CHEMICAL CONSTITUENTS AND ANTIBACTERIAL ACTIVITY OF RHIZOMES FROM Globba schomburgkii Hook.f.

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemistry Department of Chemistry FACULTY OF SCIENCE Chulalongkorn University Academic Year 2019 Copyright of Chulalongkorn University

องค์ประกอบทางเคมีและการยับยั้งเชื้อแบคทีเรียของเหง้าจากต้นกระทือลิง Globba schomburgkii Hook.f.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2562 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	CHEMICAL CONSTITUENTS AND ANTIBACTERIAL
	ACTIVITY OF RHIZOMES FROM Globba schomburgkii
	Hook.f.
Ву	Miss Naruemon Suekaew
Field of Study	Chemistry
Thesis Advisor	Assistant Professor Dr. Tanatorn Khotavivattana
Thesis Co Advisor	Dr. Chadin Kulsing

Accepted by the FACULTY OF SCIENCE, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of Science

Dean of the FACULTY OF SCIENCE

(Professor Dr. POLKIT SANGVANICH)

THESIS COMMITTEE

Chairman

(Associate Professor Dr. VUDHICHAI PARASUK)

Thesis Advisor

(Assistant Professor Dr. Tanatorn Khotavivattana)

Thesis Co-Advisor

(Dr. Chadin Kulsing)

Examiner

(Assistant Professor Dr. WARINTHORN CHAVASIRI)

External Examiner

(Dr. Jirapast Sichaem)

นฤมล เสือแก้ว : องค์ประกอบทางเคมีและการยับยั้งเชื้อแบคทีเรียของเหง้าจากต้น กระทือลิง *Globba schomburgkii* Hook.f.. (CHEMICAL CONSTITUENTS AND ANTIBACTERIAL ACTIVITY OF RHIZOMES FROM *Globba schomburgkii* Hook.f.) อ.ที่ปรึกษาหลัก : ผศ. ดร.ธนธรณ์ ขอทวีวัฒนา, อ.ที่ปรึกษาร่วม : ดร.ชฦิล กุลสิงห์

้งานวิจัยนี้ ได้นำสารสกัดไดคลอโคมีเทนของเหง้าจากต้นกระทือลิง Globba schomburgkii Hook.f. ไปแยกโดยใช้คอลัมน์โครมาโทกราฟีได้เป็นส่วนสกัดหยาบ 10 ส่วน คือ FA-FJซึ่งได้นำส่วน สกัดหยาบเหล่านั้นไปทดสอบฤทธิ์ยับยั้งเชื้อแบคทีเรีย (S. aureus) เบื้องต้นโดยใช้วิธีการ 96-well plate microdilution assay พบว่าส่วนสกัดหยาบ FE และ FG มีฤทธิ์ยับยั้งเชื้อแบคทีเรียได้ดีที่สุด ดังนั้นจึงนำส่วนสกัดหยาบ FE และ FG ไปแยกต่อได้เป็นส่วนย่อย 7 ส่วน (FE.A- FE.G) และ 13 ส่วน (FG.A-FG.M) ตามลำดับ จากนั้นนำส่วนย่อยทั้งหมดนี้ไปทดสอบฤทธิ์ยับยั้งเสื้อแบคทีเรีย พบว่ามี หลายส่วนย่อยที่มีฤทธิ์ยับยั้งเชื้อแบคทีเรียได้ดีกว่าส่วนสกัดหยาบ เช่น FE.B, FE.C, FE.D, FG.D, FG.G และ FG.H เป็นต้น นอกจากนี้ยังได้นำทั้งส่วนสกัดหยาบและส่วนสกัดย่อยทั้งหมดไปวิเคราะห์ โดยใช้ gas chromatography hyphenated with mass spectrometry (GC-MS) เพื่อหา องค์ประกอบทางเคมีจากการวิเคราะห์ความสัมพันธ์ระหว่าง mass spectrum (experimental MS) ของสารตัวอย่างเทียบกับ retention index จากฐานข้อมูล NIST17 ทำให้สามารถคาดการณ์ ้องค์ประกอบทางเคมีทั้งหมด 167 องค์ประกอบ ซึ่งมีองค์ประกอบทางเคมีที่สำคัญได้แก่ γ bicyclohomofarnesal และ (E)-15,16-dinorlabda-8(17),11-dien-13-one (P2) และมีองค์ประกอบ ที่มีการรายงานฤทธิ์ทางชีวภาพ เช่น (E)-labda-8(17),12-diene-15,16-dial, methyl isocostate, zederone, alantolactone และ 8α ,11-elemadiol นอกเหนือจากนี้ยังสามารถแยกสารประกอบ บริสุทธิ์ได้ 2 สารประกอบ ได้แก่ petasol (P1) และ P2 จากการวิเคราะห์โดยใช้เทคนิค ¹H, ¹³C, COSY, HSQC LAS HMBC NMR

สาขาวิชา เคมี ปีการศึกษา 2562

ลายมือชื่อนิสิต	
ลายมือชื่อ อ.ที่ปรึกษาหลัก	
ลายมือชื่อ อ.ที่ปรึกษาร่วม	

6072172823 : MAJOR CHEMISTRY

KEYWORD: Antibacterial activity, GC-MS, Globba schomburgkii Hook.f.
 Naruemon Suekaew : CHEMICAL CONSTITUENTS AND ANTIBACTERIAL
 ACTIVITY OF RHIZOMES FROM *Globba schomburgkii* Hook.f.. Advisor: Asst.
 Prof. Dr. Tanatorn Khotavivattana Co-advisor: Dr. Chadin Kulsing

Globba schomburgkii Hook.f. rhizomes were extracted with dichloromethane and fractionated using column chromatography to obtain 10 fractions (FA-FJ). The most active fractions, FE and FG, were further fractionated to give seven and thirteen sub-fractions, respectively. The fractions and sub-fractions were tested for antibacterial activity using 96-well plate microdilution method. The antibacterial activity of several sub-fractions (such as FE.B, FE.C, FE.D, FG.D, FG.G, and FG.H) were higher than that of the crude extract. Chemical compositions of all fractions and sub-fractions were analyzed by gas chromatography hyphenated with mass spectrometry (GC-MS), revealing 167 compounds identified according to match between the experimental MS and retention index data and that from the NIST17 library. The major volatile compounds were identified as γ -bicyclohomofarnesal and (*E*)-15,16-dinorlabda-8(17),11-dien-13-one (P2). Some of the compounds such as (*E*)-labda-8(17),12-diene-15,16-dial, methyl isocostate, zederone, alantolactone, and 8 α , 11-elemadiol have been reported to be biologically active. Lastly, two pure compounds isolated by column chromatography were characterized by ¹H, ¹³C, COSY, HSQC and HMBC NMR techniques as petasol (P1) and P2.

Field of Study: Chemistry Academic Year: 2019 Student's Signature Advisor's Signature Co-advisor's Signature

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my thesis advisor, Dr. Tanatom Khotavivattana who has the attitude and substance of a genius: he always conveys a spirit of the adventure regarding research and accomplishment, and an enthusiasm in regard to teaching and living. His motivation, sincerity, encouragement, empathy, and excellent scientific guidance have deeply inspired me. He invaluable help and constant encouragement throughout the course of this research. I am most grateful for his teaching and advice, not only the research methodologies but also many other methodologies in life. Furthermore, I am grateful to express my warmest appreciation to my joint advisor, Dr. Chadin Kulsing, who always kindly provides me his support, suggestion, encouragement, and strong academic guidance. I would not have achieved this far and this thesis would not have been completed without all the support that I have always received from them.

I would also like to sincerely express my deepest appreciation to Associate Professor Dr. Vudhichai Parasuk for his constant guidance throughout the thesis work and being a chair for this thesis defense. I would also like to thank my committee members, Assistant Professor Dr. Warinthorn Chavasiri and Dr. Jirapast Sichaem, for their encouragement, insightful comments, and suggestions.

My deepest appreciation to Dr. Sarisa Na Pombejra, Department of Microbiology, Faculty of Science, Chulalongkorn University, for providing me an opportunity to experience with the antibacterial evaluation. Her kind suggestion, helpfulness, and guidance greatly enriched my knowledge and sharpened my view.

I would also like to sincerely thank to the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund) and Thailand Toray Science Foundation Science (Technology Research Grant 2019). Partial supports from Chulalongkorn University: CU-GR_62_01_23_01 are gratefully acknowledged for all support.

Finally, I would also like to take this opportunity to thank my family's members: my father Mr. Sunipon Suekaew, mother Mrs. Kunya Suekaew, sister Miss. Onuma Suekaew, and sister Miss. Panumas Suekaew who were continuously supporting me throughout my life and leaving me free in all my decisions. Many thanks to all colleagues and TK-lab members at the Department of Chemistry, Faculty of Science, Chulalongkorn University, all whom involved in the project for their moral support, helpfulness, and willingness to listen all the problems during this project.

Chulalongkorn University

TABLE OF CONTENTS

		F	٥ge				
ABST	RACT ((THAI)	.iii				
ABST	RACT ((ENGLISH)	iv				
ACKN	NOWLE	DGEMENTS	. V				
TABL	E OF C	CONTENTS	vii				
CHAF	PTER I I		13				
1.	Backg	ground and significance of research	13				
2.	Literat	ture review	14				
	2.1	Bacterial infection and antibiotic resistant	14				
	2.2	Antibacterial drugs	15				
	2.3	Globba schomburgkii Hook.f	17				
	2.4	Bioassay-Guided Fractionation	18				
	2.5	Volatile chemical composition analysis by GC-MS	20				
3.	Objec	aุฬาลงกรณ์มหาวิทยาลัย	21				
4.	GHULALONGKORN UNIVERSITY 21						
CHAF	PTER II	EXPERIMENTS	23				
1.	. Plant preparation and extraction23						
2.	2. Isolation and fractionation23						
	2.1 Bi	oassay-guided fractionation	24				
	2.2 Pu	urification of pure compounds	24				
3.	GC-M	IS analysis	24				
4.	Antibacterial activity determination26						

4.1 The minimum inhibitory concentrations (MIC)	26					
4.2 The minimum bactericidal concentration (MBC)27						
CHAPTER III RESULTS & DISCUSSIONS	28					
1. Bioassay-guided fractionation	28					
1.1 Fractionation of crude extract	28					
1.2 Fractionation of fraction FE	29					
1.3 Fractionation of fraction FF	29					
1.4 Fractionation of fraction FG	31					
2. GC-MS Analysis of fractions and sub-fractions	35					
2.1 Total ion chromatograms of DCM extract and FA-FJ	35					
2.2 Selected volatile composition of crude DCM and FA-FJ						
2.3 Selected volatile composition of FE and FE.A-FE.G						
2.4 Selected volatile composition of FG and FG.A-FG.M	42					
CHAPTER IV CONCLUSION	47					
Appendix A Percentage of recovery						
Appendix B Volatile chemical composition from GC-MS analysis						
Appendix C Antibacterial evaluation106						
Appendix D NMR spectra116						
REFERENCES126						
VITA						

List of figures

Figure 1.1: Chemical structures of antibacterial drugs
Figure 1.2: New compounds from <i>G. pendula</i>
Figure 1.3: General process of bioassay-guided fractionation
Figure 1.4: Total ion chromatogram of methanol extract of <i>K. senegalensis</i>
Figure 1.5: Overview scheme of bioassay-guided fractionation and chemical
compositions of <i>Globba schomburgkii</i> Hook.f. rhizomes22
Figure 2.1: Reduction of resazurin to produce resofurin
Figure 3.1: Bioassay-guided fractionation of crude DCM extract of G. schomburgkii and
their biological activities against S. aureus; MIC and MBC were reported in the unit of μg
mL ⁻¹ . ^a Inactive means MIC > 800 μ g mL ⁻¹ 28
Figure 3.2: FE Fractionation and TLC data
Figure 3.3: FF Fractionation and TLC data; P1 purification
Figure 3.4: FG Fractionation and TLC data; P2 and P3 purification
Figure 3.5: The ion-chromatogram of P3
Figure 3.6: Total ion chromatograms of DCM extract and FA-FJ from G. schomburgkii
rhizomes
Figure D.1: ¹ H NMR spectrum of petasol (P1) (CDCl ₃ , 400 MHz)117
Figure D.2: ¹³ C NMR spectrum of petasol (P1) (CDCl ₃ , 100 MHz)117
Figure D.3: COSY NMR spectrum of petasol (P1) in CDCl ₃ 118
Figure D.4: HSQC NMR spectrum of petasol (P1) in CDCl ₃ 118
Figure D.5: HMBC NMR spectrum of petasol (P1) in CDCl ₃

Figure D.6: ¹ H NMR spectrum of (E)-15,16-dinorlabda-8(17),11-dien-13-one (P2) ($CDCI_3$,
400 MHz)
Figure D.7: ¹³ C NMR spectrum of (E)-15,16-dinorlabda-8(17),11-dien-13-one (P2)
(CDCl ₃ , 100 MHz)
Figure D.8: COSY NMR spectrum of (E)-15,16-dinorlabda-8(17),11-dien-13-one (P2) in
CDCI ₃
Figure D.9: HSQC NMR spectrum of (E)-15,16-dinorlabda-8(17),11-dien-13-one (P2) in
CDCI ₃
Figure D.10: HMBC NMR spectrum of (E)-15,16-dinorlabda-8(17),11-dien-13-one (P2) in
CDCI ₃
Figure D.11: ¹ H NMR spectrum of P3 (CDCI ₃ , 400 MHz)
Figure D.12: ¹³ C NMR spectrum of P3 (CDCl ₃ , 100 MHz)
Figure D.13: COSY NMR spectrum of P3 in CDCl ₃
Figure D.14: HSQC NMR spectrum of P3 in CDCl ₃
Figure D.15: HMBC NMR spectrum of P3 in CDCl ₃

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

List of tables

Table 3.1: Chemical shift comparison between petasol (P1) and reference
Table 3.2: Chemical shift comparison between (E)-15,16-dinorlabda-8(17),11-dien-13-
one (P2) and reference
Table 3.3: Chemical shift comparison between P3 and (E)-15,16-dinorlabda-8(17),11-
dien-13-one (B) reference
Table 3.4: Selected volatile composition of crude DCM and FA-FJ 37
Table 3.5: Selected volatile composition of FE and FE.A-FE.G 41
Table 3.6: Selected volatile composition of FG and FG.A-FG.M
Table 3.7: Antibacterial activity of sub-fractions of G. schomburgkii Hook.f. rhizomes46
Table A.1: Percentage recovery of FA-FJ 49
Table A.2: Percentage recovery of FE.A-FE.G 50
Table A.3: Percentage recovery of FG.A-FG.M 50
Table B.1: Volatile chemical composition in dichloromethane extract of rhizomes (crude)
DCM)
Table B.2: Volatile chemical composition in fraction FA
Table B.3: Volatile chemical composition in fraction FB FB 56
Table B.4: Volatile chemical composition in fraction FC
Table B.5: Volatile chemical composition in fraction FD61
Table B.6: Volatile chemical composition in fraction FE 63
Table B.7: Volatile chemical composition in fraction FF FF 65
Table B.8: Volatile chemical composition in fraction FG
Table B.9: Volatile chemical composition in fraction FH69
Table B.10: Volatile chemical composition in fraction FI71

Table B.11: Volatile chemical composition in fraction FJ	72
Table B.12: Volatile chemical composition in fraction FE.A	73
Table B.13: Volatile chemical composition in fraction FE.B	75
Table B.14: Volatile chemical composition in fraction FE.C .	77
Table B.15: Volatile chemical composition in fraction FE.D.	
Table B.16: Volatile chemical composition in fraction FE.E.	
Table B.17: Volatile chemical composition in fraction FE.F	
Table B.18: Volatile chemical composition in fraction FE.G.	83
Table B.19: Volatile chemical composition in fraction FG.A.	84
Table B.20: Volatile chemical composition in fraction FG.B.	85
Table B.21: Volatile chemical composition in fraction FG.C.	
Table B.22: Volatile chemical composition in fraction FG.D.	
Table B.23: Volatile chemical composition in fraction FG.E .	
Table B.24: Volatile chemical composition in fraction FG.F .	
Table B.25: Volatile chemical composition in fraction FG.G.	94
Table B.26: Volatile chemical composition in fraction FG.H.	y
Table B.27: Volatile chemical composition in fraction FG.I	
Table B.28: Volatile chemical composition in fraction FG.J	
Table B.29: Volatile chemical composition in fraction FG.K.	
Table B.30: Volatile chemical composition in fraction FG.L.	
Table B.31: Volatile chemical composition in fraction FG.M.	

CHAPTER I

1. Background and significance of research

Bacteria is a pathogen that causes many diseases in human, plants and animals. Since, bacteria are evolving over time to survive, this leads to the problem of bacteria becoming resistant to antibiotic. Centers for Disease Control and Prevention (CDC) has reported that in U.S., at least 2.8 million people were infected with antibiotic-resistant bacteria, and more than 35,000 people die due to bacterial infection each year. In Thailand, it has been reported that 38,481 deaths were caused by antibiotic-resistant bacterial infection in 2010. Globally, antimicrobial resistance has a trend to increase to 10 million deaths each year by 2050. Therefore, in the future, the existing antibacterial drugs might not be able to use to treat bacteria effectively anymore. As a result, the development of new antibacterial drugs is necessary to solve the problem caused by antibiotic-resistant bacteria. The extraction and separation of chemical constituents from plants is one of the promising methods to discover new antibacterial compounds, since traditional medicine uses various herbs to treat a wide range of ailments. Plants in the family of Zingiberaceae have been used in herbal remedies from past to present to treat bacterial diseases. The interesting plant is Globba schomburgkii Hook.f. or Kratue Ling, which the rhizomes have been reported to be used as a mixture of shampoo and soap for use in the treatment of itchy skin.

The Kratue Ling is a local plant of Saraburi Province. The flowers are typically used in Buddhist Lent day (Khaophansa). It is usually used to bundle into a bouquet to be offered to monks in Buddhist Lent day. Therefore, it is alternatively called as Khaophansa flower. Therefore, the Kratue Ling is an important economic plant of Saraburi Province and the Saraburi Provincial Public Health Office is also interested in the development of the Kratue Ling into cosmetic products or medical supplies to promote the policy of Saraburi Province under the Herbarium City Development Project. The study of chemicals constituents and biological activity of Kratue Ling is very necessary. From the preliminary study of our research group was found that the crude extracts from the rhizomes of the Kratue Ling exhibited good antibacterial activity. When analyzed with gas chromatography-mass spectrometry (GC-MS) which is a technique used for separation and identification of the volatile compositions, more than 100 chemical volatile compositions which are mostly of terpenoids were identified. However, this research was not complete: the exact compounds that act as active to antibacterial activity still have not been identified. In addition, there were no report of pure compounds isolation for structural characterization by using reliable techniques.

This research aimed to study the bioactive compound in the crude extract from the rhizomes of *Globba schomburgkii* Hook.f. by using bioassay-guided fractionation technique. Furthermore, GC-MS technique is used for chemical composition analysis of fractions and sub-fractions that were obtained from column chromatography. The correlation between chemical compositions and antibacterial activity will be studied. This could serve as a prototype structure for future antibacterial drug discovery and development. The information on the chemical compounds to be used to determine the guality of the pharmaceutical products processed from this herb in the future.

2. Literature review

2.1 Bacterial infection and antibiotic resistant

Bacteria is the pathogen which is a major cause of various diseases such as skin infections, digestive system infection, and respiratory system infection.¹ Bacteria is typically classified according to gram color straining.² Gram positive bacteria are bacteria that retain the crystal violet stain. For example, *Staphylococcus aureus* (*S.*

aureus) is a pathogen that usually occurs on the skin,³ and Micrococcus luteus (M. luteus) is a non-pathogenic organism but is a cause of shock after infection in the bloodstream for patients with immunodeficiency.⁴ Gram negative bacteria are bacteria that do not retain the crystal violet stain. For example, Psaeudomonas aeruginosa (P. aeruginosa) is a pathogen causing disease in people with immunodeficiency such as cancer patients under chemotherapy.⁵ Another example, Escherichia coli (E. coli) is a pathogen that causes urinary tract infections and inflammation.⁶ According to centers for disease control and prevention (CDC), one of the biggest problems of global health is antibiotic-resistant bacteria nowadays. Since antibiotics are used frequently, the bacteria have been mutating to become resistant to most of the old drugs, and they have become ineffective for the treatment.⁷ For example, a strain of *S. aureus* that is resistant to penicillin had been reported for first time in 1940.⁸ In Thailand, 38,481 deaths have been reported to be caused by antibiotic-resistant bacteria in 2010.9 Antimicrobial resistance has a trend to increase to 10 million deaths each year by 2050.¹⁰ There are several mechanisms that can cause drug resistance in bacteria such as enzymatic modification of antibiotics, enzymatic degradation of antibiotics and efflux pumps.¹⁰ Therefore, the development of antibiotic discovery is very important to help humanity.

2.2 Antibacterial drugs

Bacterial infection and antibiotic resistance are the big health problems in the world for a long time until now, so the antibacterial drug must be continuously discovered and developed. The first antibacterial drug is prontosil (**Figure 1.1a**) discovered by Gerhard Domagk in 1932.¹¹ The first natural antibiotic is penicillin (**Figure 1.1b**) that was used to help a lot of soldiers in World War II. Penicillin was extracted from *penicillium notatum* and can inhibit *S. aureus* that grew around it on an agar plate.⁸ In this research we use streptomycin (**Figure 1.1c**), amoxicillin (**Figure 1.1d**), and ciprofloxacin (**Figure 1.1e**) as

antibiotic drug reference standards during antibacterial activity testing. First, streptomycin is a natural aminoglycoside antibiotic produced by the soil Actinomycete Streptomyces griseus. It is usually used by combination with another drug to treat septicemia, urinary tract and gastrointestinal tract infections, and numerous other infections caused by gram-positive and gram-negative bacteria. The mode of action of streptomycin is the inhibition of the synthesis of proteins used for cell wall production in the target bacteria.¹² However, it has been reported that some bacteria such as Mycobacterium tuberculosis has become resistant to streptomycin.¹³ Second, amoxicillin is a broad-spectrum antibiotic drug in the penicillin group. It has been reported to have high inhibition against gram-negative bacteria. Recently, gramnegative bacteria can release β -lactamase, leading to the resistance towards amoxicillin.¹⁴ In addition, it has been reported that 83.1% of *S. aureus* infection cases had become resistant to amoxicillin in hospitalized patients, and 73.9% in ambulatory patients.¹⁵ Finally, Ciprofloxacin is an antibiotic in the fluoroquinolone group that can inhibit gram-negative bacteria such as urinary tract infections, skin and bone infections, and especially most active against *P. aeruginosa*.¹⁶ In 1997, the mechanistic study of Streptococcus pneumoniae resistant to ciprofloxacin has been reported.¹⁷ However, amoxicillin and ciprofloxacin are the common essential antibiotic recommended by the World Health Organization (WHO).¹⁸ There are ninety antibacterial drugs that are commercialized in 1982-2002 and 79% of them were derived from natural product.¹⁹ Therefore, natural molecules remain important sources for novel antibiotics. However, the difficulty in new antibacterial drug discovery from natural product by directly screening for antibacterial activity is the presence of large amounts of known compounds with the low contents of novel compounds.²⁰

Figure 1.1: Chemical structures of antibacterial drugs

2.3 Globba schomburgkii Hook.f.

Globba spp. is the third most diverse genus of the zingiberaceae has been reported // //as.m///mil.20.ws various chemical constituents and biological activity. Ethanolic extract of G. bulbifera tuber has been reported for protease inhibition and breast cancer inhibition.²¹ G. marantina Linn. was used as traditional medicine such as asthma, rheumatoid arthritis, cough, cold, and snakebite.²² The volatile constituents of the rhizomes and aerial parts of G. sessiliflora Sims were analyzed by GC-MS. Both the oils showed significant myorelaxant effect on isolated duodenum smooth muscles of Wistar rats. The oils exhibited moderate to good antioxidant activity in a dose-dependent manner.23 Interestingly, Globba is a source of new chemical compounds to the future development of drug discovery. A new Globbanol A was isolated from G. pendula Roxb. rhizomes by using column chromatography.²⁴ Various terpenoids were reported to be the major constituents of *G. reflexa* Craib rhizomes.²⁵ A new naturally occurring of 16-oxo-(8)17-12-labdadien-15,11-olide (Figure 1.2a) and benzofuran-2-carboxaldehyde (Figure 1.2b) were isolated from *G. pendula*.²⁶ The structure of new compounds from rhizomes of *G*. pendula are shown in Figure 1.2.

(a) 16-Oxo-(8)17-12-labdadien-15,11-olide

(b) Benzofuran-2-carboxaldehyde (c) Globbanol A

Figure 1.2: New compounds from G. pendula

Globba schomburgkii Hook.f. is a plant in *Globba* genus of the Zingiberaceae family and the most plentifully distributed in Southeast Asia, especially in Thailand.²⁷ More than 40 species of plants in *Globba* genus were found in Thailand.²⁵ The main morphological characteristics are 4 anthers appendages, yellow flowers, green inflorescences and separate branch.²⁸ The essential oil of *G. schomburgkii* has been extracted by hydrodistillation of whole plants and the chemical compositions of the essential oil has been studied.²⁹ In addition, our group also studied the volatile compositions from crude extracts obtained from rhizomes, stalks, leaves, and flowers of *G. schomburgkii*. The evaluation of the antibacterial activity of each extract revealed that the dichloromethane extract of rhizomes, which contained the highest amount of terpenoids, had the highest antibacterial activity.³⁰ Therefore, in this research, the crude dichloromethane extract of the rhizomes of *G. schomburgkii* will be further studied by using bioassay-guided fractionation technique and GC-MS analysis.

2.4 Bioassay-Guided Fractionation

Bioassay-guided fractionation is a method usually used in drug discovery research due to its potency to derive bioactive compounds from natural sources. In this process, the fractionation and biological activity testing are alternatively performed until pure compounds with high bioactivity are obtained.³¹ A crude extract of the plants is typically fractionated using separation techniques such as chromatography or distillation to provide fractions. After evaluation of biological activity of these fractions, the most bioactive fraction will be selected for further isolation to obtained sub-fractions. The process is repeated until pure compounds, which are expected to have high bioactivity, are isolated. The general bioassay-guided fractionation process is shown in **Figure 1.3**.

Figure 1.3: General process of bioassay-guided fractionation

A successful example for the bioassay guided fractionation for the discovery of new **CHUALONGKORN UNIVERSITY** antibacterial agent from plants has been reported by Lianzhu Lin and co-workers in 2013.³² In this work, a crude ethanol extract of *R. Serra* leaf was extracted with 4 solvents including petroleum ether (LPEL), ethyl acetate (LEAL), butanol (LBL), and water (LWL). LEAL was found to exhibit the highest antibacterial activity. This fraction was further fractionated into 9 sub-fractions (EA1-EA9) and it was found that EA4 gave the highest antibacterial activity. The isolation of EA4 revealed three phenolic compounds and four C-20 oxygenated *ent*-kauranes (effusanin E, lasiodin, rabdosichuanin D and a new compound namely effusanin F). Lasiodin was found to be the most active antibacterial compound against *B. subtilis*, *B. cereus*, *S. aureus*, *L. monocytogenes*, and *P. aeruginosa* with MIC values of 16, 8, 16, 16, and 16 µg/mL, respectively. Moreover, effusanin E and effusanin F also exhibited moderate antibacterial activity.

