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Thailand is one of the top broiler exporters. Red blood cell (RBC) and white 

blood cell (WBC) counting is one of the most basic methods for health screening 
process. Because the mammalian and avian blood is different, the mammalian blood 
analyzing techniques cannot be used, so the counting is done manually. This thesis 
proposes an automatic counting method for avian RBCs and heterophils, the most 
common type of avian WBC. The detection of avian RBC is challenging because of 
elliptic nucleated cell, the possibility of overlapped cells, and various staining. Otsu’s 
multiple thresholding method is used to automatically extract nuclei under different 
staining. The threshold value is then reduced iteratively to separate connected nuclei. 
Heterophil detection is done by removing the detected RBCs, using edge information 
to extract possible WBCs, then applying statistically based algorithm to filter 
heterophils. The results show that RBC counting error is less than clinical acceptable 
error of 5% for 4 out of 5 types of slide and heterophil counting error is 8.8%. 
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CHAPTER 1 - INTRODUCTION 

Thailand is the tenth largest broiler producer in the world. It is the top exporter in 

terms of the weight of the processed chicken [1]. Health screening is one of the 

necessary quality control processes. One of the basic screening protocol is blood 

analysis. Despite the high market value, the automated cell counter of avian blood is not 

available. The blood analysis is performed manually. The manual process is both 

tedious and exhaustive. 

The adaptation of human automated cell counter to avian blood is not a 

straightforward task, since the avian blood is far different from human (mammalian) 

blood. The avian red blood cell is nucleated and elliptic, whereas the human red blood 

cell is anucleated and circular. The sizes of avian red and white blood cells can also be 

comparable, while the size of the human white blood cell is much larger than the red 

one. Thus, the counting based on impedance and scattering is not appropriate. The 

existence of nucleus in the avian red blood cell (RBC) affects the accuracy of the white 

blood cell (WBC) counting by flow cytometry [2]. These problems may be overcome by 

the flow cytometry using immunophenotyping. However, the cost of developing reagents 

and antibodies, as well as the adoption of an automated cell counter in small farms is 

economically infeasible. 

Image processing is an alternative and low-cost method for cell counting. 

Despite the difference in the visual properties of the avian and mammalian blood cells, 

the processing flow is the same. In case of the RBC count, first the input color image is 

converted to the grayscale image. Then, thresholding and noise reduction methods are 

applied to extract RBC. After that, the counting algorithm is applied. Mammalian circular 

RBCs can be effectively counted by applying circular Hough transform [3-5]; however, 

the detection of avian elliptic RBCs is much more complex than the circular one [6, 7]. 

Though, several automatic ellipse detection methods have been proposed [8-10], they 
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are complex and time-consuming. The problem is made more complicated because the 

cells may lie very close to one another, as shown in Figure 1. To overcome these two 

problems, many works suggest nucleus extraction instead of cell extraction. Using the 

fact that one RBC contains one nucleus and nuclei are not overlapped with each other, 

the number of nucleus region extracted should directly represent number of RBC. 

However, because there are at least three intensity regions in a slide (background, 

cytoplasm, and nucleus), the thresholding method needs to be more complex. 

For WBC counting, most of the existing image processing methods is for 

mammalian WBC which cannot be directly applied to avian blood. Many works use 

color-based detection method [11-13] to extract WBC directly and completely ignore 

RBC. These works clearly would not work for avian case because the intensity of the 

nucleus in avian RBC is close to the nucleus of avian WBC. Furthermore, even though 

WBC of avian and mammal share similar appearance, their size when compare to RBC 

are different. Mammalian WBC is bigger than its RBC, but avian RBC is around the same 

size. Figure 2 shows said comparison of size and contrast between RBCs and WBCs of 

both avian and mammalian blood. 

The objective of this thesis is to develop the method for counting avian RBCs 

and heterophils, the most abundant granulocyte in avian WBCs.  Since the appearance 

of avian blood slides can be varied by different staining techniques as well as the 

staining time, the proposed method must be flexible and provide accurate counting 

under different staining techniques. However, our samples only have heterophils in one 

type of slide, so we do not consider flexibility for the counting of heterophils. 
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Figure 1. Avian blood slides examples 

  
(a) Mammal (canine) blood cell       (b) Avian blood cell 

Figure 2. Comparison of mammal and avian blood cells 

1.1. PROBLEM STATEMENTS 

Three major problems need to be solved in automatic avian RBC counting: (1) 

oval and nucleated red blood cell, (2) overlapped cells, and (3) non-uniform staining, 

varying staining color, and appearance.  

The characteristics of heterophils need to be extracted in order to differentiate 

between the heterophil and other tissues in the slides.  

1.2. SCOPE 

1. The proposed algorithm is applied only to the blood samples taken from healthy 

chickens (Gallus gallus domesticus). 

2. The proposed algorithm is applicable only to the staining whose cell nucleus is 

apparent. 
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3. At least 5 different staining appearances were used in the experiment for red 

blood cell counting. 

4. Only one staining type is used for heterophil counting. 

5. The gold standard of the cell counting comes from manual counting. 

1.3. CONTRIBUTION 

1. A system that is capable of counting avian red blood cell and robust to different 

staining types. 

2. An algorithm for automatically detecting heterophil, the most common type of 

avian white blood cells. 

1.4. RESEARCH PROCEDURE 

1. Literature review on blood counting algorithm. 

2. Design and implement the proposed algorithm. 

3. Evaluate and improve the proposed algorithm. 

4. Check whether the conclusions meet all the objectives of the research work of 

the dissertation. 

