end 
structure. Our method outperformed all the other evaluated text correction 
systems. 
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1 INTRODUCTION 
The fast and widespread adoption of social media as a means of communication has led 

to an explosive increase in user-generated text data on the Internet. Natural language processing 

(NLP) techniques are often used to keep up with the pace of rapidly growing data and introduce 

new and exciting applications such as real-time disease surveillance (Lee, Agrawal, & Choudhary) 

and monitoring the public perceptions of brands, products, and services (social listening). 

However, social text also introduces challenges not previously found in traditional written media 

(e.g., news, published articles), such as a wide variety of language usage from users with varying 

levels of language proficiency, the diverse culture of Internet users, and a lack of formality and 

professionalism in the written texts (Farzindar & Inkpen; Lertpiya et al.). Natural language text 

correction systems (e.g., spell checkers and grammatical error correctors) are used to help 

improve writing quality by providing feedback on the correctness of written text and proposing 

corrections to the authors. The published literature related to Thai text correction has primarily 

focused on postprocessing results from optical character recognition (OCR) systems (Kruatrachue, 

Somguntar, & Siriboon; Meknavin, Kijsirikul, Chotimongkol, & Nuttee; Rodphon, Siriboon, & 

Kruatrachue; Watcharabutsarakham). However, the large quantity of data on social media, which 

is input via other interfaces (e.g., physical and virtual keyboards), does not strictly exhibit the 

same types of errors as do data from OCR systems. Moreover, the text correction systems 

developed and employed in free open source software (FOSS) have yet to be evaluated on 

social texts. 

In this thesis, we investigate how to perform spelling correction and word normalization 

tasks effectively on Thai communicational text collected from social media. Henceforth, we 

collectively refer to the tasks of spelling correction and word normalization as the text correction 

task (TC), refer to Thai communicational text collected from social media sites as Thai user-

generated web content (Thai UGWC) and the spelling errors and correctable variances of words in 

the TC task as errors. The types of errors that naturally occur in Thai UGWC and the types of 

errors we aim to correct in Thai TC are covered in Chapter 4.2. The contributions of this thesis are 

as follows. 

First, we evaluate the currently existing techniques for Thai text correction, as well as 

techniques borrowed from a similar task, English grammatical error correction (GEC). We 

examined a variety of text correction techniques, ranging from dictionary-based (i.e., Hunspell 
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(Hunspell)) and statistically based methods (i.e., PyThaiNLP (PyThaiNLP)) to modern systems 

featuring sequence-to-sequence neural networks employed in state-of-the-art English GEC 

systems (i.e., Bi-GRU Seq2Seq (Grundkiewicz & Junczys-Dowmunt), Copy-Augmented Transformer 

(Zhao, Wang, Shen, Jia, & Liu)). 

Second, we propose a text correction system designed for the TC task. Our proposed 

method features a two-stage structure containing a neural-based error detector and a neural 

sequence-to-sequence (Seq2Seq) error corrector with contextual attention. This novel neural 

architecture enables the Seq2Seq corrector to produce corrections based on both the detected 

errors and the text surrounding the error (context) without requiring an end-to-end (E2E) 

structure. As reported in Chapter 4.2, relying solely on the Seq2Seq corrector can lead to 

overcorrections (text is rewritten as opposed to simply corrected). 

1.1 Aim and Objectives 
This study aims to learn how to effectively perform the spelling correction and word 

normalization task on Thai social media text (the Text Correction task). The objectives of this 

research are as follows: 

• Evaluate how well publicly available tools and methods for text correction perform 

on the spelling correction and word normalization task on Thai social media text. 

• Propose a novel method for performing the spelling correction and word 

normalization task on Thai social media text. 

• Evaluate our method on the publicly available version of our Text Correction 

dataset. 

1.2 Contributions 
This study focuses on the four contributions: evaluating the current literature on Thai 

text spelling correction and text normalization (text correction task), propose a method for the 

Thai text correction task, evaluate our proposed method on a multitude of datasets, and 

conduct error analysis to examine our model further. 

• Study the currently existing tools and methods for text correction and adapt it to 

the spelling correction and word normalization task on Thai social media text. 
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o The scope of text correction is limited to the five types of errors that 

naturally exist in Thai social media texts: misspelled words, morphed words, 

slangs, spoonerisms, and incorrect abbreviation notations. 

• Design and implement a Text Correction method for the Thai social media text. 

o Explore the characteristic of our method for text correction and apply 

techniques to improve the performance. 

• Compare our method with the currently existing tools and methods researched. 

• Perform error analysis on our method as well as other text correction methods 

presented 

1.3 Thesis outline 
The remainder of this thesis is structured as follows. Chapter 2 overviews the background 

knowledge relating to this study. Chapter 3 discusses works relating to Thai spelling correction 

and text normalization (Thai TC). Chapter 4 outlines our TC tasks (spelling correction and word 

normalization) task on Thai UGWC as well as the development of our Thai UGWC dataset. 

Chapter 5 describes our proposed two-stage TC system for Thai UGWC. Chapter 6 discusses the 

results of other models we experimented with alongside those of our proposed method. Finally, 

Chapter 7 reiterates our contributions and concludes the thesis. 

1.4 Publication 
The methods and some of the results in this thesis have been previously published 

(Lertpiya, Chalothorn, & Chuangsuwanich).   
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2 Background knowledge 

2.1 Introduction 
This chapter covers the background knowledge relating to the Thai text correction task 

(Thai TC). The first section introduces the concept of spell checkers. The second section outlines 

the building blocks of deep learning models in natural language processing. 

2.2 Spell Checkers & Misspellings 
Spell checkers are defined as systems for identifying non-word errors (words that do not 

exist in the dictionary). In addition to identifying the errors, the spell checker often produces a 

sequence of correction candidates for the identified error. Where the candidates are ordered 

according to the probability of the candidate being the proper correction to the error, these spell 

checkers are sometimes referred to as spelling corrector. 

Traditionally, spell checkers are relatively simple since user written text is matched 

against an internal dictionary. Thus, the task of building spell checkers is considered an 

engineering problem, where performance (wolfgarbe) or the performance-accuracy trade-off 

(Atkinson) is the primary concern. However, in languages where minor spelling errors often result 

in a valid dictionary word (e.g., Thai), spell checkers are also expected to detect real-word errors 

(errors that are valid words in the dictionary) (Meknavin et al.; Watcharabutsarakham).  

A wide variety of methods have been proposed for non-English spelling correction: 

including dictionary-based, rule-based, statistically based, deep-learning-models and statistical 

machine translation models (Zukarnain, Abbas, Wayan, Trisetyarso, & Kang). Hunspell (Hunspell) 

(dictionary-based) is the most widely adopted spell checker; it is used by LibreOffice, 

OpenOffice.org, Mozilla Firefox 3, Mozilla Thunderbird, and Google Chrome. However, Hunspell’s 

popularity is likely due to the large number of languages it supports (56 languages). 

 

2.3 Deep learning for Natural Language Processing 
2.3.1 Deep learning 

Deep learning (DL) is a sub-branch of machine learning (ML) where models are primarily 

based on deep neural networks (DNN), hence the name. The advantage of DNN stems primarily 

from representation learning. Whereas traditional ML methods use statistical methods to model 
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the task on low-level features and handcrafted higher-level features, DL utilizes DNN to extract 

higher-level features automatically. At the cost of requiring more data and higher computation 

cost. For NLP, these two downsides are often offset by the availability of text data on the 

Internet and compute accelerators (e.g., graphic processing units). 

2.3.2 Recurrent neural networks 

Recurrent neural networks (RNNs) are a type of DNN where part of the input and outputs 

of the networks is connected to itself. RNNs are typically used for sequence modeling tasks, due 

to its ability to process a sequence of input of arbitrary lengths. RNNs have a variety of different 

structures, for example, Long-short-term-memory (LSTM) (Hochreiter & Schmidhuber), and Gated-

Recurrent-Unit (GRU) (Cho et al.). These unique structures allow the RNN to handle sequence 

modeling tasks better. For example, the introduction of LSTM is to improve modeling tasks with 

long-term dependencies by reducing the issues of vanishing gradients, by not having non-linear 

functions across its long-term memory channel. 

2.3.3 Sequence-to-Sequence neural networks 

A sequence-to-sequence neural network (Seq2Seq) a neural network that takes a 

sequence of inputs and produces a sequence of outputs. Seq2Seq networks consisting of two 

main sub-structures: an encoder and a decoder. The encoder encodes the input sequence into 

some representation. Then that encoded representation is decoded by the decoder into the 

output sequence. Seq2Seq networks are employed tasks such as Machine Translation, 

Grammatical Error Correction. 
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3 Related works 

3.1 Introduction 
In this chapter, we explore previous works related to our Text Correction (TC) task on 

Thai User-generated Web Content (UGWC). Similar to most Thai NLP task, works on Thai TC are 

often adaptations of existing works on other languages (i.e., English). Thus, it is quite useful is to 

understand the overall trends of text correction systems, as well as to know the current state of 

both Thai and English. This chapter is split into three parts: an overview of text correction 

systems, the Thai text correction literature, and the English grammatical error correction 

literature. 

3.2 Text Correction Systems for Natural Language 
In the context of this study, we will separate text correction systems in two types: two-

stage correction systems, and end-to-end correction systems. 

Two-stage systems separate the text correction task into two phases: error detection 

(detector) and error correction (corrector). The primary rationale of this specific structure is to 

reduce the computational cost of performing correction by first identifying potentially erroneous 

areas of the text (Meknavin et al.). For example, the detector in dictionary-based systems 

(Hunspell; PyThaiNLP) classifies whether a token is an error by searching its dictionary. The 

reliance on prebuilt dictionaries limits the detectable errors to non-word errors only (words not 

in the dictionary). More statically complex models have been proposed to achieve better error 

detection (Lertpiya et al.; Meknavin et al.; PyThaiNLP; Watcharabutsarakham). In the error 

correction stage, one or more tokens are chosen as a correction for each of the errors identified. 

The corrector in dictionary-based systems may suggest words based on spelling similarity and use 

some form of tie-breaking (e.g., the prior probability of a word derived from word frequency 

encoded in the dictionary). The accuracy of dictionary-based correctors suffers since context is 

often necessary to select the proper substitution. The use of language models (LMs) has been 

proposed to overcome this issue and produce context-dependent corrections. However, Thai text 

correction systems only utilize traditional LM implemented using tri-grams (Meknavin et al.). 