2.5 Volatile chemical composition analysis by GC-MS

GC-MS is a useful analytical technique that has been used to obtain profiles of volatile and semi-volatile organic compounds in herb, where compounds are often identified according to MS library match and retention index data.^{30, 33} The technique allows positive identification of compounds as well as quantitative analysis by construction of calibration curves. GC provides physical separation of components of a mixture mainly based on analyte boiling difference and interaction with the stationary phase while MS is used as the detector for the identification. There have been several reports of volatile chemical composition analysis with GC-MS. The chemical compositions of essential oils from G. cernua Baker, G. marantina L. and G. ophioglossa Wight were analyzed by using GC-FID and GC-MS.³⁴ The chemical compositions of the essential oil from Dendranthema indicum Var. Aromaticum was also studied by GC-MS analysis showing five categories of compounds including oxygenated monoterpenes, oxygenated sesquiterpenes, sesquiterpenes, fatty hydrocarbons and monoterpenes.³⁵ The chemical compositions of stem bark methanol extracts of Khaya senegalensis were isolated and analyzed using GC-MS, and the total ion chromatogram has seven teen peaks as shown in Figure 1.4.

Figure 1.4: Total ion chromatogram of methanol extract of *K. senegalensis*.

3. Objectives

3.1 To analyze the chemical compositions in the rhizome extract of Globba

schomburgkii Hook.f. by fractionation and GC-MS technique

- 3.2 To study the relation between chemical compositions and antibacterial activity
- 3.3 To isolate the bioactive chemical species by bioassay-guided fractionation and to elucidate their structures by spectroscopic technique

4. Scope of research

จุหาลงกรณมหาวทยาลย

Crude dichloromethane extract of the rhizomes of *G. schomburgkii* was isolated using chromatographic technique into fractions, which will be tested for their antibacterial activity and GC-MS analysis. The comparison between antibacterial activity results and chemical compositions from GC-MS analysis to exhibit the relation between bioactivity and the quantity of significant chemical species. The fractions with high bioactivity were selected for further fractionation in order to obtain sub-fractions. This bioassay-guided fractionation was repeated until pure compounds were obtained. The pure compounds were characterized by ¹H, ¹³C, COSY, HSQC, and HMBC NMR. The GC-MS analysis of pure compounds was used to predict the structure and compare with

NMR interpretation. Furthermore, the antibacterial activity of pure compounds was evaluated to compare with the crude extract. The overview of this research is shown in Figure 1.5

Figure 1.5: Overview scheme of bioassay-guided fractionation and chemical

compositions of Globba schomburgkii Hook.f. rhizomes.

CHAPTER II

EXPERIMENTS

1. Plant preparation and extraction

G. schomburgkii Hook.f. was obtained from a commercial grower (Roum Jai Kaset farm) in Phu Kham Chan subdistrict, Phra Phutthabat district, Saraburi Province, Thailand, in June 2018. The plant was authenticated at the Kasin Suvathabandhu Herbarium of the Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand. A voucher specimen (BCU 016011) was deposited in the herbarium.

All commercial-grade solvents from RCI Labscan (Samutsakorn, Thailand) were used to extract the plants. The air-dried *G. schomburgkii* Hook.f. rhizomes (2.92 kg) were ground and extracted twice with hexane (8.0 L each time) at room temperature. After filtration, the solid residue was further extracted with dichloromethane (9.0 L each time), filtered, and then, the solvent evaporated *in vacuo* to obtain a dark brown viscous dichloromethane extract (37.21 g).

2. Isolation and fractionation

All solvents for column chromatography from RCI Labscan (Samutsakorn, Thailand) were distilled before use. Column chromatography were monitored by thin-layer chromatography (TLC) using aluminium Merck TLC plates coated with silica gel 60 F₂₅₄. Normal phase column chromatography was performed using silica gel 60 (0.063-0.200 mm, 70-230 mesh ASTM, Merck, Darmstadt, Germany). Proton, carbon and two-dimensional nuclear magnetic resonance (¹H, ¹³C, and 2D NMR) spectra were recorded on a Bruker Avance (III) 400WB spectrometer. Chemical shifts were expressed in parts per million (ppm), *J* values were in Hertz (Hz).

2.1 Bioassay-guided fractionation

The crude dichloromethane extract of the rhizomes was fractionated by silica gel column chromatography and eluted with gradually increasing polarity solvent, starting from 100% hexane to 100% AcOEt, and then to 100% MeOH to obtain ten fractions (FA-FJ) based on TLC analyses. These fractions were evaluated for their antibacterial activity against *Staphylococcus aureus* ATCC 6538P. Fractions FE and FG were the most active, both exhibiting minimum inhibitory concentration (MIC) of 400 µgmL⁻¹ and minimum bactericidal concentration (MBC) of 800 µgmL⁻¹. Fraction FE was further separated by silica gel column chromatography and eluted with 5%–60% AcOEt in hexane, gradually increasing the polarity by adding 5% AcOEt and using 500 mL each time to provide 7 sub-fractions (FE.A-FE.G). Fraction FG was separated by silica gel column chromatography and eluted with 5%–70% AcOEt in hexane to obtain 13 sub-fractions (FG.A–FG.M).

2.2 Purification of pure compounds

Petasol (P1) was isolated from FF using column chromatography eluted with 33%– 50% ethyl acetate in hexane, leading to 7 sub-fractions (FF.A–FF.G). Next, FF.C and FF.D were combined and further purified by preparative TLC using 10% acetone in dichloromethane as a mobile phase to provide P1 (6.1 mg) as a yellow viscous oil. Another pure compound was isolated from FG.B by recrystallization with hexane, yielding (*E*)-15,16-dinorlabda-8(17),11-dien-13-one (P2) as a white solid (6.4 mg). Moreover, the compound P3 was isolated from FG.H by Prep-TLC using 100% dichloromethane as a mobile phase. The NMR spectra were presented in Appendix D.

3. GC-MS analysis

The fractions and sub-fractions were dissolved in HPLC grade of ethyl acetate from RCI Labscan (Samutsakorn, Thailand). The concentration of the sample from 1 ppm to 4 ppm was used to analyze volatile compositions. The analyses of volatile compositions

were performed using GC/MS instrument (7890 A-7000, Agilent Technologies, Santa Clara, CA) with an HP-5MS column (30 m×0.25 mm i.d., 0.25 µm film thickness, J&W Scientific, USA) using ultra-high purity helium (99.999%) as the carrier gas at a constant flow rate of 1.0 mL min⁻¹, an injection volume of 1 μ L (splitless) and injector temperature of 280 °C were used. The GC temperature program consisted of an initial temperature of 60 °C with an increase rate of 4°C min⁻¹ to reach a final temperature of 320 °C, which was held for 5 min. MS ion source temperature was set at 230°C. The electron ionization was performed at 70 eV. The mass spectra were acquired over the mass range of 30-300 Da. Data acquisition and peak integration were performed using ChemStation software (Agilent). Data were further processed using Microsoft Excel 2017. Individual components were identified by comparison of both their experimental mass spectra and retention indices (RI) with the NIST 2017 (National Institute for Standards and Technology) database. Experimental RI values were calculated for all volatile compounds by using a homologous series of alkanes (C7 - C30 purchased from Sigma-Aldrich, St. Louis, MO) recorded under the same operating conditions. Since the temperature programmed separation was performed, RI values were calculated according to

RI = 100n + 100
$$\left(\frac{t_{\mathrm{R}(i)} - t_{\mathrm{R}(n)}}{t_{\mathrm{R}(n+1)} - t_{\mathrm{R}(n)}}\right)$$

where $t_{R(i)}$ is retention time of peak *i*. $t_{R(n)}$ and $t_{R(n+1)}$ are retention time values of alkane standards with carbon numbers *n* and *n*+1, respectively, bracketing the peak *i*³³ Retention indices are applied in order to construct database with quality and reliability since the system is independent and long-term reproducible even with different places and times of experiments. Library searches are important to confirm peak identities obtained from the MS data. This is especially useful for the identification of isomeric compounds, such as sesquiterpene hydrocarbons with either the same or similar mass spectra.

4. Antibacterial activity determination

Staphylococcus aureus ATCC 6538P, *Micrococcus luteus* ATCC 4698, *Escherichia coli* ATCC 25922, and *Pseudomonas aeruginosa* Strain Boston 41501 ATCC 27853 were purchased from Biomedia (Thailand). The analytical grade (AR.) of dimethyl sulfoxide (DMSO) from RCI Labscan (Samutsakorn, Thailand) was used to dissolve the crude sample. Mueller Hinton Broth (MHB) from Himedia was used to sample dilution. Streptomycin, amoxicillin and ciprofloxacin from TCI chemicals (Tokyo, Japan) were used as a commercial standard drug. The bacterial cell viability was measured by using resazurin sodium salts form TCI chemicals (Tokyo, Japan). The living bacteria cells were oxidized the blue color of resazurin to purple color of resofurin is shown in **Figure 2.1**.³⁶

Figure 2.1: Reduction of resazurin to produce resofurin

4.1 The minimum inhibitory concentrations (MIC)

The minimum inhibitory concentrations (MIC) for each fraction/sub-fraction against *Staphylococcus aureus* ATCC 6538P, *Micrococcus luteus* ATCC 4698, *Escherichia coli* ATCC 25922, and *Pseudomonas aeruginosa* Strain Boston 41501 ATCC 27853 were determined using 96-well plate microdilution method modified from the Manual of Antimicrobial Susceptibility Testing, American Society for Microbiology.³⁷ Briefly, 800 µgmL⁻¹ solution of each crude extract was prepared by dissolving the crude extracts in the 5% v/v solution of dimethyl sulfoxide (DMSO) in Mueller Hinton Broth (MHB). Serial two-fold dilutions of crude extract samples were performed to obtain the concentrations

of 800, 400, 200, 100, 50, 25, 12.5, and 6.25 µgmL⁻¹ in 50 µL of 5% v/v DMSO/MHB. Streptomycin, amoxicillin and ciprofloxacin were used as a control group. Four to five isolated colonies of bacteria were selected and cultured in MHB at 37°C for 4–18 h. The turbidity of the bacterial culture was determined by comparison with 0.5 McFarland standard (HiMedia, Dindori, Nashik, India). Then, the bacterial cell density was adjusted with MHB to 10^{6} CFUmL⁻¹. Within 15 min of adjusting the inoculum, 50 μ L of the bacterial suspension were added into each well of the 96-well plates containing 50 μ L of either the crude extract solutions or control group solutions. This resulted in the final bacterial concentration of 5×10^5 CFUmL⁻¹ in the total volume of 100 μ L of 5% v/v DMSO/MHB. The 5×10⁵ CFUmL⁻¹ bacterial solution in 5% v/v DMSO/MHB was used as a positive control group. A solution of 5% DMSO/MHB was used as a negative control group. After the addition of bacterial cells, the microplates were wrapped with parafilm to prevent the dehydration and then, incubated at 37°C for 24 h. At the 24-h post inoculation, the MIC values were investigated by adding 30 µL of 0.015% w/v resazurin aqueous solution into each well and incubating at 37°C for 1 h. The lowest concentrations of crude extracts with no color change of blue resazurin were scored as MIC values.

4.2 The minimum bactericidal concentration (MBC)

The minimum bactericidal concentration (MBC) was determined by plating directly the content of each well with a concentration at the MIC and one with higher than the MIC value. Streak of the contents from the MIC well to the higher concentration on Mueller Hinton Agar (MHA) was then incubated at 37°C for 24 h. The MBC value was determined when there is no colony growth from the directly plated contents of the wells.

CHAPTER III

RESULTS & DISCUSSIONS

1. Bioassay-guided fractionation

1.1 Fractionation of crude extract

The crude dichloromethane extract of *G. schomburgkii* Hook.f. rhizomes was isolated by column chromatography to provide ten fractions (FA-FJ) as shown in Figure 3.1. These fractions were evaluated for their antibacterial activity against *S. aureus*. Fractions FA and FB were inactive against *S. aureus*, probably due to the major components in these fractions consist of compounds with low polarity such as long chain hydrocarbons. Fractions FE and FG were the most active against *S. aureus*. Strangely, fraction FF was inactive, even though it is the fraction between FE and FG that were the most active fractions. This suggests that the major components of these fractions are different as can be roughly visualized by the TLC analysis as shown in Figure 3.1. The most active fractions, FE and FG (MIC = 400 μ g mL⁻¹ and MBC = 800 μ g mL⁻¹), were selected for further isolation.

	CC: 100% hexane – 100% MeOH								
				VODU		OITV			
FA (1,690 mg) Inactive ^a	FB (3,153 mg) Inactive ^a	FC (3,031 mg) MIC = 800 MBC > 800	FD (1,852 mg) MIC = 800 MBC > 800	FE (2,902 mg) MIC = 400 MBC = 800	FF (1,699 mg) Inactive ^a	FG (1,910 mg) MIC = 400 MBC = 800	FH (2,130 mg) MIC = 400 MBC > 800	FI (1,635 mg) MIC = 400 MBC > 800	FJ (898 mg) Inactive ^a

Crude DCM 37.208g

Figure 3.1: Bioassay-guided fractionation of crude DCM extract of *G. schomburgkii* and their biological activities against *S. aureus*; MIC and MBC were reported in the unit of μ g mL⁻¹. ^aInactive means MIC > 800 μ g mL⁻¹.

1.2 Fractionation of fraction FE

Fraction FE was isolated to give seven sub-fractions (FE.A-FE.G) which were tested for their antibacterial activity (Figure 3.2). The most active sub-fraction FE.D (MIC = 200 μ g mL⁻¹ and MBC = 200 μ g mL⁻¹) was further separated. However, the isolation was difficult due to the streaking of the compounds in column chromatography as can be visualized by the TLC analysis (Figure 3.2). Moreover, the UV inactivity of the compound hindered the separation even further, and hence we cannot isolate any pure compound from this fraction.

Figure 3.2: FE Fractionation and TLC data

1.3 Fractionation of fraction FF

Although fraction FF is inactive against *S. aureus*, but since it is next to the other two most active fractions, FE and FG; therefore, we also attempted to isolate compounds in this fraction. The fractionation by column chromatography gave seven sub-fractions as shown in Figure 3.3. According to the TLC analysis, both FF.C and FF.D showed bright yellow spots under UV irradiation; therefore, these two fractions were combined for further isolation. The fraction FF.CD was selected to further isolation into two sub-fractions, including FF.CDA and FF.CDB. Lastly, FF.CDB was purified by Prep-TLC to provide P1 as a yellow viscous oil (6.1 mg). Using spectroscopic techniques such as

¹H, ¹³C, and 2D NMR (Appendix D), the chemical structure of P1 was identified as petasol when compared with the literature values ³⁸ as tabulated in Table1. The sub-fractions were not evaluated for their antibacterial activity since fraction FF itself is inactive against *S. aureus*.

Figure 3.3: FF Fractionation and TLC data; P1 purification

Table 3.1: Chemical shift	comparison	between	petasol (P1)	and reference
	(10)		10110	

¹³ C NMR			งกรณ์มหาวิทยาลัย ¹ H NMR		
Carbon position	P1 ^[a]	Reference ^[b]	DNGKORIP1 ^[c] NIVERSI	Reference ^[b]	
C-8	198.8	198.6	-	-	
C-10	167.7	167.6	-	-	
C-11	143.6	143.4	-	-	
C-9	124.6	124.4	5.78 (1H, s)	5.77 (1H, d, <i>J</i> = 1.8 Hz)	
C-12	114.5	114.3	4.99 (1H, s) 4.82 (1H, s)	4.98 (1H, br.t, <i>J</i> = 1.5 Hz) 4.82 (1H, br.s)	
C-3	71.3	71.1	3.62 (1H, td, <i>J</i> = 10.8, 4.4 Hz)	3.62 (1H, td, <i>J</i> = 10.7, 4.4 Hz)	

C-4	50.5	50.30	1.34 (1H, s)	1.33 (1H, m)
C-7	50.5	50.26	3.11 (1H, dd, J = 14.4, 4.6	3.10 (1H, dd, <i>J</i> = 14.3, 4.7 Hz)
			Hz)	
C-6	41.9	41.7	2.00 (1H, d, J = 4.6 Hz)	2.02 (1H, dd, J = 13.1, 4.8 Hz)
			1.88 (1H, s)	1.87 (1H, t, <i>J</i> = 13.6 Hz)
C-5	39.9	39.7	-	-
C-2	35.3	35.2	2.16 (1H, dd, $J = 8.5$, 3.7	2.16 (1H, m)
			Hz)	1.44 (1H, m)
			1.45 (1H, dd, J = 14.0, 4.5	
		6.6	Hz)	
C-1	31.1	30.9	2.43 (1H, dd, J = 14.2, 5.0	2.45 (1H, tdd, J = 15.0, 5.1, 2.0 Hz)
			(Hz)	2.34 (1H, ddd, J = 15.0, 4.9, 2.7
			2.37 – 2.35 (1H, m)	Hz)
C-13	20.2	20.0	1.74 (3H, s)	1.74 (3H, br.s)
C-14	17.4	17.2	1.18 (3H, s)	1.17 (3H, s)
C-15	10.6	10.4	1.08 (3H, d, <i>J</i> = 6.7 Hz)	1.08 (3H, d, <i>J</i> = 6.7 Hz)
^[a] 100 MHz	in CDCl ₃ , ^[]	^{b]} CDCl ₃ , ^[c] 400 M	IHz in CDCl ₃	<u>.</u>

CHULALONGKORN UNIVERSITY

1.4 Fractionation of fraction FG

The fractionation of FG afforded thirteen sub-fractions. Crystallization occurred when the sub-fraction FG.B was collected during column chromatography. FG.B was recrystallized in hexane to provide P2 as a white crystal (6.4 mg). Using spectroscopic techniques (Appendix D), the structure of P2 was identified as (*E*)-15,16-dinorlabda-8(17),11-dien-13-one. The proton and carbon chemical shifts were compared with the literature reported values ³⁹ as tabulated in Table 3.2.

Figure 3.4: Fractionation and TLC data; P2 and P3 purification

Table 3.2: Chemical shift comparison between (E)-15,16-dinorlabda-8(17),11-dien-13-

¹³ C NMR			¹ H NMR		
Carbon position	P2 ^[a]	Reference ^[a]	P2 ^[b]	Reference ^[b]	
C-13	198.2	197.9		-	
C-8	148.8	148.5		-	
C-11	146.7	146.5	6.87 (1H, dd, J = 15.9, 10.3	6.87 (dd, <i>J</i> = 15.8, 10.3 Hz)	
			Hz)		
C-12	133.7	133.5	6.07 (1H, d, <i>J</i> = 15.9 Hz)	6.07 (d, <i>J</i> = 15.8 Hz)	
C-17	108.8	108.6	4.40 (1H, s)	4.41 (d, <i>J</i> = 1.6 Hz)	
			4.79 (1H, s)	4.79 (d, <i>J</i> = 1.6 Hz)	
C-9	61.0	60.8	-	-	
C-5	54.7	54.4	-	-	
C-3	42.3	42.0	-	-	
C-7	41.0	40.9	-	-	
C-10	39.5	39.3	-	-	
C-1	36.8	36.6	-	-	
C-4	33.7	33.6	-	-	

one (P2) and reference

C-18	33.7	33.6	0.84 (3H, s)	0.85 (s)
C-14	27.3	27.2	2.27 (3H, s)	2.27 (s)
C-6	23.4	23.2	-	-
C-19	22.1	21.9	0.89 (6H, s)	0.89 (s)
C-2	19.2	19.0	-	-
C-20	15.3	15.1	0.89 (6H, s)	0.90 (s)
^[a] 100 MHz in CDCl ₃ , ^[b] 400 MHz in CDCl ₃				

The preliminary screening of sub-fractions FG.A-FG.M against S. *aureus* demonstrated that FG.H was the most active sub-fraction (MIC and MBC = 200 μ g mL⁻¹). However, the attempt to isolate pure compound in this sub-fraction was rather unsuccessful. We managed to isolate a compound (P3); however, we were unable to purify it from impurities and the structural elucidation was ambiguous. The ¹H and ¹³C NMR (Appendix D) showed the peak at 0.75, 0.82, 0.89, 440, 4.86, and 9.40 ppm and 14.56, 21.88, 24.78, 148.23, and 193.91 ppm, respectively, suggesting that this compound should contain four methyl groups, a germinal alkene, and an aldehyde group. This correlates well with the GC-MS analysis of P3, demonstrating that this is a mixture between α -kessyl acetate (A) and (*E*)-15,16-dinorlabda-8(17),11-dien-13-one (B) (Figure 3.5). However, ¹H and ¹³C NMR spectra of P3 does not fully match with those of B reported in the literature ^{40, 41} (Table 3.3).

Figure 3.5: The ion-chromatogram of P3

 Table 3.3: Chemical shift comparison between P3 and (E)-15,16-dinorlabda-8(17),11

 dien-13-one (B) reference

¹³ C NMR		R		¹ H NMR
Carbon position	P3 ^[a]	Reference ^[c]	P3 ^[b]	Reference ^[b]
C-10	14.6	14.4	0.75 (3H,s)	0.75 (3H,s)
C-4	21.9	21.7	0.82 (3H,s)	0.83 (3H,s)
C-4	33.7	33.5	0.89 (3H,s)	0.90 (3H,s)
C-3	42.2	42.0 CH	1.11 (1H,s)	1.09 (1H _{ax} ,ddd, <i>J</i> = 13, 13, 4 Hz)
C-5	55.6	55.4	1.13 (1H,s)	1.13 (1H _{ax} ,dd, <i>J</i> = 13, 2.5 Hz)
C-1	39.4	39.2	1.20 (1H,s)	1.20 (1H _{ax} ,ddd, <i>J</i> = 13, 13, 4 Hz)
C-6	24.3	24.1	1.37 (2H,d, <i>J</i> = 4.1 Hz)	1.36 (1H _{ax} ,dddd, <i>J</i> = 13, 13, 13, 4 Hz)
C-3	42.2	42.0	1.44 (1H,s)	1.43 (1H _{eq} , ddd, br, <i>J</i> = 13, 3, 3 Hz)
C-2	19.5	19.3	1.53 (1H,s)	1.53 (1H _{eq} ,ddd, br, <i>J</i> = 13, 4, 3 Hz)
				1.59 (1H _{ax} , ddddd, <i>J</i> = 13, 13, 13, 4, 3
C-2	19.5	19.3	1.58 (2H,d, <i>J</i> = 3.5 Hz)	Hz)
C-1	39.4	39.2	1.71 (1H,s)	1.72 (1H _{eq} ,d, br,. <i>J</i> = 13 Hz)
C-6	24.3	24.1	1.76 (1H,s)	1.75 (1H _{eq} , dddd, <i>J</i> = 13, 5, 2.5, 2.5 Hz)

C-9	56.6	55.9	1.92 (2H,d, <i>J</i> = 11.2 Hz)	1.90 (1H _{ax} , dd, br, <i>J</i> = 12, 4 Hz.)
C-7	38.0	37.9	2.00 (1H,d, <i>J</i> = 5.3 Hz)	2.01 (1H _{ax} , ddd, br, <i>J</i> = 13, 13, 5 Hz.)
C-7	38.0	37.9	2.38 (1H,s)	2.39 (1H _{eq} , ddd, <i>J</i> = 13, 4, 2 Hz)
C-11	29.7	27.9	2.43 (1H,s)	2.43 (1H, dddd, <i>J</i> = 16, 11, 6.5, 1.5 Hz)
C-11	29.7	27.9	2.56 (2H,dd, <i>J</i> = 6.0, 3.0 Hz)	2.55 (1H,dddd, <i>J</i> = 16, 6.5, 4, 1.5 Hz)
C-17	108.0	108.0	4.40 (1H,s)	4.46 (1H, dd, <i>J</i> = 1.5, 1 Hz)
C-17	108.0	108.0	4.86 (1H,s)	4.86 (1H,dd, <i>J</i> = 1.5, 1 Hz)
C-13	135.9	133.4	-	6.10 (1H,dddd, <i>J</i> = 16, 8, 1.5, 1.5 Hz)
C-12	159.5	160.2	6.70 (1H,t, <i>J</i> = 6.5 Hz)	6.82 (1H,ddd, <i>J</i> = 16, 6.5, 6.5 Hz)
СНО	193.9	194.2	9.40 (1H,s)	9.45 (1H,d, <i>J</i> = 8 Hz)
C-8	148.2	147.8		-
C-10	39.8	39.6		-
C-4	33.7	33.5		-
^[a] 100 MHz, in CDCl ₃ , ^[b] 400 MHz in CDCl ₃ , ^[c] 270 MHz with DEPT in CDCl ₃				

2. GC-MS Analysis of fractions and sub-fractions

2.1 Total ion chromatograms of DCM extract and FA-FJ

The ion chromatograms from GC-MS analysis of **crude DCM** extract and **FA-FJ** are shown in **Figure 3.6**. The major volatile components were identified as γ -bicyclohomofarnesal and **P2** in most of the fractions. Note that **P1** was identified by GC-MS as an unknown with the experimental retention index (RI) = 2026. This compound can only be found in FE and FF.

Figure 3.6: Total ion chromatograms of DCM extract and FA-FJ from *G. schomburgkii* rhizomes

2.2 Selected volatile composition of crude DCM and FA-FJ

The volatile compounds of crude DCM and FA-FJ were selected to investigate their quantity in each fraction as shown in Table 3.4. From the table, the compounds were categorized into four groups including oxygenated monoterpene (OM), sesquiterpene hydrocarbon (SH), oxygenated sesquiterpene (OS), and diterpene. The groups with the highest peak area percentages in the fractions are as followed: oxygenated monoterpene (3.9%) in crude DCM, sesquiterpene hydrocarbon (36.3%) in FA, oxygenated sesquiterpene (18.5%) in FB, and diterpene (51.9%) in FH. FA contains the highest sesquiterpene hydrocarbon content correlated with the group of the least polar obtained in the first fraction from the column chromatography. FB has the highest

content of oxygenated sesquiterpenes which are more polar than that in FA. However, 13-nor-eremophil-1(10)-en-11-one which should have been found in FB was only identified in crude DCM. This indicates either false positive identification of this compound in the crude (due to compound coelution) or the compound loss during the separation with column chromatography. On the other hand, some volatile compounds such as longifolenaldehyde were identified in FA-FJ (not in crude DCM). This suggests that crude DCM contains more coeluting peaks in GC-MS hindering these compound identification. This can be solved by analysis of the compounds after fractionation reducing the number of co-eluting peaks. In addition, some compounds were identified in both crude DCM and the fractions which are (E)-15,16-dinorlabda-8(17),11-dien-13one (P2). Moreover, the average match score for all the identified compounds was 688 which can be considerably low. However, our chemical identification was respectable due to the confirmation by RI with the average difference (from the literature data) of 7 According to the peak area analysis, recoveries of the compounds identified in both the crude and the fractions were within the range of 12-137%, see the related data provided in Appendix A (Table A.1).