5. Write the dissertation. 

 

Research Procedure 
2019 2020 

Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun 

1. Literature review                      
2. Design and implement 
the proposed algorithm                      
3. Evaluate the proposed 
algorithm                       
4. Write the dissertation                      

Figure 3. Gantt chart 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 5 

CHAPTER 2 - RELATED WORKS 

2.1. AVIAN WBC TYPE 

There exist 5 WBC types in avian [14]: heterophil, eosinophil, basophil, 

monocyte and lymphocyte. The appearance and the functions of each type is as follows. 

− Heterophil is not found in mammal but can be considered equivalent to the 

neutrophil. It is the most common WBC in avian. It has two or three nuclei and is 

packed with rod shaped granules as shown in Figure 4(a). It is produced to fight the 

inflammation and is phagocytic.    

− Eosinophil is granular and its appearance varies among avian species. It is quite 

similar to the heterophil; however, its granule in most species has different staining 

color (Figure 4(b)) and is round. The increase in eosinophil may indicate the 

parasitic infection. 

− Avian basophil has different appearance from the mammalian one. It is granular but 

its granules are dissolved by alcohol-based stain.  Its nucleus is often hidden by 

granules as shown in Figure 4(c). Its function is believed to be the same as the 

mammalian counterpart, i.e. to fight allergy and infection. 

− Monocyte has only one nuclear. The shape of its nuclear varies among species from 

round to horseshoe shape (Figure 4(d)). Like its mammalian counterpart, its function 

is to fight the foreign organism and remove dead and damaged cells. 

− Similar to monocyte, a lymphocyte is a mononuclear WBC. However, as shown in 

Figure 4(e), the ratio between the nucleus and cytoplasm is higher than monocyte 

(Figure 4(d)). However, the ratio varies among avian species and cannot be used as 

a universal criterion. Its appearance can also be similar to platelet. Avian 

lymphocyte has similar function to the mammalian one and is important to the 

immune system. The high number of the lymphocyte indicates the infection. 
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(a) Heterophil (b) Eosinophil (c) Basophil (d) Monocyte (e) Lymphocyte 

Figure 4. Avian WBC Types [14] 

2.2. AUTOMATIC MAMMALIAN RBC COUNTING  
 Though the algorithm to detect mammalians RBC can be varied, most of them 

share the same processing flow [3]. Figure 5 describes general flow of mammalian RBC 

counting. First, the pre-processing is used to enhance a slide image. The color slide 

image is converted to the gray-scaled image and thresholding is applied to remove the 

background. The RBCs is the major part of the slide, and the WBCs occupy only small 

area. So, the effect of the much darker WBC (as shown in Figure 2) can be ignored. 

Conventional thresholding methods, such as Otsu’s thresholding, is effective for this 

task. 

After the background has been removed, the remaining areas are mostly RBCs 

but it may also contain a few WBCs, platelets and staining color blot. The circular shape 

of mammalian RBCs are easy to detect, so the most common strategy for RBC detection 

is the application of circular detection algorithm. 

 Circular Hough transform is a simple and effective circular detector. It is widely 

adopted for mammalian RBC counting [3]. Maitra et al. [4] and Mazalan et al. [5] have 

different pre-processing but both use circular Hough transform. For pre-processing, the 

former uses edge detection, spatial smoothing filtering, and adaptive histogram 

equalization while the latter uses morphological process. Both works show remarkable 

results. Though RBC is circular, its shape may not be a complete circle due to the cell 

overlapping or at the boundary of the image. Care must be taken to set the sensitivity of  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 7 

 

Figure 5. General mammalian RBC counting flowchart 
 the circular Hough transform to ensure that the detection is sensitive enough to detect 

the overlapped and incomplete RBCs, but not too sensitive to include other tissues or 

noise into the counting. To solve the difficulty in parameter setting, Autaiem et al. [15] 

applies the circular Hough transform twice. First, the circular Hough transform is applied 

with low sensitivity to count individual RBCs (complete circle). Then the circular Hough 

transform is reapplied with high sensitivity to count the clustered or incomplete RBCs. 

2.3. AVIAN RBC COUNTING 
An ellipse is much more difficult to detect than a circle since it is directional 

orient and the ratio between the minor and the major axes can be varied. Since the 

nucleus is distinct from the cytoplasm and there is only one nucleus per one RBC, the 

detection of avian RBC is usually based on the nucleus [16-18] instead of the shape.  

Beau-frère et al. [16] applied CellProfiler, an open-source image processing 

software (available for download at https://cellprofiler.org/), to count RBCs. First, the 

robust background thresholding method is applied to extract RBC nuclei. Then the 

machine learning is used to extract and count the nuclei. However, we failed to replicate 

similar results with our samples which contain slides with different staining techniques. 

So, we conclude that this method has low flexibility when it comes to different samples. 

Meechart et.al. [17] proposed the double thresholding method for extracting the 

nucleus of avian RBCs. Otsu’s thresholding [19] is first applied to separate the gray-

scaled slide image into cell and background regions. Otsu’s thresholding is then 

reapplied to only the cell region to find the threshold, 𝑇2. The threshold used to 

separate cell to cytoplasm and nucleus is set as 𝛾𝑇2, where 𝛾 is the user defined 
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constant (0 < 𝛾 < 1). The detected nuclei region is denoised by morphological 

opening operator. Their method is simple and required only one user defined parameter; 

however, its accuracy is greatly affected by staining techniques. 

