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Creating an effective classification model has been played an important role in

knowledge discovery in a database methodology for the past several years. However, there

is a critical issue that significantly affects the classification performance appearing in many

real-world situations, which is called a class imbalanced problem. In this dissertation,

a classification model built based on the recursive partitioning algorithm is improved

under the concept of modified entropy components for handling a classification problem

regardless of the class imbalanced situation. Three methodologies are introduced for

achieving different purposes. The first methodology is presented to classify a binary-class

imbalanced dataset dealing only with numeric attributes, and then it is enhanced to deal

with the multi-class case in the second methodology. The third methodology is designed

to work with a dataset consisting of both numeric attributes and categorical attributes.

The experimental results on both synthetic datasets and real-world datasets from the

UCI repository show that these proposed methodologies significantly outperform other

existing methods.
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CHAPTER I

INTRODUCTION

Due to the rapid increase in the amount of information accumulated continuously,

the automated or convenient tools for analyzing them are in great demand. Knowledge

discovery in database (KDD) [1] is the non-trivial process of identifying novel, valid,

understandable, and potentially useful patterns from a large and complex dataset. It

involves tools from various fields of knowledge, such as mathematics, statistics, computer

programming, database management, including specific domain expertise. The process of

KDD is displayed in Figure 1.1, which consists of numerous steps to achieve the deter-

mined goals.

1. The selection step is the initial preparatory step aiming to define the target dataset.

It relates to analyst’s understanding of the application domains and the data do-

mains, the availability of data, and then assembling all data into a single dataset

along with all attributes that will be used in the next process.

2. The preprocessing step enhances the reliability and quality of the dataset. It cov-

ers the verification of completeness and redundancy, the treatment of the missing

values, the detection of noises and outliers, etc.

3. The transformation step is the process to convert the dataset from one format/

structure into another format/structure depending on the goals. It consists of

the feature selection, the feature extraction, the dimensionality reduction, and the

attribute transformation.

4. The data mining step is the most important step of all processes in the KDD

process aiming to discover or extract or “mine” formerly unknown patterns from

the dataset that is provided from previous steps.
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Figure 1.1: KDD process

5. The interpretation/evaluation step concentrates on the comprehensibility and use-

fulness of the derived patterns with respect to the goals. Then, the current usage

and the overall feedbacks are deployed.

For the data mining task, there are a variety of methods that have been proposed

for achieving different objectives. They can be roughly divided into two main categories

that are descriptive methods and predictive methods.

The descriptive methods focus on transforming a dataset to make it easier in inter-

preting and understanding the nature for an analyst. It performs on a dataset without

any prespecified provision nor dependent variable. The examples of methods in this group

include the followings.

• The summarization involves the techniques to encounter the compact description of

a dataset. The basic summarization methods usually relate to statistical techniques.

For example, the mean, the median, and the mode are used for measuring the

central tendency of each attribute, while the range, the interquartile range, the

variance, and the standard deviation are used for measuring the dispersion of the

numeric attribute.
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• The visualization may be classified as a part of summarization aiming to inspect a

dataset through graphical means. It is able to help identify relations, trends, and

biases that are hidden in a dataset. Many techniques are used for visualizing a

dataset covering the boxplot, the histogram, the scatter-plot matrices, and the 3D

plot.

• The association rule induction is applied to discover the relationships or the fre-

quent patterns among a set of data items in a large database. It is used in the

market basket analysis [2], which looks for the combinations of items occurring

together in the transactions frequently.

• The clustering concentrates on identifying groups of instances based on the struc-

ture of a dataset. Instances that have similar characteristics will be in the same

cluster, while instances that have distinct characteristics will be in different clus-

ters. The similarity for clustering is determined by various measures, such as the

distance among the instances and the density around instances. The examples of

clustering techniques include k-mean clustering [3], hierarchical clustering [4], and

DBSCAN [5].

The predictive methods are oriented to build a model from the discovered rela-

tionship between a set of input attributes (independent variables) and target attributes

(dependent variables). Generally, the models are constructed based on inductive learning

from a sufficient number of labeled instances. For instance, the regression analysis [6]

concerns with building the model to predict the target values of instances being in an

infinite real-valued domain.

Additionally, classification is another significant predictive method that has been

studied continuously from the past to the present. It performs on a dataset that its

target domain is finite and discrete known as a class label. A classification algorithm will

be responsible to learn from a training dataset, in which each class instance is labeled,

to create a classification model or a classifier that can predict or classify the class of

unlabeled instances. Many well-known classification models along with their algorithms
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have been presented based on different concepts. For example, the k-nearest neighbors

classifier (KNN) [7] uses the concept of similarity, the Naïve Bayes model [8] and the

logistic regression [9] rely on the knowledge of probability and statistics, a decision tree

[10] and decision rules [11] apply the recursive partitioning method based on properties of

all attributes, a support vector machine (SVM) [12] and a linear discriminant model [13]

relate to the linear separation, and an artificial neural network (ANN) [14] and a deep

learning [15] simulates the work of the human brain.

This dissertation concentrates on the decision tree which has received attention due

to its popularity both in the fields of education, business, including science and technology

[16]. It is a tree-based classification model consisting of multiple connected nodes. Each

non-leaf node represents a specific splitting condition for traversing to a child node. Each

leaf node indicates a specific class for labeling instances reaching to that node. To induce

a decision tree, the recursive partitioning algorithm is widely used. The set of instances in

each non-leaf node is recursively partitioned until a child node contains all instances from

the same class which is used for labelling the leaf node. Many studies recognize a decision

tree as one of the most prevailing models to learn a dataset [17, 18, 19]. Especially for

the latest in 2019 [20], it was voted to be the second-ranked of the top used methods in

data science and machine learning, which is the most popular model for the classification

task.

The success of the decision tree can be explained by various factors. First, a deci-

sion tree algorithm consumes small computational time to build a model. Moreover, it

also spends negligible time in predicting the classes of unlabeled instances. Second, the

mechanism of a decision tree is not complicated, which is able to be easily interpreted for

humans. Third, a decision tree is robust. It is still effective even if a dataset contains

some anomalies and missing values.

Nevertheless, similar to other methods, a decision tree algorithm usually faces the

hassle of constructing a non-bias model from a dataset that has extremely unequal class

distribution [21]. The built decision tree tends to classify most unlabeled instances to be
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in the classes having a large number of instances (called majority classes), causing a lot

of misclassification for instances in other classes having a tiny number of instances (called

minority classes). This problem is known as the class imbalanced problem playing an

important role in data mining over the past several years. It can be found abundantly in

numerous real-world situations, in which the minority classes have normally been more

focused on classifying correctly than the majority ones. For example, in disease diagnosis

[22, 23, 24], there is a small number of patients compared with normal people, but they

are important and must be discovered. Similarly in fraud detection [25, 26], the prediction

of fraudulent transactions is more focused than non-fraudulent cases. Furthermore, the

class imbalanced problem also appears in network intrusion detection [27], industrial

systems monitoring [28], e-mail spam filtering [29], protein/DNA identification [30], target

detection [31], activity recognition [32], sentiment analysis [33], text mining [34], video

mining [35], and many other interesting issues [36]. Therefore, it is absolutely necessary

to deal with this issue carefully.

Adjusting the decision tree algorithm for building a decision tree from an imbalanced

dataset has been continuously introduced [37]. One approach handles the class imbalanced

problem directly without changing the classification algorithm of the dataset such as the

sampling method, another commonly used technique. Normally, the improvement of

the decision tree algorithm usually focuses on modifying the splitting measures, which

are used to select the splitting condition for each non-leaf node. Traditional splitting

measures, especially the Shannon’s entropy (SE) [38] using in the ID3 algorithm [10]

and the C4.5 algorithm [39], have been improved with various concepts. Modifying the

components of SE is the latest concept presented by Boonchuay and her colleagues in 2017

[40]. Their proposed splitting measure, the minority entropy or ME, offers significantly

better performance than other measures, even if the original structure of the SE formula

remains the same. However, it lacks the important properties of the decision tree being

able to work with a multi-class dataset consisting of categorical attributes, which are the

main issues leading to this dissertation.
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1.1 Research Objectives

The objectives of this dissertation are to propose new recursive partitioning algo-

rithms for building the decision trees being able to classify both binary-class and multi-

class balanced and imbalanced datasets dealing with both numeric attributes and categor-

ical attributes effectively. Moreover, an empirical, experimental and theoretical analysis

of each proposed method are also demonstrated.

1.2 Proposed Methodologies

To achieve the objectives above, three methodologies are introduced in this disser-

tation.