No.	Compound ^{[a][b]}	%Percentage of total peak area (%Recovery) ^[c]											
110.	Compound	DCM	FA	FB	FC	FD	FE	FF	FG	FH	FI	FJ	
Оху	genated monoterpene												
1	Linderol	3.9	-	1.4	3.3	0.7	0.5	0.1	-	0.8	3.1	-	
2	2-Hydroxycineol	-	-	-	-	-	0.9	-	-	-	-	-	
Sesc	guiterpene hydrocarbon												
4	Cyperene	7.2	4.3	-	-	-	-	-	-	1.4	12.7	6.3	
5	<i>cis-β</i> -Copaene	-	-	0.1	-	-	-	-	-	1.8	-	-	
6	Guaia-6,9-diene	19.1	31.1	-	-	-	-	-	-	-	18.0	-	
7	Selina-5,11-diene	0.2	-	-	-	-	-	-	-	-	3.0	-	

Table 3.4. Selected	volatile	composition	of crude	DCM and	FA-FI
	volutilo	composition	or crude	DOMIT	1/110

8	Himachala-2,4-diene	0.4	0.9	-	-	-	-	-	-	-	-	11.4
Оху	genated sesquiterpene											
9	Caryophyllene oxide	0.4	2.1	2.1	-	-	-	-	-	-	-	-
10	Boronia butenal	-	0.9	0.2	-	-	-	-	-	-	-	-
11	Humulene epoxide II	-	1.9	0.8	-	-	-	-	-	-	-	-
12	13-nor-Eremophil-1(10)-en-	1.9	-	-	-	-	-	-	-	-	-	-
	11-one											
13	Longifolenaldehyde	-	2.4	2.1	1.4	1.3	0.9	0.3	1.2	1.0	2.8	5.4
14	Caryophylladienol II	-	162	2.2	1.9	-	-	-	-	-	-	-
15	Pogostole	0.2	0.7	1.5	1.4	-	-	-	-	-	-	-
16	Neointermedeol	0.3	1	2.3		<u>-</u>	-	-	-	-	-	-
17	(–)-Isolongifolol, methyl ether	1.9	1.6	1.6	1.1	2.6	3.0	0.5	1.3	1.2	-	-
18	Cyperenone	0.5	(<u>-</u> P3	1.5		-	-	-	-	-	-	-
19	3-Hydroxy-5,6-epoxy- β -	-	(-/ %	2 A		-	-	-	0.9	-	-	-
	ionone											
20	Isolongifolol	_ //	1.1	2.1	0.3	0.6	-	-	0.8	-	-	-
21	α-Cyperone	0.4	1.5	0.000	0.7	5	-	-	-	-	-	-
22	Dehydrovomifoliol	2	-	-	-	4	-	1.7	-	-	-	-
23	Dehydrofukinone		-	2.1	-	200	-	-	-	-	-	-
24	8α-Hydroxy-Eremophila-	- -	- - -	- 1	- 1 1 5	-1818	1.8	-	-	-	-	-
	1(10),11-dien-9-one GH	JLALO	NGKO	DRN (JNIV	ERSI	ſΥ					
25	Alantolactone	-	-	-	2.8	3.9	-	-	1.8	-	2.0	-
26	eta-Cyclocostunolide	-	-	-	-	-	-	-	1.5	-	-	-
Diter	rpene	•										
27	γ-Bicyclohomofarnesal	6.3	2.9	11.1	14.2	18.5	24.2	5.2	20.9	-	18.7	28.8
28	(<i>E</i>)-15,16-Dinorlabda-	-	1.5	0.4	-	-	0.3	-	-	0.8	-	-
	8(17),12-dien-14-al											
29	(E)-15,16-Dinorlabda-	19.2	5.4	15.3	7.2	12.9	7.6	20.9	28.2	39.0	9.6	10.4
	8(17),11-dien-13-one (P2)											
30	Androst-5-en-4-one	-	-	-	0.9	-	-	-	-	-	-	-

31	Epimanool	-	0.3	0.2	-	0.8	0.6	0.3	2.6	0.8	-	-
32	Isoretinene a	-	-	-	-	-	1.4	-	-	-	-	-
33	Sclareol	0.5	-	-	-	-	1.3	2.6	0.1	-	-	-
Oxyę	genated monoterpene [%]	3.9	-	1.7	4.7	0.7	1.4	0.1	-	0.8	3.1	-
Sesc	quiterpene hydrocarbon [%]	26.9	36.3	0.1	-	-	-	-	-	3.2	33.7	17.7
Oxyę	genated sesquiterpene [%]	5.6	12.2	18.5	7.7	8.4	5.7	2.5	7.5	2.2	4.8	5.4
Diter	pene [%]	26.0	10.1	27.0	22.3	32.2	35.4	29.0	51.8	51.9	28.3	39.2
Perc	entage of constituents	62.4	58.6	47.3	34.7	41.8	42.5	31.6	59.3	58.1	69.9	62.3
iden	tified		lia.	111	3							
Num	ber of identified constituents	28	25	45	21	10	13	19	19	11	11	5
Num	ber of unidentified	31	40	38	45	25	34	41	45	25	17	14
cons	stituents											
^[a] Te	entative identification with match	score al	bove 60	0. ^[b] Lir	near str	aight-cł	nain hyd	drocarb	ons we	re exclu	uded fro	om the

analysis. [c] -, Not identified.

2.3 Selected volatile composition of FE and FE.A-FE.G

The volatile compositions of FE and their sub-fraction FE.A- FE.G were shown in **Table 3.5**. The volatile compounds were categorized into three groups including oxygenated sesquiterpene (OS), oxygenated diterpene (OD), and miscellaneous. The fractions with the highest contents of the compounds in these groups were FE.G (43.2%), FE.F (45.4%), and FE.A (21.3%). However, antibacterial activities of these sub-fractions (FE.A-FE.G) were lower than FE.D as show by the lower MIC and MBC values in **Table 3.7**. The major volatile compounds of FE.D were found to be 4,8- β -epoxy-caryophyllene (9.8% of the total peak area), (*E*)-labda-8(20),13-diene-15,19-diol (6.6%), methyl isocostate (5.3%), retinal (3.0%), isoretinene a (2.4%), and (*E*)-labda-8(17),12-diene-15,16-dial (2.4%). In addition, (*E*)-labda-8(17),12-diene-15,16-dial has been reported to exhibit potent antifungal activity.⁴² Methyl isocostate was reported to display high cytotoxicity against various cancer cell lines.⁴³ This suggests that these two

compounds might be important for the higher bioactivity of FE.D. Recoveries of the compounds identified in both the crude and the fractions were within the range of 0-106%, see the related data provided in Appendix A (Table A.2). In addition, the average match score for all the identified compounds was 667 with the average RI difference of 11 for the data in Table 3.5.

No	Compound ^{[a][b]}		Pe	ercenta	ge of tot	al peak	area [%		
110.	Compound	FE	FE.A	FE.B	FE.C	FE.D	FE.E	FE.F	FE.G
Охус	genated sesquiterpene								
1	4,8- β -Epoxy-caryophyllane	-	-	-	-	9.8	-	-	-
2	13-nor-Eremophil-1(10)-en-11-one	-	3.3	-	-	-	-	-	-
3	γ-Costol	-	3.2	-	-	-	-	-	-
4	β -Costol	120	-	-	-	-	14.4	-	43.2
5	Methyl isocostate	12	7-	-	-	5.3	-	-	-
6	Methyl valerate			-	-	1.4	-	-	-
7	8α-Hydroxy-eremophila-1(10),11-dien-9-one	1.8	0.2	-	-	-	-	-	-
8	Valerenic acid	3	-	0.2	2.1	0.4	-	-	-
9	Corymbolone	-	<u>_</u>	0.3	-	0.9	-	-	-
10	6-(1-Hydroxymethylvinyl)-4,8a-dimethyl-)	0.2	-	0.4	0.8	-	-
	3,5,6,7,8,8a-hexahydro-1H-naphthalen-2-one								
Охус	genated diterpene		AS AS						
11	γ-Bicyclohomofarnesal	24.2	22.3	-	-	-	-	33.4	-
12	(<i>E</i>)-15,16-Dinorlabda-8(17),11-dien-13-one	7.6	10.1	0.2	6.2	-	2.0	-	11.5
13	Coronarin E	-	3.1	-	-	-	-	-	-
14	Isoretinene a	1.4	-	1.8	-	2.4	-	-	-
15	Sclareol	1.3	-	-	-	-	3.4	12.0	-
16	(<i>E</i>)-Labda-8(20),13-diene-15,19-diol	-	-	-	6.7	6.6	-	-	-
17	(E)-Labda-8(17),12-diene-15,16-dial	-	-	-	-	2.4	-	-	-
18	Retinal	-	1.1	-	3.7	3.0	-	-	-
19	7α ,17 α -Dimethyl-5 β -androstane-3 α ,17 β -diol	-	-	2.4	-	-	-	-	-
20	Calusterone	-	-	34.4	-	-	-	-	-
Misc	ellaneous	·				·	·		

Table 3.5: Selected volatile composition of FE and FE.A-FE.G

21	Methyl tridecyl ketone	-	-	2.3	-	-	-	-	-
22	Hexadecanoic acid	-	-	-	5.5	-	-	-	-
23	Ethyl palmitate	-	9.4	-	-	-	-	-	-
24	2-cis,cis-9,12-Octadecadienyloxyethanol	-	-	-	4.3	-	-	-	-
25	Ethyl linolenate	-	6.9	-	-	-	-	-	-
26	Ethyl octadecanoate	-	1.9	-	-	-	-	-	-
27	Eicosyl acetate	-	1.7	-	-	-	-	-	-
28	Docosyl acetate	1720	1.4	-	-	-	-	-	-
Οχγ	genated sesquiterpene [%]	1.8	6.7	0.7	2.1	18.2	15.2	-	43.2
Οχγ	genated diterpene [%]	34.5	36.6	38.8	16.6	14.4	5.4	45.4	11.5
Misc	ellaneous [%]	8-	21.3	2.3	9.8	-	-	-	-
Perc	entage of constituents identified	36.3	64.6	41.8	28.5	32.6	20.6	45.4	54.7
Num	ber of identified constituents	13	21	13	6	10	4	2	2
Num	ber of unidentified constituents	34	31	23	14	36	28	7	13
^[a] Te	ntative identification with match score above 600. ^[b]	Linear	straight	-chain h	nydroca	rbons w	ere excl	uded fr	om the
anal	ysis. ^[c] -, Not identified.								

จุหาลงกรณ์มหาวิทยาลัย

2.4 Selected volatile composition of FG and FG.A-FG.M

The volatile compositions of FG and there sub-fractions FG.A- FG.M were provided in Table 3.6. From the table, the volatile compound was categorized into three groups of monoterpene, sesquiterpene, and diterpene which were mostly contained in the fractions FG.E (31.1%), FG.H (57.5%), and FG.M (82.7%). From the antibacterial screening, FG.D and FG.H exhibited greatest antibacterial activity as indicated by the lower MIC and MBC, respectively, in Table 3.6. Noticeably, (*E*)-15,16-dinorlabda-8(17),11-dien-13-one (P2) and γ -bicyclohomofarnesal were found as major components in both FG.D and FG.H (29.6% and 12.6%, respectively for FG.D, and 11.6% and 4.1%, respectively for FG.H). Nevertheless, these two major components were also observed in the other sub-fractions with the lower antibacterial activity. Therefore, these major components might not be responsible for the antibacterial activity. On the other hand, α -kessyl acetate and zederone were only found in FG.H in high percentages (24.9% and 9.1%, respectively). Although no biological activity has been reported for α -kessyl acetate, zederone has been demonstrated to exhibit antibacterial ⁴⁴, and antioxidant activities. ⁴⁵ Likewise, some major components such as clovanediol, ledene oxide-(I), alantolactone, and 8a,11-elemadiol showed significant correlation with the antibacterial activity in each sub-fraction supported by the data in Table 3.7. Moreover, there are several bioactivities reported for alantolactone including antimicrobial, anti-inflammatory, and anti-proliferative effects on several cancer cell lines.⁴⁶ 8α , 11-Elemadiol has also been reported to exhibit antifungal activity against eczema fungi and insecticidal activity. 47 Recoveries of the compounds identified in both the crude and the fractions were within the range of 10-160%, see the related data provided in Appendix A (Table A.3) In addition, the average match score for all the identified compounds was 682 with the average RI difference of 8 for the data in Table 3.6.

	GHU	LAL	UNG	KUKI		Perce	entage o	f total p	eak are	a [%] ^[c]				
No.	Compound ^{(a][b]}	FG	FG.B	FG.C	FG.D	FG.E	FG.F	FG.G	FG.H	FG.I	FG.J	FG.K	FG.L	FG.M
Monote	erpene													
1	trans-Ascaridol glycol	-	-	-	-	-	-	0.1	0.3	-	-	1.4	-	-
2	(+)-Pinanediol	-	-	-	-	-	-	1.5	-	-	-	-	-	-
3	Sobrerol	-	-	-	-	7.5	-	-	2.4	-	-	12.8	-	-
4	1,2,4-Trihydroxy menthane	-	-	-	-	-	-	-	0.9	-	-	-	-	-
5	Sobrerol 8-acetate	0.6	-	-	-	23.6	-	-	-	-	-	-	-	-
Sesqu	iterpene													
6	(±)-Gymnomitrene	-	-	-	3.0	-	-	-	-	-	-	-	-	-

Table 3.6:	Selected volatile	composition	of FG	and FG.A	-FG.M

7	Caparratriene	-	-	-	-	-	-	-	-	-	1.1	-	-	-
8	4,8- β -Epoxy- caryophyllane	-	-	-	-	-	-	-	-	1.6	-	-	-	-
9	9-Cedranone	-	-	1.2	-	-	-	-	-	-	-	-	-	-
10	Longifolenaldehyde	1.2	-	5.9	-	-	-	-	0.3	3.1	1.6	-	-	0.9
11	Neointermedeol	-	-	-	-	-	-	-	-	-	4.5	-	-	-
12	(Z)-6,7-Dihydrofarnesol	-	-	-	-	-	-	-	-	-	-	-	3.2	-
13	(–)-Isolongifolol, methyl ether	1.3	0.2	1.2	1.4	-	-	-	1.4	1.7	-	2.2	-	4.5
14	Aromadendrene oxide-(2)	-	le .	, lt	132	1.8	-	-	-	-	-	-	-	-
15	Isolongifolol	0.8	0.1	0.8	0.2	0.8	-	0.1	-	1.2	1.7	-	-	-
16	8α,11-Elemadiol			11	0.8		- ^	-	4.7	-	-	2.6	-	-
17	β -Costol	-	2 <u>-</u> //	113	-	1.7	20	0.8	-	-	-	-	-	-
18	Dehydrovomifoliol	-	(<u>-</u> k		1	<u></u>	<i>P</i> ⁻	1.4	-	-	-	9.2	-	-
19	Saussurea lactone	1	1		1.3	115	9 -	0.9	-	-	-	-	-	-
20	α-Kessyl acetate					1	-	-	24.9	-	-	-	-	-
21	Cryptomeridiol	-				-	-	-	-	15.1	3.3	4.8	0.5	-
22	Cyperadione					0.4	6.0	0.2	0.6	-	-	-	-	-
23	iso-Longifolol acetate		/	-	1.7	-1		-	-	-	-	-	-	-
24	8,14-Cedrandiol	ราล	งก่ร	ณ์มา	หาวิ	ทยา	ล้ย	-	-	-	2.9	-	-	-
25	Clovanediol	LAL) NG	KGRI	1.9	NI J E	RSII	Y	6.3	4.9	-	-	-	-
26	Ledene oxide-(I)	-	-	-	4.5	-	-	-	8.5	1.5	-	-	-	-
27	Corymbolone	-	-	-	0.5	-	-	-	0.7	-	-	-	-	-
28	Alantolactone	1.8	0.1	6.9	1.9	0.6	1.5	-	1.0	0.3	-	-	-	-
29	Clovanediol, monoacetate	-	-	-	-	1.5	-	-	-	-	-	-	-	-
30	eta-Cyclocostunolide	1.5	-	-	2.4	-	-	-	-	-	-	-	-	-
31	Zederone	-	-	-	-	-	-	-	9.1	-	-	-	-	-
Diterpe	ene													
32	Cembrene	-	-	-	-	-	-	-	-	-	-	3.2	-	-
33	Sandaracopimaradiene	-	1.9	-	-	-	-	-	-	-	-	-	2.2	-
34	γ-Bicyclohomofarnesal	20.9	4.6	20.2	12.6	29.4	46.6	13.0	4.1	9.1	33.6	23.5	30.4	20.8

35	(<i>E</i>)-15,16-Dinorlabda- 8(17),12-dien-14-al	-	-	-	-	-	-	-	-	-	-	-	-	1.4
36	(<i>E</i>)-15,16-Dinorlabda- 8(17),11-dien-13-one	28.2	-	28.5	29.6	9.4	14.8	11.2	11.6	14.3	12.8	12.1	39.6	58.2
37	Epimanool	2.6	14.0	2.8	-	-	-	-	0.2	0.2	-	-	0.7	1.4
38	Sclareolide	-	-	2.4		-	-	-	-	-	-	-	-	-
39	Larixol	0.6	0.1	0.7	0.5	0.4	1.2	-	-	0.9	2.0	0.5	0.7	0.9
40	(<i>E</i>)-Labda-8(20),13-diene- 15,19-diol	-	0.8	2.9	-	-	-	-	-	-	-	-	-	-
Monote	erpene [%]	0.6	1	NI)	120	31.1	-	1.6	3.6	-	-	14.2	-	-
Sesqui	terpene [%]	6.6	0.4	16.0	19.6	6.8	7.5	3.4	57.5	29.4	15.1	18.8	3.7	5.4
Diterpe	ene [%]	52.3	21.4	57.5	42.7	39.2	62.6	24.2	15.9	24.5	48.4	39.3	73.6	82.7
Percer identifi	tage of constituents ed	59.5	21.8	73.5	62.3	77.1	70.1	29.2	77	53.9	63.5	72.3	77.3	88.1
Numbe	er of identified constituents	-19	12	19	21	17	11	19	23	14	14	18	13	13
Numbe	er of unidentified constituents	45	18	42	41	27	32	41	43	37	31	22	17	18
^[a] Tent	ative identification with match	score al	hove 60	0 ^[b] Lin		aht_chai	n hydro	carbons		voludoc	from th	o onolve	eie	

^(a) Tentative identification with match score above 600.^(b) Linear straight-chain hydrocarbons were excluded from the analysis ^(c) -, Not identified.

The fractions were tested for antibacterial activity with four bacteria stains to compare with the three commercial drugs as shown in Table 3.7. FG.D and FE.D were the most active against *S. aureus* (MIC = 100 μ g mL⁻¹) and *M. luteus* (MIC = 50 μ g mL⁻¹), respectively. All of these fractions were not active to *E. coli* and *P. aeruginosa* which were the gram-negative bacteria. This may be due to their outer membranes differing from the gram-positive bacteria (*S. aureus* and *M.luteus*). FE.D and FG.H were the most active against *S. aureus* (MBC = 200 μ g mL⁻¹). FE.D was also the most active against *M. luteus* (MBC = 200 μ g mL⁻¹). For pure compounds, P1 and P2 were not active to all four bacteria strains.

Sample		MIC ^[a]	[µ g mL⁻¹]		MBC ^[b] [µ g mL⁻¹]
Campio	S. aureus	M. luteus	E. coli	P. aeruginosa	S. aureus	M. luteus
Crude DCM	800	400	>800	>800	>800	>800
FE	400	200	>800	>800	800	800
FE.A	800	800	>800	>800	800	>800
FE.C	400	100	>800	>800	400	800
FE.D	200	50	>800	>800	200	200
FE.E	400	200	>800	>800	>800	800
FG	400	400	>800	>800	800	>800
FG.D	100	400	>800	>800	400	>800
FG.G	400	800	>800	>800	400	>800
FG.H	200	400	>800	>800	200	>800
FG.M	200	400	>800	>800	400	>800
P1	>800	>800	>800	>800	-	-
P2	>800	>800	>800	>800	-	-
Streptomycin	12.5	1.5625	12.5	50	-	-
Amoxicillin	< 0.195	0.2	25	200	-	-
Ciprofloxacin	0.625	2.5	<0.04	2.5	-	-

Table 3.7: Antibacterial activity of sub-fractions of G. schomburgkii Hook.f. rhizomes

^[a] Minimum inhibitory concentration (MIC) against four kinds of bacteria including *Staphylococcus aureus* ATCC 6538P, *Micrococcus luteus* ATCC 4698, *Escherichia coli* ATCC 25922, *Pseudomonas aeruginosa* Strain Boston 41501 ATCC 27853 ^[b] Minimum bactericidal concentration (MBC) against four kinds of bacteria including *Staphylococcus aureus* ATCC 6538P, *Micrococcus luteus* ATCC 4698, *Escherichia coli* ATCC 25922, *Pseudomonas aeruginosa* Strain Boston 41501 ATCC 27853 ^[b] Minimum bactericidal concentration (MBC) against four kinds of bacteria including *Staphylococcus aureus* ATCC 6538P, *Micrococcus luteus* ATCC 4698, *Escherichia coli* ATCC 25922, *Pseudomonas aeruginosa* Strain Boston 41501 ATCC 27853 (All the experiments were performed in triplicate.)

CHAPTER IV

CONCLUSION

Globba schomburgkii Hook.f. was extracted with The rhizomes of dichloromethane to provide crude extract, which was isolated by silica gel column chromatography to provide ten fractions (FA - FJ). These fractions were evaluated for antibacterial activity to provide MIC and MBC of each fraction against various strains of bacteria. The chemical composition of each fraction was examined by GC - MS. The major volatile compositions were identified as γ -bicyclohomofarnesal and (E)-15,16dinorlabda-8(17),11-dien-13-one (P2). The fractions with highest antibacterial activity, FE and FG, were further separated to give sub-fractions of FE.A - FE.G and FG.A -FG.M, respectively. The antibacterial activity of these sub-fractions were measured, and the sub-fractions with the highest antibacterial activity were FE.D (MIC and MBC = 200 μ gmL⁻¹), FG.D (MIC = 100 μ gmL⁻¹, MBC = 400 μ gmL⁻¹), and FG.H (MIC and MBC = 200 µgmL⁻¹). The first pure compound, petasol (P1), was isolated using Prep-TLC technique and another pure compound, P2, was crystallized from FG.B. The chemical structures of these pure compounds were verified by NMR techniques including ¹H, ¹³C, COSY, HSQC, and HMBC. However, these two pure compounds did not show any antibacterial activity. Nevertheless, GC-MS results from this study can be used as GC standard for qualitative control of medical supplies from G. schomburgkii Hook. f. Active sub-fraction might be applied to pharmaceutical development. For example, active sub-fraction might be used as active ingredients in soap to treat itchy skin in the future.

Appendix A

Percentage of recovery

Chulalongkorn University

						F	Recover	у [%]					
Number	Compound	NIST	FA	FB	FC	FD	FE	FF	FG	FH	FI	FJ	Total
		RI											
Oxygenated r	nonoterpene												
1	Linderol	1166	-	3.0	6.9	0.9	1.0	0.1	-	1.2	3.5	-	16.6
Sesquiterpene	e hydrocarbon												
2	Cyperene	1399	2.7	-	-	-	-	-	-	1.1	7.8	2.1	13.7
3	Guaia-6,9-diene	1443	7.4	-	-	-	-	-	-	-	4.1	-	11.5
4	Selina-5,11-diene	1447	-	-	-	-	-	-	-	-	65.9		65.9
5	Himachala-2,4-diene	1462	10.2	1220	-	-	-	-	-	-	-	68.8	79.0
Oxygenated s	sesquiterpene	ĥ,	1000 J	31//	2	~							
6	Caryophyllene oxide	1581	23.8	44.5	~	-	-	-	-	-	-	-	68.3
7	Pogostole	1655	15.9	63.6	57.0		-	-	-	-	-	-	136.5
8	Neointermedeol	1660	7/1	65.0	-	1	-	-	-	-	-	-	65.0
9	(-)-Isolongifolol, methyl	1672	3.8	7.1	4.7	6.8	12.3	1.2	3.5	3.6	-	-	43.1
	ether	////	AC		110								
10	Cyperenone	1687	ANA ANA	25.4	1-11	0_	-	-	-	-	-	-	25.4
11	7-Isopropenyl-1,4 α -	1755	17.0	ALS.	14.3	-	-	-	-	-	-	-	31.3
	dimethyl-4,4a,5,6,7,8-		ceece (3)), tecece									
	hexahydro-3H-naphthalen-	P	<u>BBS</u>	102 Per	2								
	2-one												
Diterpene						Í.							
12	γ-Bicyclohomofarnesal	1809	2.1	14.9	18.4	14.6	30.0	3.8	17.0	10.3	13.0	11.0	135.1
13	(<i>E</i>)-15,16-Dinorlabda-	1994	1.3	6.8	3.1	3.3	3.1	5.0	7.5	11.6	2.2	1.3	45.2
	8(17),11-dien-13-one	ALON	GKOF	n U	NIVE	RSIT	Υ						
14	Sclareol	2227	-	-	-	-	20.3	23.7	1.0	-	-	-	45.0
Oxygenated n	nonoterpene [%]	-	0	3.0	6.9	0.9	1.0	0.1	0	1.2	3.5	0.0	
Sesquiterpene	e hydrocarbon [%]		20.3	0	0	0	0	0	0	1.1	77.8	70.9	
Oxygenated s	esquiterpene [%]		60.6	205.6	76.0	6.8	12.3	1.2	3.5	3.6	0	0	
Diterpene [%]	:ygenated sesquiterpene [%] erpene [%]		3.4	21.7	21.4	18.0	53.3	32.5	25.6	21.9	15.2	12.3	

Table A.1: Percentage recovery of FA-FJ

N. 1					Recov	/ery [%]				
Number	Compound	NIST RI	FE.A	FE.B	FE.C	FE.D	FE.E	FE.F	FE.G	Total
Oxygenated s	sesquiterpene									
1	Eremophila-1(10),11-dien-	1864	0.1	-	-	-	-	-	-	0.1
	9-one, 8 α -hydroxy-									
Oxygenated o	diterpene									
2	γ -Bicyclohomofarnesal	1809	0.9	-	-	-	-	11.9	-	12.7
3	(<i>E</i>)-15,16-Dinorlabda-	1994	1.2	0.1	21.5	-	2.7	-	4.8	30.3
	8(17),11-dien-13-one									
4	Isoretinene a	2198	AN1113	4.8	_	11.1	-	-	-	15.9
5	Sclareol	2227	00001	2	-	-	26.7	79.5	-	106.2
Oxygenated s	esquiterpene [%]	totototo	0.1	0	0	0	0	0	0	
Oxygenated c	literpene [%]	11	2.1	4.9	21.5	11.1	29.4	91.4	4.8	

Table A.2: Percentage recovery of FE.A-FE.G

Table A.3: Percentage recovery of FG.A-FG.M

Recovery [%]															
No.	Compound ^(a)	NIST RI	FG.B	FG.C	FG.D	FG.E	FG.F	FG.G	FG.H	FG.I	FG.J	FG.K	FG.L	FG.M	Total
Monot	erpene		Q		nas	-VARK									
1	Sobrerol 8-acetate	1529	- 2	6	-	160.6	-		-	-	-	-	-	-	160.6
Sesqu	iterpene							101							
2	Longifolenaldehyde	1631	จุห	7.7	กรถ	โมหา	เวิทเ	ยาลั	1.6	13.8	8.4	-	-	2.5	34.0
3	(-)-Isolongifolol, methyl ether	1672	0.1	1.4 ALO	1.7 NGK	DRN	Univ	/ERS	6.9	7.0	-	11.3	-	11.4	73.8
4	Isolongifolol	1738	0.1	1.6	0.4	4.1	-	0.7	-	8.0	13.4	-	-	-	68.1
5	Bohlmann k2631	1916	0.0	6.0	1.7	1.4	1.7	-	3.5	0.9	-	-	-	-	43.5
6	eta-Cyclocostunolide	1983	-	-	2.6	-	-	-	-	-	-	-	-	-	17.9
Diterpe	ene														
7	γ -Bicyclohomofarnesal	1809	0.2	1.5	1.0	5.7	4.6	3.6	1.3	2.3	10.1	7.5	9.8	3.3	50.9
8	(<i>E</i>)-15,16-Dinorlabda-	1994	-	1.6	1.7	1.4	1.1	2.3	2.6	2.7	2.9	2.9	9.5	6.8	35.4
	8(17),11-dien-13-one														
9	Epimanool	2056	3.9	1.7	-	-	-	-	0.5	0.4	-	-	1.8	1.8	10.1
10	Larixol	2264	0.1	1.8	1.4	2.7	4.1	-	-	8.0	20.9	5.5	7.9	4.9	57.4
Monot	erpene [%]		0	0	0	160.6	0	0	0	0	0	0	0	0	
Sesqu	iterpene [%]		0.2	16.8	6.5	5.4	1.7	0.7	12.0	29.7	21.7	11.3	0.0	13.9	
Diterpe	ene [%]		4.2	6.6	4.0	9.8	9.7	6.0	4.4	13.5	33.9	15.9	29.0	16.8	