Recently, Ochoa et al. [18] proposed Mizutama, the software which can 

accurately count both non-nucleated and nucleated RBC. They use multiple 

thresholding to separate RBC into cytoplasm and nuclei regions. Then, various 

measurements are performed to rule out non-RBC. However, five parameters need to be 

manually calibrated. The method is not user-friendly as staining techniques can be 

varied in case of counting avian RBCs. 

2.4. WBC COUNTING 

 Since a mammalian RBC does not have a nucleus, a number of automatic 

detection of mammalian WBCs starts with the detection of the nucleus [11-13]. Liu et al. 

[11] proposed a robust segmentation method using nucleus mark watershed operations 

and mean shift clustering. The nuclei are obtained via the information of rg chromacity 

space and HSI color space. The nuclei are used as seeds to extract WBCs by the 

following process. First, mean shift clustering operation is applied. The C component of 

CMYK color space is extracted and enhanced by various techniques. After that, the 

nucleus mark watershed operation is used to separate adhesive cells. The method is 

robust and provides great performance. 

Tareef et al. [12] proposed a segmentation method with color and texture-based 

image enhancement. To detect nucleus, RGB and CIE LAB color spaces are used to 

create enhanced gray-scale image, which is then thresholded using Poisson distribution 

based minimum error thresholding algorithm. To detect cytoplasm, an enhancement 

procedure based on discrete wavelet transform and morphological filtering is used to 

increase the contrast of cytoplasm, which is then extracted using Otsu’s thresholding. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 9 

Finally, the cells are refined using distance regularization and morphological operations. 

The method provided good cytoplasm segmentation. 

Ahasan et al. [13] proposed a segmentation method for blood smear with normal 

and leukemia condition. Color thresholding with CIE LAB color space is used to obtain 

RGB mask image, then the mask image is thresholded using Otsu’s method. After noise 

reduction by using averaging filter, marked controlled watershed algorithm is performed 

to separate connected WBCs. Finally, platelets area and megakaryocytes are removed 

using area removal technique and broken WBC is reconstructed using morphological 

closing. The method gave overall 88.57% accuracy and could be improved to cover 

other disease conditions. 

Liu et al. [20] proposed a detection method based on cue location given by 

edge density and color contrast, followed by segmentation which is done using iterative 

GrabCut algorithm to extract WBC region. However, the work is for mammalian blood 

and limits the number of WBC to only one per slide. Nonetheless, this is one of many 

works we think would be possible to apply for avian blood because the concept of using 

edge information is not depended on using the said different of size and color. 

2.5. OTSU’S THRESHOLDING 

Otsu’s thresholding [19] is one of the most basic automatic thresholding 

methods. The classic Otsu’s thresholding automatically separates image into two 

categories, background and foreground. The threshold value is determined by 

minimizing intra-class variance (Equation (1)), or equivalently, maximizing inter-class 

variance. 

𝜎𝑊
2 = 𝜔0𝜎0

2 +𝜔1𝜎1
2 (1) 

 where 𝜎𝑊2  is the intra-class variance, 𝜔𝑖  and 𝜎𝑖2 are probability and variance of 

class 𝑖 respectively. 
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Figure 6. Otsu’s Thresholding and Intra-Class Variance 

Figure 6 shows an example of histogram of two-category data overlay with 

scaled its intra-class variance. The correct threshold (red dashed line) leads to a low 

intra-class variance (red line). While the incorrect threshold leads to higher intra-class 

variance. Otsu’s thresholding can be easily adapted for the segmentation of more than 

two categories. The threshold is set to maximize inter-class variance. 

2.6. DBSCAN CLUSTERING 

Density-based spatial clustering of applications with noise (DBSCAN) [21] is 

simple and, unlike many other classification tools, does not require the number of 

classes as the prior information (e.g. k-means clustering). It uses two predefined 

parameters: epsilon and the minimum number of epsilon neighborhood point (minpts). 

These two parameters are used to discover clusters from noise. Epsilon is the distance 

threshold value which is used to classify whether the nearby points are epsilon 

neighborhood points or not. Distance metric used in DBSCAN is selected based on the 
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target application. The selection for these 2 parameters in our work is described in detail 

in Section 3.4 of Methodology chapter.  

The points that have the number of epsilon neighborhood points equals to 

minpts or larger are assigned as “core points” of the cluster. The points that have the 

number of epsilon neighborhood points less than minpts but are one of the epsilon 

neighborhood points of some core points are assigned as “border points” of the cluster; 

otherwise, are considered “noise points”. Below is the algorithm summary of DBSCAN 

that is implemented in MATLAB as the “dbscan” function [22] : 

1. From the input data set, 𝑥, select the first observation point 𝑥𝑖 . 

2. Find the epsilon neighborhood points of 𝑥𝑖  (the points within 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 distance). 

a. If the number of epsilon neighborhood points is less than the specified 

𝑚𝑖𝑛𝑝𝑡𝑠, then label 𝑥𝑖  as a noise point. Otherwise, label 𝑥𝑖  as a core point of 

cluster 𝐶. 

b. For each neighborhood points of the core point, find its epsilon neighborhood 

points. If the number of epsilon neighborhood points is less than 𝑚𝑖𝑛𝑝𝑡𝑠, it is 

labelled as a border point. Otherwise, it is a core point. In this step, if the noise 

point is the neighbor of a the newly assigned core point, it will become a border 

point.  

c. Repeat Step b. until there is no neighbor assigned as a core point.  

3. Select the next unlabeled point, then repeat Step 2. If new core point is found, label 

it as the new cluster. Repeat until there is no unlabeled point. 