• Methodology I: Decision tree induction for a binary-class imbalanced dataset

dealing with numeric attributes

The concept of modified entropy components is enhanced by applying the outlier

detection to present the recursive partitioning algorithm for building the decision

tree to classify a binary-class imbalanced dataset dealing only with numeric at-

tributes.

• Methodology II: Decision tree induction for a multi-class imbalanced dataset

dealing with numeric attributes

The concept of modified entropy components is expanded to present the self-

balancing recursive partitioning algorithm for building the decision tree to classify

a multi-class imbalanced dataset dealing only numeric attributes.

• Methodology III: Decision tree induction for a multi-class imbalanced dataset

dealing with numeric and categorical attributes

The proposed self-balancing recursive partitioning algorithm is generalized from

methodology II to classify a multi-class imbalanced dataset dealing with both nu-

meric attributes and categorical attributes.
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1.3 Dissertation Overview

The remainder of this dissertation is organized as follows. In the second chapter,

a brief review of the required background knowledge, including some related works are

shown. Then, the third, the fourth and the fifth chapters demonstrate the detail of

methodologies I, II and III, respectively. They also state properties, examples, algorithms,

and evaluations of each method as well. Finally, the findings of this dissertation are

concluded in the sixth chapter along with their directions for further research.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

BACKGROUND KNOWLEDGE AND

RELATED WORKS

This chapter offers more details about the background knowledge that is necessary

for understanding this dissertation, which covers classification, a decision tree, a class

imbalanced problem, and a decision tree for an imbalance dataset. In addition, it also

includes a review of some interesting related works.

2.1 Overview of Classification Process

Classification is a process to extract information by class characteristics from a

dataset, which consists of two steps shown in Figure 2.1, i.e. the learning step (training

phase) and the classifying step (testing phase). In the first step, the classification model

is built from the training dataset (the set of labeled instances) using the classification

algorithm. Then, in the second step, the classification model is used to predict the classes

of unlabeled instances in the testing dataset with known class labels.

Figure 2.1: Classification process
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To evaluate the performance of each classification model, it is applied to classify a

labeled dataset and then measure differences between the predicted class and the actual

class. However, the model is normally overfitted with a dataset that is used to build

from the training dataset, so it tends to correctly predict most instances in that dataset

while it may misclassify unseen instances in the testing dataset. Accordingly, the set of

instances used in the training process and the testing process should not be the same.

There are two methods that are widely used to split a dataset, i.e. the holdout method

and cross-validation.

• For the holdout method, it directly divides a dataset into two subsets by the ran-

domization.

1. The training dataset is for building the classifier.

2. The testing dataset is for assessing the classifier.

Moreover, sometimes, a dataset may be separated into three subsets that are the

training dataset, the testing dataset, and the validating dataset. For the validating

dataset, it is used for parameter tuning that is normally applied before evaluating

the model with the testing dataset.

• For cross-validation, it divides a dataset into k partitions, in which k is the specific

parameter. Then, each partition is employed as the testing dataset and others

are used for train. The process is repeated for all k partitions. Accordingly, any

instance is treated as a testing instance only once during the evaluation. Moreover,

there is a special case of cross-validation that takes only one instance for the testing

dataset, called the leave-one-out method. It normally uses when the size of the

dataset is small.

2.2 Training Dataset in Classification

Mathematically, the number of instances, the number of input attributes, and the

number of classes in a training dataset are denoted by m, n, and p, which are indexed by
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i, j, and k, respectively. Let A = {Aj | j = 1, 2, ..., n} be a set of input attributes, and y

be a target attribute (class label). The input space is defined as a Cartesian product of

all input attribute domains denoted by X, i.e. X = dom(A1)×dom(A2)× ...×dom(An).

For the domain of the target attribute, it represents a set of classes denoted by C, i.e.

C = dom(y) = {ck | k = 1, 2, ..., p}. Then, define D = {(x⃗i, yi) | i = 1, 2, ...,m}

where each instance is in X×C be a training dataset represented by Figure 2.2, in which

x⃗i = ⟨xi1, xi2, ..., xin⟩. Therefore, D can be separated into p partitions according to the class

label, i.e. D = D1 ∪ D2 ∪ ... ∪ Dp, where Dk = {(x⃗i, yi) ∈ D | yi = ck for i = 1, 2, ...,m}

having size mk, such that m1 +m2 + ...+mk = m. Note that, dataset D will be called

a binary-class dataset or a multi-class dataset, when there are two classes (p = 2) and

more than two classes (p > 2), respectively. For a classification model, it is the function

that maps the input space to the set of classes, i.e. f : X → C.

Figure 2.2: A structure of training dataset D
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2.3 Decision Tree

A decision tree is a type of the rule-based classification model. Graphically, it has a

flowchart-like tree structure as shown in Figure 2.3 consisting of a set of nodes connected

by edges or branches. The nodes can be divided into three types.

• The root node is the node that has no incoming edges with two or more outgoing

edges. It represents the condition to select the next level child nodes for each

evaluated instance.

• The internal nodes are the nodes that have exactly one incoming edge with two

or more outgoing edges. They also represent the condition to select the next level

child nodes for the evaluated instance reaching them.

• The leaf nodes or leaves are the nodes that have exactly one incoming edge with no

outgoing edges. They represent the specific class to assign to the evaluated instance

reaching them.

For each branch, it represents an outcome of the condition. An instance from the node

at the beginning of the branch will be forwarded to the leaf node at the terminal of the

path if it satisfied the path’s outcome.

Figure 2.3: A structure of the decision tree
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Two decision tree examples are shown in Figure 2.4(a) and Figure 2.4(b). For the

first example, it predicts whether people are likely to purchase a car. Each non-leaf node

represents the condition on the attribute, in which each outcome is shown in each branch.

For each leaf node, it represents the class, either buy a car (“Yes”) or not (“No”). In

the case that all input attributes are continuous values, it gives the result as dividing the

input space, as shown in the second example. The space R2 is divided into three parts

for each class, i.e. the red-circle class, the green-square class, and the blue-triangle class.

(a)

(b)

Figure 2.4: Two decision tree examples

To classify an unlabeled instance, the decision tree evaluates this instance at the

root node and moving through the internal nodes until the leaf node is encountered.

For example, in Figure 2.5(a), thirty-two years old woman who has a medium salary is
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predicted that she will not buy a car. While in Figure 2.5(b), the unlabeled instance

which is represented by the star locating at (0.5,0.5) is classified to be the green-square

class.

(a)

(b)

Figure 2.5: Classifying unlabeled instances using the decision trees
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2.3.1 Recursive Partitioning Algorithm

A task of building a decision tree is usually called decision tree induction. It con-

structs the tree by learning from a class label of training instances. Most existing decision

tree induction methods build the tree in the top-down fashion [41] using the recursive par-

titioning algorithm, which is derived from the concept learning system (CLS) [42].

The pseudocode of inducing the decision tree from training dataset D using the

recursive partitioning algorithm is displayed by Algorithm 2.1. It starts with creating the

root node for the entire training dataset. If all instances come from the same class, the

leaf node is created corresponding to that class. Otherwise, dataset D will be separated

into a certain number of partitions, denoted by q, using the selected splitting condition.

Then, the algorithm is performed recursively on each partition until all instances come

from the same class or meeting other stopping criteria such as the specified tree depth.

Algorithm 2.1: RecursivePartitioning(D)
Input: a set of instances D
Output: a decision tree

1 •create the root node of the tree
2 if all instances in D are in the same class then
3 return the leaf node with respect to that class
4 else
5 •select the splitting condition
6 •separate the dataset into q partitions corresponding to the

outcomes of splitting condition: D = D(1) ∪ D(2) ∪ ... ∪ D(q)

7 •iterate for each partition: RecursivePartitioning(D(l)) for
l = 1, 2, ..., q

Traditionally, the condition for splitting a set of instances in each non-leaf node

is selected based on a single attribute. The attribute that provides the optimal value of

a specific splitting measure will be chosen. For each attribute, all possible scenarios to

partition the dataset called candidates are all considered, which differ according to the

type of attributes.
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• Categorical attribute: The dataset will be divided into subsets based on the number

of possible values of the categorical attribute, see Figure 2.6. Let Aj be a categorical

attribute of training dataset D having q distinct values, {A(1)
j , A

(2)
j , ..., A

(q)
j }. The

outcomes of the splitting condition based on attribute Aj correspond directly to

all of its values. A branch is generated for each value. For l = 1, 2, ..., q, partition

D(l) is the subset of instances in D that their values of attribute Aj is A
(l)
j , i.e.

D(l) = {(x⃗i, yi) ∈ D | xij = A
(l)
j for i = 1, 2, ...,m}. Since all instances in each

partition have the same value of attribute Aj , this attribute Aj will not be used

for splitting in any child node.