Appendix B

Volatile chemical composition from GC-MS analysis

Peak	Name	Class ^a	Match	NIST	Exp.	RT	%Area	Area
				RI	RI			(count·s)
1	(+)-2-Bornanone	ОМ	836	1144	1144	9.953	0.5	12377631
2	Linderol	ОМ	887	1166	1166	10.625	3.9	92621141
3	Bornyl acetate	OM	810	1285	1285	14.403	0.5	12629410
4	Unknown	Unknown			1333	15.907	0.3	7091549
5	Cyprotene	SH	666	1345	1353	16.542	0.4	9173888
6	2,4-Patchouladiene	SH	623	1351	1362	16.807	0.2	4526314
7	Unknown	Unknown			1389	17.658	0.2	5489821
8	Cyperene	SH	813	1399	1399	17.981	7.2	170507495
9	Selina-5,11-diene	SH	655	1447	1443	19.319	0.2	4819708
10	Guaia-6,9-diene	SH	724	1443	1450	19.525	19.1	450962025
11	Himachala-2,4-diene	SH	675	1462	1462	19.886	0.4	8651111
12	Aristolochene	SH	820	1487	1484	20.564	1.2	27276812
13	Unknown	Unknown			1488	20.690	0.3	7084764
14	Valencene	SH	797	1492	1492	20.820	1.1	25957858
15	Unknown	Unknown			1506	21.214	0.3	6339253
16	Unknown	Unknown			1523	21.704	0.9	20733859
17	Epoxycyperene	OS	654	1542	1527	21.834	0.2	3884454
18	Caryophyllene oxide	OS	723	1581	1581	23.408	0.4	8405218
19	Himbaccol	OS	650	1591	1591	23.670	0.2	5319770
20	13-nor-Eremophil-1(10)-en-11-one	OS	650	1629	1627	24.678	1.9	45578830
21	Unknown	Unknown			1635	24.900	1.5	34448652
22	Neointermedeol	OS	699	1660	1653	25.421	0.3	6398306
23	Pogostole	OS	660	1655	1657	25.520	0.2	4160755
24	(—)-Isolongifolol, methyl ether	OS	680	1672	1669	25.852	1.9	44323180
25	Unknown	Unknown			1681	26.170	0.8	18610448
26	Acorenone B	OS	602	1701	1690	26.426	0.3	6878323
27	Cyperenone	OS	604	1687	1693	26.500	0.6	13546105
28	Unknown	Unknown			1740	27.763	0.3	6760686
29	α-Cyperone	OS	673	1755	1744	27.868	0.4	10111485
30	Eremophilone	OS	659	1756	1747	27.948	0.5	12920046
31	γ-Bicyclohomofarnesal	OS	846	1809	1796	29.239	6.3	149405105
32	Unknown	Unknown			1857	30.783	0.4	8476629
33	Unknown	Unknown			1870	31.091	0.4	10526115
34	Unknown	Unknown			1907	32.010	0.6	13268421

 Table B.1: Volatile chemical composition in dichloromethane extract of rhizomes

(crude	DCM)
Unduc	

35	Unknown	Unknown			1925	32.441	0.5	12972160
36	Unknown	Unknown			1943	32.891	0.5	12122312
37	Unknown	Unknown			1950	33.045	0.4	9104526
38	Unknown	Unknown			1966	33.431	0.6	15023680
39	(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	712	1994	1983	33.837	19.2	453673507
40	Ethyl palmitate	Misc.	667	1993	1994	34.109	1.8	42388760
41	Unknown	Unknown			2015	34.595	2.0	47331005
42	Unknown	Unknown			2026	34.857	3.1	74097195
43	Unknown	Unknown			2034	35.030	0.3	5959953
44	Unknown	Unknown			2062	35.683	0.4	9036048
45	Unknown	Unknown			2091	36.334	0.4	8856264
46	Coronarin E	OD	621	2136	2121	37.005	0.4	9249777
47	Unknown	Unknown			2140	37.434	0.3	7943404
48	Ethyl linoleate	Misc.	667	2162	2166	38.016	0.6	13855353
49	Unknown	Unknown			2217	39.126	0.8	20087782
50	Sclareol	OD	611	2227	2243	39.662	0.5	12340724
51	Unknown	Unknown			2279	40.414	1.2	27544576
52	Unknown	Unknown			2354	41.967	4.3	102807923
53	Unknown	Unknown			2403	42.956	1.2	28556996
54	Unknown	Unknown			2439	43.662	1.1	25635037
55	Unknown	Unknown			2457	44.020	0.7	16255089
56	Unknown	Unknown		9	2560	45.983	1.7	41240054
57	Unknown	Unknown			2610	46.910	2.1	50659877
58	Unknown	Unknown	neine	y e	2650	47.638	1.8	42932534
59	Unknown	Unknown			2806	50.414	0.3	7900323

^aMH = monoterpene hydrocarbon, OM = oxygenated monoterpene, SH = sesquiterpene hydrocarbon, OS =

oxygenated sesquiterpene, DH = diterpene hydrocarbon, OD = oxygenated diterpene, TH = triterpene hydrocarbon,

Misc = Miscellaneous, Unknown = match score < 600 or DRI > 20.

Peak	Name	Class ^a	Match	NIST	Exp.	RT	%Area	Area
				RI	RI			(count·s)
1	Unknown	Unknown			1279	14.255	0.3	6127154
2	Cyprotene	SH	649	1345	1354	16.610	0.6	10255072
3	Cyperene	SH	814	1399	1400	18.071	4.3	75577609
4	Unknown	Unknown			1413	18.456	0.3	4767410
5	Unknown	Unknown			1444	19.396	0.1	2313144
6	Guaia-6,9-diene	SH	739	1443	1451	19.621	31.1	551110650
7	Himachala-2,4-diene	SH	636	1462	1463	19.972	0.9	16200064
8	Aristolochene	SH	799	1487	1485	20.647	2.1	36756104
9	Unknown	Unknown			1490	20.786	0.3	4855755
10	Valencene	SH	805	1492	1494	20.903	1.5	26006896
11	Unknown	Unknown			1519	21.655	0.6	11409375
12	Unknown	Unknown			1524	21.800	1.0	17428323
13	Unknown	Unknown			1529	21.923	0.5	7991944
14	Unknown	Unknown	1 ll a		1549	22.502	0.4	6811715
15	Unknown	Unknown			1553	22.644	0.5	8357858
16	Caryophyllene oxide	OS	827	1581	1583	23.501	2.1	37582547
17	Boronia butenal	OS	651	1584	1598	23.935	0.9	15930160
18	Humulene epoxide II	OS	793	1606	1609	24.253	1.9	33449543
19	Longifolenaldehyde	OS	658	1631	1628	24.777	2.4	42674234
20	Unknown	Unknown			1637	25.005	1.6	28462270
21	Pogostole	OS	624	1655	1654	25.492	0.7	11730264
22	Unknown	Unknown	10 10		1671	25.960	0.4	7012305
23	Unknown	Unknown			1676	26.096	0.6	11176514
24	(—)-Isolongifolol, methyl ether	OS	664	1672	1682	26.250	1.6	28360154
25	Unknown	Unknown			1692	26.527	1.5	26085876
26	Unknown	Unknown			1694	26.595	0.6	9902013
27	Unknown	Unknown			1701	26.774	1.0	17110922
28	Isolongifolol	OS	617	1738	1725	27.421	1.1	19463355
29	Unknown	Unknown			1746	27.976	1.2	21944465
30	α-Cyperone	OS	700	1755	1749	28.059	1.5	26583688
31	Unknown	Unknown			1753	28.148	1.3	22518427
32	Unknown	Unknown			1764	28.453	1.3	23122388
33	Unknown	Unknown			1779	28.829	0.3	5613244
34	γ-Bicyclohomofarnesal	OS	766	1809	1798	29.341	2.9	50775905
35	Unknown	Unknown			1860	30.897	1.3	23562232

Table B.2: Volatile chemical composition in fraction FA

36	Unknown	Unknown			1902	31.936	0.7	12642593
37	Unknown	Unknown			1909	32.111	0.5	8266950
38	Unknown	Unknown			1927	32.543	0.7	12545060
39	Unknown	Unknown			1946	33.005	1.4	24580282
40	(E)-15,16-Dinorlabda-8(17),12-dien-14-al	OD	629	1958	1967	33.498	1.5	27302862
41	(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	699	1994	1985	33.939	5.4	96454870
42	Hexadecanyl acetate	Misc.	677	2009	2013	34.598	1.9	33139697
43	Unknown	Unknown			2018	34.709	3.7	64805299
44	Epimanool	OD	603	2056	2049	35.424	0.3	5472951
45	cis-10-Heptadecenoic acid	Misc.	620	2073	2087	36.303	0.8	13449468
46	Unknown	Unknown			2093	36.444	0.8	14392385
47	2-cis,cis-9,12-Octadecadienyloxyethanol	Misc.	637	2120	2130	37.249	0.7	13230901
48	Unknown	Unknown			2143	37.542	1.9	34174883
49	Unknown	Unknown			2212	39.042	0.4	7805965
50	Octadecanol acetate	Misc.	667	2208	2218	39.178	1.6	28399366
51	Unknown	Unknown			2282	40.528	0.4	6385076
52	Unknown	Unknown	11 a		2289	40.676	0.6	11365427
53	Unknown	Unknown			2358	42.075	0.5	8275968
54	Unknown	Unknown	110		2374	42.411	0.4	7675427
55	Eicosyl acetate	Misc.	601	2409	2412	43.178	0.4	7385799
56	Docosyl methyl ether	Misc.	625	2428	2423	43.379	0.9	15707727
57	Unknown	Unknown			2501	44.910	0.3	5936837
58	Ethylhexyl phthalate	Misc.	600	2529	2548	45.801	0.4	7816823
59	Unknown	Unknown			2552	45.875	0.4	6746435
60	Unknown	Unknown		0	2575	46.297	0.3	4430630
61	Unknown	Unknown			2627	47.268	0.4	6683802
62	Unknown	Unknown			2701	48.615	0.3	5258145
63	Unknown	Unknown			2746	49.394	0.4	6440852
64	Unknown	Unknown			2801	50.368	0.9	15069547
65	Unknown	Unknown			2810	50.513	0.6	11028709

 ^{a}MH = monoterpene hydrocarbon, OM = oxygenated monoterpene, SH = sesquiterpene hydrocarbon, OS =

oxygenated sesquiterpene, DH = diterpene hydrocarbon, OD = oxygenated diterpene, TH = triterpene hydrocarbon,

Misc = Miscellaneous, Unknown = match score < 600 or Δ RI > 20.

ompositic	on in fracti	on FB					
	Class ^a	Match	NIST	Exp.	RT	%Area	Area
			RI	RI			(count·s)
	OM	887	1166	1166	10.696	1.4	42514524
	SH	663	1345	1354	16.612	0.2	4648350
	SH	668	1351	1362	16.880	0.2	4786511
	Unknown			1374	17.253	0.1	2667099
	SH	668	1432	1450	19.589	0.1	3611887
	Unknown			1490	20.779	0.1	4050854
	Unknown			1513	21.478	0.2	6896829
16.3	Unknown			1524	21.789	0.6	19704937
	OS	631	1551	1553	22.643	0.2	6673235
	OS	706	1564	1565	22.969	0.1	3481096
	OS	653	1576	1578	23.352	0.1	3257530
	OS	852	1581	1583	23.500	2.1	63758957
	OS	830	1591	1592	23.758	1.3	38716986
////	OS	714	1584	1598	23.934	0.2	7356776
	OS	663	1606	1609	24.245	0.8	23681644
	Unknown			1614	24.369	0.1	4258858

1620

24.544

0.4

11681285

Table B.3: Volatile chemical composition in fraction FB

Name

Peak

Linderol Cyprotene

Unknown

Unknown

Unknown

Unknown

Diepicedrene-1-oxide

Caryophyllene oxide

Humulene epoxide II

trans- Nerolidol

Espatulenol

Himbaccol

Unknown

Unknown

Boronia butenal

cis-\beta-Copaene

2,4-Patchouladiene

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18	Longifolenaldehyde	OS	654	1631	1628	24.772	2.1	63505605
19	eta-Acorenol	OS	622	1649	1633	24.902	0.1	2465678
20	Caryophylladienol II	OS	667	1637	1636	24.991	2.2	66293307
21	Muurolol T	OS	697	1642	1643	25.182	0.3	9773644
22	Pogostole	OS	717	1655	1655	25.518	1.5	46184651
23	Neointermedeol	OS	793	1660	1659	25.620	2.3	71323550
24	epi-γ-Eudesmol	OS	633	1662	1667	25.845	0.5	15745109
25	(—)-Isolongifolol, methyl ether	OS	684	1672	1671	25.949	1.6	49097982
26	Unknown	Unknown			1682	26.248	0.5	15714452
27	Cyperenone	OS	821	1687	1694	26.593	1.5	47543452
28	Unknown	Unknown			1714	27.126	0.1	3970088
29	Unknown	Unknown			1718	27.231	0.1	4448557
30	Unknown	Unknown			1742	27.863	1.7	51636612
31	Isolongifolol	OS	629	1738	1746	27.968	2.1	63360893
32	Unknown	Unknown			1754	28.187	0.3	8179849
33	Squamulosone	OS	620	1771	1771	28.627	0.2	4802397
34	γ-Bicyclohomofarnesal	OS	857	1809	1798	29.348	11.1	342665461
35	Dehydrofukinone	OS	867	1817	1804	29.484	2.1	64895456

Unknown

36	Unknown	Unknown			1815	29.755	0.5	16418215
37	Unknown	Unknown			1845	30.513	1.8	56441382
38	8,14-Cedrandiol	OS	632	1876	1859	30.877	0.4	11982964
39	Di-sec-butyl phthalate	Misc.	688	1855	1868	31.089	0.1	3643168
40	Valerenic acid	OS	615	1871	1872	31.197	0.2	6688397
41	Unknown	Unknown			1879	31.367	0.2	6487219
42	Unknown	Unknown			1902	31.943	0.5	16145570
43	Unknown	Unknown			1908	32.103	0.5	15762244
44	Unknown	Unknown			1927	32.541	2.3	69601809
45	Unknown	Unknown			1933	32.692	0.1	4168568
46	Unknown	Unknown			1946	33.000	0.2	5421765
47	Sandaracopimaradiene	DH	620	1960	1952	33.136	0.4	13554537
48	Dibutyl phthalate	Misc.	798	1965	1962	33.385	0.7	21135444
49	(E)-15,16-Dinorlabda-8(17),12-dien-14-al	OD	646	1958	1966	33.493	0.4	11071098
50	(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	769	1994	1986	33.952	15.3	469264572
51	Ethyl palmitate	Misc.	726	1993	1996	34.202	4.6	140017326
52	Unknown	Unknown	1 Contraction		2001	34.319	0.2	6757544
53	Unknown	Unknown			2018	34.704	1.2	38127370
54	Unknown	Unknown			2036	35.129	0.3	10692547
55	Epimanool	OD	655	2056	2049	35.422	0.2	6743801
56	Unknown	Unknown			2065	35.798	0.5	16692333
57	Unknown	Unknown			2071	35.921	0.4	12928927
58	Thunbergol	OD	612	2073	2076	36.041	0.3	10092236
59	<i>cis</i> -10-Heptadecenoic acid	Misc.	671	2073	2087	36.291	0.7	20753405
60	Unknown	Unknown	10 161	0	2094	36.464	0.5	14588832
61	Oleic Acid	Misc.	601	2141	2129	37.240	0.4	12065531
62	Unknown	Unknown			2143	37.539	1.3	39635451
63	Linoleic acid ethyl ester	Misc.	809	2162	2163	37.977	3.3	100201750
64	Ethyl Oleate	Misc.	785	2173	2169	38.118	2.4	74591863
65	Unknown	Unknown			2175	38.245	0.3	8494217
66	Ethyl octadecanoate	Misc.	658	2195	2196	38.716	0.7	20963576
67	Unknown	Unknown			2211	39.037	0.3	10190612
68	Unknown	Unknown			2225	39.317	0.3	8997266
69	Unknown	Unknown			2247	39.782	0.7	21252443
70	Unknown	Unknown			2282	40.534	1.3	39744566
71	Eicosanol	OD	622	2281	2289	40.685	1.3	40485907
72	Unknown	Unknown			2302	40.947	0.3	9844096
73	Unknown	Unknown			2358	42.081	3.5	108298989

74	Eicosyl acetate	Misc.	642	2409	2412	43.181	0.5	14232770
75	Unknown	Unknown			2447	43.853	0.6	17045388
76	Unknown	Unknown			2461	44.134	0.3	10533040
77	Unknown	Unknown			2508	45.052	0.4	10958428
78	Unknown	Unknown			2543	45.705	0.8	23137674
79	Phthalic acid, hept-3-yl octyl ester	Misc.	641	2537	2548	45.795	0.4	11737426
80	Unknown	Unknown			2614	47.034	7.3	224322699
81	1-Methylene-5 $lpha$ -androstan-3 $lpha$ -ol-17-one	OD	605	2649	2653	47.742	0.6	18695532
82	Borneol palmitate	Misc.	620	2720	2709	48.744	0.3	10358797
83	Sebacic acid, di(2-octyl) ester	Misc.	737	2814	2809	50.510	1.7	52199196

 a MH = monoterpene hydrocarbon, OM = oxygenated monoterpene, SH = sesquiterpene hydrocarbon, OS = oxygenated sesquiterpene, DH = diterpene hydrocarbon, OD = oxygenated diterpene, TH = triterpene hydrocarbon, Misc = Miscellaneous, Unknown = match score < 600 or Δ RI > 20.

CHULALONGKORN UNIVERSITY

Table B.4: Volatile chemical composition in fraction FC

Peak	Name	Class ^a	Match	NIST	Exp.	RT	%Area	Area
				RI	RI			(count·s)
1	Linderol	ОМ	878	1166	1166	10.699	3.3	59102050
2	<i>p</i> -Cymenol	ОМ	601	1183	1187	11.319	0.1	2398178
3	Berbenone	ОМ	607	1205	1209	12.033	0.1	2080940
4	Bornyl formate	ОМ	622	1226	1228	12.631	0.2	3220578
5	Unknown	Unknown			1274	14.098	0.3	5903676
6	Bornyl acetate	ОМ	730	1285	1286	14.471	0.4	7554524
7	Unknown	Unknown			1354	16.616	0.2	3918181
8	Unknown	Unknown			1451	19.602	0.3	4988635
9	Unknown	Unknown			1490	20.780	0.2	3285121
10	Unknown	Unknown			1514	21.488	0.2	2841001
11	Unknown	Unknown			1524	21.797	0.5	9373770
12	Longifolenaldehyde	OS	681	1631	1628	24.774	1.4	25759912
13	Unknown	Unknown			1636	24.986	2.3	40453331
14	Pogostole	OS	694	1655	1655	25.510	1.4	25397061
15	Unknown	Unknown			1667	25.843	0.2	3159048
16	Unknown	Unknown	U.S.		1671	25.942	1.6	28770946
17	(—)-Isolongifolol, methyl ether	OS	637	1672	1681	26.244	1.1	19967294
18	β -Nootkatol	OS	642	1712	1709	26.983	0.4	6834618
19	Unknown	Unknown			1718	27.233	0.6	10766853
20	(Z)-α-Atlantone	OS	602	1717	1728	27.489	0.7	12573853
21	Unknown	Unknown			1742	27.859	1.4	24437028
22	Isolongifolol	OS	650	1738	1746	27.973	0.3	5030882
23	α-Cyperone	OS	601	1755	1759	28.315	0.7	12626046
24	Santalcamphor	OS	603	1774	1765	28.460	0.6	10140313
25	Unknown	Unknown			1794	29.221	0.7	12420632
26	γ-Bicyclohomofarnesal	OS	851	1809	1798	29.338	14.2	254126194
27	Nootkatone	OS	672	1808	1804	29.489	0.3	5507534
28	Cyperadione	OS	717	1845	1831	30.164	0.9	15862914
29	Unknown	Unknown			1844	30.503	0.5	8616325
30	Unknown	Unknown			1859	30.873	0.2	3454510
31	Unknown	Unknown			1878	31.350	0.3	5118008
32	Unknown	Unknown			1900	31.911	0.4	7271124
33	Alantolactone	OS	662	1916	1908	32.102	2.8	50079639
34	Unknown	Unknown			1927	32.543	1.3	23095228
35	Unknown	Unknown			1951	33.135	0.3	5027977

36	Unknown	Unknown			1968	33.523	3.9	69364167
37	Unknown	Unknown			1977	33.745	0.8	14165641
38	(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	707	1994	1984	33.927	7.2	129155550
39	Unknown	Unknown			1992	34.105	0.5	9450716
40	Ethyl palmitate	Misc.	604	1993	1996	34.201	0.8	14575770
41	Unknown	Unknown			2001	34.321	0.7	13070761
42	Unknown	Unknown			2017	34.700	2.2	39908496
43	Androst-5-en-4-one	OD	629	2030	2048	35.415	0.9	16262557
44	Unknown	Unknown			2065	35.785	1.2	21454265
45	Unknown	Unknown			2087	36.297	1.1	19580218
46	Unknown	Unknown			2093	36.441	2.2	39098087
47	Unknown	Unknown			2128	37.212	0.5	9746613
48	Unknown	Unknown			2169	38.112	0.6	11387561
49	Unknown	Unknown			2174	38.232	0.4	7454622
50	Unknown	Unknown			2192	38.626	3.0	54074789
51	Unknown	Unknown			2201	38.814	0.4	7107341
52	Unknown	Unknown	10°		2220	39.224	0.7	12822506
53	Unknown	Unknown			2236	39.554	1.4	24651316
54	Unknown	Unknown	ll a		2260	40.056	1.8	31927765
55	Unknown	Unknown			2282	40.531	1.0	18350015
56	Unknown	Unknown	-	h.	2291	40.707	0.5	9380289
57	Unknown	Unknown			2303	40.962	0.6	10893765
58	Unknown	Unknown			2358	42.075	7.4	132095803
59	Unknown	Unknown			2462	44.140	0.2	4350207
60	Unknown	Unknown			2522	45.302	0.8	14983797
61	Unknown	Unknown			2543	45.705	3.1	54804949
62	Unknown	Unknown			2563	46.078	0.5	8242223
63	Unknown	Unknown			2589	46.562	0.4	7533327
64	Unknown	Unknown			2613	47.015	6.7	120210572
65	Unknown	Unknown			2653	47.745	6.4	114100591
66	Borneol palmitate	Misc.	637	2720	2709	48.750	1.4	24727517

^aMH = monoterpene hydrocarbon, OM = oxygenated monoterpene, SH = sesquiterpene hydrocarbon, OS = oxygenated

sesquiterpene, DH = diterpene hydrocarbon, OD = oxygenated diterpene, TH = triterpene hydrocarbon, Misc = Miscellaneous, Unknown = match score < 600 or Δ RI > 20.

61

Peak Class^a Match NIST Name Exp. RT %Area Area RI RI (count·s) Linderol ОМ 775 1166 1166 10.693 0.7 10450717 1 2 Unknown 1354 16.613 0.4 6202478 Unknown 20.783 8963307 3 Unknown Unknown 1490 0.6 4 Unknown 1524 21.797 0.7 10498570 Unknown 5 Longifolenaldehyde OS 650 1631 24.761 18064622 1628 1.3 6 Unknown Unknown 1636 24.992 1.7 24505849 7 OS 670 1672 1670 25.939 37363137 (-)-Isolongifolol, methyl ether 2.6 8 1676 26.102 0.5 7025237 Unknown Unknown 9 Unknown 7362644 Unknown 1682 26.262 0.5 1742 10 27.852 10872899 Unknown Unknown 0.8 11 Isolongifolol OS 669 1738 1746 27.970 0.6 8822219 12 Unknown Unknown 1754 28.176 0.4 5617201 13 OS 846 1809 1798 29.335 18.5 264177521 γ-Bicyclohomofarnesal 14 Unknown 1859 30.879 0.6 8562495 Unknown 1872 31.190 0.3 4404325 15 Unknown Unknown OS 668 1916 1908 32.099 3.9 56467773 16 Alantolactone 17 Unknown Unknown 1927 32.540 1.5 21525583 Unknown 18 6043330 Unknown 1946 32.999 0.4 19 Cembrene DH 610 1939 1951 33.128 0.3 3640881 20 Unknown Unknown 1968 33.523 5.5 79016166 21 Unknown 1977 33.757 0.5 6482301 Unknown (E)-15,16-Dinorlabda-8(17),11-dien-13-one 184859662 22 OD 690 1994 1985 33.939 12.9 23 Unknown Unknown 1996 34.213 1.0 14331586 24 53586527 Unknown Unknown 2018 34.703 3.7 25 OD 11729811 628 2056 2046 35.350 0.8 Epimanool 27709730 26 Unknown Unknown 2064 35.776 19 27 2087 36.293 1.7 23970061 Unknown Unknown 28 Unknown Unknown 2161 37.930 0.7 10228225 29 Unknown Unknown 2220 39.221 6.8 98015147 Unknown Unknown 2282 40.528 18442716 30 1.3 112771046 31 Unknown Unknown 2357 42.072 7.9 6777516 32 Unknown Unknown 2406 43.058 0.5 33 Unknown Unknown 2442 43.767 15.1 215982970 34 2467 44.251 13298201 Unknown Unknown 0.9 35 Unknown 2653 47.733 2.3 33113957 Unknown

Table B.5: Volatile chemical composition in fraction FD

^aMH = monoterpene hydrocarbon, OM = oxygenated monoterpene, SH = sesquiterpene hydrocarbon, OS = oxygenated sesquiterpene, DH = diterpene hydrocarbon, OD = oxygenated diterpene, TH = triterpene hydrocarbon, Misc = Miscellaneous, Unknown = match score < 600 or Δ RI > 20.