 In DBSCAN, the parameter space for clustering as well as the distance metric 

are arbitrary. DBSCAN is very general and great for discovering cluster and noise in 

data. However, it has limitations when dealing with data with varying densities and data 

with high dimensional feature spaces. 
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Figure 7. The flowchart of iterative thresholding method for avian RBC counting 

CHAPTER 3 - METHODOLOGY 

Blood analysis consists of counting both red and white blood cells. Compared to 

red blood cells (RBC), the number of white blood cells (WBC) is very low. In this thesis, 

we have enough data only to detect heterophils. The proposed method is divided into 

two stages. In the first stage, the RBCs are counted and removed from the slide. In the 

second stage, the heterophils are detected from the remaining area. Rule based 

algorithm is used to differentiate the heterophil from the rest. 

There are three major obstacles in the automatic avian RBC counting: elliptic 

RBCs, overlapped cells and varying staining techniques. Furthermore, within a slide, the 

staining color is not uniform. The non-uniform staining will be described in Otsu’s 

multiple thresholding section. 

Figure 7 depicts the overall process of our proposed RBC counting method, the 

iterative thresholding method. 
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3.1. NUCLEUS EXTRACTION 

Cell nuclei are not overlapped even when the cytoplasm does and they are 

separated by cytoplasm; therefore, the general strategy to deal with the elliptic RBC 

shape and the overlapped cells is to extract and count nuclei. One RBC contains one 

nucleus, so the number of nuclei directly represents the number of RBC. The RBC 

counting problem is changed to the nucleus detection. One way to extract the cell nuclei 

is to simply use a general automatic thresholding method to find a value that separates 

RBCs and background, then downscale the value with experimentally set constant. 

However, the constant may need to be changed if the slide images are different in color, 

which corresponds to the different staining problem. For a method to be more flexible, it 

is better to find a way to get threshold value that directly extract nucleus. 

After thresholding, the noise reduction technique is performed. In this work, we 

use morphological opening and a disk as a structure element. In image morphology 

[23], there are two main operators: dilation and erosion. The binary image is translated 

according to the shape of structure element. The dilation and the erosion operators are 

the union and the intersection of translated images, respectively. In morphological 

opening, the erosion operator is applied before the dilation operator, i.e. shrink then 

expand. The results are that small noises are removed and object’s contour becomes 

smoother. 

3.2. OTSU’S MULTIPLE THRESHOLDING 
We choose Otsu’s multiple thresholding [19] to cope with the problem of 

different staining color. Ideally, a slide image is divided into three regions: background, 

cytoplasm, and nucleus. However, the investigation of the histogram of actual slides 

reveals that one slide may contain more than three distinct brightness groups. 

Therefore, the segmentation of a slide image to three regions leads to incorrect 

segmentation as demonstrated in Figure 8. We call the problem that different slides may 

have different intensity distribution as ‘inter-slide non-uniform’ staining problem. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 14 

 
(a) Correctly segmented image 

 
(b) Incorrectly segmented image 

Figure 8. Examples of image histograms when the images are correctly and incorrectly 
segmented into three regions. The incorrect segmentation is due to inter-slide non-

uniform problem. Red dotted lines show the threshold value. 
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(a) Original image (b) The inclusion of the 

cytoplasm in the red circle 
(c) Missing nucleus in the 

yellow circle 
Figure 9. Example of false nucleus detection 

Furthermore, even if the threshold value is correctly selected, there exists a problem 

where a threshold value that works for one area does not work for other areas in the 

same slide as shown in Figure 9. It can be seen that the nucleus in the lower left corner 

(orange circle) is correctly extracted. However, the overlapped cytoplasm of the two 

cells (red circle) is incorrectly included in the result, as shown in Figure 9(b). This 

problem can be partially solved by reducing the threshold value, but the smaller 

threshold leads to the removal of the nucleus in the lower left corner as shown in Figure 

9(c). We call this ‘intra-slide non-uniform’ staining problem. 

Figure 8(b) indicates that the cause of inter-slide non-uniform problem is that 

one slide may contain more than three regions. To deal with this problem, it is necessary 

to determine the number of regions within an image that provide the consistent result. 

The number is determined by experiment. The experiment on 30 slides revealed that the 

segmentation to five regions provided the consistent threshold values (Figure 10). User 

needs to determine only which threshold value (among the four values) should be used 

for nucleus extraction. 
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Figure 10. Graph showing the Otsu’s threshold of 30 slides when the number of 

regions is varied. 

3.3. ITERATIVE THRESHOLDING 

Otsu’s threshold is the global threshold and estimated from an entire image. 

Thus, it is affected by the intra-slide non-uniform staining problem. In order to cope with 

this problem, the thresholding is performed iteratively, with the Otsu’s threshold as the 

initial threshold value. 

In each iteration, a possible nucleus is extracted as the region whose intensity is 

lower than the threshold, which is estimated in the previous iteration.  The morphological 

opening is then applied to remove noise. Then the area of each possible nucleus is 

estimated. The possible nucleus is ‘accepted’ as the actual nucleus, if its area is lower 

or equal to 𝑘 times of the average area size. The accepted nuclei are collected and 

removed. The threshold value is then reduced (to be used as the threshold in the 
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subsequent iteration). The process is iterated until there is no possible nuclei region left. 

Figure 11 shows the example of the nuclei detected in each iteration. 

The optimal value of 𝑘 is set by experiment. If 𝑘 is set too high, the iteration will 

stop prematurely; consequently, some nuclei will not be counted. On the other hand, if 

𝑘 is set too low, non-nucleus and noisy regions will be included as the actual nuclei. 