End-to-end systems (E2E) combine the detection and correction stages into a single step. 

As such, the corrector produces a correction for every word in the input. In the event where the 

word is already correct, the corrector is expected to output the same token. A popular approach 
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in modern text correction literature (i.e., English grammatical error correction task) is reformulating 

the error correction task as a machine translation task (MT). Error correction is formulated as a 

translation from an “erroneous/informal” language into a “correct/formal” language. Techniques 

from statistical machine translation (Grundkiewicz & Junczys-Dowmunt), and subsequently, neural 

machine translation (NMT) (Chollampatt & Ng; Grundkiewicz & Junczys-Dowmunt; Junczys-

Dowmunt, Grundkiewicz, Guha, & Heafield) have been employed with great success compared to 

the traditional two-stage systems. Then more specialized architectures (Chollampatt & Ng; Zhao 

et al.) and techniques for data augmentation and training (Kiyono, Suzuki, Mita, Mizumoto, & Inui; 

Zhao et al.) emerged later. 

3.3 Thai Text Correctors 
Publicly available works for Thai TC can be grouped into two categories: published 

literature and FOSS.  

The published literature on Thai TC has focused heavily on correcting errors produced 

by optical character recognition (OCR) systems (Kruatrachue et al.; Meknavin et al.; Rodphon et 

al.; Watcharabutsarakham). In contrast, text correction for text input via human-computer 

interfaces (HCIs), such as keyboards, is an underresearched area (Zukarnain et al., 2019). FOSS text 

correctors (e.g., Aspell (Atkinson), Hunspell (Hunspell), PyThaiNLP (PyThaiNLP)) are primarily 

meant for correcting text from HCIs. 

Most Thai TC systems are two-stage systems. A variety of statistical models have been 

proposed for the detection stage: dictionary (Hunspell), character-gram (Lertpiya et al.; 

Watcharabutsarakham), WinNow (Meknavin et al.), and conditional random fields (CRF) 

(PyThaiNLP). However, the works on correction models include only dictionary-based (Hunspell) 

and statistical language models using part-of-speech (POS) trigrams (Meknavin et al.). The current 

statistical methods used in error detectors cannot detect errors that require extended context 

(Watcharabutsarakham, 2005) or require manual feature engineering to address out-of-vocabulary 

tokens (Meknavin et al.). 

On the other hand, E2E systems for Thai TC based on token-passing algorithms rely 

exclusively on prebuilt dictionaries (Kruatrachue et al.; Rodphon et al.). Thus, these methods 

cannot address out-of-vocabulary tokens (i.e., names) at all. 
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3.4 English Grammatical Error Correction  
The GEC task is an extension to the spelling correction task whose goal is to 

automatically produce a grammatically correct sentence when given an erroneous sentence—

without changing the meaning. The most notable standard benchmark dataset for this task is the 

Conll-2014 shared task (Ng et al.), which consists of essays written by English as a second 

language (ESL) learners and the corresponding corrections annotated by teachers (language 

owners). 

Significant and recent advancements on the GEC task is the reformulation of GEC into 

MT. This reformulation has proved highly successful and has shifted the area of research from 

two-stage systems (referred to as “classifier systems” in the GEC literature) to end-to-end 

systems (Junczys-Dowmunt & Grundkiewicz; Rozovskaya & Roth). 

3.5 Conclusion 
In this chapter, we covered works relating to the Thai TC task. We overviewed the text 

correction systems in terms of architectures (i.e., two-stage correction systems, and end-to-end 

correction systems) and research communities (i.e., Thai Text Correction, and English Grammatical 

Error Correction). 
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4 Thai Text Correction task 

4.1 Introduction 
This chapter describes the Thai Text Correction (Thai TC) task, our user-generated web 

content (UGWC) dataset, as well as our experimental setup for evaluating various methods on 

the Thai TC task. The text task presented in this chapter was previously published (Lertpiya et 

al.). 

The goal of TC systems is to correct errors in the input text without altering the meaning. 

In the scope of this research, we are only interested in correctable errors in UGWC. Details on the 

different types of errors that occur in UGWC (and which are correctable) are covered in Chapter 

4.2. In our task, errors are defined as words not in The Royal Institute Dictionary (Society) or a 

word (or a sequence of words) that falsely represents the original intent of the author (e.g., “sea” 

in “I sea the light.”). Such errors originate from two primary sources: the input method and 

nonstandard language usage by the authors. 

Textual data input via different methods suffers from different types of errors. One type 

can be introduced from unreliable input methods. For example, artifacts from OCR systems (i.e., 

similar-looking characters being mistaken for another character), incorrect keyboard decoding 

(typos: striking improper keys), and even from false corrections by automatic correction systems 

(e.g., autocorrect on virtual keyboards on touch screen enabled devices). In this work, we 

primarily correct errors that originate from texts input by Internet users (i.e., keyboard decoding 

errors). 

The demographics of the authors also play a role in the types of errors in a text. Errors 

can be attributed to nonstandard language use by the authors: intentional use of nonstandard 

words or nonstandard word spellings (e.g., morphed words, spoonerisms, and slang) and 

unintentional spelling errors (e.g., misspellings). For example, the characteristics of errors that 

occur in a business letter differ from those in a social media post. 

In this chapter, we will outline our UGWC dataset, and the experimental setup used to 

evaluate a variety of methods (including ours detailed in Chapter 5) on the Thai Text Correction 

(Thai TC) Task. The first section details our UGWC dataset. The second section outlines the 

evaluation metrics used for each experiment. The third section outlines the experiments 

performed on our Thai TC task. The results of each experiment are later detailed in Chapter 6. 
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For experimentations on the publicly released version of the Thai TC task as well as 

Conll-2014 (Ng et al.), see Chapter 6.8. 

4.2 UGWC dataset 
Our UGWC dataset is an expanded version of our previous UGWC dataset (Lertpiya et al.) 

and is constructed from text data collected from users of online social media platforms. This 

data differs from data collected from other online outlets (e.g., news sites) where the content is 

typically created by professionals and is often curated. Due to privacy concerns, the UGWC 

dataset for spelling correction and word normalization will be only partially released by 

Chulalongkorn University for future research purposes. The dataset consists of both longer bodies 

of text (e.g., discussions on public forums) and shorter conversational dialogues (e.g., posts and 

comments on social media). The dataset items have a mean length of 66 words and a median 

length of 19 words. Details on the size of our data are shown in Table  1. Errors and the 

corresponding corrections were annotated by language-major students from the Faculty of Arts of 

Chulalongkorn University. Errors typically involve one or more of the six main types of errors: 

misspelled words, morphed words, slang, spoonerism, incorrect abbreviation, and others. Errors in 

non-Thai languages are ignored (annotated as correct), and lines of text consisting purely of other 

languages were filtered out before data annotation. Real-world examples of each type of error 

and the respective corrections are shown in Table 2. The approximate number of errors in the 

training set is shown in Table  3. The numbers are an approximation since the word tonkenizer 

may produce in accurate tokenization due to the errors present. Meanwhile, error segments 

merges multiple consegutive errors into one. Explanations of each type of error and their English 

equivalents are outlined below. 

Misspelled words are words whose spelling deviates from the standard spelling 

(according to The Royal Institute Dictionary) of the intended word. In this study, misspelled words 

are not limited to words that do not appear in the dictionary. For example, the word “sea” in “I 

cannot sea in the dark” is a misspelling of the intended word “see”, although the word “sea” is 

a valid word in the dictionary. 
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Table  1 Size of the UGWC dataset and the training-testing split 
 Tokens Error tokens Error Segments Lines 

Train + Dev 7,211,994 247,921 179,803 108,597 

Train 6,894,886 236,404 171,487 103,597 

Dev 317,108 11,517 8,316 5,000 

Test 635,822 22,665 16,537 10,000 

 
Table 2 Examples of different types of errors and their respective corrections 

Type of Error Error Correction Type of Error Error Correction 

Misspelling ทุ๊กคน ทุกคน Morphed ครัช ครับ 

 คว่ำบัตร คว่ำบาตร  ตั๊ลลา๊คคคค น่ารัก 

Abbreviation มค ม.ค. Spoonerism พับกบ พบกับ 

 พน พรุ่งนี ้    

Slangs ตีเนียน No Correction Other โรบินสัน No Correction 

  อ่อย ทอดสะพาน    

 

Table  3 Approximate number of errors in UGWC training set 
 Error tokens Error Segments Error Segments (%) 

Misspelling  133,045   102,048  59.5% 

Morphed  58,857   44,911  26.2% 

Abbreviation  33,580   20,022  11.7% 

Spoonerism  318   200  0.1% 

Slangs  122   91  0.1% 

Other  10,482   4,216  2.5% 

 
Morphed words are words intentionally morphed to emphasize emotions or replicate 

human speech. For example, by intentionally misspelling the phrase “sooo gooood” the author 

may intend to imitate vowel stresses as they might occur in a verbal conversation. 
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Slangs can consist of either new words (e.g., “Frenemy”, which is a combination of 

“friend” and “enemy”) or repurposed words that take new meanings (e.g., the verb “ride” is 

sometimes used as a noun to refer to a “car”).  

Spoonerisms are a form of wordplay on sound commonly found in informal Thai 

dialogue. An English example would be writing “beautiful world” as “weautiful borld”. 

Incorrect abbreviation notations include abbreviated words that are misspelled (e.g., 

“USA.” instead of “USA” or “U.S.A.”) and words that are abbreviated despite not having an 

official abbreviation (e.g., “brb”, which is an unofficial abbreviation of “be right back”).  

“Other” errors include words that do not exist in the dictionary, words that do not have 

an official spelling in Thai (i.e., named entities), and words that imitate sounds (e.g., “ahh”, 

“eww”, and “aww”). 

For our TC task, we are interested only in correctable errors. Thus, slang with no 

correction and “other” errors are not considered. The UGWC contains three separate sets of 

samples: a training set, a development set, and a test set, as shown in Table  1. 

4.3 Evaluation criteria 
Word-error-rate (WER) and generalized language evaluation understanding (GLEU) 

(Napoles, Sakaguchi, Post, & Tetreault) were adopted as the metrics for the TC task. WER is the 

standard evaluation metric used in past literature on Thai TC (Meknavin et al., 1998a, 1998b). 

GLEU (Napoles et al., 2015, 2016) was developed as an evaluation metric for English GEC and has 

a high correlation with human preference by extending BLEU (Papineni, Roukos, Ward, & Zhu). 