Figure 2.6: Partitioning the set of instances using the categorical attributes

• Numeric attribute: Due to the infinite possibility of values, partitioning the set of

instances by a numeric attribute could not use all values as the outcomes of the

splitting condition. In general, it usually uses a particular value called the splitting

value to partition the dataset into two subsets (q = 2), see Figure 2.7. Let Aj be

the numeric attribute of training dataset D, and a0 be the splitting value. Two

branches are created for the values of attribute Aj that are less than a0, and are

greater than or equal to a0. The left partition and the right partition are the subsets

of instances in D defined as D(left) = {(x⃗i, yi) ∈ D | xij < a0 for i = 1, 2, ...,m}

and D(right) = {(x⃗i, yi) ∈ D | xij ≥ a0 for i = 1, 2, ...,m}. To select value a0, the

greedy approach is applied to a set of instance values along attribute Aj , πj(D) =

{πj(x⃗i) = xij | (x⃗i, yi) ∈ D for i = 1, 2, ...,m}. The middle values between each

pair of adjacent sequential values of πj(D), i.e.
x
(i)
j + x

(i+1)
j

2
for i = 1, 2, ...,m− 1,

are all considered as the candidates of the splitting values, which is shown in Figure

2.8. The value that offers the best splitting measure is chosen to be the splitting

value of attribute Aj .
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Figure 2.7: Partitioning the set of instances using numeric attributes

Figure 2.8: The candidates of the splitting value (displayed by each arrow) with
respect to numeric attribute Aj

2.3.2 Splitting Measures

Many splitting measures have been proposed as the criteria for selecting the splitting

condition at each non-leaf node in decision tree induction. Most of them are presented

under the concept of measuring the impurity of dataset D, such as the Gini index [43],

the Shannon’s entropy (or SE or entropy) [38] and the misclassification error, which are

defined by (2.1), (2.2) and (2.3), respectively, in which Pk(D) denotes the proportion of

instances from class ck that are contained in D, i.e. Pk(D) =
|Dk|
|D|

. Their highest value

will occur when the dataset contains a similar number of instances from all classes, and

they will have the lowest value approaching zero when there is a single class in the dataset.

For example, the comparison of the Gini index, SE and the misclassification errors for the

binary-class dataset is shown in Figure 2.9.

Gini(D) = 1−
p∑

k=1

(Pk(D))2 (2.1)

Entropy(D) = −
p∑

k=1

Pk(D) log2 Pk(D) (2.2)

ClassError(D) = 1− max
k={1,2,...,p}

Pk(D) (2.3)
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Figure 2.9: The comparison of each splitting measure for the binary-class dataset

In practice, the weighted average of the assigned weight values from a splitting mea-

sure calculated from each subset of instances after partitioning dataset D is used to com-

pare for selecting the splitting condition, which is shown by (2.4), in which SplitMeasure

represents any splitting measure, and c = {splitting attribute(s) : outcome 1, ..., outcome q}

denotes a candidate of the splitting condition that partitions dataset D into q subsets, i.e.

D = D(1) ∪D(2) ∪ ...∪D(q). For the impurity-based splitting measures mentioned above,

the candidate that offers the lowest weighted average value is chosen to be the splitting

condition.

SplitMeasurec(D) =

q∑
l=1

|D(l)|
|D|

SplitMeasure(D(l)) (2.4)

Those splitting measures have been applied to use in many well-known decision

tree algorithms. For the Gini index, it is directly used as the splitting measure in the

classification and regression trees (CART) algorithm [44]. In 1986, Quinlan proposed

the decision tree algorithm called the Iterative Dichotomiser 3 (ID3) algorithm [10] that

employs the information gain to determine the splitting condition at each non-leaf node.

It is the subtraction between the entropy of the entire dataset before splitting and the

weighted average of the entropy of each partition after splitting, which is shown by (2.5).

The candidate providing the highest information gain is chosen to be the splitting condi-
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tion. However, the use of the information gain tends to favor the attribute having many

distinct values. So, the decision algorithm known as the C4.5 algorithm is introduced to

handle this issue. It uses the gain ratio, shown in (2.7), as the splitting measure that

normalizes the information gain by dividing with the split information defined by (2.6),

in which P (l)(D) denotes the proportion of instances in D(l) compared to entire dataset

D, i.e. P (l)(D) =
|D(l)|
|D|

.

InfoGainc(D) = Entropy(D)− Entropyc(D) (2.5)

SplitInfoc(D) = −
q∑

l=1

P (l)(D) log2 P (l)(D) (2.6)

GainRatioc(D) =
InfoGainc(D)

SplitInfoc(D)
(2.7)

In addition, another interesting splitting measure called the distinct class based

splitting measure (DCSM) [45] has been proposed recently. It is defined by (2.8), which

is a combination of two concepts. First, considering the number of distinct classes in

each partition D(l) after splitting dataset D, which is denoted by C(D(l)). The partition

having a lesser number of distinct classes is purer and gives a low value, corresponding

to the first term of the DCSM formula. Second, considering the proportion of instances

from each class ck in D(l) denoted by Pk(D(l)), where Pk(D(l)) =
|D(l)

k |
|D(l)|

. It decreases

dramatically when there are many instances from one class approaching the total number

of instances.

DCSM(D(l)) = C(D(l)) exp
(
C(D(l))

)
·

p∑
k=1

Pk(D(l)) exp
(
C(D(l))

p

(
1− (Pk(D(l)))2

))
(2.8)
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2.3.3 Examples of Inducing a Decision Tree

In this section, two training datasets (named D1 and D2) are used as two examples

to demonstrate decision tree induction. The first example (dataset D1) is represented

by Table 2.1, which contains eight instances having three input attributes, i.e. Gender,

Salary and Age denoted by G, S and A, respectively. It is the binary-class dataset that

indicates whether the individual is likely to buy a car (Buy car? = “Yes”) or not (Buy

car? = “No”).

Gender Salary Age Buy car?
Male High 18 No

Female Medium 25 No
Female Low 40 No
Female Medium 48 No
Male Medium 20 Yes
Male Low 32 Yes
Male High 54 Yes

Female High 45 Yes

Table 2.1: Sample dataset D1

The recursive partitioning algorithm is performed on D1, which obtains the result

as shown in Figure 2.10. Since the set of instances considered in the nodes at the top

level and the second level are from different classes, they are partitioned into subsets

forwarding to the child nodes using the selected attribute. The nodes at the bottom level

would not continue the partitioning process because they contain instances from the same

class.
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To select the splitting attribute at each non-leaf node, the Shannon’s entropy (SE)

is used as the splitting measure, which there will be a calculated demonstration for the

root node as follows:

For entire dataset D1, three input attributes are considered.

1. Categorical attribute Gender has two distinct values, i.e. “Male” and “Female”.

Then, dataset D1 will be divided into two subsets according to the splitting condi-

tion c1 = {Gender : (1) Gender = “Male”, (2) Gender = “Female”}, where Gender

is the splitting attribute, Gender = “Male” and Gender = “Female” are all possible

splitting values.

• There are four instances that their values of attribute Gender are “Male”,

in which three instances are from “Yes” class and one instance is from “No”

class. Therefore,

Entropy(D1(1)) = −3

4
log2

3

4
− 1

4
log2

1

4
= 0.81128.

• There are four instances that their values of attribute Gender are “Female”,

in which one instance is from “Yes” class and three instances are from “No”

class. Therefore,

Entropy(D1(2)) = −1

4
log2

1

4
− 3

4
log2

3

4
= 0.81128.

So, the entropy after partitioning dataset D1 by attribute Gender is equal to

Entropyc1(D1) = 4

8
· Entropy(D1(1)) +

4

8
· Entropy(D1(2))

=
4

8
· 0.81128 + 4

8
· 0.81128

= 0.81128.
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2. Categorical attribute Salary has three distinct values, i.e. “High”, “Medium” and

“Low”, denoted by Hi, Md and Lo, respectively. Then, dataset D1 will be divided

in to three subsets according to the splitting condition c2 = {Salary : (1) Salary =

“High”, (2) Salary = “Medium”, (3) Salary = “Low”}, where Salary is the split-

ting attribute, Salary = “High”, Salary = “Medium” and, Salary = “Low” are all

possible splitting values.

• There are three instances that their values of attribute Salary are “High”, in

which two instances are from “Yes” class and one instance is from “No” class.

Therefore,

Entropy(D1(1)) = −2

3
log2

2

3
− 1

3
log2

1

3
= 0.9183.