Chulalongkorn University

Table B.6: Volatile chemical composition in fraction FE

Peak	Name	Class ^a	Match	NIST	Exp.	RT	%Area	Area
				RI	RI			(count·s)
1	Unknown	Unknown			1101	8.687	0.3	2457077
2	Unknown	Unknown			1121	9.294	0.3	2476843
3	Linderol	ОМ	680	1166	1166	10.684	0.5	4607226
4	2-Hydroxycineol	OM	732	1228	1223	12.453	0.9	7264443
5	Unknown	Unknown			1332	15.935	0.5	3955611
6	Unknown	Unknown			1380	17.433	1.0	8199472
7	Unknown	Unknown			1395	17.910	2.1	17459196
8	Unknown	Unknown			1400	18.062	7.5	63010845
9	2,4-Di-tert-butylphenol	OS	698	1519	1513	21.470	0.9	7238588
10	Unknown	Unknown			1524	21.787	0.8	6509005
11	Unknown	Unknown			1600	24.000	1.3	10515621
12	Longifolenaldehyde	OS	633	1631	1628	24.761	0.9	7280954
13	Unknown	Unknown			1636	24.983	1.7	14058940
14	(—)-Isolongifolol, methyl ether	OS	615	1672	1670	25.936	3.0	25344453
15	Unknown	Unknown			1741	27.846	0.9	7417090
16	γ-Bicyclohomofarnesal	OD	852	1809	1798	29.326	24.2	202978322
17	Unknown	Unknown			1824	30.004	0.6	5112505
18	Unknown	Unknown			1855	30.771	0.6	5126266
19	Unknown	Unknown			1859	30.876	0.6	5315638
20	8α-hydroxy-Eremophila-1(10),11-dien-9-one	OS	613	1864	1874	31.252	1.8	14768222
21	Unknown	Unknown			1900	31.899	0.5	4110866
22	Unknown	Unknown			1926	32.524	1.0	8420349
23	Unknown	Unknown			1945	32.981	0.3	2681107
24	(E)-15,16-Dinorlabda-8(17),12-dien-14-al	OD	617	1958	1958	33.286	0.3	2925360
25	(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	680	1994	1984	33.924	7.6	64161928
26	Unknown	Unknown			2000	34.309	0.5	4446480
27	Unknown	Unknown			2016	34.679	1.1	8939994
28	Epimanool	OD	626	2056	2048	35.397	0.6	4931921
29	Unknown	Unknown			2064	35.776	0.4	3028403
30	Unknown	Unknown			2070	35.902	0.4	3369829
31	Unknown	Unknown			2075	36.025	0.8	6599714
32	Unknown	Unknown			2090	36.371	2.6	21880382
33	Unknown	Unknown			2106	36.722	1.8	15364890
34	Isoretinene a	OD	608	2198	2188	38.531	1.4	11389432
35	Unknown	Unknown			2223	39.292	0.9	7339998

36	Sclareol	OD	617	2227	2245	39.745	1.3	11031451
37	Unknown	Unknown			2268	40.241	1.8	15115334
38	Unknown	Unknown			2281	40.512	2.9	24138571
39	Unknown	Unknown			2357	42.056	13.0	109074189
40	Unknown	Unknown			2406	43.049	1.3	10752626
41	Unknown	Unknown			2441	43.748	2.5	21233910
42	Unknown	Unknown			2466	44.235	1.6	13790267
43	Unknown	Unknown			2543	45.693	0.9	7424826
44	Ethylhexyl phthalate	Misc.	619	2529	2547	45.770	1.0	8165859
45	Unknown	Unknown			2652	47.718	1.1	9532925
46	Unknown	Unknown			2751	49.490	1.2	10212996
47	Unknown	Unknown			2762	49.690	1.1	8909545

^aMH = monoterpene hydrocarbon, OM = oxygenated monoterpene, SH = sesquiterpene hydrocarbon, OS = oxygenated sesquiterpene, DH = diterpene hydrocarbon, OD = oxygenated diterpene, TH = triterpene hydrocarbon,

Name Class^ª NIST Peak Match Exp. RT %Area Area RI RI (count·s) 1 Unknown Unknown 1158 10.437 0.3 16546202 2 Linderol ОM 753 1166 1166 10.690 0.1 5375538 ОМ 816 1272 13.932 15455114 3 trans-Ascaridol glycol 1269 0.3 4 2-Methyl-5-(propan-2-ylidene)cyclohexane-ОМ 696 1322 15.254 0.2 8912426 1311 1,4-diol 5 (+)-Pinanediol ОМ 623 1316 1316 15.423 0.5 24639249 15.534 5663515 6 Unknown Unknown 1320 0.1 7 Unknown Unknown 1333 15.954 1.0 47923765 8 Limonene glycol OM 686 1321 1339 16.142 0.3 13393478 9 17.917 25907886 Unknown Unknown 1395 0.5 35468269 10 Unknown Unknown 1400 18.062 0.7 11 Carvone hydrate ОМ 695 1424 1423 18.776 0.2 10130305 12 Unknown Unknown 1496 20.983 0.1 3705540 13 21.254 37977730 Unknown Unknown 1506 0.8 Unknown 1524 21.778 11744475 14 Unknown 0.2 15 1542 22.299 Unknown Unknown 0.2 7596535 16 Longifolenaldehyde OS 617 1631 1628 24.758 0.3 13027330 17 Unknown Unknown 1636 24.980 0.5 24413205 OS 644 1672 1670 25.932 0.5 24644484 18 (-)-Isolongifolol, methyl ether 19 Unknown Unknown 1676 26.090 0.2 11669572 0.3 20 Unknown Unknown 1741 27.840 12589176 21 Unknown Unknown 1773 28.681 0.2 9662057 22 Dehydrovomifoliol OS 799 1800 1789 29.101 1.7 83504706 23 γ-Bicyclohomofarnesal OS 842 1809 1798 29.326 5.2 255923969 24 9766950 Unknown Unknown 1801 29.421 0.2 25 Unknown Unknown 1805 29.520 0.4 21971621 26 Unknown 1824 30.004 0.6 31788172 Unknown 27 Unknown Unknown 1837 30.318 0.1 5652755 28 1853 30.715 15959736 Unknown Unknown 0.3 29 Unknown Unknown 1871 31.181 1.0 50537376 30 Unknown Unknown 1881 31.433 0.1 6739357 31 Corymbolone OS 629 1899 1889 31.628 0.2 9393025 32 Unknown Unknown 1900 31.893 0.2 10100557 7531308 33 Unknown Unknown 1908 32.081 0.2 32.521 34 Dihydrocolumellarin OS 629 1909 1926 0.3 12342517

Table B.7: Volatile chemical composition in fraction FF

35	Unknown	Unknown			1945	32.981	0.1	7162665
36	Unknown	Unknown			1960	33.335	0.3	13281167
37	(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	606	1994	1984	33.917	20.9	1022431970
38	Unknown	Unknown			2001	34.324	0.3	14424608
39	Unknown	Unknown			2017	34.685	0.3	14653947
40	Unknown	Unknown			2033	35.055	42.8	2094878082
41	Unknown	Unknown			2047	35.387	0.9	42345393
42	Valerenic acid, n-butyl ester	OS	609	2065	2064	35.773	0.2	11484549
43	Epimanool	OD	601	2056	2075	36.032	0.3	16881234
44	Unknown	Unknown			2127	37.200	0.6	30235540
45	Unknown	Unknown			2173	38.213	0.2	7664338
46	Unknown	Unknown	2		2200	38.802	0.1	6017723
47	Sclareol	OD	651	2227	2245	39.751	2.6	128179678
48	Unknown	Unknown			2259	40.035	0.8	38022617
49	Unknown	Unknown			2281	40.506	0.2	11942596
50	Unknown	Unknown		à	2357	42.060	3.1	151843807
51	Gibberellic acid	OD	625	2393	2405	43.036	0.5	24312799
52	Unknown	Unknown	/// «		2448	43.872	0.2	8883504
53	Unknown	Unknown			2466	44.223	0.2	8588742
54	Unknown	Unknown			2542	45.687	0.1	5248721
55	Piperanine	Misc.	706	2625	2615	47.046	0.4	21807594
56	Unknown	Unknown	Ř	9	2652	47.715	0.3	14126867
57	Unknown	Unknown			2732	49.151	0.4	18094311
58	Unknown	Unknown	20 61 2 6	a a ei	2745	49.376	0.4	19356571
59	Unknown	Unknown			2756	49.570	0.2	7671218
60	Piperine GHULALONGK	Misc.	638	2884	2890	51.872	5.4	264103025

 ^{a}MH = monoterpene hydrocarbon, OM = oxygenated monoterpene, SH = sesquiterpene hydrocarbon, OS =

oxygenated sesquiterpene, DH = diterpene hydrocarbon, OD = oxygenated diterpene, TH = triterpene hydrocarbon,

Misc = Miscellaneous, Unknown = match score < 600 or Δ Rl > 20.

Name Class^ª NIST Peak Match Exp. RT %Area Area RI RI (count·s) 1 Unknown Unknown 1391 18.405 0.2 25590271 2 Unknown Unknown 1502 21.798 0.2 22280723 Sobrerol 8-acetate OM 621 1529 1526 22.498 81733624 3 0.6 4 Unknown 1555 23.339 0.1 13423732 Unknown 0.8 5 1612 24.988 111847208 Unknown Unknown 6 Longifolenaldehyde OS 664 1631 1630 25.493 1.2 170805276 7 Unknown 1637 25.691 6.0 849918515 Unknown 183705691 8 OS 681 1672 1673 26.674 1.3 (-)-Isolongifolol, methyl ether 9 3-Hydroxy-5,6-epoxy- β -ionone OS 641 1692 1684 26.988 0.9 129279971 10 Unknown 1689 27.124 0.1 20532973 Unknown 614 11 Shyobunol OS 1701 1702 27.484 0.4 58252654 12 Unknown Unknown 1716 27.845 0.1 15946451 13 Unknown Unknown 1745 28.603 0.3 37218870 14 Isolongifolol OS 717 1738 1748 28.693 0.8 107688564 50286435 15 Unknown Unknown 1752 28.807 0.4 16 Unknown 1761 29.029 0.3 43762884 Unknown 17 22922908 1775 29.408 0.2 Unknown Unknown 1787 18 Unknown Unknown 29.728 0.1 16629463 19 Unknown Unknown 1793 29.885 0.2 21373801 20 γ-Bicyclohomofarnesal OD 666 1809 1800 30.073 20.9 2956054320 21 Unknown Unknown 1807 30.243 0.4 53484229 25207079 22 Isopropyl myristate Misc. 669 1827 1827 30.755 0.2 23 Dehydrosaussurea lactone OS 607 1838 1839 31.038 0.1 11893160 24 1847 Unknown Unknown 31.248 0.4 50913246 25 1862 0.2 Unknown Unknown 31.624 31011034 100417612 26 Unknown Unknown 1881 32.108 07 27 1903 32.665 7.0 989714579 Unknown Unknown 28 Alantolactone OS 675 1916 1911 32.863 1.8 248576360 29 Unknown Unknown 1915 32.955 0.7 98331467 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-OD 788 1923 1919 33.044 35568695 30 0.3 diene-2,8-dione 31 Methyl palmitate Misc. 662 1926 1928 33.257 162655429 1.2 34032919 32 Unknown Unknown 1935 33.430 0.2 16876348 33 Unknown Unknown 1941 33.578 0.1 34 Unknown Unknown 1945 33.667 0.2 31708508

Table B.8: Volatile chemical composition in fraction FG

35	Unknown	Unknown			1948	33.753	0.1	13741830
36	Unknown	Unknown			1952	33.830	0.9	131368339
37	Dibutyl phthalate	Misc.	789	1965	1963	34.102	1.2	164844651
38	eta-Cyclocostunolide	OS	602	1983	1971	34.299	1.5	205356796
39	Unknown	Unknown			1981	34.530	0.2	33809141
40	(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	758	1994	1987	34.690	28.2	3987309400
41	Unknown	Unknown			1993	34.838	0.1	13985638
42	Unknown	Unknown			2012	35.276	1.6	232582734
43	Unknown	Unknown			2020	35.467	3.4	480575635
44	Unknown	Unknown			2035	35.800	0.3	44481604
45	Epimanool	OD	730	2056	2038	35.877	2.6	372804728
46	Unknown	Unknown	2		2068	36.561	1.3	186384001
47	Unknown	Unknown			2072	36.669	0.1	19995462
48	Unknown	Unknown			2085	36.968	0.4	50207221
49	Unknown	Unknown			2091	37.088	0.3	48432991
50	Unknown	Unknown		÷.	2096	37.221	1.1	157298869
51	Unknown	Unknown			2104	37.390	2.4	335894245
52	Unknown	Unknown	111 @		2111	37.563	0.2	26231634
53	Unknown	Unknown			2127	37.908	0.2	23669968
54	Unknown	Unknown	V		2138	38.161	0.2	34973931
55	Unknown	Unknown			2205	39.736	0.1	18676887
56	Octadecanol acetate	Misc.	676	2208	2208	39.862	0.5	75200165
57	Sclareol	OD	628	2227	2224	40.531	0.1	14119675
58	Unknown	Unknown	2000	2 D PI	2236	41.036	0.3	47567223
59	Unknown	Unknown			2242	41.314	0.2	26665103
60	Unknown GHULALONGK	Unknown	NIVER	SITY	2246	41.477	0.1	14032901
61	Unknown	Unknown			2249	41.610	2.7	377350059
62	Unknown	Unknown			2274	42.661	0.3	45729659
63	Larixol	OD	693	2264	2278	42.824	0.6	89832494
64	Unknown	Unknown			2287	43.178	0.1	19505089

 ^{a}MH = monoterpene hydrocarbon, OM = oxygenated monoterpene, SH = sesquiterpene hydrocarbon, OS = oxygenated sesquiterpene, DH = diterpene hydrocarbon, OD = oxygenated diterpene, TH = triterpene hydrocarbon,

Misc = Miscellaneous, Unknown = match score < 600 or Δ RI > 20.

Class^a NIST Peak Name Match Exp. RT %Area Area RI RI (count·s) 1 1,2-Dimethyl-4-ethylbenzene MΗ 840 1085 1077 6.656 2.1 19941493 2 Linderol ОM 765 1166 10.681 0.8 7344776 1166 11.735 3848334 3 Unknown Unknown 1200 0.4 Unknown Unknown 14.456 0.3 2403027 4 1285 SH 5 692 1399 1399 18.049 13124883 Cyperene 1.4 *cis-\beta*-Copaene 6 SH 679 1432 1450 19.584 1.8 17252555 7 Unknown Unknown 1523 21.775 0.7 6423971 24.743 9457615 8 Longifolenaldehyde OS 647 1631 1627 1.0 9 9911717 Unknown Unknown 1635 24.971 1.0 605 1.2 10 OS 1672 1670 25.923 11032809 (-)-Isolongifolol, methyl ether 11 Unknown Unknown 1682 26.247 0.3 2412681 12 Unknown Unknown 1741 27.834 0.9 8309362 13 Unknown Unknown 1758 28.290 0.3 2552607 14 γ-Bicyclohomofarnesal OS 848 1809 1797 29.310 11.3 106990420 OS 614 4555759 15 Dehydrosaussurea lactone 1838 1846 30.540 0.5 16 Unknown 1858 30.857 0.3 2771918 Unknown 17 Unknown 31.877 0.3 3109971 Unknown 1899 Unknown 3702093 0.4 18 1907 32.078 Unknown 19 Unknown Unknown 1925 32.506 0.1 1293373 20 Unknown Unknown 1936 32.771 0.3 2712542 21 Unknown Unknown 1950 33.107 0.4 3392951 22 (E)-15,16-Dinorlabda-8(17),12-dien-14-al OD 721 1958 1957 33.270 0.8 7748305 33.914 367980239 23 (E)-15,16-Dinorlabda-8(17),11-dien-13-one OD 738 1994 1984 39.0 0.5 24 Unknown Unknown 2000 34.296 4727525 25 Unknown Unknown 2035 35.101 0.3 3090624 26 Unknown Unknown 2069 35.887 0.3 3108533 27 OD 626 2056 2075 36.013 0.8 7827307 Epimanool 28 Unknown 2168 38.087 0.6 5634386 Unknown 29 38.417 0.5 4280112 Unknown Unknown 2183 30 Unknown Unknown 2281 40.497 0.5 4480211 31 Unknown Unknown 2342 41.751 1.3 12526851 Unknown 2349 41.902 80915780 32 Unknown 8.6 42.035 33 Unknown Unknown 2356 2.0 18722132 34 Unknown Unknown 2388 42.694 1.4 13388243 2828081 35 Unknown Unknown 2459 44.100 0.3

Table B.9: Volatile chemical composition in fraction FH

36	Unknown	Unknown		2651	47.705	17.4	164796816
9							

^aMH = monoterpene hydrocarbon, OM = oxygenated monoterpene, SH = sesquiterpene hydrocarbon, OS = oxygenated sesquiterpene, DH = diterpene hydrocarbon, OD = oxygenated diterpene, TH = triterpene hydrocarbon, Misc = Miscellaneous, Unknown = match score < 600 or ΔRI > 20

Peak	Name	Class ^a	Match	NIST	Exp.	RT	%Area	Area
				RI	RI			(count·s)
1	1,3-Dimethyl-2-ethylbenzene	MH	816	1080	1077	6.656	4.7	17274283
2	Linderol	OM	793	1166	1166	10.681	3.1	11255422
3	Bornyl acetate	OM	672	1285	1285	14.453	1.1	3880496
4	Cyperene	SH	773	1399	1399	18.043	12.7	46293420
5	Selina-5,11-diene	SH	744	1447	1443	19.371	3.0	10884089
6	Guaia-6,9-diene	SH	696	1443	1450	19.578	18.0	65351604
7	Valencene	SH	684	1492	1493	20.875	1.1	3974980
8	Unknown	Unknown			1523	21.775	1.8	6457825
9	Longifolenaldehyde	OS	628	1631	1627	24.743	2.8	10205954
10	Unknown	Unknown			1635	24.962	2.3	8334368
11	Unknown	Unknown			1670	25.923	1.8	6515829
12	Unknown	Unknown			1681	26.234	0.8	2869633
13	Unknown	Unknown			1741	27.828	1.5	5569578
14	γ-Bicyclohomofarnesal	OS	838	1809	1797	29.310	18.7	68177926
15	Unknown	Unknown			1843	30.475	1.1	4129473
16	Alantolactone	OS	620	1916	1907	32.074	2.0	7149168
17	Unknown	Unknown			1936	32.774	0.9	3300102
18	Unknown	Unknown		2	1944	32.962	0.8	2853661
19	Unknown	Unknown			1973	33.643	1.0	3462306
20	(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	733	1994	1984	33.905	9.6	34896741
21	Unknown	Unknown			2121	37.070	1.0	3574763
22	Unknown	Unknown)	2173	38.192	1.3	4582995
23	Unknown	Unknown			2200	38.787	1.2	4365240
24	Unknown	Unknown			2281	40.497	1.3	4596912
25	Unknown	Unknown			2356	42.038	2.8	10098931
26	Unknown	Unknown			2405	43.027	1.7	6166133
27	Unknown	Unknown			2542	45.678	0.7	2491115
28	Unknown	Unknown			2652	47.718	1.4	5033736

Table B.10: Volatile chemical composition in fraction FI

 ^{a}MH = monoterpene hydrocarbon, OM = oxygenated monoterpene, SH = sesquiterpene hydrocarbon, OS = oxygenated sesquiterpene, DH = diterpene hydrocarbon, OD = oxygenated diterpene, TH = triterpene hydrocarbon,

Misc = Miscellaneous, Unknown = match score < 600 or $\Delta {\rm RI}$ > 20.
Peak	Name	Class ^ª	Match	NIST	Exp.	RT	%Area	Area
				RI	RI			(count⋅s)
1	Unknown	Unknown			1333	15.972	5.6	6623980
2	Unknown	Unknown			1354	16.610	1.3	1549906
3	Cyperene	SH	665	1399	1400	18.052	6.3	7424792
4	Himachala-2,4-diene	SH	630	1462	1450	19.584	11.4	13503889
5	Unknown	Unknown			1506	21.260	4.0	4755658
6	Unknown	Unknown			1524	21.778	3.5	4129372
7	Longifolenaldehyde	OS	610	1631	1627	24.743	5.4	6344206
8	Unknown	Unknown			1635	24.965	4.3	5118002
9	Unknown	Unknown			1670	25.926	4.0	4756728
10	Unknown	Unknown			1676	26.080	1.1	1314380
11	Unknown	Unknown			1741	27.831	3.7	4401649
12	γ-Bicyclohomofarnesal	OS	822	1809	1797	29.307	28.8	33984555
13	Unknown	Unknown			1837	30.306	0.7	882958
14	Unknown	Unknown	110°		1908	32.081	1.3	1527480
15	Unknown	Unknown			1945	32.968	1.8	2160424
16	(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	605	1994	1984	33.914	10.4	12319712
17	Unknown	Unknown			2000	34.303	1.6	1849436
18	Unknown	Unknown	-	5	2016	34.669	2.5	2980428
19	Unknown	Unknown			2356	42.047	2.1	2458925

Table B.11: Volatile chemical composition in fraction FJ

 ^{a}MH = monoterpene hydrocarbon, OM = oxygenated monoterpene, SH = sesquiterpene hydrocarbon, OS =

oxygenated sesquiterpene, DH = diterpene hydrocarbon, OD = oxygenated diterpene, TH = triterpene hydrocarbon, Misc = Miscellaneous, Unknown = match score < 600 or Δ RI > 20.

GHULALONGKORN UNIVERSITY

Peak	Name	Class ^a	Match	NIST	Exp.	RT	%Area	Area
				RI	RI			(count·s)
1	eta-Copaene	SH	703	1432	1451	19.782	0.1	43430657
2	Caparratriene	SH	705	1493	1489	20.957	0.2	98274792
3	Sesquicineole	OS	632	1516	1524	21.971	0.4	194588441
4	Unknown	Unknown			1553	22.812	0.4	152525780
5	13-nor-Eremophil-1(10)-en-11-one	OS	705	1629	1628	24.960	3.3	1424822902
6	(—)-Isolongifolol, methyl ether	OS	696	1672	1670	26.131	0.8	342104840
7	3-Hydroxy-5,6-epoxy- β -ionone	OS	664	1692	1682	26.455	0.3	109979062
8	Unknown	Unknown			1685	26.544	0.2	73503613
9	γ-Costol	OS	729	1752	1742	28.051	3.2	1380760345
10	Unknown	Unknown			1752	28.326	0.1	38138416
11	Unknown	Unknown			1759	28.504	2.0	846387130
12	Unknown	Unknown		5	1771	28.834	0.1	44109823
13	γ-Bicyclohomofarnesal	OD	610	1809	1800	29.583	22.3	9638059740
14	Saussurea lactone	OS	637	1806	1815	29.981	0.2	102892534
15	8α-hydroxy-Eremophila-1(10),11-dien-9-one	OS	672	1864	1844	30.693	0.2	95868410
16	Unknown	Unknown	N A		1859	31.075	0.3	148056148
17	iso-Longifolol acetate	OS	782	1850	1870	31.346	0.8	358776509
18	Unknown	Unknown	and	2	1894	31.963	0.3	134588823
19	Unknown	Unknown			1926	32.730	2.4	1049252039
20	Unknown	Unknown		-	1951	33.328	0.9	395687102
21	Unknown	Unknown			1966	33.682	0.4	167335687
22	Unknown	Unknown			1972	33.833	0.1	64466687
23	(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	763	1994	1985	34.148	10.1	4376936540
24	Ethyl palmitate	Misc.	688	1993	1996	34.410	9.4	4079997360
25	Unknown	Unknown			2011	34.764	0.2	69184676
26	Unknown	Unknown			2016	34.875	0.4	171060953
27	Unknown	Unknown			2035	35.319	0.5	206041177
28	Unknown	Unknown			2051	35.686	0.2	107756868
29	Unknown	Unknown			2075	36.222	0.3	125274397
30	Unknown	Unknown			2088	36.524	0.2	104393958
31	Unknown	Unknown			2094	36.666	0.2	100396145
32	Coronarin E	OD	845	2136	2122	37.301	3.1	1333869866
33	Unknown	Unknown			2144	37.766	0.4	193687835
34	Unknown	Unknown			2152	37.948	0.2	71086057
35	Unknown	Unknown			2164	38.207	9.9	4285283110

Table B.12: Volatile chemical composition in fraction FE.A

36	Ethyl linolenate	Misc.	754	2169	2169	38.330	6.9	2991468720
37	Unknown	Unknown			2188	38.746	0.7	302954498
38	Ethyl octadecanoate	Misc.	751	2195	2195	38.900	1.9	806765252
39	Unknown	Unknown			2200	39.008	1.9	822082976
40	Unknown	Unknown			2210	39.218	1.1	480372122
41	Unknown	Unknown			2282	40.731	6.2	2685037310
42	Unknown	Unknown			2356	42.247	0.2	104594586
43	Ethyl icosanoate	Misc.	678	2395	2395	43.055	0.1	62954887
44	Eicosyl acetate	Misc.	781	2409	2411	43.360	1.7	734725175
45	Retinal	OD	668	2466	2466	44.439	1.1	454752167
46	Unknown	Unknown			2546	45.977	0.5	197023914
47	Villosin	OD	685	2575	2575	46.519	0.6	250610865
48	Docosyl acetate	Misc.	749	2611	2612	47.197	1.4	612957735
49	Unknown	Unknown			2751	49.694	0.3	146414610
50	Unknown	Unknown		4	2762	49.885	0.3	122656678
51	Unknown	Unknown			2799	50.541	0.5	202770030
52	Unknown	Unknown			2828	51.034	0.4	151642732

74

Peak	Name	Class ^a	Match	NIST	Exp.	RT	%Area	Area
				RI	RI			(count·s)
1	Unknown	Unknown			1467	20.278	2.0	270572872
2	Unknown	Unknown			1635	25.151	2.8	384156045
3	2-Pentadecanone	Misc.	721	1698	1698	26.896	2.3	315586285
4	Isolongifolol	OS	695	1738	1745	28.132	0.7	92476115
5	Unknown	Unknown			1797	29.515	1.8	249189236
6	Unknown	Unknown			1844	30.687	0.2	22988092
7	Valerenic acid	OS	630	1871	1851	30.875	0.2	30289176
8	Unknown	Unknown			1877	31.534	0.4	61529125
9	Corymbolone	OS	680	1899	1882	31.645	0.3	44058632
10	Unknown	Unknown			1899	32.089	0.4	56153196
11	Alantolactone	OS	680	1916	1908	32.295	0.5	64580692
12	Unknown	Unknown			1911	32.376	0.2	20592547
13	6-[1-(Hydroxymethyl)vinyl]-4,8a-dimethyl-	OS	616	1909	1925	32.715	0.2	25191770
	3,5,6,7,8,8a-hexahydro-2(1H)-naphthalenone							
14	Columellarin	OS	664	1958	1967	33.710	0.8	104932771
15	(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	619	1994	1984	34.129	0.2	23771424
16	Unknown	Unknown	7		1995	34.379	0.3	47129494
17	Unknown	Unknown			2000	34.505	0.2	24853760
18	Unknown	Unknown	R	1	2016	34.875	1.0	134803823
19	Unknown	Unknown			2044	35.516	0.2	34222950
20	Unknown	Unknown	กยาร	a ei	2063	35.963	0.6	86921119
21	Unknown	Unknown			2069	36.096	0.3	41966977
22	<i>cis</i> -10-Heptadecenoic acid	Misc.	602	2073	2082	36.385	0.1	18511776
23	Unknown	Unknown			2091	36.610	0.5	61724739
24	Unknown	Unknown			2127	37.393	0.2	27700506
25	Isoretinene a	OD	657	2198	2190	38.792	1.8	245593603
26	Unknown	Unknown			2356	42.263	7.3	997728305
27	Unknown	Unknown			2455	44.226	0.3	39900101
28	Unknown	Unknown			2499	45.083	0.2	30810047
29	Unknown	Unknown			2543	45.906	9.9	1362472745
30	Unknown	Unknown			2612	47.194	1.2	158474368
31	7α ,17 α -Dimethyl-5 β -androstane-3 α ,17 β -diol	OD	648	2656	2652	47.931	2.4	323303127
32	Unknown	Unknown			2756	49.780	25.2	3448132030
33	Calusterone	OD	679	2750	2768	49.996	34.4	4713660360
34	Unknown	Unknown			2793	50.437	0.3	44461202

Table B.13: Volatile chemical composition in fraction FE.B

35	Squalene	TH	621	2832	2828	51.034	0.4	55736460
36	Unknown	Unknown			2858	51.546	0.3	40840531

^aMH = monoterpene hydrocarbon, OM = oxygenated monoterpene, SH = sesquiterpene hydrocarbon, OS =

oxygenated sesquiterpene, DH = diterpene hydrocarbon, OD = oxygenated diterpene, TH = triterpene hydrocarbon,

Misc = Miscellaneous, Unknown = match score < 600 or Δ RI > 20.