Figure 12 shows the percent counting error when 𝑘 is varied. Figure 12(a) shows the 

average error of the 30 slides used in setting the number of regions within an image. 

Since 5% counting error is acceptable in clinic, the result indicated that the 𝑘 value 

should be set to 0.7 or higher. The effect of too high 𝑘 is not distinct in this graph. So, 

we perform another experiment on the slide with different staining technique. The result 

is as shown in Figure 12(b). The 𝑘 value providing the acceptable result is between 0.9 

and 1.5. For simplicity, we choose 1.0 for the value of k in the subsequent experiments. 

Note that the two types of slide are referred as Type-1 and Type-2 in the result section. 

Refer to Figure 13 for the appearance of Type-1 and Type-2 slides. 

3.4. POST PROCESSING 

In the iterative thresholding, nuclei are detected based on the intensity and the 

size. However, the intensity and the size are not the unique properties of an RBC 

nucleus. Some objects are incorrectly detected as the RBC as shown inside the yellow 

circle in Figure 14(a). To differentiate between the real nuclei and the incorrectly 

detected objects, additional information besides the nucleus is required. The cytoplasm 

around the RBC nucleus is lighter than the nuclei, but still darker than most regions in 

the slide. Furthermore, compared to a granulocyte, the RBC has smoother cytoplasm. 

Therefore, the area around the nuclei are extracted and used to differentiate between 

the red blood cells and other tissues/artifacts.  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 18 

   

(a) Accepted nuclei in the 
1st iteration depicted in 

green. 

b) Accepted nuclei in the 
2nd iteration depicted in 

blue. 

(c) Accepted nuclei in the 
3rd iteration depicted in 

pink. 

   

(d) Accepted nuclei in the 
4th iteration depicted in 

yellow. 

(e) Nuclei detected in 4 
iterations combined. 

(f) Result overlaid on the 
original image. 

Figure 11. The nuclei detected in each iteration and overall result of our proposed 
method. 
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(a) Average Error vs. 𝑘 value of Type-1 slide. (acceptable range is more than 0.7) 

 

(b) Average Error vs.  value of Type-2 slide. (acceptable range is between 0.9 and 1.5) 
Figure 12. Percent average error vs. k value of type 1 and type 2 slides. 
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(a) Type-1 slide. (b) Type-2 slide. 

  
(c) Type-3 slide. (d) Type-4 slide. 

 
(e) Type-5 slide. 

Figure 13. Example of 5 different appearance of RBCs used in the experiment. 
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(a) The incorrect detection of RBC due to 

the similar intensity and size (shown in 
yellow circles). 

(b) Dilated nuclei. Detected nuclei and 
dilated region are shown as gray area and 

white area respectively. 

   
(c) The grayscale image of the dilated 

nuclei. 
(d) Result of DBSCAN. The non-RBCs are 

considered as noise (shown as yellow 
objects). 

Figure 14. Post-processing steps 
To obtain information of the surrounding region, morphological dilation is applied 

to the result of the iterative thresholding (Figure 14(b-c)). The intensity mean and 

variance of both the detected objects and the surrounding region (4 parameters) are 

used to describe the relative brightness and the intensity homogeneity, respectively. 

These four parameters are clustered into noise (small regions) and actual objects (RBC) 

by applying DBSCAN [21]. In this thesis, we use the default setting for distance metric 

which is Euclidean distance.  
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Figure 15. Sorted k-distance graph that is used for epsilon selection. 

We simply choose the cluster with the highest number of points as RBC and the 

rest as non-RBC. This method is appropriate for our sample, as the detected objects 

cannot simply be classified into 2 classes: RBC and non-RBC, because the non-RBC 

can be many things such as white blood cells, color staining, platelets, etc. Figure 14(d) 

shows clustered non-RBCs which are considered as noise by DBSCAN. 

Note that we use epsilon = 0.03 and minpts = 10 in this research. These two 

parameters are selected according to the strategy suggested in [21]. In short, the 

minpts value should be equal or more than p+1, where p is the number of dimensions of 

the input data. And epsilon is determined by plotting the sorted k-distance graph, where 

k is minpts, then finding the distance value at the first “valley” of the graph, as shown by 

red arrow in Figure 15. 
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3.5. HETEROPHIL DETECTION 

After the post processing, it is assumed that the position of every RBC is known. 

We can use this information to remove RBC from further process, and design the 

algorithm to differentiate heterophils from other non-RBC objects (other type of WBC, 

staining color, platelets, background slide…) We divide the heterophil detection into 2 

stages: the possible WBC detection and the rule-based algorithm to detect the 

heterophil. 

Although the relative size of a WBC and an RBC in avian is different than the one 

in mammal1, the appearances of the WBC in avian and mammal are similar. We 

investigate the criteria for the mammalian WBC detection that is not based on the size 

difference. Note that the methods based on machine learning are not appropriate due to 

the limited number of available images. Edge density and color contrast have been 

successfully applied to detect the WBC in [20]. The edge density of Figure 16(a) is 

shown in Figure 16(b). The figure indicated that the maxima (brightest region) is the 

location of the WBC (shown by the yellow arrow). However, the boundary is blurred due 

to the interference from the edge of both RBC and WBC. It is difficult to set the threshold 

to extract the accurate boundary. The color contrast (Figure 16(c)) does not provide any 

clue to detect the WBC and cannot be used in our works. Note that the RBC shows the 

strong response (bright region) in the color contrast due to the presence of its nucleus.  