• There are three instances that their values of attribute Salary are “Medium”,

in which one instance is from “Yes” class and two instances are from “No”

class. Therefore,

Entropy(D1(2)) = −1

3
log2

1

3
− 2

3
log2

2

3
= 0.9183.

• There are two instances that their values of attribute Salary are “Low”, in

which one instance is from “Yes” class and one instance is from “No” class.

Therefore,

Entropy(D1(3)) = −1

2
log2

1

2
− 1

2
log2

1

2
= 1.

So, the entropy after partitioning dataset D1 by attribute Salary is equal to

Entropyc2(D1) = 3

8
· Entropy(D1(1)) +

3

8
· Entropy(D1(2))

+
2

8
· Entropy(D1(3))

=
3

8
· 0.9183 + 3

8
· 0.9183 + 2

8
· 1

= 0.93872.
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3. Numeric attribute Age has eight distinct values that are ordered. Using the greedy

approach, all middle values must be considered as the candidates of splitting value

and computed their values of entropy as shown in Figure 2.11. The value that

gives the lowest entropy will be the first one in the calculation here, which is 19.

Then, dataset D1 will be divided into 2 subsets according to the splitting condition

c3 = {Age : (1) Age < 19, (2) Age ≥ 19}.

Figure 2.11: The values of attribute Age that are sorted (top row), and their middle
values (bottom row)

• There is only one instance that its value of attribute Age less than 19, in

which it is from “No” class. Therefore,

Entropy(D1(1)) = −1

1
log2

1

1
= 0.

• There are seven instances that their values of attribute Age greater than or

equal to 19, in which four instances are from “Yes” class and three instances

are from “No” class. Therefore,

Entropy(D1(2)) = −4

7
log2

4

7
− 3

7
log2

3

7
= 0.98523.

So, the entropy after partitioning dataset D1 by splitting value 19 of attribute Age

is equal to

Entropyc3(D1) = 1

8
· Entropy(D1(1)) +

7

8
· Entropy(D1(2))

=
1

8
· 0 + 7

8
· 0.98523

= 0.86207.
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It can be seen that attribute Gender provides the least value of entropy. Conse-

quently, it is selected to be the splitting condition for partitioning entire dataset D1.

Then, recursively perform the calculation steps above with each partition in each child

node until they contain only instances from the same class.

For the second example, dataset D2 is represented by Figure 2.12, which contains

twelve instances having two numeric attributes. They are from three different classes that

are the red-circle class, the blue-triangle class, and the green-square class.

Figure 2.12: Sample dataset D2

The recursive partitioning algorithm is performed on D2, which obtains the result

as shown in Figure 2.13. At each non-leaf node, the greedy approach is applied to select

the splitting condition. All middle values between each pair of adjacent sequential distinct

values of all attributes, which are indicated by dash lines, are all considered. Then, the

best one providing the optimal splitting measure is chosen, which is indicated by the solid

line. Finally, the leaf nodes display the regions of each class determined by the boundary

of solid lines.
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Figure 2.13: Performing the recursive partitioning on dataset D2

2.3.4 Oblique Decision Tree Algorithm

For a dataset consisting of only numeric attributes, the use of a single attribute to

partition is quite effective but the distribution of real-world datasets usually deviates from

the axis of each attribute, which is called the parallel axis. For example, the distribution

of the dataset shown in Figure 2.14(a) lies onto the parallel axes that can easily partition

with a single attribute as shown from the previous section, but it is not applicable for the

dataset shown in Figure 2.14(b). The distribution of each class in that dataset does not

arrange along any parallel axis, it is therefore difficult to separate with a single attribute.

In Figure 2.15, there are multiple iterations to separate the dataset using a single

attribute causing a deep decision tree, if splitting is applied using multi-attributes then

it will need less iterations. The splitting condition of a dataset containing only numeric

attributes is defined by hyperplane H : a⃗ · x⃗ − a0 = 0, where a⃗ = ⟨a1, a2, ..., an⟩ is

the normal vector, x⃗ = ⟨x1, x2, ..., xn⟩ ∈ X is any vector in the input attribute domain,
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(a) (b)

Figure 2.14: The distribution of each class in two sample datasets

and a0 is the splitting value. In the partitioning process, a set of instances D will be

divided into two partitions according to the splitting condition c = {a⃗ = ⟨a1, a2, ..., an⟩ :

(1) a⃗ · x⃗ − a0 < 0, (2) a⃗ · x⃗ − a0 ≥ 0}, i.e. the lower partition and the upper partition

defined as D(1) = {(x⃗i, yi) ∈ D | a⃗ · x⃗i − a0 < 0 for i = 1, 2, ...,m} and D(2) = {(x⃗i, yi) ∈

D | a⃗ · x⃗i − a0 ≥ 0 for i = 1, 2, ...,m}. The hyperplane that all elements in a⃗ are zero

except for aj gives the same result as using single attribute Aj , which is called the axis-

parallel hyperplane. In general, the hyperplane that all attributes of instances are used

together is called the oblique hyperplane, and therefore the decision tree building from

oblique hyperplanes is called the oblique decision tree.

(a) (b)

Figure 2.15: Partitioning the sample dataset using axis-parallel hyperplanes (a) and
using oblique hyperplanes (b)

At each non-leaf node, however, there is an exponential number of different parti-
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tioning when using oblique hyperplanes as the splitting condition, which is up to 2n ·
(
m

n

)
.

So, it is impractical to explore all oblique hyperplanes using the greedy approach to dis-

cover the best one, which is proved to be the NP-hard problem [46]. Thus, other tech-

niques are required for searching the (local) optimal hyperplane. In 1984, Breiman et

al. proposed the linear combination version of the CART algorithm (CART-LC) [44] for

inducing the oblique decision tree. It applies the deterministic hill-climbing algorithm

for searching the best oblique hyperplane. Then, in 1993, simulated annealing decision

tree (SADT) was presented by Heath et al [47]. It employs the randomization of the

simulated annealing algorithm to find the best oblique hyperplane. The concepts of these

two methodologies motivated the well-known oblique decision tree algorithm as oblique

classifier 1 (OC1) [48] presented in 1994. It consists of three steps to search the best

hyperplane.

• First, initial hyperplane H : a⃗ · x⃗− a0 = 0 is determined by the best axis-parallel

hyperplane which is obtained from the greedy approach like a traditional decision

tree algorithm.

• Second, hyperplane H is adjusted along each attribute’s axis by the deterministic

hill-climbing method. For attribute Aj , coefficient aj of a⃗ is treated as a variable,

and other coefficients are treated as constants. The set of the candidate values of

aj allowing the hyperplane to pass through each instance x⃗i in dataset D is defined

by uj(D) as follows:

uj(D) =

{
uj(x⃗i) =

−a⃗ · x⃗i + aj · xij + a0

xij

∣∣∣∣∣ (x⃗i, yi) ∈ D for i = 1, ...,m

}
(2.9)

Then, applying the greedy approach on uj(D) to determine the best value of aj .

For example, Figure 2.16(a) displays the mechanism of perturbing hyperplane H

by the deterministic hill-climbing method with respect to attribute A1, which all

candidate hyperplanes are represented by dash lines.

• Third, hyperplane H from the previous step is perturbed to avoid the local solution

using random hyperplane R : r⃗ · x⃗ − r0 = 0 with scale α, i.e. H + αR. In which
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(a) (b)

Figure 2.16: Applying the deterministic hill-climbing algorithm (a) and the
randomization algorithm (b) to perturb the hyperplane

each component of r⃗ = ⟨r1, r2, ..., rn⟩ including r0 is a random value obtained

from the uniform distribution within an interval [−1, 1]. Then, value α is treated

as a variable, and other coefficients of both hyperplane H and R are treated as

constants. The set of the candidate values of α allowing the hyperplane to pass

through the intersection of H and R, and each instance x⃗i in dataset D is defined

by v(D) as follows:

v(D) =

{
v(x⃗i) =

−a⃗ · x⃗i + a0
r⃗ · x⃗i − r0

∣∣∣∣∣ (x⃗i, yi) ∈ D for i = 1, ...,m

}
(2.10)

Then, applying the greedy approach on v(D) to discover the best value of α. For

example, Figure 2.16(b) displays the mechanism of perturbing hyperplane H by the

randomization algorithm with respect to random hyperplane R (solid-dash line),

which all candidate hyperplanes are represented by dash lines.

The brief pseudocode of building Oblique Classifier 1 from D is displayed by Algo-

rithm 2.2. In the process of finding the best hyperplane at each internal node, it starts

by obtaining initial hyperplane H, which is the best axis-parallel hyperplane, from the

greedy approach. Then, hyperplane H is perturbed using the deterministic hill-climbing

algorithm and the randomization algorithm, respectively. If the hyperplane being ad-

justed gives the better value of a specific splitting measure, repeating the previous step.