Because GLEU evaluates words based on n-grams instead of individual tokens, it tends to favor 

grouped errors over scattered ones, whereas WER treats all errors equally. For the English GEC 

and spelling correction tasks, we employed the standard M2 and GLEU for comparability with the 

existing literature (Chollampatt & Ng; Grundkiewicz & Junczys-Dowmunt; Junczys-Dowmunt et al.; 

Kiyono et al.; Ng et al.; Zhao et al.). Our initial goal was to adopt both correction metrics from 

English GEC for our Thai TC task. However, we dropped M2 (Dahlmeier & Ng) due to a 

combination of M2's high computational complexity and the Thai language's lack of explicit 

sentence boundaries (Aroonmanakun). We found that a single paragraph of text can take upwards 

of an hour to evaluate. 
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4.4 Experiment setup 
We evaluated five methods on the Thai UGWC dataset: an industry-standard spell 

checker (i.e., Hunspell), a well-known Thai NLP toolchain (i.e., PyThaiNLP), two models from the 

English GEC task (i.e., Bi-GRU (Grundkiewicz & Junczys-Dowmunt) and the copy-augmented 

transformer (Norvig)), and our proposed method. We categorize the approaches into two groups: 

two-stage error correction (i.e., Hunspell, PyThaiNLP, and ours) and end-to-end (E2E) error 

correction (i.e., Bi-GRU and copy-augmented transformer). The configurations used for each 

method are outlined below, and the hyperparameter tuning is detailed in Appendix 9.2. 

Hunspell (Hunspell) was evaluated using both the provided prebuilt Thai dictionary and 

a dictionary constructed from the training data. The constructed dictionary was built from the 

words in the corrected text of the UGWC training set. We experimented with multiple cut-off 

thresholds for a word to be added to the dictionary; however, we report using only the best 

performing threshold (𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ≥ 1) 

PyThaiNLP is a popular toolchain in the Thai NLP community that employs techniques 

adapted from state-of-the-art research on other languages. PyThaiNLP has a ready-to-use text 

correction module that uses a two-stage approach. PyThaiNLP employs a detector that uses 

passive-aggressive CRF (Crammer, Dekel, Keshet, Shalev-Shwartz, & Singer) and a Norvig corrector 

(Norvig). 

Two neural sequence-to-sequence models were evaluated: the bidirectional GRU (Bi-

GRU) network (Grundkiewicz & Junczys-Dowmunt) and the copy-augmented transformer (Zhao et 

al.). Bi-GRU represents a baseline for a neural Seq2Seq model, because Bi-GRU is a strictly neural-

based MT method that achieved relatively good performance at its time of publication. In 

contrast, the copy-augmented transformer represents the current state-of-the-art architecture 

from the English GEC task; it employs specifically designed techniques to perform text corrections 

(i.e., the copy substructure and pretraining on augmented data). For the Bi-GRU model, where the 

model is meant to operate on SentencePiece tokens (SP) (Kudo & Richardson), the SP tokens are 

encoded from tokenized Thai text and space tokens are used to denote word boundaries, the 

existing space characters are escaped (replaced with special characters). 
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4.5 Chapter summary 
In this chapter, we covered the Thai Text Correction (Thai TC) task, from the details of 

our dataset to the experimental setup used to evaluate various methods on the Thai TC task. 

 Our dataset is built from UGWC (social text) containing mainly five types of errors and 

variances (i.e., misspellings, morphed words, slangs, spoonerisms, and incorrection abbreviation 

annotations). We have chosen two evaluation metrics for the Thai TC task: word-error-rate (WER) 

and generalized language evaluation understanding (GLEU). Then, we detailed our experimental 

setup for evaluating models on Thai TC.  
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5 Method 

5.1 Introduction 
This chapter outlines our proposed two-stage TC method for Thai TC. The method 

presented in this chapter was previously published in (Lertpiya et al.). This chapter is split into 

three subsections: model description, data augmentation, and training. The model section details 

the structure of our proposed text correction system. The data augmentation section describes 

the data augmentation techniques applied during training. Moreover, the training section outlines 

the techniques we found to be effective in improving model performance. 

5.2 Model 
This chapter describes the two-stage corrector: the error detection stage and the error 

correction stage. A structural overview of the entire pipeline is shown in Figure 1. The “ ” (space) 

character between two words in the error segment is added for visual clarity. “<BEGIN>” and 

“<END>” tokens are omitted to reduce clutter. The inputs and outputs of each stage and the 

details of the models are outlined below.  

The input to the error detection stage is a sequence of words containing potentially 

erroneous input text  𝑤⃗⃗ = {𝑤1, 𝑤2, … , 𝑤𝑁}, where 𝑁 is the total number of words. The 

detection stage uses the error detector to predict a sequence of labels of the same length 𝑙 =

{𝑙1, 𝑙2, … , 𝑙𝑁}, where a prediction 𝑙𝑖 denotes the prediction of the corresponding word 𝑤𝑖. A 

word is labeled either erroneous or correct 𝑙𝑖 ∈ {𝑒𝑟𝑟𝑜𝑟, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡}, where the erroneous label 

denotes correctable errors as defined in Chapter 4.2. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16 
 

 
Figure 1 Overview of our text correction system 

The error correction stage is given the same input sequence 𝑤⃗⃗ = {𝑤1, 𝑤2, … , 𝑤𝑁} and 

error detection prediction 𝑙 . The error correction stage should produce the appropriate corrected 

sequence 𝑤∗⃗⃗⃗⃗  ⃗ = {𝑤1
∗, 𝑤2

∗, … , 𝑤𝑀
∗ } while leaving every correct input word unaltered. The error 

correction stage achieves this by extracting error segments from the error detection result. An 

error segment is a contiguous sequence marked as erroneous. The correction stage then uses the 

error corrector to produce a sequence of correction words to replace each error segment. The 

sequence-to-sequence structure of our error corrector allows the correction stage to produce a 

corrected sequence that may differ in length from the input sequence 𝑁 ≠ 𝑀. For example, 

given the input “p |  ัง | ใช้ | ไม่ | ได้ | อีก | หรอ | ครับ” where the 1st, 2nd, and 7th words labeled as 

erroneous, the correction stage would extract two error segments: “p |  ัง” and “หรอ”. Given the 

correction “ยัง” and “หรือ”, the correction stage will produce the corrected sequence “ยัง | ใช้ | ไม่ 

| ได้ | อีก | หรือ | ครับ” 

The error correction stage is given the same sequence of words containing erroneous 

text and the prediction from the detection stage. The error correction stage then produces a new 

sequence 𝑤∗⃗⃗⃗⃗  ⃗ where every word 𝑤𝑖 marked as correct 𝑙𝑖 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is left unaltered. The error 
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correction stage does this by extracting error segments from the detection data. An error segment 

is a contiguous sequence marked as errors by the detector. The text corrector produces a 

correction based on the erroneous text and the context text the error. For example, extracting 

from this sequence “p |  ัง | ใช้ | ไม่ | ได้ | อีก | หรอ | ครับ” where the 1st, 2nd, and 7th words are 

erroneous, would result in two error segments corresponding to “p |  ัง” and “หรอ” respectively. 

And the appropriate correction would be “ยัง” and “” which will produce the corrected 

sequence “ยัง | ใช้ | ไม่ | ได้ | อีก | หรือ | ครับ”. By grouping up the errors into segments and using a 

corrector that produces a sequence of words, our method avoids the issue where the erroneous 

word in the original text does not have a one-to-one mapping to the words in the correction. 

5.2.1 Error Detector 

Our error detector is a bidirectional-LSTM (bi-LSTM) (Hochreiter & Schmidhuber; Schuster 

& Paliwal) binary sequence tagger. An illustration of the detector is shown in Figure 2. The model 

consists of a word embedding layer (with a size of 64), a character embedding layer (with a size 

of 128), a character bi-LSTM encoder (32 nodes in each direction), a two-layer bi-LSTM (64 nodes 

in each layer and direction), and an output dense projection layer with a softmax activation 

function. The character-level embeddings are produced from the concatenation of the character 

encoder bi-LSTM last hidden state in both directions, as shown in Figure 3. The sequence tagger 

estimates the probability of each input word as either erroneous or correct. The detection 

threshold is selected based on the error detection 𝐹1-score on the development set (detailed in 

Chapter 6.6). The vocabulary of the error detector is created by selecting the 𝑛 most common 

words from the corrected text of our training data. This approach minimizes the number of 

erroneous words in our vocabulary because the presence of label noise causes a small number 

of words in the corrected text to be erroneous. We selected the 24,576 (3 × 213) most common 

words as our vocabulary. Words not in our vocabulary are replaced with a special out-of-

vocabulary (OOV) token. We also explored using of subword units to handle OOV by evaluating 

our model with SentencePiece tokens (Kudo & Richardson) rather than word tokens. In the 

SentencePiece variant of our model, the vocabulary size is also 24,576 tokens. During training, the 

detection model is optimized using Adam (Kingma & Ba) with a learning-rate of 0.002 on the 

cross-entropy loss. See Appendix 9.2 for a consolidated list of hyperparameters. 
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Figure 2 Error detector operating on a sequence 

 

 
Figure 3 Character LSTM embedding layer encoding a word token 

5.2.2 Error Corrector 

Our proposed error corrector is an autoregressive sequence-to-sequence (Seq2Seq) 

neural network. An illustration of the overall structure is shown in Figure 4. For each error 

segment, the corrector is given the error segment in characters and the context of the error 

segment in words. The context is the input sequence with a portion of the error segment 

replaced with a special ERR token. The corrector then produces a sequence of words as a 

correction for the error segment. The difference between our model a typical Seq2Seq network is 

our context-aware encoder, which includes a contextual attention layer. Details of the encoder 

and the decoder of the corrector are provided later in this thesis. The corrector shares the same 

vocabulary as the error detector. Corrections containing OOV tokens are discarded, and the error 

segment is left unaltered. The corrector is optimized using Adam (Kingma & Ba) with a learning 

rate of 0.002 on the cross-entropy loss. The main hyperparameters are 𝑚 =  24 and 𝑛 =  128. 