Chulalongkorn University

Name	Class ^ª	Match	NIST	Exp.	RT	%Area	Area				
			RI	RI			(count·s)				
Unknown	Unknown			1491	21.012	0.8	11622144				
Unknown	Unknown			1670	26.131	1.2	17039006				
Unknown	Unknown			1797	29.515	11.5	168664778				
Unknown	Unknown			1811	29.879	1.2	17891974				
Valerenic acid	OS	631	1871	1854	30.948	2.1	30192172				
Unknown	Unknown			1858	31.050	1.0	15366416				
Hexadecanoic acid	Misc.	645	1968	1965	33.673	5.5	79830970				
(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	606	1994	1984	34.132	6.2	90712033				
Unknown	Unknown			1989	34.243	5.3	77488130				
Unknown	Unknown			2006	34.650	1.8	26721319				
2-cis,cis-9,12-Octadecadienyloxyethanol	Misc.	643	2120	2138	37.646	4.3	62936077				
Agatadiol	OD	605	2266	2280	40.694	6.7	98020387				
Unknown	Unknown			2356	42.260	21.4	313580734				
Unknown	Unknown	N.		2404	43.224	1.5	21993299				
Unknown	Unknown			2441	43.958	11.9	174841276				
Retinal	OD	620	2466	2465	44.429	3.7	54639049				

Table B.14: Volatile chemical composition in fraction FE.C

Peak

Unknown

Unknown

Unknown

Unknown

18

19

20

^aMH = monoterpene hydrocarbon, OM = oxygenated monoterpene, SH = sesquiterpene hydrocarbon, OS = oxygenated

sesquiterpene, DH = diterpene hydrocarbon, OD = oxygenated diterpene, TH = triterpene hydrocarbon, Misc = Miscellaneous,

Unknown

Unknown

Unknown

Unknown

2479

2542

2773

2828

44.691

45.890

50.085

51.034

1.3

4.0

6.4

2.1

19626901

57869665

94293906

30755150

Unknown = match score < 600 or DRI > 20.

Peak	Name	Class ^a	Match	NIST	Exp.	RT	%Area	Area
				RI	RI			(count·s)
1	Unknown	Unknown			1301	15.134	1.2	42981776
2	Unknown	Unknown			1379	17.594	1.7	61019056
3	Unknown	Unknown			1395	18.087	1.2	43090578
4	4,8- β -Epoxy-caryophyllane	OS	644	1421	1402	18.293	9.8	355803955
5	Unknown	Unknown			1409	18.531	0.9	33571962
6	Unknown	Unknown			1593	23.986	0.7	26482098
7	Unknown	Unknown			1652	25.620	0.6	21857178
8	Unknown	Unknown			1670	26.128	0.5	17392219
9	Unknown	Unknown			1711	27.247	1.6	58041379
10	Unknown	Unknown			1733	27.814	0.4	13839694
11	Unknown	Unknown			1736	27.906	2.3	84672589
12	Methyl isocostate	OS	625	1792	1797	29.521	5.3	191480638
13	Unknown	Unknown			1813	29.928	0.4	15437484
14	Valerenic acid, methyl ester	OS	637	1828	1820	30.101	1.4	52685853
15	Unknown	Unknown			1848	30.801	8.0	292368628
16	Unknown	Unknown	l) a		1854	30.958	0.8	30812917
17	Valerenic acid	OS	633	1871	1868	31.312	0.4	13965745
18	Unknown	Unknown	-	6	1871	31.386	0.8	27834555
19	Corymbolone	OS	647	1899	1889	31.821	0.9	33126938
20	6-(1-Hydroxymethylvinyl)-4,8a-dimethyl-	OS	612	1909	1908	32.308	0.4	15958482
	3,5,6,7,8,8a-hexahydro-1H-naphthalen-2-one	โมหาวิ	กยาร์	y D ei				
21	Unknown	Unknown			1984	34.129	0.6	23576805
22	Unknown GHULALONGK	Unknown	IVER	SITY	1989	34.246	1.1	41564216
23	Unknown	Unknown			2006	34.638	1.4	52271459
24	Unknown	Unknown			2014	34.835	1.8	64076299
25	Unknown	Unknown			2025	35.091	2.3	83790836
26	Unknown	Unknown			2037	35.350	1.0	36187651
27	Unknown	Unknown			2058	35.846	2.4	88141755
28	Unknown	Unknown			2086	36.478	0.6	20565382
29	Unknown	Unknown			2089	36.558	1.3	47282550
30	Unknown	Unknown			2103	36.878	5.4	194519299
31	Isoretinene a	OD	642	2198	2215	39.322	2.4	86784604
32	Unknown	Unknown			2223	39.483	5.7	207383650
33	Reynosin	OS	707	2266	2269	40.460	6.6	238623123
34	Unknown	Unknown			2272	40.531	0.9	32831038

Table B.15: Volatile chemical composition in fraction FE.D

35	Unknown	Unknown			2281	40.716	3.6	130954539
36	Unknown	Unknown			2356	42.263	10.6	383942859
37	Unknown	Unknown			2390	42.935	0.4	15452301
38	(E)-Labda-8(17),12-diene-15,16-dial	OD	690	2383	2403	43.203	2.4	86615188
39	Retinal	OD	652	2466	2466	44.433	3.0	110722150
40	Unknown	Unknown			2542	45.887	0.7	27177379
41	Unknown	Unknown			2565	46.316	0.6	20760954
42	Unknown	Unknown			2616	47.265	0.8	27502927
43	Unknown	Unknown			2651	47.909	2.2	79048835
44	Unknown	Unknown			2752	49.715	0.7	27047764
45	Unknown	Unknown			2774	50.097	1.4	51897128
46	Unknown	Unknown	9		2828	51.031	0.6	22368779

^aMH = monoterpene hydrocarbon, OM = oxygenated monoterpene, SH = sesquiterpene hydrocarbon, OS =

oxygenated sesquiterpene, DH = diterpene hydrocarbon, OD = oxygenated diterpene, TH = triterpene hydrocarbon,

Misc = Miscellaneous, Unknown = match score < 600 or DRI > 20.

Peak	Name	Class ^ª	Match	NIST	Exp.	RT	%Area	Area
				RI	RI			(count·s)
1	Unknown	Unknown			1330	16.050	1.2	30693893
2	Unknown	Unknown			1338	16.287	0.7	19504844
3	Unknown	Unknown			1395	18.078	1.0	26922659
4	Unknown	Unknown			1400	18.241	2.5	67692400
5	Unknown	Unknown			1422	18.916	0.4	10419599
6	Unknown	Unknown			1670	26.122	0.5	14103686
7	Unknown	Unknown			1736	27.903	2.8	75109705
8	eta-Costol	OS	608	1778	1797	29.518	14.4	381966898
9	Unknown	Unknown			1824	30.184	6.1	163347221
10	Unknown	Unknown			1848	30.788	1.2	31978928
11	Unknown	Unknown			1851	30.874	0.3	9138654
12	Unknown	Unknown			1871	31.377	0.9	23092691
13	6-(1-Hydroxymethylvinyl)-4,8a-dimethyl-	OS	626	1909	1889	31.821	0.8	21336470
	3,5,6,7,8,8a-hexahydro-1H-naphthalen-2-one							
14	Unknown	Unknown	III a		1895	31.981	1.3	34740564
15	(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	620	1994	1984	34.117	2.0	53923595
16	Unknown	Unknown	N		2026	35.097	3.8	100341943
17	Unknown	Unknown			2126	37.375	2.6	68849978
18	Unknown	Unknown	R	1	2188	38.731	0.9	25032563
19	Unknown	Unknown			2215	39.332	1.4	36668795
20	Sclareol	OD	676	2227	2245	39.945	3.4	91675480
21	Unknown	Unknown			2273	40.540	9.3	248401442
22	Unknown GHULALONGK	Unknown	IVER	SITY	2293	40.971	2.6	67936260
23	Unknown	Unknown			2356	42.263	22.3	593608318
24	Unknown	Unknown			2396	43.070	1.0	26291412
25	Unknown	Unknown			2441	43.946	1.5	39810435
26	Unknown	Unknown			2466	44.433	2.4	64437679
27	Unknown	Unknown			2474	44.602	0.4	10474774
28	Unknown	Unknown			2480	44.722	1.0	27502743
29	Unknown	Unknown			2542	45.890	0.4	10303685
30	Unknown	Unknown			2637	47.650	2.1	55820944
31	Unknown	Unknown			2651	47.903	7.9	208651685
32	Unknown	Unknown			2828	51.031	0.7	17573835

Table B.16: Volatile chemical composition in fraction FE.E

CHULALONGKORN UNIVERSITY

Peak	Name	Class ^a	Match	NIST	Exp.	RT	%Area	Area
				RI	RI			(count·s)
1	γ-Bicyclohomofarnesal	OD	687	1809	1797	29.518	33.4	160886704
2	Unknown	Unknown			1804	29.685	5.5	26719644
3	Unknown	Unknown			1984	34.120	6.8	32769743
4	Sclareol	OD	614	2227	2245	39.948	12.0	57708261
5	Unknown	Unknown			2356	42.250	30.3	145731402
6	Unknown	Unknown			2405	43.237	3.4	16241689
7	Unknown	Unknown			2546	45.971	2.1	10198971
8	Unknown	Unknown			2561	46.254	3.6	17151240
9	Unknown	Unknown			2828	51.034	3.0	14227635

Table B.17: Volatile chemical composition in fraction FE.F

Peak	Name	Class ^ª	Match	NIST	Exp.	RT	%Area	Area
				RI	RI			(count·s)
1	Unknown	Unknown			1635	25.142	0.6	3978307
2	Unknown	Unknown			1670	26.128	1.9	13353440
3	eta-Costol	OS	606	1778	1797	29.518	43.2	302495142
4	Unknown	Unknown			1880	31.614	0.5	3538669
5	Unknown	Unknown			1925	32.702	1.3	8777382
6	(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	620	1994	1983	34.111	11.5	80381689
7	Unknown	Unknown			2017	34.909	1.9	13097190
8	Unknown	Unknown			2047	35.599	1.2	8357538
9	Unknown	Unknown			2074	36.210	1.6	11370752
10	Unknown	Unknown			2190	38.786	1.6	11093418
11	Unknown	Unknown			2356	42.247	29.3	204752351
12	Unknown	Unknown	Ì		2404	43.227	1.6	11524826
13	Unknown	Unknown			2465	44.420	0.8	5771475
14	Unknown	Unknown	1 Contraction		2617	47.293	0.9	6059466
15	Unknown	Unknown			2828	51.031	2.2	15158399

Table B.18: Volatile chemical composition in fraction FE.G

	I							
Peak	Name	Class ^ª	Match	NIST	Exp.	RT	%Area	Area
				RI	RI			(count·s)
1	Unknown	Unknown			1030	7.201	1.7	7087224
2	Unknown	Unknown			1058	7.984	1.8	7497829
3	Unknown	Unknown			1064	8.138	0.7	2836009
4	Acetophenone	Misc.	614	1065	1069	8.292	1.8	7252793
5	Unknown	Unknown			1104	9.279	2.0	8231572
6	Unknown	Unknown			1120	9.775	10.3	42197589
7	Unknown	Unknown			1602	24.695	5.6	22879031
8	Unknown	Unknown			1675	26.723	1.7	6997414
9	Unknown	Unknown			1752	28.804	2.3	9481495
10	13-Tetradecenyl acetate	Misc.	651	1805	1807	30.234	3.8	15822094
11	Unknown	Unknown			1836	30.973	1.8	7413999
12	Unknown	Unknown			1861	31.614	2.6	10683482
13	Palmityl acetate	Misc.	626	2009	2012	35.270	24.8	102000373
14	Unknown	Unknown			2060	36.382	2.8	11319746
15	Unknown	Unknown			2067	36.546	4.5	18725914
16	Unknown	Unknown	A.		2101	37.332	3.1	12783117
17	Unknown	Unknown			2139	38.167	3.8	15626559
18	Octadecanol acetate	Misc.	727	2208	2208	39.877	15.7	64482176
19	Unknown	Unknown			2236	41.055	1.2	4896554

Table B.19: Volatile chemical composition in fraction FG.A

2 3 4

5 6

7 8 9

20

21

Unknown

Unknown

^aMH = monoterpene hydrocarbon, OM = oxygenated monoterpene, SH = sesquiterpene hydrocarbon, OS = oxygenated sesquiterpene, DH = diterpene hydrocarbon, OD = oxygenated diterpene, TH = triterpene hydrocarbon, Δ RI Misc = Miscellaneous, Unknown 600 20 = match score < or >

Unknown

Unknown

2275

2285

42.691

43.123

5.7

2.4

23652672

9707928

Peak	Name	Class	Match	NIST	Exp.	RT	%Area	Area
				RI	RI			(count·s)
1	Unknown	Unknown			1601	24.692	0.2	68021403
2	Unknown	Unknown			1631	25.512	0.1	19477602
3	Unknown	Unknown			1638	25.715	0.1	29568598
4	(-)-Isolongifolol, methyl ether	OS	634	1672	1673	26.683	0.2	60020814
5	Isolongifolol	OS	657	1738	1748	28.702	0.1	17661107
6	γ -Bicyclohomofarnesal	OD	712	1809	1800	30.070	4.6	1399648970
7	Unknown	Unknown			1847	31.248	0.1	24172847
8	Unknown	Unknown	12.		1862	31.624	0.3	102644994
9	Unknown	Unknown			1874	31.941	0.1	21981665
10	Unknown	Unknown		A l	1883	32.154	1.1	335360527
11	Alantolactone	OS	608	1916	1912	32.875	0.1	27407373
12	Unknown	Unknown			1920	33.066	0.1	16408234
13	Unknown	Unknown			1928	33.273	1.8	548067527
14	Unknown	Unknown			1936	33.448	0.2	71553531
15	Pimaradiene	DH	696	1960	1954	33.880	1.9	578993423
16	Valerenic acid, n-propyl ester	OS	605	1971	1964	34.139	0.1	21190349
17	Dibutyl phthalate	Misc.	753	1965	1968	34.237	0.8	234492340
18	(E)-15,16-Dinorlabda-8(17),11-dien-	OD	590	1994	1998	34.949	71.2	21474836470
	13-one			R				
19	Unknown	Unknown			2013	35.291	0.4	118238909
20	Unknown	Unknown	ะาวิท	เาล้ย	2019	35.448	0.2	48933293
21	Unknown	Unknown			2022	35.516	0.1	36356210
22	Epimanool GHULALO	OD	721	2056	2039	35.908	14.0	4209461680
23	Unknown	Unknown			2112	37.584	0.2	61830377
24	Unknown	Unknown			2127	37.917	0.3	82640041
25	Unknown	Unknown			2139	38.173	0.2	53192227
26	Unknown	Unknown			2171	38.882	0.5	163287582
27	Octadecanol acetate	Misc.	652	2208	2208	39.859	0.2	66191610
28	Agatadiol	OD	626	2266	2250	41.625	0.8	230791847
29	Larixol	OD	625	2264	2269	42.420	0.1	22148864
30	Unknown	Unknown			2274	42.667	0.1	28317556

Table B.20: Volatile chemical composition in fraction FG.B

Peak	Name	Class ^a	Match	NIST	Exp.	RT	%Area	Area
				RI	RI			(count·s)
1	Unknown	Unknown			1355	17.270	0.1	16295266
2	Unknown	Unknown			1391	18.402	0.1	20554112
3	Unknown	Unknown			1502	21.786	0.2	27586795
4	Unknown	Unknown			1526	22.495	0.6	93511754
5	Unknown	Unknown			1555	23.336	0.1	19089494
6	Unknown	Unknown			1612	24.988	0.8	119901804
7	9-Cedranone	OS	619	1618	1630	25.487	1.2	183080541
8	Longifolenaldehyde	OS	639	1631	1637	25.685	5.9	888261350
9	(-)-Isolongifolol, methyl ether	OS	683	1672	1673	26.674	1.2	185082003
10	Unknown	Unknown			1684	26.988	0.9	132440420
11	Unknown	Unknown			1702	27.478	0.4	57644454
12	Unknown	Unknown			1716	27.839	0.1	12129336
13	Unknown	Unknown			1744	28.591	0.3	40422954
14	Isolongifolol	OS	715	1738	1748	28.683	0.7	109516786
15	Unknown	Unknown			1752	28.794	0.4	55193147
16	Unknown	Unknown	ll a		1761	29.029	0.3	43382475
17	Unknown	Unknown			1775	29.411	0.1	19515788
18	Unknown	Unknown	and a		1787	29.725	0.1	12955035
19	Unknown	Unknown			1793	29.876	0.1	17777133
20	γ-Bicyclohomofarnesal	OD	657	1809	1800	30.073	20.2	3039584630
21	Unknown	Unknown			1807	30.234	0.4	54401185
22	Isopropyl myristate	Misc.	644	1827	1827	30.758	0.1	19466797
23	Unknown				1838	31.032	0.1	10991894
24	8α-hydroxy-Eremophila-1(10),11-dien-9-one	OS	624	1864	1847	31.248	0.2	28832354
25	Unknown	Unknown			1861	31.617	0.2	31764603
26	Unknown	Unknown			1881	32.104	0.7	111544480
27	Alantolactone	OS	663	1916	1903	32.662	6.9	1036605167
28	Unknown	Unknown			1911	32.860	1.8	270419804
29	Unknown	Unknown			1915	32.952	0.6	90564457
30	7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-	OD	829	1923	1919	33.041	0.2	35514635
	diene-2,8-dione							
31	Methyl palmitate	Misc.	682	1926	1928	33.254	1.1	173178287
32	Unknown	Unknown			1935	33.424	0.2	37294279
33	Unknown	Unknown			1941	33.572	0.1	19872841
34	Unknown	Unknown			1944	33.658	0.3	37829492

Table B.21: Volatile chemical composition in fraction FG.C

35	Unknown	Unknown			1948	33.750	0.1	21215251
36	Unknown	Unknown			1951	33.824	1.1	162773065
37	Dibutyl phthalate	Misc.	784	1965	1963	34.102	1.3	188315886
38	Unknown	Unknown			1971	34.290	1.6	234392297
39	Unknown	Unknown			1980	34.524	0.3	41197812
40	(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	753	1994	1987	34.681	28.5	4289749790
41	Unknown	Unknown			1993	34.838	0.1	15752056
42	Unknown	Unknown			2011	35.264	1.7	257868348
43	Unknown	Unknown			2020	35.464	3.6	547725227
44	Unknown	Unknown			2035	35.797	0.3	45292591
45	Epimanool	OD	723	2056	2038	35.871	2.8	419355629
46	Linoleyl methyl ketone	Misc.	670	2075	2067	36.555	1.5	222077257
47	Unknown	Unknown			2072	36.663	0.2	26790211
48	cis-10-Heptadecenoic acid	Misc.	624	2073	2085	36.956	0.3	47534674
49	Unknown	Unknown			2090	37.085	0.5	68941419
50	Unknown	Unknown			2096	37.211	1.2	178202557
51	Sclareolide	OD	633	2089	2104	37.393	2.4	365193979
52	Unknown	Unknown	11/11/2		2111	37.563	0.2	37238226
53	Unknown	Unknown			2127	37.908	0.2	31924419
54	Unknown	Unknown			2138	38.151	0.2	32008851
55	Octadecanol acetate	Misc.	646	2208	2205	39.733	0.2	29684622
56	Unknown	Unknown		E)	2208	39.859	0.6	93579868
57	Unknown	Unknown			2235	41.027	0.4	65900861
58	Unknown	Unknown	190.010	2 el	2242	41.295	0.1	21397526
59	Agatadiol	OD	632	2266	2249	41.606	2.9	435764389
60	Larixol GHULALONG	OD	678	2264	2278	42.815	0.7	109318548
61	Unknown	Unknown			2287	43.172	0.1	20545021

 ^{a}MH = monoterpene hydrocarbon, OM = oxygenated monoterpene, SH = sesquiterpene hydrocarbon, OS = oxygenated sesquiterpene, DH = diterpene hydrocarbon, OD = oxygenated diterpene, TH = triterpene hydrocarbon,

Misc = Miscellaneous, Unknown = match score < 600 or DRI > 20.

Peak	Name	Class ^ª	Match	NIST	Exp.	RT	%Area	Area
				RI	RI			(count·s)
1	<i>p</i> -Cymene	MH	729	1025	1028	7.130	0.1	12854459
2	Camphol	ОМ	675	1167	1167	11.260	0.1	10113744
3	Unknown	Unknown			1355	17.274	0.1	11180125
4	Unknown	Unknown			1374	17.850	0.1	11299992
5	Unknown	Unknown			1378	17.979	0.2	17069520
6	Unknown	Unknown			1390	18.380	10.2	1053394794
7	Unknown	Unknown			1401	18.707	0.3	31910625
8	Unknown	Unknown			1421	19.311	0.1	9704998
9	Unknown	Unknown			1449	20.171	0.6	64658076
10	(±)-Gymnomitrene	SH	614	1452	1462	20.574	3.0	307276208
11	Unknown	Unknown			1484	21.259	0.4	41762869
12	Unknown	Unknown			1492	21.502	1.2	123895795
13	Unknown	Unknown			1502	21.789	0.2	21546355
14	Unknown	Unknown	110°		1526	22.498	0.8	81536079
15	Unknown	Unknown			1555	23.327	0.2	16203679
16	Unknown	Unknown	n a		1601	24.667	0.6	57370711
17	Unknown	Unknown			1621	25.222	0.7	68416012
18	Unknown	Unknown	~	1	1630	25.497	0.5	48371493
19	Unknown	Unknown			1638	25.694	1.1	112242779
20	(-)-Isolongifolol, methyl ether	OS	666	1672	1673	26.671	1.4	141270713
21	Unknown	Unknown			1679	26.840	0.7	75421172
22	Unknown	Unknown	1010		1684	26.985	0.5	46474961
23	Unknown	Unknown			1719	27.913	0.2	16639571
24	8α,11-Elemadiol	OS	703	1745	1735	28.354	0.8	83047424
25	Unknown	Unknown			1740	28.480	0.7	69821083
26	Unknown	Unknown			1744	28.582	0.2	21291680
27	Isolongifolol	OS	642	1738	1747	28.671	0.2	22924331
28	eta-Santanol acetate	OS	646	1797	1788	29.741	0.3	35336338
29	γ-Bicyclohomofarnesal	OD	769	1809	1800	30.067	12.6	1291693288
30	Saussurea lactone	OS	677	1806	1807	30.240	1.3	131816874
31	iso-Longifolol acetate	OS	646	1850	1864	31.679	1.7	171427594
32	Clovanediol	OS	789	1885	1872	31.883	1.9	191081057
33	Corymbolone	OS	660	1899	1890	32.329	0.5	47724766
34	Ledene oxide-(I)	OS	698	1890	1903	32.672	4.5	464392185
35	Alantolactone	OS	686	1916	1911	32.863	1.9	195391753

Table B.22: Volatile chemical composition in fraction FG.D

36	Unknown	Unknown			1928	33.266	0.5	48936502
37	Unknown	Unknown			1941	33.568	1.2	119355016
38	Unknown	Unknown			1948	33.753	0.2	24671813
39	Unknown	Unknown			1951	33.818	0.6	59336985
40	Dibutyl phthalate	Misc.	630	1965	1963	34.095	1.3	138569364
41	eta-Cyclocostunolide	OS	715	1983	1970	34.287	2.4	249459008
42	Unknown	Unknown			1976	34.422	0.4	36041653
43	(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	747	1994	1986	34.672	29.6	3045571470
44	Unknown	Unknown			2011	35.257	0.4	40488697
45	Unknown	Unknown			2020	35.458	1.1	113797134
46	Unknown	Unknown			2031	35.707	0.5	55003830
47	Unknown	Unknown			2038	35.865	0.2	19096103
48	Unknown	Unknown			2041	35.954	0.2	16682399
49	Valerenic acid, n-butyl ester	OS	600	2065	2067	36.543	0.4	39047916
50	Unknown	Unknown			2079	36.826	1.0	100838424
51	Unknown	Unknown			2124	37.834	0.4	42064372
52	Unknown	Unknown	W		2129	37.945	2.8	292243759
53	Unknown	Unknown			2150	38.429	0.2	19388387
54	Unknown	Unknown	ll a		2162	38.700	0.2	22564192
55	Ethyl linolenate	Misc.	677	2169	2170	38.873	0.9	95584155
56	2-Hydroxy-1-(hydroxymethyl)ethyl	Misc.	631	2161	2176	39.002	0.4	39721912
	(9E,12E,15E)-9,12,15-octadecatrienoate		X	1				
57	Unknown	Unknown			2189	39.295	0.3	29139301
58	Unknown	Unknown	A 81.0 6	201	2210	39.979	1.1	108224052
59	Unknown	Unknown			2232	40.870	2.7	278347807
60	Unknown GHULALONGK	Unknown	NIVER	SITY	2242	41.308	0.4	38980232
61	Unknown	Unknown			2260	42.063	0.5	54922589
62	Larixol	OD	677	2264	2279	42.836	0.5	52851800

^aMH = monoterpene hydrocarbon, OM = oxygenated monoterpene, SH = sesquiterpene hydrocarbon, OS =

oxygenated sesquiterpene, DH = diterpene hydrocarbon, OD = oxygenated diterpene, TH = triterpene hydrocarbon,

 $\label{eq:Miscellaneous, Unknown = match score < 600 \mbox{ or } DRI > 20.$

Peak	Name	Class ^ª	Match	NIST	Exp.	RT	%Area	Area
				RI	RI			(count·s)
1	Unknown	Unknown			1120	9.778	0.2	8691629
2	Camphol	ОМ	695	1167	1167	11.267	0.2	10623789
3	exo-2-Hydroxycineole	OM	642	1224	1224	13.060	0.2	9988680
4	2-Methylbenzothiazole	Misc.	810	1281	1293	15.304	1.1	54000658
5	Sobrerol	OM	648	1388	1390	18.374	7.5	363654018
6	Unknown	Unknown			1401	18.719	1.0	48784142
7	eta-Copaene	SH	603	1432	1452	20.275	0.4	20156622
8	Unknown	Unknown			1462	20.574	0.5	23703853
9	Unknown	Unknown			1492	21.484	1.9	92505338
10	Unknown	Unknown			1501	21.776	6.8	330570969
11	Unknown	Unknown			1511	22.060	0.6	28628689
12	Sobrerol 8-acetate	ОМ	636	1529	1525	22.470	23.6	1149281066
13	Unknown	Unknown			1554	23.299	0.5	25427643
14	Unknown	Unknown	UN a		1562	23.546	0.5	23104094
15	Unknown	Unknown			1612	24.985	0.5	22139467
16	13-nor-Eremophil-1(10)-en-11-one	OS	608	1629	1630	25.490	0.3	16655765
17	Unknown	Unknown			1638	25.700	0.6	28362067
18	Aromadendrene oxide-(2)	OS	693	1678	1673	26.671	1.8	89594372
19	Unknown	Unknown			1684	26.985	0.3	14872262
20	Isolongifolol	OS	652	1738	1735	28.354	0.8	40397862
21	Unknown	Unknown			1744	28.597	0.4	21053593
22	Unknown	Unknown	110 10		1752	28.800	0.2	11280731
23	Unknown	Unknown			1771	29.312	0.2	11610621
24	β -Costol	OS	688	1778	1788	29.750	1.7	81388161
25	γ-Bicyclohomofarnesal	OD	665	1809	1800	30.070	29.4	1434359072
26	Unknown	Unknown			1807	30.243	0.4	19323422
27	Unknown	Unknown			1812	30.372	0.3	12770633
28	Unknown	Unknown			1827	30.739	0.8	36895471
29	Cyperadione	OS	601	1845	1851	31.343	0.4	19549671
30	Unknown	Unknown			1904	32.675	0.9	43831992
31	Alantolactone	OS	639	1916	1911	32.856	0.6	27825732
32	Unknown	Unknown			1928	33.266	0.5	23334451
33	Unknown	Unknown			1952	33.840	1.0	49075807
34	Dibutyl phthalate	Misc.	694	1965	1964	34.123	0.7	32084096
35	Clovanediol,monoacetate	OS	716	1982	1971	34.299	1.5	72889775