Otherwise, oblique hyperplane H is selected as the splitting condition.
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Algorithm 2.2: OC1(D)
Input: a set of instances D
Output: a decision tree

1 •create the root node of the tree
2 if all instances in D are in the same class then
3 return the leaf node with respect to that class
4 else

/* select the initial hyperplane */
5 •obtain the initial hyperplane H

/* perturb the hyperplane */
6 do
7 •perturb H using the deterministic hill-climbing algorithm
8 •perturb H using the randomization algorithm
9 while the hyperplane H has been improved;

10 •obtain the best hyperplane H
/* recursively partition the dataset */

11 •separate the dataset into 2 partitions corresponding to the
outcomes of the hyperplane H: D = D(left) ∪ D(right)

12 •iterate for each partition: OC1(D(left)) and OC1(D(right))

Additionally, there have also been other algorithms to construct an oblique decision

tree besides the use of the optimization techniques like CART-LC, SADT, and OC1. For

instance, OC1-SA, OC1-GA, and OC1-ES [49] apply the existing heuristic arguments,

which are the simulated annealing algorithm, the genetic algorithm, and the evolution

strategy algorithm, respectively. For the algorithms based on the feature extraction tech-

niques, Fisher’s decision tree (FDT) [50] employs the linear discriminant analysis, while

the Householder reflection is used in HHCART [51]. In addition, some new heuristic algo-

rithms have been proposed such as the Cline algorithm [52] and the CARTopt algorithm

[53].

2.4 Class Imbalanced Problem

Although the class imbalanced problem has received widespread attention in recent

years, there is no clear definition of a dataset that is imbalanced. Technically, a dataset

having unequal class distribution should be imbalanced. However, it is considered imbal-

anced when the number of instances in each class is significantly different [54].
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2.4.1 Binary-class Imbalanced Problem

Traditionally, the class imbalanced problem is often related to a binary-class dataset

that one class contains significantly more instances than another class, called the binary-

class imbalanced dataset. The majority class is normally represented by the negative class

(c−), while the minority class, which will be focused for a classifier, is indicated by the

positive class (c+) shown in Figure 2.17.

Figure 2.17: Binary-class imbalanced dataset

Mathematically, binary-class dataset D containing m− instances from the majority

class, and m+ instances from the minority class is said to be imbalanced when m− is much

greater than m+. To measure the degree of imbalanced for each binary-class dataset, the

imbalanced ratio (I.R.) is used, which is defined by the ratio between the number of

instances in the majority class and the minority class as shown in (2.11). For the problem

of building the model to classify the binary-class imbalanced dataset, it is called the

binary-class imbalanced problem. It is intended to predict the minority instances, while

maintaining the correct classification of the majority instances.

I.R. =
m−
m+

(2.11)
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2.4.2 Multi-class Imbalanced Problem

The binary-class imbalanced problem is less complicated because it has only one

clear primary goal of improving the performance of classifying the minority instances. In

several real-world applications, however, a collected dataset may contain the instances

from more than two classes having completely different proportions as shown in Figure

2.18, which is called the multi-class imbalanced dataset.

Figure 2.18: Multi-class imbalanced dataset

Mathematically, multi-class dataset D containing m instances from p classes ck with

size mk for k = 1, 2, ..., p is said to be imbalanced when there are at least two class ck1
and

ck2
such that mk1

is much greater than mk2
. To measure the degree of imbalanced for a

multi-class dataset, the imbalanced ratio (I.R.) is generally defined by the ratio between

the number of instances in the largest class and the smallest class as shown in (2.12).

For the problem of building the model to classify the multi-class imbalanced dataset, it

is called the multi-class imbalanced problem. It is more complex and more difficult to

handle than the binary case.

I.R. =

max
k∈{1,2,...,p}

mk

min
k∈{1,2,...,p}

mk
(2.12)
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The challenge of handling the multi-class imbalanced problem is to deal with two

characteristics that are only found in this situation.

• First, it is the presence of the multi-majority classes and the multi-minority classes.

[55]. A binary-class imbalanced dataset has only one majority class containing a

large number of instances and one minority class containing a small number of

instances. Nevertheless, a multi-class imbalanced dataset may have either multi-

majority classes or multi-minority classes, which contain more or less instances than

the average, respectively.

• Second, it is the flexibility to change the role of each class in different contexts [56].

On one hand, a class may be considered as the majority class compared to other

classes. On the other hand, it may be considered as the minority class compared

to other ones.

As shown in Figure 2.18, for example, the multi-class imbalanced dataset contains

one majority class indicated by the blue-triangle class and three minority classes indicated

by the red-circle class, the green-square class, and the pink-diamond class. Considering

the red-circle class, it is the minority comparing with the blue-triangle class, but, at

the same time, it can be considered as the majority comparing with two other classes.

Similarly, although the blue-triangle class looks like the majority comparing with any

other class explicitly, it immediately becomes the minority comparing with all remaining

classes. Therefore, unlike the binary-class imbalanced problem, the multi-class imbal-

anced problem cannot specifically treat any particular class as the minority class. The

performance of classifying the overall dataset may be easily lost, when aiming at just one

class exclusively [57].

2.4.3 Class Imbalanced Methodologies

Many methodologies have been introduced for handling the class imbalanced prob-

lem, especially for the binary case. They can be categorized into four different techniques

[54]:
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1. Data-level approach is based on a sampling method performing on an original im-

balanced dataset to re-balance the class distribution. They include the use of the

over-sampling method [58, 59] and the under-sampling method [60, 61], which syn-

thesizes the minority instances and eliminates the majority instances, respectively.

2. Algorithm-level approach focuses on modifying a classification algorithm to build a

classifier that is suitable for an imbalanced dataset [62]. It also includes creating a

new classifier to address this issue specifically. Their mechanisms incline to classify

the instances to be the minority class instead of the majority one.

This dissertation is interested to study the decision tree improvement for the class

imbalanced problem. In recent years, many articles presented the decision tree

algorithms for building the model to classify a binary-class imbalanced dataset

particularly. They normally focus on introducing specific splitting measures under

various concepts, which can be categorized into three groups as follows:

• The concept of non-symmetric biases toward the minority class. The maxi-

mum value of splitting measures are shifted from the equal proportion of the

minority class and the majority class to the one that is larger, indicating with

parameter θ ∈ [0, 0.5). Accordingly, the value of these splitting measures

will decrease when the proportion of the minority class increases from θ to

0.5, while the value of symmetric splitting measures such as the Shannon’s

entropy will increase. The most well-known non-symmetric splitting measure

is the asymmetric entropy (AE) [63, 64] defined by (2.13). The comparison

of values of AE and the Shannon’s entropy (SE) is shown in Figure 2.19, in

which parameter θ set to 0.2. The value of AE decreases when the propor-

tion of the minority class is in the ranges from 0.2 to 1, but it is only the

ranges from 0.5 to 1 for the entropy. Moreover, there are also other splitting

measures in this category such as the off-centered entropy (OCE) [65, 66] and

AECID [67].

AE(D) =
P+(D)(1− P+(D))

(1− 2θ)P+(D) + θ2
(2.13)
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Figure 2.19: The values of the asymmetric entropy with θ = 0.2 comparing with SE

• The concept of skew-insensitivity can be resistant to the different number of

instances in the majority class and the minority class. It does not much affect

the value of splitting measures in this group. The most well-known distance

function that is used as a skew-insensitivity splitting measure is the Hellinger

distance [68, 69], which is defined by (2.14), in which P (l)(D+) =
|D(l)

+ |
|D+|

and P (l)(D−) =
|D(l)

− |
|D−|

are the proportion of the minority instances and the

majority instances in partition l comparing with the total instances in their

classes, respectively. That is, it measures the distance between the vector

corresponding to the proportion of the minority instances in each partition,

i.e. P (D+) = ⟨P (1)(D+), P
(2)(D+), ..., P

(q)(D+)⟩, and that of the major-

ity instances, i.e. P (D−) = ⟨P (1)(D−), P
(2)(D−), ..., P

(q)(D−)⟩. So, the

splitting condition that offers the greatest distances is selected. The deci-

sion tree algorithm building the model based on the Hellinger distance is

called HDDT [70, 71], which is used to deal with the binary-class imbalanced

problem. Furthermore, DKM [72, 73] is an another splitting measure that is

skew-insensitive.

dH(P (D+), P (D−)) =

√√√√ q∑
l=1

(
P (l)(D+)− P (l)(D−)

)2 (2.14)
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• The concept of modifying the components to calculate the Shannon’s en-

tropy (SE) to be inclined towards the minority class is lately introduced by

Boonchuay et al. in 2017. They proposed the splitting measure named the

minority entropy (ME) [40], which discards the majority instances that do not

affect the partition from the minority class. For each attribute Aj , only the

subset of instances within the range of the minority class is employed in con-

sideration, which has a similar effect as the sampling approach. Mathemat-

ically, the minority range of dataset D, denoted by ϕ+(πj(D)), is the range

between the minimum value and the maximum value of the minority instances

corresponding to Aj , i.e. ϕ+(πj(D)) = [minπj(D+),maxπj(D+)] where

πj(D+) = {πj(x⃗i) = xij | (x⃗i, yi) ∈ D+ for i = 1, 2, ...,m}. Then, Φ+(πj(D))

implies the subset of instances within the minority range, which is defined by

Φ+(πj(D)) = {(x⃗i, yi) ∈ D | πj(x⃗i) = xij ∈ ϕ+(πj(D)) for i = 1, 2, ...,m}.