See Appendix 9.2 for a consolidated list of hyperparameters. 
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Figure 4 Structure of the Seq2Seq text corrector 

5.2.2.1 Encoder 

The context-aware encoder is composed of 2 embedding layers, 3 bi-LSTM encoders, 

and a contextual attention layer, as illustrated in Figure 5. The contextual attention layer allows 

the corrector to encode both the erroneous sequence and the context sequence into the 

encoded sequence. The encoder was inspired by the query-to-context attention mechanism in 

BiDAF, which is a proven architecture originally proposed for the machine comprehension task 

(Seo, Kembhavi, Farhadi, & Hajishirzi). BiDAF is used to model a sequence generation task for two 

input sequences of varying lengths. The encoder in BiDAF computes two attention matrices: 

query-to-context (Q2C) and context-to-query (C2Q), which are combined along with the encoded 

query into a single encoded sequence that represents both the query and the context. Our 

context-aware encoder encodes the context by performing dot-product attention from the 

erroneous sequence to the context sequence. This approach is similar to the Q2C attention in 

BiDAF. Our erroneous sequence is equivalent to the query sequence in BiDAF, and our context 

sequence is equivalent to the context sequence in BiDAF. The encoded context represents the 

information in the context relevant to decoding the erroneous characters. Our preliminary 

experiments showed that the corrector performed better when utilizing only BiDAF's Q2C 

encoder rather than the full array of encoders in BiDAF. Our experiments were developed using 

the AllenNLP framework (Gardner et al.) and the BiDAF implementation in AllenNLP (AllenNLP) as 

a reference. The details of each layer of our context-aware encoder are described below. 

Error encoding. The erroneous character tokens 𝑒 = {𝑒1, 𝑒2, … , 𝑒𝐽} of the error segment 

are embedded with the character embedding layer. The embedding layer projects each character 
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into a 2m vector space, which produces a matrix 𝐸(𝑒) ∈ 𝑅𝟚𝑚×𝐽 . The character embeddings are 

then encoded by the “error encoder” (a bidirectional LSTM with m nodes in each direction) into 

an erroneous-encoding matrix 𝐸(𝑙) ∈ 𝑅𝟚𝑚×𝐽. 

Context encoding. The contextual word tokens 𝑐 = {𝑐1, 𝑐2, … , 𝑐𝐾} are embedded with 

the word embedding layer. The word embeddings project each word into a 2𝑚 vector space, 

which produces a matrix 𝐶(𝑒) ∈ 𝑅𝟚𝑚×𝐾 . The word embeddings are then encoded by the 

“context encoder” (a bidirectional LSTM with m nodes in each direction) into a context-encoding 

matrix 𝐶(𝑙) ∈ 𝑅𝟚𝑚×𝐾. 

 
Figure 5 Structure of the encoder 
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Contextual encoding. The erroneous-encoding matrix 𝐸(𝑙) and the context-encoding 

matrix 𝐶(𝑙) are then input to the contextual attention layer, which computes the contextual 

embeddings matrix  𝑍(𝑒) ∈ 𝑅𝟜𝑚×𝐽. The contextual embedding 𝑧𝑗
(𝑒)

∈ 𝑅𝟚𝑚 is a concatenation of 

the error encoding 𝑒𝑗
(𝑙)

∈ 𝑅𝟚𝑚 and the error-to-context vector 𝑥𝑗 ∈ 𝑅𝟚𝑚 as shown in Eq 2. The 

error-to-context matrix 𝑋(𝑒) ∈ 𝑅𝟚𝑚×𝐽 is the attention of error encoding on the context encoding 

computed from the similarity matrix 𝑆 ∈ 𝑅𝐾×𝐽 as shown in Eq 1. 

𝑆 ∈ 𝑅𝐾×𝐽 𝑠𝑘𝑗 = 𝑐𝑘
(𝑙)𝑇

⋅ 𝑒𝑗
(𝑙)

∈ 𝑅 

𝐴 ∈ 𝑅𝐾×𝐽 𝑎𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠𝑗) ∈ 𝑅𝐾 

𝑋(𝑒) ∈ 𝑅𝟚𝑚×𝐽 𝑥𝑗 = (𝐶(𝑙)𝑇 ⋅ 𝑎𝑗)
𝑇

∈ 𝑅𝟚𝑚 (1) 

𝑍(𝑒)  ∈  𝑅𝟜𝑚 ×  𝑧𝑗
(𝑒)

= [𝑒𝑗
(𝑙)

; 𝑥𝑗] ∈ 𝑅𝟜𝑚 (2) 

Subsequently, the contextual embeddings 𝑍(𝑒) ∈ 𝑅𝟜𝑚×𝐽 are encoded by the 

“contextual encoder” (a bidirectional LSTM layer containing n nodes in each direction) into a 

contextual-encoding matrix 𝑍(𝑙) ∈ 𝑅𝟚𝑛×𝐽. 

5.2.2.2 Decoder 

The decoder is a typical LSTM decoder (a unidirectional LSTM containing 2n nodes) with 

an attention mechanism (Bahdanau, Cho, & Bengio) that observes contextual encoding, as shown 

in Figure 4. The decoder produces a correction for the error segment. Because the corrector is an 

autoregressive network, the decoder operates by predicting a token 𝑤𝑡
(𝑐) given the token 

predicted from the previous timestep 𝑤𝑡−1
(𝑐) ; therefore, the tokens before and after the actual 

correction words are special tokens, as shown in Eq 3, where 𝐿 is the number of words in the 

correction. 

𝑤∗⃗⃗⃗⃗  ⃗ = {𝐵𝐸𝐺𝐼𝑁,𝑤1
∗, 𝑤2

∗, … , 𝑤𝐿
∗, 𝐸𝑁𝐷} (3) 

The decoding process is repeated until the timestep following the end of the correction 

sequence 𝑡 =  𝐿 + 1, where the network is expected to output a special 𝐸𝑁𝐷 token to indicate 

the end of the sequence. The hidden state ℎ0 ∈ 𝑅𝟚𝑛 of the decoder LSTM is initialized with the 

final hidden state of the “contextual encoder”. The input to the LSTM decoder is a 

concatenation of the word embeddings and the context vector, as shown in Eq 4. The token 

produced from the previous timestep 𝑤𝑡−1
(𝑐)  is embedded with the word embedding layer, which 

produces word embeddings 𝑒𝑡
(𝑒)

∈ 𝑅𝟚𝑛. The context vector 𝑒𝑡
(𝑐) ∈ 𝑅𝟚𝑛 is computed with dot-

product attention from the previous hidden state ℎ𝑡−1 to the encoded sequence 𝑍(𝑙). The 
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embedding 𝑒𝑡 is a concatenation between the word embeddings and the context vector, as 

shown in Eq 4. 

𝑒𝑡 = [𝑒𝑡
(𝑒)

; 𝑒𝑡
(𝑐)

] ∈ 𝑅𝟜𝑛 (4) 

ℎ𝑡 , 𝑐𝑡 = 𝐿𝑆𝑇𝑀𝑑𝑒𝑐𝑜𝑑𝑒𝑟(ℎ𝑡−1, 𝑐𝑡−1, 𝑒𝑡) 

The decoder is trained with teacher forcing. Thus, during training, the decoder's input is 

derived from data instead of the output from the previous timestep. 

5.3 Data Augmentation 
We experimented with injecting noise into the dataset during model pretraining to help 

increase the number of erroneous examples in the training set. Our method was inspired by the 

data augmentation technique employed in the copy-augmented transformer  (Zhao et al.). 

However, we inject character errors rather than word errors. We inject three types of errors: a 

random character deletion, a random character substitution, and a random character insertion. 

Each type of error possesses a 3% probability of appearing at every position in the text. When a 

character is replaced or inserted, the replacement character is chosen at random based on the 

distribution of that character in the training set. 

5.4 Training 
This chapter describes the training routine, which is shared by both the detection and 

the correction stages. Any details that differ between the two models are outlined in their 

corresponding section under Chapter 5.2. 

The dataset is separated into three sets: a training set, a development set, and a test set. 

The test set is used only to report the model performance after training and to conduct the error 

analyses reported in this thesis. The details of each set for UGWC are covered in Chapter 4.2, 

while details on other tasks are listed in their corresponding experiments. 

We evaluated three training configurations: training only on the training set, training only 

on the noise-injected training set, and models pretrained on the noise-injected training set and 

fine-tuned on the original training set. During fine-tuning, we reduced the learning rate to 0.0005 

for both the detector and the corrector. 

During training and pretraining, the models are validated (evaluated on the development 

set) to prevent overfitting between epochs. The corrector is evaluated after a fixed number of 
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iterations (i.e., 25,000 error segments) instead of finishing the whole epoch. Early stopping 

patience is 20 epochs for the detector and 20 groups (of 25,000 error segments) for the corrector. 

The models were evaluated using their respective loss functions. We found that neither using the 

𝐹1-score for the detector validation nor accuracy for the corrector validation resulted in 

improved performances. 

5.5 Chapter summary 
In this chapter, we covered our proposed method of performing Thai TC on UGWC data. 

Our proposed method is a two-stage corrector, for additional details of the different types of text 

correctors see Chapter 3.2. A two-stage corrector is comprised of a detector and a corrector. The 

detector is responsible for identifying the erroneous portions of the text, which is then corrected 

by the correction stage. Unlike traditional two-stage correctors, our correction stage features the 

contextual attention layer, which allows the corrector to produce the correction based on both 

the erroneous portion of the text and the surrounding text. 
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6 Results and Discussion 

6.1 Introduction 
In this chapter, we outline and discuss the results of our experiments, detailed in 

Chapter 4.4. First, Text Correction approaches were evaluated on the Thai UGWC. Second, we 

further explore how our method performs with SentencePiece tokens. Third, each stage of our 

proposed pipeline (i.e., detection stage, correction stage) is evaluated in isolation. Fourth, we 

investigate how detection sensitivity should be tuned for optimal performance. Fifth, we examine 

how iterative correction affects the results of our method. Lastly, we will evaluate our method 

on the publicly available version of our Thai UGWC dataset. The results presented from Chapter 

6.2 to 6.6 were previously published in (Lertpiya et al.). 

6.2 Thai UGWC 
The TC results on the Thai UGWC dataset are shown in Table  4. We categorized the 

results into two groups: off-the-shelf ready-to-use models and models trained on the UGWC 

training set. Two off-the-shelf models were evaluated: Hunspell with its prebuilt dictionary 

(Hunspell), PyThaiNLP (PyThaiNLP). Furthermore, we evaluated three trained models: Hunspell 

(dictionary-based) (Hunspell), Bi-GRU (Neural Seq2Seq) (Grundkiewicz & Junczys-Dowmunt), and 

the copy-augmented transformer (Neural Seq2Seq with Augmentation) (Zhao et al.). Samples of 

the corrections produced by the individual models are shown in Appendix 9.1.1. The time 

required by each model to perform inference on the test set is shown in Table  6. Below, we 

discuss the shortcomings of the methods that struggled with the Thai TC task before reporting 

the overall results. 