Table B.23: Volatile chemical composition in fraction FG.E

36	(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	766	1994	1986	34.669	9.4	458514397
37	Unknown	Unknown			1995	34.888	0.2	12197671
38	Unknown	Unknown			2012	35.270	0.5	23506553
39	Unknown	Unknown			2151	38.444	0.5	23348614
40	Unknown	Unknown			2171	38.897	0.2	7519193
41	Unknown	Unknown			2182	39.144	0.2	11974989
42	Unknown	Unknown			2208	39.877	0.3	14928556
43	Unknown	Unknown			2220	40.389	0.2	7581548
44	Larixol	OD	611	2264	2279	42.852	0.4	21924419

CHULALONGKORN UNIVERSITY

Peak	Name	Class ^a	Match	NIST	Exp.	RT	%Area	Area
				RI	RI			(count·s)
1	Camphol	ОМ	659	1167	1167	11.263	0.3	12420320
2	Unknown	Unknown			1270	14.552	0.2	6788737
3	Unknown	Unknown			1370	17.733	0.5	19336298
4	Unknown	Unknown			1390	18.377	3.2	120657289
5	Unknown	Unknown			1397	18.587	0.9	31770338
6	Unknown	Unknown			1401	18.722	1.6	57881984
7	eta-Copaene	SH	631	1432	1452	20.282	0.6	20903334
8	Unknown	Unknown			1491	21.474	0.2	9274283
9	Unknown	Unknown			1526	22.501	0.5	20075915
10	Unknown	Unknown			1630	25.490	0.6	21387219
11	Unknown	Unknown			1638	25.709	1.2	44431336
12	Unknown	Unknown))		1673	26.677	2.8	103454866
13	Unknown	Unknown			1684	26.988	0.6	22349217
14	Unknown	Unknown	1100		1735	28.360	0.4	14008405
15	Unknown	Unknown			1744	28.594	0.9	32598335
16	Unknown	Unknown	l a		1752	28.797	0.3	11105209
17	Unknown	Unknown			1771	29.303	0.3	12068082
18	≇Bicyclohomofarnesal	OD	691	1809	1800	30.064	46.6	1731286539
19	(Z)-7-Hexadecenal	Misc.	608	1798	1807	30.240	0.6	22280919
20	Unknown	Unknown			1827	30.742	0.6	22191442
21	Cyperadione	OS	663	1845	1851	31.343	6.0	223953089
22	Unknown	Unknown	10 10		1861	31.611	0.3	11718137
23	Unknown	Unknown			1874	31.938	2.1	79884271
24	Alantolactone	OS	621	1916	1903	32.659	1.5	55554456
25	Unknown	Unknown			1912	32.869	0.2	6935319
26	Unknown	Unknown			1915	32.958	0.1	4826635
27	7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-	OD	668	1923	1919	33.041	0.3	9811680
	diene-2,8-dione							
28	Methyl palmitate	Misc.	647	1926	1928	33.263	1.9	69117272
29	Unknown	Unknown			1935	33.427	0.4	13613690
30	Unknown	Unknown			1951	33.827	1.2	44039882
31	Dibutyl phthalate	Misc.	761	1965	1963	34.095	1.6	58333501
32	Unknown	Unknown			1980	34.512	0.4	15636543
33	(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	799	1994	1986	34.666	14.8	549077075
34	Unknown	Unknown			2011	35.264	1.1	42741578

Table B.24: Volatile chemical composition in fraction FG.F

35	Unknown	Unknown			2020	35.461	0.8	31573171
36	Unknown	Unknown			2038	35.877	0.4	13222104
37	Unknown	Unknown			2077	36.783	0.4	13841684
38	Unknown	Unknown			2093	37.156	0.5	16977512
39	Unknown	Unknown			2171	38.888	0.4	15619674
40	Unknown	Unknown			2182	39.138	0.7	25723161
41	Unknown	Unknown			2208	39.859	0.7	25606300
42	Unknown	Unknown			2274	42.661	0.3	10607970
43	Larixol	OD	636	2264	2279	42.836	1.2	43418893

Chulalongkorn University

Peak	Name	Class ^ª	Match	NIST RI	Exp. RI	RT	%Area	Area (count·s)
1	Unknown	Unknown			1126	9.966	0.2	26730729
2	Camphol	OM	723	1167	1167	11.257	0.1	19489926
3	3,7-Dimethyl-1,5-octadiene-3,7-diol	OM	760	1190	1190	11.966	0.3	38370384
4	Unknown	Unknown			1218	12.869	0.1	15460112
5	trans-Ascaridol glycol	OM	664	1272	1270	14.540	0.1	18390322
6	2-Methylbenzothiazole	Misc.	837	1281	1293	15.298	1.1	151487860
7	Unknown	Unknown			1302	15.581	0.1	14217487
8	Unknown	Unknown			1311	15.868	0.1	14723425
9	(+)-Pinanediol	ОМ	719	1316	1317	16.041	1.5	195098362
10	Unknown	Unknown			1320	16.149	3.5	468184198
11	Unknown	Unknown			1373	17.841	0.4	56559085
12	Unknown	Unknown			1378	17.976	0.3	35512871
13	Unknown	Unknown			1390	18.374	1.4	181314110
14	Unknown	Unknown	110°		1400	18.697	0.4	50615058
15	eta-Copaene	SH	627	1432	1452	20.275	0.2	20361591
16	Unknown	Unknown	l a		1525	22.479	0.4	58856795
17	Unknown	Unknown			1543	23.000	0.2	28858648
18	Unknown	Unknown	-	2	1554	23.314	0.3	40477784
19	Unknown	Unknown			1630	25.490	0.3	41132314
20	Unknown	Unknown			1637	25.688	0.5	60057866
21	Unknown	Unknown			1673	26.668	0.8	102778810
22	Unknown	Unknown)	1684	26.985	0.5	64902380
23	Unknown	Unknown			1716	27.845	0.1	18941661
24	Isolongifolol	OS	633	1738	1719	27.913	0.1	15389062
25	Unknown	Unknown			1735	28.347	0.1	12336204
26	Unknown	Unknown			1744	28.582	0.3	44306356
27	Unknown	Unknown			1752	28.788	0.1	9747205
28	eta-Costol	OS	634	1778	1774	29.386	0.8	100211293
29	Dehydrovomifoliol	OS	825	1800	1789	29.765	1.4	180753170
30	Unknown	Unknown			1793	29.879	0.1	11426108
31	γ-Bicyclohomofarnesal	OD	676	1809	1800	30.061	13.0	1730698291
32	Unknown	Unknown			1807	30.249	1.1	144360943
33	Saussurea lactone	OS	664	1806	1814	30.409	0.9	113756794
34	Unknown	Unknown			1826	30.724	0.5	71676925
35	Unknown	Unknown			1840	31.075	0.1	8610161

Table B.25: Volatile chemical composition in fraction FG.G

36	Cyperadione	OS	622	1845	1850	31.328	0.2	21681222
37	Unknown	Unknown			1874	31.938	0.4	47936266
38	Unknown	Unknown			1887	32.271	0.1	11743623
39	Unknown	Unknown			1895	32.450	0.1	14665750
40	Unknown	Unknown			1903	32.653	0.7	87714947
41	Unknown	Unknown			1915	32.946	0.1	10664383
42	7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-	OD	649	1923	1918	33.029	0.1	13029600
	diene-2,8-dione							
43	Methyl palmitate	Misc.	617	1926	1927	33.239	0.4	52472033
44	Unknown	Unknown			1935	33.424	0.1	11337063
45	Unknown	Unknown			1940	33.559	0.2	20729040
46	Unknown	Unknown	2		1947	33.729	0.1	19966051
47	Unknown	Unknown			1951	33.815	0.3	40274841
48	Dibutyl phthalate	Misc.	618	1965	1962	34.083	1.0	132615509
49	Unknown	Unknown			1971	34.296	0.2	25270706
50	(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	646	1994	1983	34.586	11.2	1492109933
51	Unknown	Unknown			2004	35.082	0.2	24631204
52	Unknown	Unknown	/// «a		2020	35.455	0.1	18959212
53	Unknown	Unknown			2033	35.757	50.6	6742427140
54	Unknown	Unknown			2047	36.077	0.8	107700472
55	Valerenic acid, <i>n</i> -butyl ester	OS	601	2065	2067	36.543	0.1	19730438
56	Unknown	Unknown	X	1	2128	37.942	0.2	24187172
57	Unknown	Unknown			2170	38.876	0.3	35258717
58	cis-9,10-Methyleneoctadecanoic acid methyl	Misc.	604	2212	2207	39.853	0.2	24923110
	ester	611110		U				
59	Sclareol	OD	690	2227	2223	40.519	0.9	115480877
60	Unknown	Unknown			2278	42.821	0.4	52002633

Peak	Name	Class ^ª	Match	NIST	Exp.	RT	%Area	Area
				RI	RI			(count·s)
1	Unknown	Unknown			1219	12.894	0.2	36202667
2	trans-Ascaridol glycol	OM	759	1272	1287	15.095	0.3	60876388
3	2-Methylbenzothiazole	Misc.	650	1281	1293	15.307	0.1	33245734
4	Unknown	Unknown			1304	15.646	0.2	43497071
5	Unknown	Unknown			1317	16.047	0.1	20309846
6	Unknown	Unknown			1320	16.152	1.0	234643978
7	Unknown	Unknown			1332	16.515	0.2	40014738
8	Unknown	Unknown			1338	16.713	0.1	24749604
9	2-Hydroxycineole, acetate	ОМ	639	1344	1347	17.015	0.2	34232568
10	Unknown	Unknown			1355	17.246	0.1	15641653
11	Unknown	Unknown			1373	17.834	0.6	127563576
12	Sobrerol	ОМ	656	1388	1377	17.964	2.4	541494224
13	Unknown	Unknown			1382	18.127	0.5	102337011
14	Unknown	Unknown	100		1390	18.380	8.4	1881077935
15	Unknown	Unknown			1401	18.701	0.2	50392372
16	Unknown	Unknown	l) a		1417	19.200	0.1	16712103
17	Unknown	Unknown			1421	19.311	0.3	70683222
18	Unknown	Unknown	-	2	1431	19.644	0.1	13985075
19	Unknown	Unknown			1462	20.565	0.2	36919583
20	1,2,4-Trihydroxy menthane	OM	812	1487	1477	21.034	0.9	201257750
21	Unknown	Unknown			1501	21.770	0.1	22204865
22	Kessane	OS	621	1537	1525	22.458	0.7	153794172
23	5,5-Dimethyl-4-(3-oxobutyl)dihydro-2(3H)-	ОМ	744	1558	1550	23.197	0.8	178314130
	furanone							
24	Unknown	Unknown			1611	24.951	0.2	51032200
25	Longifolenaldehyde	OS	622	1631	1630	25.487	0.3	69440883
26	Unknown	Unknown			1637	25.678	0.4	81242462
27	(-)-Isolongifolol, methyl ether	OS	651	1672	1673	26.665	1.4	305875147
28	Unknown	Unknown			1684	26.979	0.3	69055814
29	Unknown	Unknown			1697	27.337	0.2	40367939
30	Blumenol C	OS	677	1711	1702	27.475	0.3	59994008
31	Unknown	Unknown			1710	27.688	0.8	172492525
32	3-Hydroxy-1a,3,6,6-tetramethylhexahydro-2-	OS	655	1716	1719	27.913	0.6	136891033
	oxacyclopropa[d]naphthalen-5-one							
33	8α,11-Elemadiol	OS	770	1745	1735	28.351	4.7	1042884038

Table B.26: Volatile chemical composition in fraction FG.H

34	Unknown	Unknown			1743	28.569	0.7	154217100
35	Unknown	Unknown			1753	28.822	0.3	65173690
36	Unknown	Unknown			1760	28.998	0.2	55513379
37	Unknown	Unknown			1789	29.771	0.4	84722012
38	γ-Bicyclohomofarnesal	OD	751	1809	1800	30.061	4.1	905349025
39	α-Kessyl acetate	OS	705	1813	1808	30.258	24.9	5562596550
40	Unknown	Unknown			1826	30.718	0.4	95506412
41	Cyperadione	OS	640	1845	1845	31.201	0.6	140866743
42	Unknown	Unknown			1864	31.679	0.1	21636084
43	Unknown	Unknown			1867	31.762	0.1	29129622
44	Clovanediol	OS	877	1885	1872	31.879	6.3	1418278995
45	Ledene oxide-(I)	OS	696	1890	1889	32.317	8.5	1894764115
46	Unknown	Unknown			1896	32.490	0.1	17157381
47	Alantolactone	OS	660	1916	1903	32.656	1.0	221496236
48	Corymbolone	OS	634	1899	1908	32.770	0.7	161995897
49	Unknown	Unknown			1927	33.239	0.3	57676102
50	Unknown	Unknown	110 a		1940	33.544	0.2	40232408
51	Unknown	Unknown			1954	33.889	0.3	68931341
52	Unknown	Unknown	ll a		1962	34.092	0.9	192036709
53	Unknown	Unknown			1970	34.287	0.1	23372748
54	Dodecenyl succinic anhydride	Misc.	633	1966	1979	34.490	0.1	25655358
55	(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	783	1994	1986	34.666	11.6	2597152410
56	Unknown	Unknown			2009	35.217	0.2	47476641
57	Zederone	OS	629	2010	2030	35.695	9.1	2026474563
58	Unknown	Unknown			2046	36.071	0.2	53973322
59	Epimanool	OD	706	2056	2050	36.160	0.2	41485180
60	Unknown	Unknown			2077	36.771	0.1	32152902
61	Unknown	Unknown			2088	37.020	0.2	46782504
62	Unknown	Unknown			2142	38.241	0.1	25987144
63	Unknown	Unknown			2152	38.478	0.2	39575881
64	Unknown	Unknown			2224	40.528	0.3	58181170
65	Unknown	Unknown			2249	41.603	0.2	49274390
66	Unknown	Unknown			2277	42.772	0.6	125934245

Peak	Name	Class ^ª	Match	NIST	Exp.	RT	%Area	Area
				RI	RI			(count·s)
1	Unknown	Unknown			1074	8.416	0.1	4388091
2	Camphol	ОМ	606	1167	1167	11.260	0.1	9150590
3	Unknown	Unknown			1201	12.318	0.2	12541868
4	Unknown	Unknown			1335	16.636	0.1	9009021
5	Unknown	Unknown			1355	17.264	0.2	16104537
6	Unknown	Unknown			1370	17.730	0.5	36130885
7	Unknown	Unknown			1377	17.964	0.5	35115510
8	Unknown	Unknown			1390	18.377	21.8	1640929994
9	4,8-β-Epoxy-caryophyllane	OS	617	1421	1401	18.707	1.6	121674854
10	Unknown	Unknown			1421	19.323	0.4	27135403
11	Unknown	Unknown			1438	19.835	0.1	11241470
12	Unknown	Unknown			1448	20.155	0.1	8086777
13	Unknown	Unknown			1452	20.263	0.1	8844085
14	Unknown	Unknown	1 ll a		1462	20.584	0.5	34588951
15	Unknown	Unknown			1478	21.071	0.5	39395577
16	Unknown	Unknown	ll a		1526	22.488	1.3	95613029
17	Unknown	Unknown			1600	24.652	0.9	66626637
18	Longifolenaldehyde	OS	642	1631	1630	25.490	3.1	232912782
19	Unknown	Unknown			1637	25.691	1.0	77915060
20	β -Eudesmol	OS	694	1649	1651	26.079	0.4	32116697
21	(-)-Isolongifolol, methyl ether	OS	677	1672	1673	26.662	1.7	124677956
22	Unknown	Unknown			1684	26.979	0.5	38368797
23	Unknown	Unknown			1710	27.694	0.5	35293563
24	Isolongifolol	OS	654	1738	1735	28.347	1.2	93994528
25	Unknown	Unknown			1744	28.588	0.3	22249431
26	Unknown	Unknown			1752	28.788	0.2	17890743
27	Unknown	Unknown			1775	29.398	0.2	17624877
28	γ-Bicyclohomofarnesal	OD	740	1809	1800	30.061	9.1	688109548
29	Unknown	Unknown			1807	30.234	8.8	658306714
30	Cryptomeridiol	OS	752	1826	1815	30.456	15.1	1132949527
31	Unknown	Unknown			1826	30.718	0.3	21639727
32	Clovanediol	OS	846	1885	1872	31.873	4.9	369606611
33	Unknown	Unknown			1882	32.135	1.6	116871795
34	Ledene oxide-(I)	OS	646	1890	1889	32.311	1.5	114989599
35	Unknown	Unknown			1903	32.650	0.3	25346865

Table B.27: Volatile chemical composition in fraction FG.I

36	Alantolactone	OS	644	1916	1912	32.875	0.3	21822834
37	Unknown	Unknown			1928	33.260	0.3	22671550
38	Unknown	Unknown			1940	33.559	0.4	27995557
39	Unknown	Unknown			1948	33.744	0.5	38048368
40	Unknown	Unknown			1972	34.317	0.4	27403457
41	(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	781	1994	1986	34.660	14.3	1077419898
42	Unknown	Unknown			2012	35.270	0.4	29733226
43	Unknown	Unknown			2020	35.452	0.9	67222553
44	Unknown	Unknown			2030	35.698	0.4	27433498
45	Unknown	Unknown			2034	35.788	0.1	11213428
46	Epimanool	OD	623	2056	2037	35.862	0.2	16759966
47	Unknown	Unknown			2067	36.549	0.3	23848975
48	Unknown	Unknown			2077	36.783	0.4	27989369
49	Unknown	Unknown			2096	37.208	0.3	20234495
50	Unknown	Unknown			2150	38.432	0.2	17150460
51	Larixol	OD	664	2264	2278	42.821	0.9	66098549

Peak	Name	Class ^ª	Match	NIST	Exp.	RT	%Area	Area
				RI	RI			(count·s)
1	Unknown	Unknown			1027	7.121	0.5	11258942
2	Unknown	Unknown			1044	7.577	0.5	11259422
3	Nonanal	Misc.	766	1104	1106	9.337	2.5	59616762
4	Unknown	Unknown			1132	10.163	0.9	22138763
5	Camphol	ОМ	636	1167	1167	11.267	0.4	8880015
6	Unknown	Unknown			1281	14.897	0.3	6316655
7	Unknown	Unknown			1355	17.270	0.8	19995904
8	Unknown	Unknown			1391	18.389	3.2	75271085
9	Patchoulene	SH	642	1467	1452	20.260	0.5	10837947
10	Caparratriene	SH	636	1493	1491	21.468	1.1	26674905
11	Unknown	Unknown			1526	22.507	2.2	52420749
12	Unknown	Unknown			1600	24.664	1.4	33247509
13	Unknown	Unknown			1622	25.265	1.1	26232117
14	Longifolenaldehyde	OS	641	1631	1630	25.487	1.6	38194820
15	Unknown	Unknown			1638	25.706	3.2	76602442
16	Neointermedeol	OS	611	1660	1673	26.668	4.5	105881586
17	Unknown	Unknown			1679	26.840	0.6	14397908
18	Unknown	Unknown	-		1684	26.982	0.9	21345629
19	Unknown	Unknown			1692	27.207	0.6	14326576
20	Unknown	Unknown			1710	27.700	0.5	11638796
21	Isolongifolol	OS	670	1738	1735	28.347	1.7	40529347
22	Unknown	Unknown			1744	28.591	0.8	19079406
23	Unknown	Unknown			1754	28.853	0.3	7799417
24	γ-Bicyclohomofarnesal	OD	877	1809	1800	30.061	33.6	792351593
25	Unknown	Unknown			1807	30.243	0.3	7621681
26	Cryptomeridiol	OS	860	1826	1813	30.394	3.3	78216708
27	Unknown	Unknown			1861	31.614	0.4	9407340
28	8,14-Cedrandiol	OS	627	1876	1874	31.929	2.9	67752531
29	Unknown	Unknown			1885	32.200	0.8	19603418
30	Unknown	Unknown			1903	32.656	1.9	45963162
31	Unknown	Unknown			1914	32.937	0.5	11327878
32	7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-	OD	686	1923	1919	33.041	0.6	14953525
	diene-2,8-dione							
33	Unknown	Unknown			1924	33.174	0.5	10852800
34	Unknown	Unknown			1928	33.273	0.4	10467625

Table B.28: Volatile chemical composition in fraction FG.J

35	Unknown	Unknown			1948	33.738	0.8	19967957
36	Unknown	Unknown			1960	34.025	0.5	12644344
37	Unknown	Unknown			1966	34.188	1.1	26190002
38	(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	746	1994	1986	34.672	12.8	302979588
39	Unknown	Unknown			2020	35.458	3.3	78222421
40	Unknown	Unknown			2077	36.786	0.6	13562310
41	Coronarin E	OD	623	2136	2124	37.840	0.3	7693736
42	Unknown	Unknown			2136	38.118	1.4	32772741
43	Unknown	Unknown			2154	38.515	0.8	19879328
44	Unknown	Unknown			2215	40.167	0.6	14980396
45	Larixol	OD	661	2264	2278	42.827	2.0	46628652

Peak	Name	Class ^ª	Match	NIST	Exp.	RT	%Area	Area
				RI	RI			(count·s)
1	<i>p</i> -Cymene	MH	777	1025	1027	7.115	0.3	19838585
2	Unknown	Unknown			1099	9.137	0.2	15812406
3	Unknown	Unknown			1122	9.830	0.1	7591791
4	Unknown	Unknown			1128	10.021	0.2	10519008
5	Unknown	Unknown			1145	10.552	0.2	11241603
6	Camphol	OM	716	1167	1167	11.257	0.3	22451378
7	Carvomenthenal	OM	601	1229	1226	13.131	0.9	59986875
8	Neral	OM	607	1240	1259	14.195	0.7	48833366
9	trans-Ascaridol glycol	OM	812	1272	1287	15.095	1.4	95456769
10	4-Methylphenyl isothiocyanate	Misc.	673	1293	1293	15.286	2.1	145139384
11	Unknown	Unknown			1300	15.514	0.3	18591680
12	Unknown	Unknown	Ń		1310	15.828	0.6	40572402
13	Unknown	Unknown			1373	17.828	1.5	99471118
14	Sobrerol	OM	817	1388	1378	17.979	12.8	862647997
15	Unknown	Unknown			1390	18.368	11.4	767717061
16	Unknown	Unknown	l a		1421	19.326	0.6	41486175
17	α-Himachalene	SH	620	1449	1452	20.272	0.5	31684099
18	Unknown	Unknown	-	2	1470	20.821	0.5	33336157
19	Unknown	Unknown			1491	21.471	0.3	21678030
20	<i>cis</i> -Sesquisabinene hydrate	OS	602	1543	1526	22.491	0.5	32849340
21	Unknown	Unknown			1630	25.490	0.7	44454736
22	Unknown	Unknown)	1637	25.688	0.8	52317370
23	(-)-Isolongifolol, methyl ether	OS	662	1672	1672	26.658	2.2	150188093
24	Unknown	Unknown			1684	26.976	0.5	34510167
25	8α,11-Elemadiol	OS	754	1745	1735	28.347	2.6	176048620
26	<i>α</i> -Vetivol	OS	619	1756	1744	28.579	0.5	35028004
27	Unknown	Unknown			1752	28.807	0.2	15560758
28	Dehydrovomifoliol	OS	641	1800	1788	29.750	9.2	620490187
29	γ-Bicyclohomofarnesal	OD	743	1809	1800	30.058	23.5	1585462661
30	Unknown	Unknown			1806	30.221	0.3	21748833
31	Cryptomeridiol	OS	894	1826	1813	30.385	4.8	326875349
32	Unknown	Unknown			1850	31.334	1.0	66244690
33	Unknown	Unknown			1902	32.647	0.9	59180182
34	Unknown	Unknown			1928	33.254	0.3	21210403
35	Cembrene	DH	675	1939	1951	33.827	3.2	217648450

Table B.29: Volatile chemical composition in fraction FG.K

36	(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	798	1994	1986	34.660	12.1	820064680
37	Unknown	Unknown			2011	35.248	0.4	23661736
38	Unknown	Unknown			2037	35.858	0.5	30591742
39	Unknown	Unknown			2047	36.080	0.5	35131842
40	Larixol	OD	666	2264	2278	42.833	0.5	32538355

Chulalongkorn University

Peak	Name	Class ^a	Match	NIST	Exp.	RT	%Area	Area
				RI	RI			(count·s)
1	Unknown	Unknown			1003	6.428	0.3	12210323
2	<i>p</i> -Cymene	MH	780	1025	1027	7.118	0.8	30973718
3	Unknown	Unknown			1101	9.189	0.2	9633450
4	Unknown	Unknown			1120	9.772	0.5	21290460
5	Unknown	Unknown			1128	10.024	0.2	8694937
6	Unknown	Unknown			1144	10.536	3.7	143016957
7	Camphol	OM	705	1167	1167	11.257	0.6	22642337
8	Unknown	Unknown			1259	14.207	0.3	10990816
9	4-Methylphenyl isothiocyanate	Misc.	700	1293	1293	15.283	5.0	193497454
10	Unknown	Unknown			1355	17.252	0.3	12924609
11	Unknown	Unknown			1374	17.847	0.3	12754321
12	Unknown	Unknown	Í,		1390	18.380	2.6	102598556
13	eta-Copaene	SH	639	1432	1452	20.272	0.7	27544318
14	Unknown	Unknown	N.C.		1491	21.465	0.4	17392632
15	Unknown	Unknown			1526	22.504	0.6	23428084
16	Unknown	Unknown	l a		1630	25.493	0.6	22455298
17	Unknown	Unknown			1637	25.688	1.2	46750740
18	(Z)-6,7-Dihydrofarnesol	OS	623	1668	1673	26.668	3.2	126409504
19	Unknown	Unknown			1684	26.979	0.7	28815622
20	Unknown	Unknown			1744	28.585	1.1	41042730
21	γ-Bicyclohomofarnesal	OD	736	1809	1800	30.064	30.4	1185730131
22	Cryptomeridiol	OS	701	1826	1813	30.397	0.5	19747332
23	Unknown	Unknown			1877	32.015	0.5	19445440
24	Unknown	Unknown			1903	32.656	0.9	33200959
25	Sandaracopimaradiene	DH	625	1960	1953	33.864	2.2	84282782
26	(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	808	1994	1986	34.660	39.6	1541747017
27	Isopropyl palmitate	Misc.	649	2023	2027	35.627	0.6	23140417
28	Epimanool	OD	643	2056	2037	35.862	0.7	27381526
29	Coronarin E	OD	690	2136	2124	37.843	0.4	17108378
30	Larixol	OD	647	2264	2279	42.849	0.7	28728134