Iterative GrabCut algorithm is employed in [20] to detect WBC under the assumption of 

one WBC per image. The GrabCut algorithm is not adopted in our works, because this 

assumption can be violated.  

 
1 The size of an avian WBC can be comparable the one of a RBC; however, the size of a 

mammalian WBC is much bigger than the one of a RBC. 
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(a) Original image. (b) Edge Density image. (c) Color Contrast image. 

Figure 16. Implementation of [20] 
Since the position of WBC can be inferred from the edge information. We design 

the algorithm for possible WBC detection by combining the Sobel edge detection with 

the conventional Otsu’s thresholding. Figure 17 shows the result of each step in our 

process. First, the Sobel edge detection is applied to the gray scaled image of the slide 

and the result is shown in Figure 17(b). The result is binarized by using manually fixed 

threshold (Figure 17(c)). All RBC are removed to reduce their interference to the final 

detection. Morphologically closing followed by opening is applied to smooth the result 

(Figure 17(d)). Though the WBC has been located, it is not guaranteed to be a complete 

cell. Some nuclei are missing due to its fairly uniform intensity distribution. The missing 

nuclei can be retrieved from the result of the binarization by applying the conventional 

Otsu’s thresholding (Figure 17(e)). The areas of the detected RBCs are removed from 

Figure 17(e). Finally, we combine the non-RBC regions in Figure 17(e) with Figure 17(d) 

to form the complete WBC (shown in red in Figure 17(f)). 

After detecting possible WBC objects, we use a simple rule-based algorithm to 

detect heterophils.  The values used in our rules are a cell size, the percent of cytoplasm 

area, and the percent of nucleus area. The heterophil detection is designed for only one 

staining color so the cytoplasm and the nucleus area can be extracted by the fixed 

threshold. In this thesis, all thresholds are set by examining every heterophils in Type-1 

slide (30 slides in total and approximately one heterophil per slide). Intensity range of 

cytoplasm and nucleus are determined by skimming through said regions with a pixel 

intensity visualizing tool and found to be 0.4-0.7 and 0.3-0.5, respectively. 
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(a)  Original image. (b) Sobel image. 

  
(c) Thresholded Sobel image. (d) Thresholded Sobel image without 

RBCs region after Morphological closing 

and opening. 

  
(e) Binary image of (a) by using Otsu’s 

thresholding to its gray scaled image. 

(f) Combined Sobel and Otsu image 

without RBCs region, then overlay on the 

original image. 

Figure 17. The result of each step in the proposed algorithm for the detection of 
possible WBCs 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 26 

The statistics of heterophils are shown in Table 1. Note that the summation of the 

percent of cytoplasm and the one of nucleus area is larger than 100%, because of the 

overlapped intensity range (0.4-0.5). The following four rules are used to detect the 

heterophil. 

(i) The size of a heterophil is larger than 3500 pixels. 

(ii) The cytoplasm of a heterophil has the intensity between 0.4 and 0.7 and covers 

more than 50% of the total area.  

(iii) The nucleus of a heterophil has the intensity between 0.3 and 0.5 and covers 

between 15% to 80% of the total area. 

(iv) The size of a heterophil is not larger than 8000 pixels. If the size of the detected 

heterophils is larger than 8000, the detected area consists of two heterophils. 

The four rules are summarized in Table 1. The fixed thresholds in the first and the fourth 

rules leads to the limitation that these rules are valid to only one particular resolution. We 

do not impose the relative size to RBC as the area threshold, because the sizes of 

heterophil vary among avian species. The rules imposed here are for the slide taken at 

the scale of around 7-8 pixels per micron. On constructing the fourth rule, we assume 

that there are at most two heterophils clustered together. Our assumption is based on 

the fact that the size of the heterophil can vary and there is only a few WBC per slide 

image. It is very unlikely that there are three or more heterophils clustered together.  

 

Table 1. Statistics of heterophils in Type-1 slide and its detection rules.  
Statistics Cell size (pixel) %Cytoplasm %Nucleus 

Maximum 13,986 91 73 

Minimum 3,708 56 21 

Decision range (counted as 1 cell) 3,500 – 8,000 50 – 100 15 - 80 

Decision range (counted as 2 cells) > 8,000 50 - 100 15 - 80 
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CHAPTER 4 - EXPERIMENTS AND RESULTS 

4.1. EXPERIMENT SETTING 

The proposed iterative thresholding method was tested with different types of 

chicken blood slides to evaluate both performance and flexibility. The evaluation metric 

for automatic counting is the percent average error between automatic and manual 

counting. Less than 5% error is clinically acceptable.  

All blood samples were taken from healthy chickens (Gallus gallus domesticus) 

at Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand. The 

method is implemented in MATLAB R2019a on a Lenovo G480 notebook with following 

specification: CPU Intel® Core™ i5-3230M, RAM 4.00 GB, MS Windows 10 64-bit. 

4.2. RBC COUNTING 

The objective of this experiment is to verify whether the proposed method is 

applicable to various staining techniques. Slides with five different appearances of RBC 

are used as the test images. Except Type-4 slide, each type consists of 10 samples. For 

Type-4 slide, there are 5 samples. Figure 13 shows the sample slide of each type. The 

parameters were set by the experiment described in Methodology chapter. An image is 

divided into five regions according to the experiment on 30 Type-1 slides and the value 

of 𝑘 is set to 1 according to the experiment on the Type-1 and Type-2 slides. The only 

parameter required from the user is which threshold among the four possible thresholds 

(in Otsu’s multiple thresholding) should be used for nucleus detection. In this 

experiment, except for Type-5 slide, the second lowest threshold was used to detect the 

nuclei.  The third lowest threshold was use for the Type-5 slide. 