Correction systems with dictionary-based correctors (i.e., Hunspell (Hunspell), and 

PyThaiNLP (PyThaiNLP)) often struggle to select a correct correction candidate. As a result, a 

system with a more conservative error detector would produce less incorrect corrections. 

Hunspell with its prebuilt dictionary performed the worst. Although we experimented with 

multiple cut-off thresholds for creating the custom dictionary for Hunspell, the best result is 

reported in Table  4.---the dictionary built from words in the corrected text from the training set 

(𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ≥ 1). Although this model suffers from erroneous words in the dictionary, due to 

label noise in the corrected text, compared to the provided dictionary, the errors left 

uncorrected outweigh the potential errors introduced from corrections with false-positives. 
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Although the GEC literature may suggest that end-to-end (E2E) correction systems are 

the natural step forward for text correction systems, our results showed that the basic E2E text 

corrector is insufficient for correcting errors in Thai UGWC (see Bi-GRU (Grundkiewicz & Junczys-

Dowmunt) in Table  4). The error analysis showed that most of the errors made by Bi-GRU result 

from the model getting stuck in a loop, thus repeatedly producing the same groups of tokens. To 

combat this, we tried performing corrections on truncated inputs, which improves the score. 

However, the Bi-GRU with the best performing input size (20 tokens for WER and 50 tokens for 

GLEU) still suffered from looping and overcorrections (i.e., text being rewritten with a different 

meaning). As a result, Bi-GRU performed significantly worse than did the simpler two-stage 

correctors. In Table  4, Bi-GRU scores are reported from the model operating on SentencePiece 

tokens with the original space characters escaped. However, we also experimented with 

executing Bi-GRU on SentencePiece with untokenized Thai text, and that model still exhibits the 

issues mentioned above. Some samples produced by executing Bi-GRU on SentencePiece on 

untokenized Thai text are shown in Appendix 9.1.1. 

The copy-augmented transformer (Zhao et al.) showed massive improvement over Bi-

GRU and even produced a positive word error rate reduction on the input text. However, the 

error analysis showed that the copy-augmented model still suffers from overcorrections, primarily 

randomly dropping words from the input and producing corrected text with a different meaning. 

Table  5 shows a breakdown of the WER score; the copy-augmented model shows substantially 

worse deletion and insertion error rates compared to our model, which confirms our analysis. 

Our proposed method without data augmentation outperforms all the other models 

evaluated on the Thai TC task. The results also showed that pretraining on the augmented 

training set followed by fine-tuning further improves the correction performance. However, 

training on an augmented training set without fine-tuning significantly degrades the correction 

performance. 

6.3 SentencePiece as unit tokens 
In this chapter, we evaluate how our model performs with two different token types: 

word tokens and SentencePiece tokens. SentencePiece (subword tokens) potentially allow a 

model to operate on text with an open vocabulary. Because SentencePiece-based models do 

not produce word boundaries, word tokenization is required to postprocess the results for 

evaluation. To ensure a fair comparison between the two models, we also retokenized the 
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results from our word-based model. The results are shown in Table  7. In terms of GLEU, both 

models scored similarly. However, the word model substantially outperformed the 

SentencePiece model in terms of WER. The error analysis showed that when the word-based 

model is unable to produce a correction (outputs an OOV token), the SentencePiece-based 

model also produced incorrect corrections. Due to false-positives in the detection stage, not 

correcting is the better option in such cases. 

Table  4 Evaluation of end-to-end error correction on the Thai UGWC test set by various systems 

Model Type GLEU WER (%) ∆WER (%) 
Do nothing (source text) - 0.8845 3.77 0.00 
Ideal correction (Oracle) - 1.0000 0.00 -100.00 

Off the shelf     
Hunspell Two-Stage 0.8267 8.11 +115.12 

PyThaiNLP Two-Stage 0.8612 5.58 +48.01 
Trained     

Hunspell Two-Stage 0.8598 5.57 +47.75 
Bi-GRU (180 token limit) End-to-End 0.4035 50.82 +1,247.92 

Bi-GRU (50 token limit) End-to-End 0.7462 17.51 +364.38 
Copy-Augmented Transformer* End-to-End 0.9374 2.58 -31.56 
Copy-Augmented Transformer** End-to-End 0.9409 2.51 -33.42 
Ours Two-Stage 0.9453 2.24 -40.66 
Ours* Two-Stage 0.9361 2.83 -25.03 

Ours** Two-Stage 0.9502 2.07 -45.21 
Ours** (with Oracle Detection) Two-Stage 0.9774 1.08 -71.39 

* Model is only trained on noise injected dataset. 
** Model is pre-trained on noise injected dataset before fine-tuned on the regular training 

Table  5 Detailed WER evaluation of correction methods on the Thai UGWC test set 
Model Substitution (%) Deletion (%)  Insertion (%) WER (%) 
Do nothing 
(source text) 

2.84 0.64 0.27 3.77 

Copy-augmented** 1.63 0.56 0.30 2.51 

Ours** 1.44 0.33 0.28 2.07 
** Model is pre-trained on noise injected dataset before fine-tuned on the regular training 
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Table  6 Inference time on the Thai UGWC test set by various systems 
 Detection Correction End-to-end Lines per Second 

CPU     
Hunspell 0:00:02 0:11:15 0:11:17 14.79 

Hunspell (Trained) 0:00:01 0:04:02 0:04:03 41.06 
PyThaiNLP 0:04:18 4:16:37 4:20:55  0.65 

Bi-GRU (20 token limit) - - 3:54:07  0.71 
Copy-augmented - - 0:18:05  9.22 

Ours 0:03:38 0:03:07 0:06:45 24.69 
GPU     

Bi-GRU (20 token limit) - - 0:23:12  7.18 
Copy-augmented - - 0:04:19 38.61 
Ours 0:01:23 0:01:23 0:02:46 60.20 

The CPU timing information is on an Intel i7-7800X. 
The GPU timing information is on an Nvidia Geforce GTX 1080 Ti. 
Inference is performed line-by-line (without line-level parallelism). 

Table  7 Evaluation of retokenized output from our method with different unit token types on 
the Thai UGWC test set 

 GLEU WER (%) ∆WER (%) 
Retokenized source text 0.8870 3.55 0.00 

Ours with Word as unit token**          0.9565 1.71 -51.72 
Ours with SentencePiece as unit token** 0.9567 1.94 -45.24 
** Model is pre-trained on noise injected dataset before fine-tuned on the regular training 

6.4 Detection stage 
This chapter examines the detection stage from two aspects: detection coverage of the 

errors in the data and the error segments produced from the detection stage. An error segment 

can be classified into four types: exact detection, overdetection, partial detection, and false-

positive detection. Figure  6 shows the four types of error segments. An exact detection occurs 

when the predicted boundaries of an error segment match the true boundaries of the error 

segment. Overdetection occurs when the predicted error segment covers an area larger than the 

actual error segment. A partial detection occurs when a predicted error segment only partially 

covers the actual error segment. Last, false-positive detection occurs when a predicted error 

segment does not overlap with any actual error segments. From the perspective of the actual 
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errors in the data, reducing the detection threshold increases the detection coverage, as shown 

in Figure  7. However, there is a trade-off between the detection coverage and the number of 

false-positive detections, as shown in Figure  8 and Figure  9. Overdetection increases as the 

threshold decreases; but Interestingly, partial detection remains roughly the same across all 

detection thresholds. The evaluation broken down by error types is shown in Figure  10 and 

Figure  11. The performance is consistent for misspelled words, morphed words, and incorrect 

abbreviation notations but varies for spoonerisms and slang, which have smaller numbers of 

samples. 

 
Figure  6 Four types of error segments 

 
Figure  7 Detection coverage of our method on the Thai UGWC test set 
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Figure  8 Types of error segments produced from the detection stage of our method on the Thai 

UGWC test  set 

 
Figure  9 Coverage of the detection and false-positives produced from the detection stage to our 

method on the Thai UGWC test set 

 
Figure  10 Number of error segments produced for different types of errors on the Thai UGWC 

test set 
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Figure  11 Normalized number of error segments produced for different types of errors on the 

Thai UGWC test set 

6.5 Correction stage 
This chapter also examines the correction stage from two aspects: correction coverage of 

the errors in the data and the error segments that are corrected in the correction stage. 

Correction of a covering error segment (i.e., exact detection and overdetection) is corrected either 

accurately or incorrectly. For false-negative detection, the error is uncorrected. For partial 

detection, any correction is considered incorrectly corrected because portions of the erroneous 

text lie outside the error segments. Figure  12 shows the correction coverage of our method. 

From the perspective of the actual errors in the data, reducing the detection threshold tends to 

increase the correction coverage. However, the correction coverage flattens out at lower 

thresholds and even decrease slightly at a threshold of 0.1. Thus, a trade-off exists between the 

correction coverage and the number of remaining errors in the corrected text, as shown in Figures 

Figure  13, Figure  14, and Figure  15. A breakdown of the evaluation by error types is shown in 

Figures Figure  16 and Figure  17. In-line with error detection, performance is consistent for 

misspelled words, morphed words, and incorrect abbreviation notations but varies for 

spoonerisms and slang. 
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Figure  12 Correction coverage of our method on the Thai UGWC test set 

 
Figure  13 Types of corrections produced by our method on the Thai UGWC test set 

 
Figure  14 Breakdown of the remaining errors after executing our method on the Thai UGWC test 

set 
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Figure  15 Coverage of the correction and the resulting number of errors from our method on 

the Thai UGWC test set 

 
Figure  16 The number of error segments corrected for different types of errors on the Thai 

UGWC test set 

 
Figure  17 Normalized number of error segments corrected for different types of errors on the 

Thai UGWC test set 
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6.6 Detection sensitivity 
In this section, we evaluate how the detector performance correlates with the end-to-

end correction performance at different detection sensitivities. The detection stage is evaluated 

as a typical detection task using the 𝐹1-score on the test set. The results are shown in Figure  18. 

We found that the trend of the GLEU score follows the detection 𝐹1-score and that a threshold 

of 0.4 performs best on both metrics. For all the results reported outside of this chapter, we 

tuned the detection threshold on the development set, which sets the threshold = 0.5. 