For example, the minority ranges and the subset of instances within them are

demonstrated in Figure 2.20. Thus, the definition of the minority entropy

according to attribute Aj is determined by (2.15) as follows:

MEj(D) = Entropy(Φ+(πj(D))) (2.15)

3. Cost-sensitive approach involves the cost adjusted techniques [74]. The large mis-

classification cost is assigned to instances from the minority class, while the in-

stances from the majority class receive the lower cost. The classification model is

created biasing toward the class having a higher cost for minimizing the total costs.

4. Ensemble-based approach incorporates a technique mentioned above with the en-

semble learning method [75], e.g. Bagging [76] and Boosting [77]. It has shown to

be effective over a single classification model.
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Figure 2.20: The example of minority ranges and the subset of instances within them

However, most methodologies are likely to involve only the binary-class case, which

cannot be directly applied to the multi-class case. So, additional techniques are required

to handle the multi-class imbalanced problem. A variety of methods have been introduced

which are categorized into two main strategies [54]:

1. Decomposition-based approach decomposes a multi-class imbalanced dataset into a

set of binary-class datasets. Then, a traditional technique, designed for the binary-

class problem, can be applied to each generated dataset. A set of classifiers is

therefore aggregated as the final model. Most common methods to decompose a

multi-class dataset include the one-versus-one approach (OVO) [78] and the one-

versus-all approach (OVA) [79]. For the p classes problem, it is decomposed into(
p

2

)
binary subproblems using the OVO scheme, which each subproblem for each

pair of the classes. Differently, the OVA scheme decomposes the p classes problem

into p binary subproblems which distinguishes one class from the remaining classes.

2. Ad-hoc approach directly learns a multi-class imbalanced dataset without employ-

ing the decomposition technique. It is believed that using an appropriate specific

solution, rather than applying the traditional methods on the binary subproblems,

is sufficient for solving the multi-class imbalanced problem effectively [80]. There
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are many methods have been presented to deal with this issue using various tech-

niques covering both the data-level approach, the algorithm-level approach, the

cost-sensitive approach, and the ensemble-based approach.

Almost all decision tree algorithms discussed in the previous section are created to

deal with a binary-class imbalanced problem using their proposed splitting mea-

sures, which cannot work with a dataset containing multiple classes. In 2012,

however, Hoens et al. developed the HDDT algorithm as the improved decision

tree algorithm, called the multi-class Hellinger distance decision tree (MC-HDDT)

[81], which is able to work with multi-class datasets. It presents the application

of the decomposition method like OVA. Instead of using it to decompose an en-

tire problem into many subproblems, it is used as a part of selecting the splitting

condition at each internal node. For p classes problem, each candidate of splitting

condition will be considered via the Hellinger distance (2.14) up to p times rather

than a single time. For each time, one class is treated as the positive class and the

remaining classes are treated as the negative class. Then, the splitting condition

that gives the largest distance is chosen regardless of which class is determined as

the positive class.

2.4.4 Performance Measures and Statistical Test

To evaluate the efficiency of classifying an imbalanced dataset of each classification

model, various performance measures are employed. In addition, a non-parametric sta-

tistical hypothesis test is also used to compare the different performance obtaining from

each classifier.

Performance Measures

For the binary-class case, the performance measures are all related to the values in

the confusion matrix as shown in Table 2.2.
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Predicted Positive Predicted Negative
Actual Positive True Positive (TP ) False Negative (FN)
Actual Negative False Positive (FP ) True Negative (TN)

Table 2.2: Confusion matrix

They specifically focus on measuring the effectiveness of classifying positive (mi-

nority) instances, which consist of the precision, the recall, and the F-measure [54], which

are defined by (2.16), (2.17), and (2.18), respectively. The precision is the percentage of

predicted minority instances that are correctly classified, and the recall is the percentage

of actual minority instances that are correctly classified. For the F-measure, it presents

the harmonic mean of the precision and the recall.

Precision =
TP

TP + FP
(2.16)

Recall =
TP

TP + FN
(2.17)

F–measure = 2× Precision×Recall

Precision+Recall
(2.18)

where

• TP is the number of predicted positive instances that are correctly classified.

• FP is the number of predicted positive instances that are incorrectly classified.

• TN is the number of predicted negative instances that are correctly classified.

• FN is the number of predicted negative instances that are incorrectly classified.
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For example, the results of classifying the binary-class dataset are presented by

the confusion matrix in Table 2.3. So, the precision, the recall, and the F-measure are

computed by (2.19), (2.20), and (2.21), respectively. For the precision which equals 0.6,

it means that the instances that are predicted as the positive class have 60% chance that

they are actually positive. For the recall which equals 0.75, it means that the instances

that are actually positive have 75% chance that they are predicted as the positive class.

Then, the harmonic mean between these two measures is represented by the F-measure

which equals 0.67.

Predicted Positive Predicted Negative
Actual Positive TP = 15 FN = 5
Actual Negative FP = 10 TN = 70

Table 2.3: An example of the confusion matrix

Precision =
15

15 + 10
= 0.6 (2.19)

Recall =
15

15 + 5
= 0.75 (2.20)

F–measure = 2× 0.6× 0.75

0.6 + 0.75
= 0.67 (2.21)

For the multi-class case, the performance measures are all expanded from the binary-

class measures using the one-versus-all approach (OVA). The average values obtaining

from each subclass is compiled [82]. So, all classes are treated equally which does not

focus on any particular class. They consist of the macro-precision, the macro-recall, and

the macro-F-measure, which are defined by (2.22), (2.23), and (2.24), respectively. The

macro-precision is the average of the percentage of predicted instances in each class that

are correctly classified, and the macro-recall is the average of the percentage of actual

instances in each class that are correctly classified. For the macro-F-measure, it presents

the harmonic mean of the macro-precision and the macro-recall. Moreover, the accuracy

is also used in the multi-class case, defined by (2.25). It is the overall performance of

classification computed by the percentage of all instances that are correctly classified.
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Macro–Precision =
1

p

p∑
k=1

TPk

TPk + FPk
(2.22)

Macro–Recall =
1

p

p∑
k=1

TPk

TPk + FNk
(2.23)

Macro–F–measure = 2× Macro–Precision×Macro–Recall

Macro–Precision+Macro–Recall
(2.24)

Accuracy =
1

m

p∑
k=1

TPk (2.25)

where

• TPk is the number of instances predicted as class ck that are correctly classified.

• FPk is the number of instances predicted as class ck that are incorrectly classified.

• TNk is the number of instances predicted as other classes that are correctly classi-

fied.

• FNk is the number of instances predicted as other classes that are incorrectly

classified.

For example, the results of classifying the three classes dataset are presented by

Table 2.4. Then, when considering each class as the positive class, it is able to construct

the confusion matrices corresponding to classes c1, c2 and c3 by Tables 2.5, 2.6 and 2.7,

respectively. So, the macro-precision, the macro-recall, the macro-F-measure, and the

accuracy are computed by (2.26), (2.27), (2.28), and (2.29), respectively. For the macro-

precision which equals 0.68, it is the average of the percentage of predicted instances in

each class ck that are correctly classified. For the macro-recall which equals 0.71, it is the

average of the percentage of actual instances in each class ck that are correctly classified.