In Mizutama [18], five parameters need to be carefully selected for accurate 

counting. It is not designed to cope with different slide appearance. So, it was not 

chosen as the standard method in this experiment. The counting by CellProfiler [16] also 

failed to produce the good result, since nuclei are not correctly detected by its robust  
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(a) Original image. (b) Thresholding result using robust 

background method 

Figure 18. The result of robust background thresholding method in CellProfiler 
background method as shown in Figure 18. Double thresholding method [17] is simple 

and can be easily adapted to different staining technique. However, it is simply a single 

thresholding method without any additional post processing algorithm and it has a 

scaling parameter “sensitivity” which must be set via experiment. We tried using double 

thresholding without the scaling parameter in place of Otsu’s multiple thresholding 

method as the initial threshold value. Though its accuracy was comparable to our 

method in most case, its accuracy was greatly deteriorated in Type-3 slide. 

Table 2 shows the %error of RBC counts. Except for Type-3 slide, our proposed 

method achieved the clinically acceptable precision (less than 5% error). The cause of 

accuracy drop in Type-2 slide is that the intensity of the nuclei and the one of the 

cytoplasm are close, so the extraction of possible nucleus region contains more error. 

The cause of error in Type-4 slide is due to the existence of the white blood cells whose 

intensity is close to RBC nuclei.  

The large accuracy drop in Type-3 slide is due to the existence of cell’s 

boundary which is darker than the nucleus. In the proposed method, the nucleus is 

extracted under the assumption that it is the darkest region in the cell. Therefore, the 

method fails to differentiate between the boundary and nucleus leading to the counting 

failure. 
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Table 2. Performance of automatic RBC count for different types of slide. 

RBC 

Count 

Type of Slide 
Method / Initial Threshold Value for 

Iteration 
Type-

1 

Type-

2 

Type-

3 

Type-

4 

Type-

5 

%Average 

Error 

1.408 3.540 8.591 4.797 2.153 Otsu’s Multiple Thresholding 

1.369 3.629 16.747 4.948 3.198 Double Thresholding [17] 

1.021 4.247 7.485 2.958 2.906 
Otsu’s Multiple Thresholding 

with Post-processing 

1.080 4.216 13.762 4.038 5.095 
Double Thresholding [17] 

with Post-processing 
 

Table 3. Performance of manual RBC count for different types of slide. 

RBC Count 

Type of Slide 

Human Subject 
Type-1 

Type-

2 

Type-

3 

Type-

4 

Type-

5 

%Average Error 

0.308 0.934 1.069 0.371 0.303 Number 1 

0.188 1.454 0.588 0.055 0.169 Number 2 

0.119 0.519 0.480 0.316 0.133 Number 3 

 

In summary, the three major causes of error in our proposed method are as follows.  

1. Nuclei are blended into the cytoplasm and not clearly visible (Figure 19(a)).  

2. The (grayscale) intensity of WBCs and the one of the nuclei are close (Figure 19(b)). 

3. The boundary of RBCs is darker than nucleus (Figure 19(c)). 

The gold standard in Table 3 is the manual counting from one human subject. 

Since manual counting produces different numbers of RBC, we conduct an additional 

experiment. Three human subjects are requested to count the number of RBC and the 

average of the three counting is used as the gold standard. Except Type-4 slides which 

had 5 samples, there were 6 samples per type. Table 3 shows the average counting 

error (different from the mean) of the three manual counts. The low counting error among 

human subject (<1.5%) indicates that we can use only one manual count as a gold 

standard. 
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(a) False detection caused by 

nuclei blending to the 

cytoplasm (Type-2). 

(b) False detection 

cause by WBC 

(Type-5). 

(c) False detection cause by edge 

being darker than the nucleus 

(Type-3). 

Figure 19. Three major causes of incorrect RBC detection (red dots show detected 
nuclei and color arrows show false detection). 

4.3. RBC COUNTING WITH POST-PROCESSING 

The results after post-processing (DBSCAN) in Table 2 show that the algorithm can 

reduce error for Type-1, 3, and 4 slides. The efficiency of post-processing varies among 

different type, because the algorithm is developed and the parameters are set mainly for 

Type-1 slide. The post-processing efficiency is mainly depended on the quality of 

segmented nuclei and the surrounding cytoplasm since they are the information used to 

create data for clustering in DBSCAN. Figure 20 shows example of extracted nuclei of 

each type of slide. We can see that the nuclei extracted in Type-1, and 5 slides are the 

most accurate. However, the extracted cytoplasm of the Type-5 slide is not complete. 

Therefore, the postprocessing is not effective in the Type-5 slides. The nuclei extracted 

in the Type-4 slide are not very accurate but still consistent. The cytoplasm is also 

completely extracted after dilated. Therefore, the post-processing of the Type-4 slide is  
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Type-1 slide. 

  

Type-2 slide. 

  

Type-3 slide. 

  

Type-4 slide. 

  

Type-5 slide. 

  
Figure 20. Example of extracted nuclei (shown in gray) in each type of slide (right) and 

their original image (left). 
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still effective. The nuclei extracted in Type-2, and 3 slides are not accurate and 

inconsistent. 