6.7 Multi-pass correction 
In this section, we investigate how performing multiple correction pass with our method. 

Prior research on English Grammatical Error Correction has shown that an error corrector may not 

be able to correct all errors within a single correction pass (Ge, Wei, & Zhou). With the rationale 

being that the model may be confused by the errors within the context. Thus, by first reducing 

the error, the model should better correct the remaining errors. 

The process for multi-pass correction is as follows. We initially perform correction as 

detailed in Chapter 5; however, the corrected output is then fed back to be re-corrected. For 

evaluation, this process is repeated for five iterations to ensure convergence of correction score. 

Our method was evaluated on three groups multi-pass correction configurations: regular 

correction, under-correction, over-correction. As concluded from our last section (Chapter 6.6), 

our method produced the best overall correction when the detection stage’s threshold is tuned 

to the using the 𝐹1 score on the detection task, that is, threshold = 0.5 (when tuned on the 

development set). For regular correction, the same tuned threshold is chosen and fixed for each 

iteration. And, in theory, allow the corrector to correct the remaining errors in the text. For under-

correction, the threshold is raised. For over-correction, the threshold is lowered. Based on our 

results in Section 6.5, the detection threshold dictates the trade-off between the number of 

existing errors corrected, and the number of errors introduced by the corrector. 

The results for multi-pass correction are shown in Table  8. Multi-pass correction, when 

applied directly to our method, does not yield any improvements in performance for any of the 

detection thresholds. For over-correction and regular correction thresholds, the corrector 

produces the best correction on the first iteration, whereas the subsequent iterations lead to 

more errors being introduced. For under-correction thresholds, the corrector converges to some 
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correction score. However, the resulting correction is lower than that of a single pass correction 

at the tuned threshold value. The higher correction score at 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.4 is explained in 

Chapter 6.6. 

 
Figure  18 Detection and end-to-end correction performances at different detection sensitivities 

 

Table  8 Evaluation of our method with multi-pass correction at different detection thresholds 
on the Thai UGWC test set 

 Detection Threshold 

 Over-correction Regular Under-correction 
Iteration 0.3 0.4 0.5 0.6 0.7 0.8 

1 0.9491 0.9504 0.9502 0.9490 0.9473 0.9432 
2 0.9455 0.9484 0.9498 0.9496 0.9483 0.9451 
3 0.9461 0.9486 0.9499 0.9497 0.9484 0.9453 

4 0.9449 0.9480 0.9498 0.9496 0.9483 0.9453 
5 0.9458 0.9484 0.9498 0.9496 0.9483 0.9453 

6.8 Publicly released Thai UGWC dataset 
In this section, we outline the results of our method on the two publicly released 

versions of our Text Correction on the Thai UGWC dataset. First is a smaller version of our 

dataset, containing 15,597 entries. Second is a text correction dataset with additional annotation 

for transliteration, which contains 17,307 entries. Both released datasets are pre-shuffled. For 

evaluation, without reordering the data, split the data into three sets (training set 75%, 

development set 5%, and test set 20%). For the first set (without transliteration), the 11,697 

leading entries are the training set, then the next 780 entries are the development set, and the 

last 3120 entries are the test set. For the second set (with transliteration), the 12,980 leading 

entries are the training set, then the next 865 entries are the development set, and the last 3,462 

entries are the test set. Our method is trained and evaluated on each dataset, as detailed in 
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Chapter 5.4. Evaluation of the detection stage is shown in Table  9. And the end-to-end 

evaluation is shown in Table  10. 

On the public text correction task, our method was able to produce output with lower 

word-error-rates and higher fluency scores (GLEU). With the augmented model without fine-

tuning performing the worse, and the augmented + fine-tuned model performing the best. 

Results on the public task are in-line with the full-size dataset reported in Chapter 6.2. However, 

on the public text correction with transliteration, employing augmentation and fine-tuning did not 

result in better detection performance.  

Table  9 Detection evaluation of our method on the test set  
of the publicly released Thai UGWC datasets 

Model Precision Recall F1 
Public Text Correction 
Detection 0.910 0.899 0.905 
Detection* 0.899 0.892 0.896 
Detection** 0.905 0.908 0.907 

Public Text Correction (with Transliteration) 
Detection 0.922 0.900 0.911 
Detection* 0.894 0.911 0.902 
Detection** 0.901 0.907 0.904 
* Model is only trained on noise injected dataset. 
** Model is pre-trained on noise injected dataset before fine-tuned on the regular training 
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Table  10 End-to-end evaluation of our method on the test set  
of the publicly released Thai UGWC datasets 

Detector Corrector GLEU WER (%) ∆WER (%) 
Text Correction 

Do nothing 0.484 16.04 0.000% 
Oracle 1.000 0.00 -100.000% 

Ours Ours 0.886 4.55 -71.600% 
Oracle Ours 0.956 2.14 -86.641% 
Ours* Ours* 0.883 4.72 -70.579% 

Ours** Ours** 0.896 4.10 -74.404% 
Oracle Ours** 0.966 1.59 -90.106% 

Text Correction (with Transliteration) 
Do nothing 0.484 16.04 0.000% 
Oracle 1.000 0.00 -100.000% 
Ours Ours 0.865 6.50 -59.489% 
Oracle Ours 0.937 3.40 -78.814% 
Ours* Ours* 0.872 6.50 -59.473% 
Ours** Ours** 0.873 6.32 -60.586% 

Ours Ours** 0.875 5.97 -62.779% 
Oracle Ours** 0.948 2.68 -83.267% 
* Model is only trained on noise injected dataset. 
** Model is pre-trained on noise injected dataset before fine-tuned on the regular training 
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7 Conclusion 
In this study, we investigated how various text correction systems and our proposed 

method performed on our Thai text correction (Thai TC) task. 

Our investigation into the various techniques showed that most systems struggle when 

applied to Thai TC. Traditional two-stage Thai text correction systems, which rely on a dictionary-

based corrector, suffer because they select improper candidates during the correction stage. As a 

result, these systems are unable to produce an output with error levels below those of the 

input. However, these results are in-line with the current use of these systems because spell 

checkers require human intervention to select the proper correction. On the other hand, the 

basic end-to-end correction systems (E2E) (i.e., Bi-GRU Seq2Seq (Grundkiewicz & Junczys-

Dowmunt)) suffer other issues when applied to Thai TC and perform much worse. However, 

moving to a more advanced E2E system (i.e., copy-augmented transformer (Zhao et al.)) showed 

that a Seq2Seq corrector with a substructure that encourages copying could enable a corrector 

to produce text corrections that are better than the original input text. 

Our proposed model is a neural-based two-stage error correction system with a novel 

context-aware correction stage. We investigated how the detection stage affects the overall 

correction performance and how to tune the proposed text correction system for optimal 

correction performance. Our proposed system outperformed all the existing tested techniques 

on the TC task on the Thai UGWC dataset. 

7.1 Limitations 
When compared to traditional methods (e.g., Hunspell (Hunspell)), the vocabulary of 

deep-learning-based methods (e.g., our method, Bi-GRU (Grundkiewicz & Junczys-Dowmunt), 

copy-augmented transformer (Zhao et al.)) are not as easily extendable. Every new word must be 

introduced in the form of example sentences, as is opposed to a dictionary. Also, the number of 

examples required for the model to generalize is not apparent. 

In terms of our experiment, our method is evaluated a specific type of data (i.e., Thai 

user-generated web-content). As such, further experimentation is required to determine the 

performance of a text corrector on other domains. 
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7.2 Contributions 
In this section, we will cover the completed works during the development of this thesis, 

in addition to the findings of the study.  

With cooperation with Faculty of Arts of Chulalongkorn University, Faculty of Engineering 

of Chulalongkorn University, and Kasikorn Labs, we developed the annotations guidelines for a 

variety of Thai natural language processing task (including the Thai Text Correction in this thesis) 

as well as annotated a corpus build on User-generated web content (social text). The overall 

details of the corpus were published in (Lertpiya et al., 2018). Additional details of the text 

correction task are covered in Chapter 4.2. 

This study was conducted to develop fundamental natural language processing (NLP) 

services to enhance KBank’s NLP capabilities, where the text correction task is one of six 

fundamental NLP tasks. Thus, in addition to the research of the text correction method (detailed 

in this thesis), we also developed a web API to increase model ease of use. 

Partially of our Thai user-generated web-content is the first publicly available dataset on 

the text correction task for Thai text. 

7.3 Future work 
In this work, proposed a handcrafted procedure for performing data augmentation for 

model pretraining. In future work, a learning-based method for data augmentation (e.g., back-

translation (Kiyono et al.)) could further improve the correction performance. 

 From our observation, we found that large portions of errors and variance in the Text 

Correction task (as defined in Chapter 4) are filler words. As such, further investigation is needed 

for adapting text correctors as preprocessing of another task. 

In addition, we found during error analysis (outlined in Appendix 0) that reducing error 

propagation from word tokenization can also increase correction performance, thus further 

research into error resilient word tokenization could benefit the text correction task.  
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8 Appendix 

8.1 Hyperparameters 
In this section, we cover the process and results of hyperparameters tuning on our 

method on the Thai Text Correction (Thai TC) task. 

On the Thai text correction task, we obtained the hyperparameter values for both our 

method and the other neural-based methods evaluated in this thesis (i.e., Bi-GRU (Grundkiewicz & 

Junczys-Dowmunt) and copy-augmented transformer (Norvig)) using grid-search for optimal 

performance. Table  11 shows a consolidated list of the hyperparameters for our method. The 

search range for each component of our error detector was 32-512, with multiple-of-2 

increments. For our corrector, the search ranges for “m” and “n” are 16-40 with increments of 8 

and 64-256 with multiples of 2 increments, respectively.  

On the English spelling correction task (in Chapter 8.3), our hyperparameters remain the 

same as on the Thai TC task, while the hyperparameters for other methods were set according to 

their original papers (i.e., Bi-GRU (Grundkiewicz & Junczys-Dowmunt) and copy-augmented 

transformer (Norvig)). 

8.2 Error Analysis of Text Correction on Thai UGWC 
8.2.1 End-to-end correction 

In this chapter, we perform end-to-end error analyses on each of the results reported on 

our text correction task on the Thai user-generated web content (text data collected from social 

media) described in Table  4. We selected two lines (see Table  12, Table  13, and Table  14) to 

illustrate the types of issues each correction system struggled with. “Annotation” is used to 

denote the test set, while “Annotation-2” denotes another annotation by our linguist at KLabs. 