Then, the harmonic mean between these two measures is represented by the macro-F-

measure which equals 0.69. For the accuracy which equals 0.7, it means that there is 70

% average chance that each instance is correctly classified.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

41

Predicted Class c1 Predicted Class c2 Predicted Class c3

Actual Class c1 15 3 2
Actual Class c2 3 20 7
Actual Class c3 8 7 35

Table 2.4: The results of classifying the three classes dataset

Predicted Positive Predicted Negative
Actual Positive TP1 = 15 FN1 = 5
Actual Negative FP1 = 11 TN1 = 69

Table 2.5: The confusion matrix coresponding to class c1

Predicted Positive Predicted Negative
Actual Positive TP2 = 20 FN2 = 10
Actual Negative FP2 = 10 TN2 = 60

Table 2.6: The confusion matrix coresponding to class c2

Predicted Positive Predicted Negative
Actual Positive TP3 = 35 FN3 = 15
Actual Negative FP3 = 9 TN3 = 41

Table 2.7: The confusion matrix coresponding to class c3

Macro–Precision =
1

3
×
(

15

15 + 11
+

20

20 + 10
+

35

35 + 9

)
= 0.68 (2.26)

Macro–Recall =
1

3
×
(

15

15 + 5
+

20

20 + 10
+

35

35 + 15

)
= 0.71 (2.27)

Macro–F–measure = 2× 0.68× 0.71

0.68 + 0.71
= 0.69 (2.28)

Accuracy =
1

100
× (15 + 20 + 35) = 0.7 (2.29)
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Statistical Test

To compare the performance of the proposed method with the others, the Wilcoxon

signed-rank test with a significance level (α) [83] is conducted. It is a non-parametric

statistical hypothesis test used for comparing two related samples, which is more suitable

than the pairwise t-test when the sample distribution can not assume to be a normal

distribution.

For the two-tailed test, the null hypothesis (H0), and the alternative hypothesis

(H1) are indicated as follows:

H0: The performance of the proposed model and the compared model are no different.

H1: The performance of the proposed model and the compared model are different.

For the one-tailed test, the null hypothesis (H0), and the alternative hypothesis

(H1) are indicated as follows:

H0: The performance of the proposed model is not greater than the compared model.

H1: The performance of the proposed model is greater than the compared model.

The test starts with ranking the difference of the performance between the proposed

model and the compared model according to datasets. Then, let R+ and R− be the sum

of ranks corresponding to the cases that the proposed model is better and the cases that

the compared model is better, respectively. So, the statistical value T is obtained from

the minimum value between R+ and R− for the two-tailed test, and it is R− for the one-

tailed test. For a large number of datasets, statistics z defined by (2.30) is the standard

score of the approximately normal distribution, in which N is the number of datasets.

z =
T − 1

4N(N + 1)√
1
24N(N + 1)(2N + 1)

(2.30)
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Accordingly, for the two-tailed test, a null-hypothesis can be rejected if z is smaller

than -2.58, -1.96, -1.65 when α = 0.01, 0.05, and 0.1, respectively. Also, for the one-tailed

test, the null-hypothesis can be rejected if z is smaller than -2.33, -1.65, -1.28 when α =

0.01, 0.05, and 0.1, respectively.

In practice, this dissertation uses the one-tailed Wilcoxon signed-rank test to com-

pare the performance between the proposed model and the compared model. For example,

conducting on 20 datasets, the sum of ranks for the cases that the compared model is

better than the proposed model (R−) is equal to 50. So, statistics z can be calculated as

-2.05. That is, the proposed model is significantly better than the compared model with

90% and 95% confidence levels, but it cannot be concluded that it is significant at a 99%

confidence level.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

DECISION TREE INDUCTION FOR A

BINARY-CLASS IMBALANCED NUMERIC

DATASET

In this chapter, the splitting measure is introduced called the minority condensa-

tion entropy (MCE). It enhances the concept of modifying the entropy components by

applying the outlier detection. MCE is used as the splitting condition in the recursive

partitioning algorithm to build the decision tree called the minority condensation deci-

sion tree (MCDT). In addition, MCE is also employed in the next recursive partitioning

algorithm to construct the oblique decision tree called the oblique minority condensation

decision tree (OMCT).

The motivation of the methods presented in this chapter comes from the success

of using the minority entropy (ME) to build a decision tree for handling the binary-class

imbalanced numeric dataset. For each attribute, using the minority range directly to

determine the region of the minority class shows the impressive results. However, if some

minority instance values extremely deviate from the others, which are outliers [84], the

minority range will be wider. For example, in Figure 3.1(a), there is one minority instance

that has the value of attribute A1 much higher than the others. It unnecessarily widens

the minority range, which covers more majority instances. Moreover, the distribution

of the real-world datasets usually does not lie on any parallel axes so many majority

instances may not be discarded by the minority range as shown in Figure 3.1(b). The

region of the minority class will be appropriately defined, which is able to significantly

reduce the number of majority instances, if the minority range of the suitable axis is

considered. So, the concept of ME will be more effective when inducing the decision tree

using the oblique hyperplanes.
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(a) (b)

Figure 3.1: Limitations of using the minority range to determine the region of the
minority class (a), and discard the majority instances (b)

For these reasons, therefore, an improvement of ME is proposed in this chapter.

The interquartile range (IQR) rule is employed to the set of minority instance values for

detecting the outliers. It defines the boundary that represents the range of acceptable

values for the minority instances based on the Tukey’s boxplot [85]. The lower inner fence

is defined by the first quartile minus 1.5 times of IQR, while the upper inner fence is defined

by the third quartile plus 1.5 times of IQR. So, only the minority instances having values

within the inner fences are kept to calculate the minority range. For example, Figure 3.2

demonstrates the use of the IQR rule. The minority instance outside the inner fences

is discarded in determining the minority range. It creates a smaller minority range and

Figure 3.2: Applying the interquartile range rule to detect outliers before
determining the minority range
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greatly reduces the number of majority instances. Then, the set of instances within that

range is considered, in which the minority class is more condensed. Accordingly, the

entropy computed with that set is called the minority condensation entropy (MCE), and

the decision tree built based on MCE is called the minority condensation decision tree

(MCDT).

In addition, this chapter also presents the application of MCE to construct an

oblique decision tree. It is used as the splitting measure to select the splitting value

in each step of the OC1 algorithm, and then named a generated decision tree to be the

oblique minority condensation decision tree (OMCT). At the beginning, MCE is employed

in determining the initial hyperplane, which is the best axis-parallel hyperplane as used in

MCDT. Then, for each attribute Aj , the deterministic hill-climbing method with MCE is

used in finding the best value of aj from set uj(D) (2.9), which is restricted to the region

of the minority class as shown in Figure 3.3(a). Likewise, the randomization method with

MCE is used in finding the best value of α from set v(D) (2.10), which is restricted to

the region of the minority class as shown in Figure 3.3(b).

(a) (b)

Figure 3.3: Applying the minority condensation entropy to the deterministic
hill-climbing method (a), and the randomization method (b)
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3.1 Proposed Methodologies

In this section, the mathematical definitions corresponding to the proposed method-

ologies are formally introduced. It also includes examples and the pseudocode for each

proposed algorithm.

3.1.1 Minority Condensation Entropy

Initially, the minority condensation entropy or MCE is presented as a new splitting

measure in accordance with the motivation discussed above. It is designed to work with

binary-class imbalanced dataset D = D+∪D− = {(x⃗i, yi) | i = 1, 2, ...,m} consisting only

of numeric attributes. Let s be a function that maps each instance x⃗i in dataset D to the

set of real numbers, i.e. s : D → R. For example with two-dimensional dataset D ⊆ R2,

define the instance values function as s(x⃗i) = s(xi1, x
i
2) = xi1 + xi2. Then, for any set of

instance values s(D) = {s(x⃗i) ∈ R | (x⃗i, yi) ∈ D for i = 1, 2, ...,m} corresponding to D,

define s∗(D) be the subset of s(D) that ignores the outliers shown in (3.1) as follows:

s∗(D) = {s(x⃗i) ∈ s(D) | Q1 − 1.5 ∗ IQR ≤ s(x⃗i) ≤ Q3 + 1.5 ∗ IQR for i = 1, 2, ...,m}

(3.1)

where Q1 is the first quartile of s(D), Q3 is the third quartile of s(D), and IQR is the

interquatile range of s(D) which is equal to Q3 −Q1.

So, the minority range that ignores the outliers of s(D) is determined by the

range between the minimum value and the maximum value of s∗(D+), i.e. ϕ∗
+(s(D)) =

[min s∗(D+),max s∗(D+)]. Then, Φ∗
+(s(D)) implies the subset of instances within the mi-

nority range that ignores the outliers, Φ∗
+(s(D)) = {(x⃗i, yi) ∈ D | s(x⃗i) ∈ ϕ∗

+(s(D)) for i =

1, 2, ...,m}. Thus, the definition of the minority condensation entropy according to s(D)

is determined by (3.2) as follows:

MCEs(D) = Entropy(Φ∗
+(s(D))) (3.2)
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The brief pseudocode to compute MCE of dataset D with respect to a function

to obtain the set of instance values s is displayed in Algorithm 3.1. The minority range

that ignores the outliers is generated to limit the set of instances before calculating the

entropy.