We additionally run an experiment with different values for minpts and epsilon in 

the following range, respectively: 5 - 14, and 0.01 - 0.10. Figure 21(a) and (b) shows the 

effect of the minpts and epsilon to the counting error, respectively. Besides Type-2 slide, 

the segmentation accuracy of DBSCAN is robust to the setting of minpts. Low epsilon 

leads to higher error; however, when the epsilon is 0.03 or larger, the effect of epsilon is 

also low. Nevertheless, the graphs show that there exist values that give slightly better 

result than the parameters selected for Type-1 slide (minpts = 10, epsilon = 0.03). 

Table 4 shows the error when the minpts and epsilon were set to the best value 

as compared to the counting without DBSCAN and the counting with DBSCAN set to the 

parameter for Type-1 slide. It can be seen that the errors of Type-1, 4, and 5 can be 

further reduced if better parameters for each type are used.  The error of Type-2 slide is 

still worse than the original value, because the extracted nuclei, which are the input of 

DBSCAN, are inaccurate and inconsistent. Though, the error of Type-3 slide was 

decreased, the value (7.419%) was still not clinically acceptable. The output from noise 

filtering in DBSCAN is either equal to or lowers than the original value, hence, the 

additive error caused by excessive edge of Type-3 is evened out. 

From the experiment, we can conclude that DBSCAN can be used to reasonably 

reduce error caused by non-RBC false detection (such as shown in Figure 19(b).) as 

long as the RBC nuclei are accurately extracted, or at least, consistent and the 

extracted cytoplasm is complete.  
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(a) Average Error vs. minpts (at epsilon = 0.03) 

 
(b) Average Error vs. epsilon (at minpts = 10) 
Figure 21. Effect of DBSCAN's parameters 

 
Table 4. Performance of RBC count with different DBSCAN parameters. 

RBC Count 
Type of Slide 

DBSCAN setting 
Type-1 Type-2 Type-3 Type-4 Type-5 

%Average 

Error 

1.408 3.540 8.591 4.797 2.153 Without DBSCAN 

1.021 4.247 7.485 2.958 2.906 
Using parameters selected for 

Type-1 slide (Figure 15.)  

0.776 3.621 7.419 2.281 1.881 
Using optimal parameters for 

each type of slide 
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4.4. HETEROPHIL COUNTING 

The result of heterophil counting for Type-1 slide is shown in Table 5. Note that 

the error here is computed differently than the one of RBC. Due to the low number of 

heterophil (roughly only one cell per slide), the error is calculated by combining counts 

from 30 slides instead. The proposed rule-based method gives the counting error of 

8.8%. 

The 8 falsely detected objects are 2 lymphocytes, and 6 miscellaneous objects, 

such as color stains, shredded cells, etc. The false detected objects have statistics of its 

intensity similar to heterophil. The method fails to differentiate lymphocyte from 

heterophil, because our rules are created from the samples having only 2 lymphocytes 

out of 57 WBCs. It is possible that the rule cannot accurately differentiate WBC type 

because there are barely any other WBC types existing in our sample; thus, is the 

limitation of our method.  However, we should not ignore that the method successfully 

filters out many other non-WBCs objects. Figure 22 shows an example of how the 

method can remove many other objects. 

The cause for miss detection is that non-RBCs (in this case, the nucleus of a 

heterophil) are incorrectly detected as RBCs. The partial region of a WBC is removed, 

so its appearance does not conform to our rules. If the nucleus is not removed, the 

heterophil will be correctly detected. As shown in Figure 23, when the nucleus of the 

heterophil (the red dot in Figure 23(a)) was not removed, the heterophil was correctly 

detected (the red area in Figure 23(b)). 

Unlike RBC, the manual counting for heterophil is fairly simple because counting 

a couple of WBC is much easier than hundreds of RBC, so there is no need to explore 

the counting result from multiple subjects. 
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Table 5. Performance of heterophil count for Type-1 slide. 
 Heterophil Count Note 

Ground truth 57 - 

Proposed method 62 Counting error = 8.772% 

Correct detection 54 - 

False detection 8 2 are lymphocytes, and 6 are other objects 

Miss detection 3 
Part of heterophils are considered as RBC in 

previous steps 
 

  
(a) Possible WBC regions depicted in red. (b) Successfully filtered WBC. 

Figure 22. Successfully removal of non-WBCs. 

  
(a) Incorrect detection where heterophil is 

detected as RBC instead (red dot). 
(b) Correctly detected heterophil (red 

area) if the nucleus of the heterophil in (a) 
is not removed. 

Figure 23. Heterophil detection if non-RBCs are correctly removed. 
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CHAPTER 5 - CONCLUSION 

In this research, we propose iterative thresholding method to flexibly count avian 

RBC and a simple edge detection rule-based method to count heterophil. The results for 

RBC counting show that 4 out of 5 types of slide are in 5% clinical acceptable range. 

The post-processing method using DBSCAN can be used to reduce error caused by 

non-RBCs. The efficiency of DBSCAN is reduced if the color of a RBC’s nucleus is 

closed to the one of cytoplasm or the RBC has dark boundary. We believed that the 

post-processing by DBSCAN can be more robust to different staining, if the data are 

processed before we apply DBSCAN. This will be part of our future works. 

Heterophil counting error from the proposed rule-based detection method is 

8.8% but it can be improved if the rules are better and the post-processing part can filter 

out non-RBCs more effectively. The method is shown to successfully filter out various 

non-WBCs. More improvement and insight on heterophil and other type of avian WBC 

should be possible if there are more available samples. 

Because of the similar appearance of blood cells, our proposed method can be 

easily adapted to analyze the blood of other avian species. It can be used for the health 

checkup of chicken in broiler industry as well as wild birds for conservation purpose. 
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