For the bidirectional GRU (Bi-GRU) model (Grundkiewicz & Junczys-Dowmunt) on untokenized 

text, where the model operated on the SentencePiece tokens (Kudo & Richardson), the results 

are hand tokenized in favor of the model (leading to the lowest amount of errors). For models 

with multiple configurations, only the best configuration is analyzed. That is, our pretrained and 

fine-tuned model with words as the unit tokens, the Bi-GRU model with 50-token limits, the Bi-

GRU model with 20-token limits, the Bi-GRU model with 40-token limits (untokenized), and the 

pretrained and fine-tuned copy-augmented transformer. 
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Table  11 Consolidated list of hyperparameters for our proposed method 
Component Configuration 

Error Detector  
Vocabulary 24576 tokens 

Word embeddings layer 64 nodes 
Character embeddings layer 128 nodes 

Character bi-LSTM Encoder 32 nodes (in each direction) 
Bi-LSTM Encoder 2 layers × 32 nodes (in each direction) 

Bi-LSTM Encoder dropout 0.5 
Batch size 32 

Optimizer Adam (Kingma & Ba) 
Learning-rate 0.002 
Fine-tuning learning-rate 0.0005 

Early stopping patience 20 epochs 
Error Corrector  

Vocabulary 24576 tokens 
𝑚 24 
𝑛 128 
Erroneous encoding (𝐸(𝑙)) dropout 0.5 
Context encoding (𝐶(𝑙)) dropout 0.5 
Batch size 32 
Optimizer Adam (Kingma & Ba) 

Learning-rate 0.002 
Fine-tuning learning-rate 0.0005 

Early stopping patience 20 groups* 
* Error Corrector training procedures are detailed further in Chapter 5.4. 

 

Error correction systems with dictionary-based correction (i.e., Hunspell, Hunspell 

(trained), PyThaiNLP), struggle with choosing the proper correction even when the target word is 

in the dictionary. Thus, the system with the most conservative detection stage (i.e., PyThaiNLP) 

performs the best by introducing the fewest number of corrections. While Hunspell with the 

provided dictionary corrects some error segments correctly, the introduced errors outweigh the 

effect of the corrections made. 
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End-to-end correction systems (i.e., Bi-GRU, Copy-augmented Transformer) often produce 

correct Thai sentences but with a different meaning. An analysis of the output suggested that the 

model prefers to produce sentences or phrases that are common in the training dataset. While 

the copy-augmented transfer's substructure should alleviate this issue, the model still suffers 

from this issue, but to a lesser extent when compared to Bi-GRU. 

8.2.2 Correction stage 

In this chapter, we perform error analyses of our method correction stage on the Thai 

user-generated web content (text data collected from social media). The incorrect output 

produced from our method is shown in Table  15, Table  16, and Table  17. We analyze the 

incorrect outputs produced from the correction stage, given an exact detection (as described in 

Chapter 6.4). We sampled 15 corrections for “misspelling” since this is the majority of the errors 

in the dataset. We sampled ten corrections for “morphed” and “abbreviation”. Due to a lack of 

“slangs” and “spoonerism” errors, we only sampled the correct outputs produced, only nine 

corrections were sampled for “slangs” and one correction for “spoonerism”. 
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Table  12 End-to-end error analysis of each model on the first sample line  
on the TC task on the Thai UGWC dataset 

Line 1    

Source “พอ|ผม|โหลด|แอฟ|K Bank| |มา|แล้ว|ผม| |อยาก|เข้า|บัญช|ีอีก|อัน|อ่ะ|คับ” 

Annotation “พอ|ผม|โหลด|แอป| |K Bank| |มา|แล้ว|ผม| |อยาก|เข้า|บัญช|ีอีก|อัน|อ่ะ|ครับ” 
    From 3 To 4 “แอป| “   misspelling 
    From 16 To 17 “ครับ”   misspelling 

Annotation-2 “พอ|ผม|ดาวน์โหลด|แอป| |K Bank| |มา|แล้ว|ผม| |อยาก|เข้า|บัญช|ีอีก|อนั|อ่ะ|ครับ” 
    From 2 To 4 “ดาวน์โหลด|แอป| “   slang, misspelling 
    From 16 To 17 “ครับ”   misspelling 

Ours “พอ|ผม|โหลด|แอป| |K Bank| |มา|แล้ว|ผม| |อยาก|เข้า|บัญช|ีอีก|อัน|อะ|ครับ” 
    From 3 To 4 “แอป| “    
    From 15 To 17 “อะ|ครับ”   overcorrected: “Other” sound correction 

Hunspell “พอ|ผม|โหลด|แอ|K Bank| |มา|แล้ว|ผม| |อยาก|เข้า|บัญช|ีอีก|อัน|อะ|คับ” 
    From 3 To 4 “แอ”   incorrect 
    From 15 To 16 “อะ”   overcorrected: “Other” sound correction 

Hunspell (Trained) “พอ|ผม|โหลด|แอฟ|K Bank| |มา|แล้ว|ผม| |อยาก|เข้า|บัญช|ีอีก|อัน|อ่ะ|คับ” 
     no correction: same as “Source” 

PyThaiNLP “พอ|ผม|โหลด|แอฟ|K Bank| |มา|แล้ว|ผม| |อยาก|เข้า|บัญช|ีอีก|อัน|อ่ะ|คับ” 
  no correction: same as “Source” 

Bi-GRU (20 Token) “พอ|ผม|โหลด|แอป| |K Bank| |มา|แล้ว|ผม| |อยาก|เข้า|บัญช|ีอีก|อัน|อ่ะ|ครับ” 
    From 3 To 4 “แอป| “    
    From 16 To 17 “ครับ”    

Bi-GRU (50 Token) “พอ|ผม|โหลด|แอพ|K| |Bank| |มา|แล้ว|ผม| |อยาก|เข้า|บัญช|ีอีก|อัน|อะ|ครับ” 
    From 3 To 5 “แอพ|K| |Bank”   incorrect, space token deleted 
    From 15 To 17 “อะ|ครับ”   overcorrection: “Other” sound correction 

Bi-GRU 
(untokenized) 

“พอ|ผม|โหลด|แอฟ|K Bank| |มา|แล้ว|ผม| |อยาก|เข้า|บัญช|ีอีก|อัน|อะ|ครับ” 

    From 15 To 17 “อะ|ครับ”   overcorrected: “Other” sound correction 

Copy-Augmented “พอ|ผม|โหลด|แอป|K Bank| |มา|แล้ว|ผม| |อยาก|เข้า|บัญช|ีอีก|อัน|อะ|ครับ” 
  same as “Ours” 
    From 3 To 4 “แอป| “  
    From 15 To 17 “อะ|ครับ”   overcorrected: “Other” sound correction 
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Table  13 End-to-end error analysis of each model on the second sample line  

on the TC task on the Thai UGWC dataset 
Line 2    

Source “เช่น|โอน|เข้า|เวบ|น้ี|เพือ|เข้า|ใป|เล่น|ทัมอย่างใร|คับ” 

Annotation “เช่น|โอน|เข้า|เว็บไซต|์น้ี|เพื่อ|เข้า|ไป|เล่น|ทำ|อย่างไร|ครับ” 
    From 3 To 4 “เว็บไซต์”   misspelling (full word) 
    From 5 To 6 “เพื่อ”   misspelling 
    From 7 To 8 “ไป”   misspelling 
    From 9 To 11 “ทำ|อย่างไร|ครับ”   misspelling 

Annotation-2 “เช่น|โอน|เข้า|เว็บ|น้ี|เพื่อ|เข้า|ไป|เล่น|ทำ|อย่างไร|ครับ” 
    From 3 To 4 “เว็บ”   misspelling 
    From 5 To 6 “เพื่อ”   misspelling 
    From 7 To 8 “ไป”   misspelling 
    From 9 To 11 “ทำ|อย่างไร|ครับ”   misspelling 

Ours “เช่น|โอน|เข้า|เว็บไซต|์น้ี|เพื่อ|เข้า|ไป|เล่น|ทำ|อย่างไร|ครับ” 
  same as “Annotation” 
    From 3 To 4 “เว็บไซต์”     
    From 5 To 6 “เพื่อ”     
    From 7 To 8 “ไป”     
    From 9 To 11 “ทำ|อย่างไร|ครับ”     

Hunspell “เช่น|โอน|เข้า|เว็บ|น้ี|เพื่อ|เข้า|ใบปก|เล่น|อย่างทรมาน|คับ” 
    From 3 To 4 “เว็บ”     
    From 5 To 6 “เพื่อ”     
    From 7 To 8 “ใบปก”   incorrect 
    From 9 To 10 “อย่างทรมาน”   incorrect 

Hunspell (Trained) “เช่น|โอน|เข้า|เวบ|น้ี|เพอ|เข้า|ใป|เล่น|ทัพอย่าง|คับ” 
    From 5 To 6 “เพอ”   incorrect 
    From 9 To 10 “ทัพอย่าง”   incorrect 

PyThaiNLP “เช่น|โอน|เข้า|เวบ|น้ี|เพือ|เข้า|ใป|เล่น|ทัมอย่างใร|คับ” 

Bi-GRU (20 Token) “เช่น|โอน|เข้า|เวบ|น้ี|เพื่อ|เข้า|ไป|เล่น|ทํา|อย่างไร|ครับ” 
    From 5 To 6 “เพื่อ”     
    From 7 To 8 “ไป”     
    From 9 To 11 “ทํา|อย่างไร|ครับ”     

Bi-GRU (untokenized) “เช่น|โอน|เข้า|บัญช|ีน้ี|ครับ”  
    From 3 To 4 “บัญชี”   overcorrected (meaning lost) 
    From 5 To 11 “ครับ”   overcorrected (meaning lost) 
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Table  14 End-to-end error analysis of each model on the second sample line  

on the TC task on the Thai UGWC dataset (continue) 
Line 2  

Source “เช่น|โอน|เข้า|เวบ|น้ี|เพือ|เข้า|ใป|เล่น|ทัมอย่างใร|คับ” 

Bi-GRU (50 Token) “เช่น|โอน|เข้า|เวบ|น้ี|เพื่อ|เข้า|ไป|เล่น|ทํา|อย่างไร|ครับ” 
     same as “Bi-GRU (20 Token)” 
    From 5 To 6 “เพื่อ”     
    From 7 To 8 “ไป”     
    From 9 To 11 “ทํา|อย่างไร|ครับ”     

Copy-Augmented “เช่น|โอน|เข้า|เว็บ|น้ี|เพื่อ|เข้า|ไป|เล่น|ครับ” 
    From 3 To 4 “เว็บ”     
    From 5 To 6 “เพื่อ”     
    From 7 To 8 “ไป”     
    From 9 To 11 “ครับ”   overcorrected (words dropped) 

Table  15 Correction error analysis of abbreviation errors  
on the TC task on the Thai UGWC dataset 

 Error Types Issues with correction 
Erroneous 

text 
Labels 

Correction 
produced 

 Abbreviation     
1 Official 

abbreviation 
Miscorrected 

สว สูง|วัย สวย 
2 พศ พ|.|ศ|. พี ่

3 

Non-official 
abbreviation + 

incorrect 
tokenization 

Uncorrected ปิดจนท ปิด|เจ้าหน้าท่ี <OOV> 

4 

Label noise 

Label: non-official abbreviation จขกท จขกท|. เจ้าของ|กระทู้ 
5 Label: overcorrection to English คซต call center คอลเซ็นเตอร์ 
6 

Label: overcorrection to full word 
ธ ธนาคาร ธ. 