 Table B.30: Volatile chemical composition in fraction FG.L

Peak	Name	Class ^a	Match	NIST	Exp.	RT	%Area	Area
				RI	RI			(count·s)
1	<i>p</i> -Cymene	MH	663	1025	1027	7.112	0.2	9460155
2	Unknown	Unknown			1101	9.189	0.3	11225813
3	Unknown	Unknown			1127	10.012	0.1	5352212
4	Unknown	Unknown			1144	10.542	0.4	16427718
5	endo-Borneol	OM	709	1167	1167	11.248	0.3	11148509
6	2-Methylbenzothiazole	Misc.	708	1281	1294	15.326	0.5	23225740
7	Unknown	Unknown			1300	15.523	0.2	8381717
8	Unknown	Unknown			1355	17.258	0.4	16471447
9	Unknown	Unknown			1391	18.389	1.4	60123477
10	Unknown	Unknown			1491	21.459	0.4	16281983
11	Unknown	Unknown			1527	22.516	0.6	27795496
12	Longifolenaldehyde	OS	617	1631	1630	25.493	0.9	40348932
13	Unknown	Unknown			1638	25.700	1.4	61529821
14	(-)-Isolongifolol, methyl ether	OS	676	1672	1673	26.668	4.5	198107144
15	Unknown	Unknown			1684	26.985	0.9	39033884
16	γ-Costol	OS	637	1752	1744	28.588	0.8	37051870
17	γ -Bicyclohomofarnesal	OD	852	1809	1800	30.067	20.8	923170789
18	Unknown	Unknown	2	£.	1878	32.021	1.0	44760765
19	Unknown	Unknown			1903	32.656	0.7	29378382
20	Unknown	Unknown			1928	33.273	0.3	13994174
21	(<i>E</i>)-15,16-Dinorlabda-8(17),12-dien-14-al	OD	664	1958	1953	33.867	1.4	62447616
22	(E)-15,16-Dinorlabda-8(17),11-dien-13-one	OD	794	1994	1986	34.666	58.2	2579123380
23	Unknown	Unknown			2020	35.461	0.3	14505193
24	Geranyl linallol	OD	615	2034	2037	35.862	0.5	22112095
25	Epimanool	OD	700	2056	2053	36.219	1.4	61519209
26	Coronarin E	OD	654	2136	2124	37.843	0.3	11512589
27	Unknown	Unknown			2142	38.250	0.2	10197052
28	Unknown	Unknown			2152	38.472	0.3	13354987
29	Unknown	Unknown			2244	41.397	0.1	5511111
30	Unknown	Unknown			2249	41.613	0.4	16281949
31	Larixol	OD	663	2264	2279	42.849	0.9	41819616

Table B.31: Volatile chemical composition in fraction FG.M

Appendix C

Antibacterial evaluation

Chulalongkorn University

C1) Minimum inhibitory concentration (MIC) against S. aureus of all fractions

Concentration Negative Positive		Concentration	Streptomycin	
	control	control	25 µg mL ⁻¹	
5% DMSO in MHB		0	in H ₂ O	
2.5% DMSO in MHB	-		12.5 μg mL ⁻¹ in H ₂ O	
1.25% DMSO in MHB		\bigcirc	6.25 µg mL ⁻¹ in H ₂ O	
0.63% DMSO in MHB		\bigcirc	MIC result	12.5 µg mL⁻¹

C1.1) MIC of crude DCM and fraction FA-FJ

Concentration	Amoxicillin	Concentration	Ciprofloxacin
1.563 µg mL ⁻¹		1.25 μg mL ⁻¹	
0.312% DMSO in H_2O		in H ₂ O	
0.781 µg mL ⁻¹		0.625 µg mL ⁻¹	
0.156% DMSO in H_2O		in H ₂ O	
0.391 µg mL ⁻¹		0.312 µg mL⁻¹	6-3
0.078% DMSO in H_2O		in H ₂ O	
0.195 µg mL ⁻¹		0.156 µg mL ⁻¹	
0.039% DMSO in $\rm H_{2}O$		in H ₂ O	
MIC result	<0.195 µg mL ⁻¹	MIC result	0.625 µg mL ⁻¹

Concentration	Crude DCM	FA	FB	FC	FD	FE
800 µg mL ⁻¹	0		0			
5% DMSO in MHB			0		\bigcirc	
400 µg mL ⁻¹		dis				
5% DMSO in MHB			C			
200 µg mL ⁻¹		1	0			1
5% DMSO in MHB						
100 µg mL⁻¹	Cas					
5% DMSO in MHB						
MIC result	800	>800	>800	800	800	400
	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹
Concentration	FF	FG	FH	FI	FJ	
-------------------------	---------	---------------------	---------	------------	---------	
800 µg mL⁻¹		6				
5% DMSO in MHB					0	
400 µg mL ⁻¹		6			all a	
5% DMSO in MHB				\bigcirc	-	
200 µg mL ⁻¹		(A)				
5% DMSO in MHB			\sim			
100 µg mL ⁻¹					1	
5% DMSO in MHB						
MIC result	>800	400	400	400	>800	
WIC result	µg mL⁻¹	µg mL ⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	

C1.2) MIC of sub-fraction FE.A-FE.G

Concentration	FE.A	FE.B	FE.C	FE.D	FE.E	FE.F	FE.G
800 µg mL⁻¹	6			6			6
5% DMSO in MHB							
400 µg mL⁻¹	(AS)					6-3	
5% DMSO in MHB			\bigcirc	\bigcirc			
200 µg mL ⁻¹	(2)					10 .	
5% DMSO in MHB							
100 µg mL ⁻¹	CON			6	100	14	
5% DMSO in MHB							
50 µg mL¹				6		16-13	-
5% DMSO in MHB		L.					
MIC result	800	400	400	200	400 µg	>800	>800 µg
WIC result	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	mL⁻¹	µg mL⁻¹	mL⁻¹

Concentration	FG.A	FG.B	FG.C	FG.D	FG.E	FG.F	FG.G	FG.H
800 µg mL⁻¹			0	0				
5% DMSO in MHB			C.		\sim			
400 µg mL ⁻¹	(11) A	1	1	de		C b		0
5% DMSO in MHB		-						
200 µg mL ⁻¹	Callan .	6						
5% DMSO in MHB						()	Q	
100 µg mL ⁻¹	1	6				(A)		
5% DMSO in MHB								
50 µg mL⁻¹						6.0	60.3	
5% DMSO in MHB						S.		
MIC result	>800	>800	400	100	400	400	400	200
WIC result	µg mL⁻¹	µg mL ⁻¹	µg mL¹	µg mL ⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹

C1.3) MIC of sub-fraction FG.A-FG.M

Concentration	FG.I	FG.J	FG.K	FG.L	FG.M	P1	P2
800 µg mL⁻¹	0				()	E	6
5% DMSO in MHB	\bigcirc						
400 µg mL ⁻¹		12	(the		(AB)		
5% DMSO in MHB							
200 µg mL ⁻¹	(The second	6	-		(db)	6-	-
5% DMSO in MHB		\bigcirc					
100 µg mL ⁻¹		1	-	6		1	1
5% DMSO in MHB				e la			
50 µg mL⁻¹	(. N			6.		6.	1
5% DMSO in MHB			0	e			
MIC result	800	>800	400	400	200	>800	>800
WIC result	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹

Concentration Negative Posit		Positive	Concentration	Streptomycin	
Concentration	control	control			
	1		3.13 µg mL*		
5% DMSO in MHB			in H ₂ O		
			1.56 µg mL⁻¹		
2.5% DMSO in MHB		$(-\cdot)$	in H ₂ O		
1 25% DMSO in MHR			0.78 µg mL ⁻¹		
1.23% DIVISO IN WITH			in H_2O		
0.63% DMSO in MHB		\bigcirc	MIC result	1.56 µg mL ⁻¹	
			12-2-	1	

C2.) Minimum inhibitory concentration (MIC) against *M. luteus* of the selected fractions

Concentration	Amoxicillin	Concentration	Ciprofloxacin
0.4 µg mL ⁻¹		10 µg mL ⁻¹	6
5% DMSO in MHB		in H ₂ O	
0.2 µg mL ⁻¹		5 μg mL ⁻¹	
2.5% DMSO in MHB		in H ₂ O	
0.1 µg mL ⁻¹		2.5 µg mL⁻¹	
1.25% DMSO in MHB		in H ₂ O	
0.05 µg mL⁻¹	(And the second	1.25 µg mL⁻¹	
0.63% DMSO in MHB		in H ₂ O	
MIC result	0.2 µg mL ⁻¹	MIC result	2.5 µg mL ⁻¹

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Concentration	Crude	FE	FE.A	FE.C	FE.D	FE.E	FG
	DOM						0
800 µg mL⁻¹							
5% DMSO in MHB							
400 µg mL ⁻¹	60				(db)		
5% DMSO in MHB			S	(-)	(\cdot)		
200 µg mL ⁻¹			Cho .		6		
5% DMSO in MHB				\bigcirc			
100 µg mL ⁻¹			(-)				
5% DMSO in MHB							
50 µg mL⁻¹		6.	6	-		6	6
5% DMSO in MHB						C	
25 µg mL ⁻¹	(0.			-	6	
5% DMSO in MHB							
	400	200	800	100	50	200	400
MIC result	µg mL⁻¹	µg mL ⁻¹	µg mL ⁻¹	µg mL ⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹
			<u>Nak</u>				

Concentration	FG.D	FG.G	FG.H	FG.M	P1	P2
800 µg mL⁻¹				0		
5% DMSO in MHB						
400 µg mL⁻¹		Cha	(CB)	a	Ca	
5% DMSO in MHB	\bigcirc					
200 µg mL⁻¹		0		an		6
5% DMSO in MHB	\bigcirc			0		
100 µg mL⁻¹	(Chan)					
5% DMSO in MHB						
50 µg mL⁻¹		6				
5% DMSO in MHB	Q					
MIC result	400	800	400	400	>400	>400
WIC result	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹

Concentration	entration Negative Positive		Concentration	Streptomycin
	control	control	05 1-1	
			25 µg mL *	
5% DMSO in MHB			in H ₂ O	
		>	12.5 µg mL ⁻¹	
2.5% DMSO in MHB		(-)	in H ₂ O	
1 25% DMSO in MHB			6.25 µg mL ⁻¹	
			in H ₂ O	
0.63% DMSO in MHB		$\overline{\bigcirc}$	MIC result	12.5 µg mL ⁻¹
			12	1

C3.) Minimum inhibitory concentration (MIC) against E. coli of the selected fractions

Concentration	Amoxicillin	Concentration	Ciprofloxacin
50 µg mL⁻¹		0.313 µg mL ⁻¹	
5% DMSO in MHB		in H ₂ O	
25 µg mL ⁻¹		0.156 µg mL ⁻¹	
2.5% DMSO in MHB		in H ₂ O	
12.5 µg mL⁻¹		0.67 µg mL ⁻¹	
1.25% DMSO in MHB		in H ₂ O	
6.25 µg mL⁻¹	C Les	0.04 µg mL ⁻¹	
0.63% DMSO in MHB		in H ₂ O	
MIC result	25 µg mL ⁻¹	MIC result	<0.04 µg mL ⁻¹

Concentration	Crude DCM	alting	FE.A	FE.C	SFE D	FE.E	FG
800 µg mL ⁻¹		5		0		6	0
5% DMSO in MHB							
400 µg mL ⁻¹		6			6		(and
5% DMSO in MHB	C)	\bigcirc	$\overline{\mathbf{C}}$	(-)			
200 µg mL ⁻¹							
5% DMSO in MHB	\bigcirc		\bigcirc				\mathbf{C}
100 µg mL ⁻¹							
5% DMSO in MHB							
MIC result	>800	>800	>800	>800	>800	>800	>800
wite result	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹

Concentration	FG.D	FG.G	FG.H	FG.M	P1	P2
800 µg mL ⁻¹	0		0	0	0	0
5% DMSO in MHB						
400 µg mL ⁻¹		(AB)				
5% DMSO in MHB		$\overline{\mathbf{C}}$	\bigcirc		\bigcirc	(-)
200 µg mL ⁻¹		(alian				
5% DMSO in MHB		\bigcirc			\bigcirc	(-)
100 µg mL ⁻¹						
5% DMSO in MHB						
MIC result	>800	>800	>800	>800	>800	>800
WIC result	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹

C4.) Minimum inhibitory	concentration	(MIC) a	against <i>P.</i>	<i>aeru</i> ginosa	of the	selected
fractions						

Concentration	Negative	Positive	Concentration	Streptomycin	
Concentration	control	control			
			100 µg mL⁻'		
5% DMSO in MHB			in H ₂ O		
			50 µg mL⁻¹		
2.5% DMSO in MHB		and the second s	in H ₂ O		
1 25% DMSO in MHB			25 μg mL ⁻¹		
			in H ₂ O		
0.63% DMSO in MHB			MIC result	50 µg mL ⁻¹	
	No.				

Concentration	Amoxicillin	Concentration	Ciprofloxacin
200 µg mL⁻¹		5 µg mL-1	
5% DMSO in MHB		in H ₂ O	
100 µg mL ⁻¹		2.5 μg mL ⁻¹	
2.5% DMSO in MHB		in H ₂ O	
50 µg mL⁻¹		1.25 µg mL ⁻¹	
1.25% DMSO in MHB		in H ₂ O	
25 µg mL⁻¹		0.63 µg mL ⁻¹	
0.63% DMSO in MHB		in H ₂ O	
MIC result	200 µg mL ⁻¹	MIC result	2.5 μg mL ⁻¹

จุหาลงกรณ์มหาวิทยาลัย

Concentration	Crude DCM	ALONG FE	FE.A	FE.C	FE.D	FE.E	FG
800 µg mL⁻¹	6		0	6		6	0
5% DMSO in MHB							\bigcirc
400 µg mL ⁻¹							
5% DMSO in MHB				$\overline{\mathbb{C}}$			\bigcirc
200 µg mL⁻¹							
5% DMSO in MHB							
100 µg mL⁻¹							
5% DMSO in MHB							
MIC result	>800	>800	>800	>800	>800	>800	>800
IVIIC result	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹

Concentration	FG.D	FG.G	FG.H	FG.M	P1	P2
800 µg mL ⁻¹		6	6	6	6	6
5% DMSO in MHB		(-)		\mathbf{C}	(-)	\bigcirc
400 µg mL⁻¹						
5% DMSO in MHB		(-)				
200 µg mL ⁻¹					10 m	
5% DMSO in MHB						
100 µg mL ⁻¹			6			6
5% DMSO in MHB						
MIC result	>800	>800	>800	>800	>800	>800
WIC result	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹	µg mL⁻¹

CHULALONGKORN UNIVERSITY

Appendix D

NMR spectra

Figure D.2: ¹³C NMR spectrum of petasol (P1) (CDCl₃, 100 MHz)

Figure D.4: HSQC NMR spectrum of petasol (P1) in CDCl_3

Figure D.7: ¹³C NMR spectrum of (*E*)-15,16-dinorlabda-8(17),11-dien-13-one (P2) (CDCl₃, 100 MHz)

Figure D.8: COSY NMR spectrum of (E)-15,16-dinorlabda-8(17),11-dien-13-one (P2) in CDCl₃

Figure D.9: HSQC NMR spectrum of (E)-15,16-dinorlabda-8(17),11-dien-13-one (P2) in CDCl₃

Figure D.12: $^{\rm 13}{\rm C}$ NMR spectrum of P3 (CDCl_3, 100 MHz)

Figure D.14: HSQC NMR spectrum of P3 in CDCl₃

REFERENCES

1. Andersson, D. I., Persistence of antibiotic resistant bacteria. *Curr Opin Microbiol.* **2003**, 6 (5), 452-456.

2. Liang, X.-X.; Kong, L.-X.; Fei, W.-B.; He, M., Chemical constituents and antibacterial activities of *Aspidistra typica*. *Chin J Nat Med.* **2018**, *16* (6), 465-470.

3. Rigby, K. M.; DeLeo, F. R., Neutrophils in innate host defense against *Staphylococcus aureus* infections. *Semin Immunopathol.* **2012**, *34* (2), 237-259.

4. Albertson, D.; Natsios, G. A.; Gleckman, R., Septic shock with *Micrococcus luteus*. *Arch Intern Med.* **1978**, *138* (3), 487-488.

5. Lyczaka, J. B.; Cannon, C. L.; Piera, G. B., Review: Establishment of *Pseudomonas aeruginosa* infection: lessons from a versatile opportunist. *Microbes Infect.* **2000**, *2*, 1051-1060.

6. Bogdanos, D. P.; Baum, H.; Vergani, D.; Burroughs, A. K., The role of *E. coli* infection in the pathogenesis of primary biliary cirrhosis. *Disease markers.* **2010**, *29* (6), 301-311.

7. Odonkor, S.; Addo, K., Bacteria resistance to antibiotics: Recent trends and challenges. *Int J Biol Med Res.* **2011**, 1204-1210.

8. Abraham, E.; Chain, E., An enzyme from bacteria able to destroy penicillin. *Nature.* **1940**, *146*, 837-837.

9. Pumart, P.; Phodha, T.; Thamlikitkul, V.; Riewpaiboon, A.; Prakongsai, P.; Limwattananon, S., Health and economic impacts of antimicrobial resistance in Thailand. *J Health Systems Res.* **2012**, *6*, 352-360.

10. Álvarez-Cisneros, Y. M.; Ponce-Alquicira, E., Antibiotic resistance in lactic acid bacteria. In *Antimicrobial Resistance-A Global Threat*, IntechOpen: **2018**.

11. Owa, T.; Nagasu, T., Novel sulphonamide derivatives for the treatment of cancer. *Expert Opin Ther Pat.* **2000**, *10* (11), 1725-1740.

12. Mingeot-Leclercq, M.-P.; Tulkens, P. M., Aminoglycosides: Activity and resistance. *Antimicrob Agents Chemother.* **1999**, *43* (5), 1003-1012.

Okamoto, S.; Tamaru, A.; Nakajima, C.; Nishimura, K.; Tanaka, Y.; Tokuyama,
S.; Suzuki, Y.; Ochi, K., Loss of a conserved 7-methylguanosine modification in 16S

rRNA confers low-level streptomycin resistance in bacteria. *Mol Microbiol.* **2007**, 63 (4), 1096-1106.

14. Ibrahim, M.; Abbas, M.; Al-Shahrai, A.; Elamin, b., Phenotypic characterization and antibiotic resistance patterns of extended-spectrum β -lactamase- and AmpC β lactamase-producing gram-negative bacteria in a referral hospital, Saudi Arabia. *Can J Infect Dis Med Microbiol.* **2019**, 1-9.

15. Zwolska, Z.; Jezierska-Anczuków, A.; Filczak, K.; Basta, M.; Dworzyński, A.; Rogala-Zawada, D.; Samet, A., A Polish multicenter survey of antimicrobial susceptibility and prevalence of beta-lactamase production among bacterial pathogens isolated from hospitalized and ambulatory patients. *Pol Merkur Lekarski.* **1998**, *4* (23), 241-246.

16. LeBel, M., Ciprofloxacin: Chemistry, mechanism of action, resistance, antimicrobial spectrum, pharmacokinetics, clinical trials, and adverse reactions. *Pharmacotherapy.* **1988**, *8* (1), 3-30.

17. Zeller, V.; Janoir, C.; Kitzis, M. D.; Gutmann, L.; Moreau, N. J., Active efflux as a mechanism of resistance to ciprofloxacin in *Streptococcus pneumoniae*. *Antimicrob Agents Chemother*. **1997**, *41* (9), 1973-1978.

18. Hashemi, S.; Nasrollah, A.; Rajabi, M., Irrational antibiotic prescribing: a local issue or global concern? *EXCLI J.* **2013**, *12*, 384-395.

19. Newman, D. J.; Cragg, G. M.; Snader, K. M., Natural products as sources of new drugs over the period 1981-2002. *J Nat Prod.* **2003**, *66* (7), 1022-1037.

20. Gullo, V. P.; McAlpine, J.; Lam, K. S.; Baker, D.; Petersen, F., Drug discovery from natural products. *J Ind Microbiol Biotechnol.* **2006**, *33* (7), 523-531.

21. Rao, N.; Dowluru, K. S., Inhibition of proteases and anti-cancer activities of ethanolic tuber extract of *Globba Bulbifera*. *Int J Pharmacogn*. **2014**, *1* (1), 82-86.

22. Roy, S.; Acharya, R.; Harisha, C., Macro microscopical Evaluation of *Gobba marantina* Linn. Stem. *Int J Ayu Pharm Chem.* **2016**, *4* (2), 46-52.

23. Kumar, R.; Prakash, O.; Pant, A.; Isidorov, V. A.; Mathela, C., Chemical composition, antioxidant and myorelaxant activity of essential oils of *Globba sessiliflora* Sims. *J Essent Oil Res.* **2012**, *24* (4), 385-391.

24. Thi Phuong, N.; Thi Thanh Huyen, D.; Thi Hai Hoa, B.; Ngoc Hung, L.; Minh Ha, L., A new polyoxygenated cyclohexene from the rhizomes of *Globba pendula* Roxb. *Nat Prod Commun.* **2020**, *15* (4), 1-4.

25. Manokam, N.; Nuntawong, N., Chemical constituents from the rhizomes of *Globba reflexa* Craib. *Biochem Syst Ecol.* **2014**, *57*, 395-398.

26. M, M.; Paetz, C.; Stanslas, J.; Abas, F.; Nordin, N. H., Naturally occurring labdane diterpene and benzofuran from *Globba pendula*. *Nat Prod Commun.* **2009**, *4* (8), 1031-1036.

27. Williams, K. J.; Kress, W. J.; Manos, P. S., The phylogeny, evolution, and classification of the genus *Globba* and tribe Globbeae (Zingiberaceae): appendages do matter. *Am J Bot.* **2004**, *91* (1), 100-114.

28. ไตรบุญ, ป.; พัชรียา บุญกอแก้ว ตอนที่ 3 ทรัพย์สินชีวภาพพืชวงศ์ขิง บทที่ 8.1 พันธุ์ป่า ใน พัชรียา บุญกอแก้ว ผู้รวบรวม, บ., สำนักงานคณะกรรมการวิจัยแห่งชาติ (วช.), กรุงเทพฯ., ทรัพย์สินชีวภาพพืชวงศ์ขิง. In บัญชีรายการทรัพย์สินชีวภาพพืชวงศ์ขิง, บุญกอแก้ว, พ., Ed. กรุงเทพฯ, 2556.

29. Raj, G.; George, V.; Mathew, D.; Sethuraman, M., Essential oil composition of *Globba schomburgkii* Hook. f. and *Globba ophioglossa* Wight. *J Essent Oil Res.* **2010**, 22, 220-222.

30. Doungchawee, J.; Kulsing, C.; Suekaew, N.; Na Pombejra, S.; Chavasiri, W.; Plabutong, N.; Thammahong, A.; Khotavivattana, T., Volatile chemical composition, antibacterial and antifungal activities of extracts from different parts of *Globba schomburgkii* Hook.f. *Chem Biodivers*. **2019**, *16* (5), e1900057.

31. Malviya, N.; Malviya, S., Bioassay guided fractionation-an emerging technique influence the isolation, identification and characterization of lead phytomolecules. *Int J Hosp Pharm.* **2017**, *2* (5), 0001-0006.

32. Lin, L.; Zhu, D.; Zou, L.; Yang, B.; Zhao, M., Antibacterial activity-guided purification and identification of a novel C-20 oxygenated *ent*-kaurane from *Rabdosia serra* (MAXIM.) HARA. *Food Chem.* **2013**, *139* (1), 902-909.

33. Jiang, M.; Kulsing, C.; Nolvachai, Y.; Marriott, P. J., Two-dimensional retention indices improve component identification in comprehensive two-dimensional gas chromatography of saffron. *Anal Chem.* **2015**, *87* (11), 5753-5761.

34. Menon, A. N.; Dan, M., Chemical composition of essential oils of *Globba* species from south india. *J Essent Oil Res.* **2009**, *21* (1), 59-60.

35. Fan, S.; Chang, J.; Zong, Y.; Hu, G.; Jia, J., GC-MS analysis of the composition of the essential oil from *Dendranthema indicum* var. aromaticum using three extraction methods and two columns. *Molecules*. **2018**, *23* (3), 576.

36. Matsuura, K.; Wang, W.-H.; Ching, A.; Chen, Y.; Cheng, C.-M., Paper-based resazurin assay of inhibitor-treated porcine sperm. *Micromachines (Basel)*. **2019**, *10* (8), 495.

37. S. J. Cavalieri; R. J. Harbeck; Y. S. McCarter; J. H. Ortez; I. D. Rankin; R. L. Sauter; S. E. Sharp; C. A. Spiegel, *Manual of antimicrobial susceptibility testing*. American Society for Microbiology,: Washington, DC, **2005**; 25, 39-62.

38. Yurchenko, A.; Smetanina, O.; Kalinovskii, A.; Kirichuk, N.; Yurchenko, E.; Afiyatullov, S. S., Biologically active metabolites of the facultative marine fungus *Penicillium citrinum. Chem Nat Compd.* **2013**, *48* (6), 996-998.

39. Itokawa, H.; Yoshimoto, S.; Morita, H., Diterpenes from the rhizomes of *Alpinia formosana*. *Phytochemistry*. **1988**, 27 (2), 435-438.

40. Weyerstahl, P.; Marschall, H.; Schneider, S.; Subba, G. C., Constituents of the essential oil from the rhizomes of *Hedychium acumnatum* Roscoe. *Flavour Fragr J.* **1995**, *10* (3), 179-185.

41. Weyerstahl, P.; Schwieger, R.; Schwope, I.; Hashem, M. A., Synthesis of some naturally occurring drimane and dinorlabdane derivatives. *Liebigs Annalen.* **1995**, 1389-1392.

42. González, M. A.; Mancebo-Aracil, J.; Tangarife-Castaño, V.; Agudelo-Goméz, L.; Zapata, B.; Mesa-Arango, A.; Betancur-Galvis, L., Synthesis and biological evaluation of (+)-labdadienedial, derivatives and precursors from (+)-sclareolide. *Eur J Med Chem.* **2010**, *45* (9), 4403-4408.

43. León, L. G.; Donadel, O. J.; Tonn, C. E.; Padrón, J. M., Tessaric acid derivatives induce G_2/M cell cycle arrest in human solid tumor cell lines. *Bioorg Med Chem.* **2009**, *17* (17), 6251-6256.

44. Kader, M. G.; Habib, M. R.; Nikkon, F.; Yeasmin, T.; Rashid, M.; Mukhlesur, M.; Gibbons, S. In Zederone from the rhizomes of Zingiber zerumbet and its antistaphylococcal Activity (Aislamiento de Zederona de los rizomas de Zingiber zerumbet y su actividad antiestafilocócica), **2010**.

45. Asem, S. D.; Laitonjam, W. S., A new guaianolide sesquiterpene lactone from *Curcuma leucorrhiza* Roxb. *Nat Prod Res.* **2014**, *28* (7), 477-482.

46. Rasul, A.; Khan, M.; Ali, M.; Li, J.; Li, X., Targeting apoptosis pathways in cancer with alantolactone and isoalantolactone. *Sci World J.* **2013**, 1-9.

47. Barrero, A. F.; Herrador, M. M.; Quílez del Moral, J. F.; Arteaga, P.; Meine, N.; Pérez-Morales, M. C.; Catalán, J. V., Efficient synthesis of the anticancer β -elemene and other bioactive elemanes from sustainable germacrone. *Org Biomol Chem.* **2011**, *9* (4), 1118-1125.

VITA

NAME	Naruemon Suekaew
DATE OF BIRTH	17 June 1994
PLACE OF BIRTH	Suratthani Thailand
INSTITUTIONS ATTENDED	Bachelor's degree from bachelor of science in applied
	chemistry, school of science, Mae Fah Luang University,
	2013-2016
HOME ADDRESS	69 Moo 8 Klongchanark Muang Suratthani Thailand 84000
PUBLICATION	1.) Doungchawee, J., Kulsing, C., Suekaew, N., Na
1	Pombejra, S., Chavasiri, W., Plabutong, N., Thammahong,
	A., Khotavivattana, T., 2019. Volatile chemical composition,
Le contra de la co	antibacterial and antifungal activities of extracts from
	different parts of Globba schomburgkii HOOK.F. Chem.
	Biodivers. 16, e1900057.
	2.) Suekaew, N., Na Pombejra, S., Kulsing, C.,
	Doungchawee, J., Khotavivattana, T., 2020. Bioassay-
จุหา	Guided Fractionation, Chemical Compositions and
	Antibacterial Activity of Extracts from Rhizomes of Globba
	schomburgkii HOOK.F. Chem. Biodivers. 17, e2000173.