7 ชม ชั่วโมง ชม. 

8 

Official 
abbreviation + 

incorrect 
tokenization Word tokenization inconsistency 

ท่ีกทม ท่ี|กทม|. ท่ีกทม|. 

9 Non-official 
abbreviation 

จขกท เจ้า|ของ|กระทู้ เจ้าของ|กระทู้ 

10 คห ความเห็น ความ|เห็น 
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Table  16 Correction error analysis of misspelling  
on the TC task on the Thai UGWC dataset 

 Error Types Issues with correction 
Erroneous 

text 
Labels 

Correction 
produced 

 Misspelling     
1 

Single-word 

Corrected as non-existent word ล๊อค ล็อก ล็อค 

2 

Contextually incorrect 
(real word error) 

อยาง อยาก อย่าง 

3 สตาง สตางค์ ส|.|ต่าง 

4 ยอก|เลิด ยกเลิก ยอด 

5 ไช่ ใช ่ ใช ้

6 

Uncorrected 

กาแลคซ่ี กาแล็กซี <OOV> 

7 
Single-word 
+ incorrect 
tokenization 

ฅนล้า คนล้า <OOV> 

8 นู๋พยายาม หนูพยายาม <OOV> 

9 

Dropping word(s) 

ค่พอไป|ตืดต่อ 
ค่ะ|พอ|ไป|

ติดต่อ 
พอไป|ติดต่อ 

10 

Single-word  
+ punctuation  

+ incorrect 
tokenization 

สมัค|sm|s สมัคร| |sms สมัคร 

11 
Multi-word Partially correct 

ย|ุตรุรก ี อยู่|ตุร|ก ี อยู่|กรณ ี

12 ใด้|หรอ ได|้หรือ ได|้หรอ 

13 
Multi-word 

+ Label noise 

Label: Contextually incorrect 
(real word error) 

(proper correction is อย่างไร|คะ) 
งัย|ค้ะ ไง|ค่ะ ไงคะ 

14 Label noise 
Label: Corrected as non-

existent word 
แอฟ แอพ แอป 

15 
Evaluation 
limitation 

Multiple possible spelling: both 
the label and the correction 

are correct 
เวบ เว็บ เว็บไซต์ 
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Table  17 Correction error analysis of morphed, spoonerism, and slang  
on the TC task on the Thai UGWC dataset 

 Error Types Issues with correction 
Erroneous 

text 
Labels 

Correction 
produced 

 Morphed     
1 

Single-word 
Contextually incorrect 

(real word error) 

กิง จริง กิน 

2 ปั้ง ปัง ท้ัง 

3 คร้า ค่ะ คะ 

4 Dropping word(s) ปะ หรือเปล่า เปล่า 

5 Single-word + 
incorrect 

tokenization 
Uncorrected 

เจ้ามือหลังม่าน|
เมกา 

เจ้ามือหลัง|ม่า|
นอเมริกา 

<OOV> 

6 โอ้ยยยรำคาญ โอ๊ย|รำคาญ โอ๊ย|<OOV> 

7 

Label noise 

Label: Corrected as non-
existent word 

เหยดดดด เหยด เย็ด 

8 หรอ|เนี่ยยย เหรอ|เนี่ย เหรอ|น่ี 

9 Label: Contextually incorrect 
(real word error) 

จ่ะ จ๊ะ จ้ะ 

10 
Evaluation 
limitation 

Multiple possible spelling: both 
the label and the correction 

are correct 

ใด้|เหรอ ได|้หรือ ได|้เหรอ 

 Slang     
1 

Single-word 

Contextually incorrect 
(real word error) 

ค้า|ป ครับ คะ 

2 ปะ ไหม เปล่า 

3 Corrected as non-existent word ตร ู กู ตู 

4 

None: Good correction 

ปั๋ว ผัว ผัว 

5 มะ ไหม ไหม 

6 คับ ครับ ครับ 

7 ขนาดด ขนาด ขนาด 

8 จอดดด จอด จอด 

9 Single-word + 
incorrect 

tokenization 

Word tokenization 
inconsistency 

เด๋วน้ี เดี๋ยว|นี ้ เดี๋ยวน้ี 

 Spoonerism     
1 Single-word None: Good correction สวีดัด สวัสดี สวัสดี 
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8.2.3 Word tokenization on the correction stage 

In this chapter, we investigate how removing tokenization issues will impact the 

correction stage. We hand tokenized input of problematic correction from Chapter 8.2.2. The 

results are shown in Table  18. Six out of nine the problematic correction have been resolved, 

two are left uncorrected, and the last missing a punctuation token. 

Table  18 Correction error analysis on retokenized erroneous text  
on the TC task on the Thai UGWC dataset 

 Error Types 
Issues with 
correction 

Retokenized 
erroneous text 

Labels 
Correction 
produced 

 Abbreviation     

3  
False negative 

detection 
ปิด|จนท ปิด|เจ้าหน้าท่ี ปิด|จนท 

8  None: Good correction ท่ี|กทม ท่ี|กทม|. ท่ี|กทม|. 

 Misspelling     
7 

 None: Good correction 

ฅน|ล้า คน|ล้า คน|ล้า 

8 นู๋|พยายาม หนู|พยายาม หน|ูพยายาม 

9 ค่|พอไป|ตืดต่อ ค่ะ|พอ|ไป|ติดต่อ ค่ะ|พอไป|ติดต่อ 

10  Dropping word(s) สมัค|sms สมัคร| |sms สมัคร|sms 

 Morphed     

5  Uncorrected 
เจ้ามือ|หลัง|ม่าน|เม

กา 
เจ้ามือ|หลัง|ม่าน|

อเมริกา 
เจ้ามือ|

หลัง|<OOV> 

6  None: Good correction โอ้ยยยรำคาญ โอ๊ย|รำคาญ โอ๊ย|รำคาญ 

 Slang     

9  None: Good correction เด๋วน้ี เดี๋ยว|น้ี เดี๋ยว|น้ี 

 

8.3 Evaluation on Conll-2014 
In this chapter, we evaluate our method on the original as well as a modified version of 

the Conll-2014 Grammatical Error Correction shared task (Ng et al., 2014). The results are shown 

in Table  19 and Table  20. As expected, our method performs very poorly on the full GEC task 

because performing GEC effectively requires the ability to rewrite large portions of the text. The 

GLEU scored our method below doing nothing. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

48 
 
To evaluate only the spelling correcting capabilities of our model, we built a spelling 

correction task using the Conll-2013 and Conll-2014 datasets by precorrecting any grammatical 

errors and leaving only the spelling errors (corrections marked as “Mec” in the dataset). We 

tested both our model and Bi-GRU (Grundkiewicz & Junczys-Dowmunt) under two training 

regimes: with and without data augmentation on the training set. For the copy-augmented 

transformer, we used the pretrained weights provided by the authors (which were trained on 

augmented data according to their thesis (Zhao et al., 2019)) and fine-tuned it on the training set. 

Our model outperformed both the Bi-GRU model and the copy-augmented transformer model 

with respect to both M2 and GLEU scores on the spelling correction task. However, due to the 

sparse nature of the misspelling errors in the test set (only 228 misspelled segments constituting 

only 9.54% of all 2,391 erroneous segments) spanning 1,312 sentences, the resulting corrected 

text from all the evaluated models received a lower M2 score than did the precorrected text 

used as the input. Only our model (with augmentation and fine-tuning) produced an increased 

GLEU score over the precorrected text. 

Table  19 Evaluation of end-to-end error correction on  
the GEC Conll-2014 dataset by various systems 

Model M2 GLEU 
Do nothing (source text) 0.0000 0.5663 
Ideal correction (Oracle) 1.0000 0.8187 
Literature   
Bi-GRU 0.4276 - 

SMT + Bi-GRU 0.5625 - 
Copy-Augmented Transformer 0.5642 - 
Copy-Augmented Transformer**** 0.6115 - 
Reproduced   

Bi-GRU without Lang 8 0.2158 0.5354 
Bi-GRU 0.4288 0.5931 
Ours** 0.0195 0.5630 

* Model is only trained on noise injected dataset. 
** Model is pre-trained on character-level noise injected dataset before fine-tuned on the 
regular training 
**** Model is pre-trained on word-level noise injected dataset before fine-tuned on the regular 
training according to (Zhao et al., 2019) 
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Table  20 Evaluation of end-to-end error correction on  
the misspelling subset of GEC Conll-2014 by various systems 

Model Precision Recall M2 GLEU 

Pre-corrected 0.9913 0.9048 0.9727 0.7520 

Ideal correction (Oracle) 0.9917 0.9896 0.9900 0.7767 

Bi-GRU 0.9266 0.8660 0.9138 0.7358 

Bi-GRU* 0.8926 0.8623 0.8863 0.7356 

Copy-Aug Transformer*** 0.8066 0.8552 0.8159 0.7382 

Copy-Aug Transformer**** 0.8351 0.8587 0.8397 0.7409 

Ours 0.9184 0.8982 0.9143 0.7487 

Ours* 0.9073 0.9028 0.9064 0.7496 

Ours** 0.9567 0.9082 0.9466 0.7539 

Ours** + (Oracle Detection) 0.9436 0.9314 0.9411 0.7665 

* Model is only trained on noise injected dataset. 
** Model is pre-trained on character-level noise injected dataset before fine-tuned on the 
regular training 
*** Model is pre-trained on word-level noise injected dataset according to (Zhao et al., 2019) 
**** Model is pre-trained on word-level noise injected dataset before fine-tuned on the regular 
training according to (Zhao et al., 2019) 
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9 Research plan 
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