Algorithm 3.1: MCE(D, s)
Input: dataset D, a function to obtain the instance values s
Output: the minority condensation entropy of D with respect to s

1 •generate the set of instance values corresponding to the minority class
without the outliers: s∗(D+)

2 •create the minority range that ignores the outliers: ϕ∗
+(s(D))

3 •compute the subset of instances within the minority range that ignores
the outliers: Φ∗

+(s(D))
4 return Entropy(Φ∗

+(s(D)))

3.1.2 Minority Condensation Decision Tree

In this section, MCE is used to build a decision tree based on a single attribute.

For each attribute Aj , the minority range that ignores the outliers of πj(D) is deter-

mined by the range between the minimum value and the maximum value of π∗
j (D+),

i.e. ϕ∗
+(πj(D)) =

[
minπ∗

j (D+),maxπ∗
j (D+)

]
. Then, Φ∗

+(πj(D)) implies the subset of

instances within the minority range that ignores the outliers, Φ∗
+(πj(D)) = {(x⃗i, yi) ∈

D | πj(x⃗i) = xij ∈ ϕ∗
+(πj(D)) for i = 1, 2, ...,m}. For example, the minority range that

ignores the outliers and the subset of instances within it are demonstrated in Figure 3.4.

Thus, the minority condensation entropy according to attribute Aj is determined by (3.3).

MCEπj
(D) = Entropy(Φ∗

+(πj(D))) (3.3)

So, a decision tree from the recursive partitioning algorithm using MCE as the

splitting measure is called the minority condensation decision tree or MCDT, and that

algorithm is also called the MCDT algorithm. Its pseudocode is displayed in Algorithm

3.2. For each attribute Aj , the greedy approach is applied to select the best condition for

splitting dataset D based on the value of MCE according to each candidate from πj(D).
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Figure 3.4: The example of the minority range that ignores the outliers and the
subset of instances within them

Algorithm 3.2: MCDT(D)
Input: dataset D
Output: a decision tree

1 •create the root node of the tree
2 if all instances in D are in the same class then
3 return the leaf node with respect to that class
4 else

/* select the splitting condition */
5 for each attribute Aj do
6 •apply the greedy approach on πj(D) based on the minority

condensation entropy via Algorithm 3.1
7 •update the best splitting condition
8 •obtain the best splitting condition

/* recursively partition the dataset */
9 •separate the dataset into 2 partitions corresponding to the

outcomes of the splitting condition: D = D(left) ∪ D(right)

10 •iterate for each partition: MCDT(D(left)) and MCDT(D(right))

3.1.3 Oblique Minority Condensation Decision Tree

In this section, MCE is used to build a decision tree based on multi-attribute. For

binary-class dataset D = D+∪D = {(x⃗i, yi) | i = 1, 2, ...,m}, MCE is applied to each step

of the OC1 algorithm (Algorithm 2.2) for building the oblique decision tree as follows:

• First, MCE is employed to obtain initial hyperplane H. For each attribute Aj ,

the greedy approach is used to find the best splitting value based on the minority
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condensation entropy corresponding to the set of instance values πj(D). It has

been determined by (3.3) from the previous section.

• Second, MCE is employed to the deterministic hill-climbing process for perturbing

hyperplane H along each attribute Aj . The greedy approach is used to find the

optimal value of aj based on the minority condensation entropy corresponding to

the set of instance values uj(D) (2.9).

For each attribute Aj , the minority range that ignores the outliers of uj(D) is

determined by the range between the minimum value and the maximum value

of u∗j (D+), i.e. ϕ∗
+(uj(D)) =

[
minu∗j (D+),maxu∗j (D+)

]
. Then, Φ∗

+(uj(D)) im-

plies the subset of instances within the minority range that ignores the outliers,

Φ∗
+(uj(D)) = {(x⃗i, yi) ∈ D | uj(x⃗i) ∈ ϕ∗

+(uj(D)) for i = 1, 2, ...,m}. Thus, the

minority condensation entropy according to uj is determined by (3.4) as follows:

MCEuj
(D) = Entropy(Φ∗

+(uj(D))) (3.4)

• Third, MCE is employed to the randomization process for perturbing hyperplane H

by random hyperplane R. The greedy approach is used to find the optimal value of

α based on the minority condensation entropy corresponding to the set of instance

values v(D) (2.10).

The minority range that ignores the outliers of v(D) is determined by the range

between the minimum value and the maximum value of v∗(D+), i.e. ϕ∗
+(v(D)) =

[min v∗(D+),max v∗(D+)]. Then, Φ∗
+(v(D)) implies the subset of instances within

the minority range that ignores the outliers, Φ∗
+(v(D)) = {(x⃗i, yi) ∈ D | v(x⃗i) ∈

ϕ∗
+(v(D)) for i = 1, 2, ...,m}. Thus, the minority condensation entropy according

to v is determined by (3.5) as follows:

MCEV (D) = Entropy(Φ∗
+(v(D))) (3.5)
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So, an oblique decision tree from the recursive partitioning algorithm using MCE as

the splitting measure is called the oblique minority condensation decision tree or OMCT,

and that algorithm is also called the OMCT algorithm. Its pseudocode is displayed in

Algorithm 3.3 consisting of three main steps discussed above to find the best oblique

hyperplane H. For each step, the greedy approach is applied to select the best condition

for splitting dataset D based on the value of MCE according to each candidate from

πj(D), uj(D) and v(D), respectively.

3.2 Experiments and Results

In order to evaluate the performance of inducing a decision tree that uses MCE as

the splitting measure, two collections of experiments are conducted. The first collection

employs the synthetic datasets varying their imbalanced ratios to show the effectiveness

of the proposed splitting measure like MCE over the traditional splitting measure that is

widely used like SE. For the second collection, the performance comparison in classifying

the real-world datasets from the UCI repository of MCDT and OMCT with other methods

is presented.

3.2.1 Experiments on Synthetic Datasets

In this section, an improvement of the Shannon’s entropy (SE) to classify minority

instances in the binary-class imbalanced datasets dealing with numeric attributes using

the minority condensation entropy (MCE) is demonstrated in the experiments on the

collections of synthetic datasets generated according to the following specifications:

• Each dataset contains 1000 instances consisting of 10 numeric attributes.

• Each instance is labeled as either the minority class or the majority class.

• For each attribute, an overlapping range of each class is randomly defined. Then,

the uniform sampling is performed within that range.

• There are ten groups of experiments varying the percentages of minority instances

from 5% to 50%.
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Algorithm 3.3: OMCT(D)
Input: dataset D
Output: a decision tree

1 •create the root node of the tree
2 if all instances in D are in the same class then
3 return the leaf node with respect to that class
4 else

/* select the initial hyperplane */
5 for each attribute Aj do
6 •apply the greedy approach on πj(D) based on the minority

condensation entropy via Algorithm 3.1
7 •update the best splitting condition
8 •obtain the best splitting condition as the initial hyperplane

H : a⃗ · x⃗− a0 = 0
/* perturb the hyperplane */

9 do
/* apply the deterministic hill-climbing algorithm */

10 for each attribute Aj do
11 •compute the set of the candidate values of aj: uj(D) (2.9)
12 •apply the greedy approach on uj(D) based on the minority

condensation entropy (MCE) via Algorithm 3.1
13 •update the best value of aj
14 •obtain the adjusted hyperplane H

/* apply the randomization algorithm */
15 •random a hyperplane R : r⃗ · x⃗− r0 = 0
16 •compute the set of the candidate values of α: v(D) (2.10)
17 •apply the greedy approach on v(D) based on the minority

condensation entropy (MCE) via Algorithm 3.1
18 •obtain the adjusted hyperplane H : H + αR

19 while hyperplane H has been improved;
20 •obtain the best hyperplane H

/* recursively partition the dataset */
21 •separate the dataset into 2 partitions corresponding to the

outcomes of the hyperplane H: D = D(left) ∪ D(right)

22 •iterate for each partition: MCDT(D(left)) and MCDT(D(right))

• For each group, ten datasets are synthesized and then applying five-fold cross-

validation ten times to evaluate the performance of each method.

Accordingly, the average results of SE and MCE are compared via the precision

(2.16), the recall (2.17), and the F-measure (2.18) with respect to the minority class and
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(a) comparing by the precision

(b) comparing by the recall

(c) comparing by the F-measure

Figure 3.5: The experimental results with respect to the minority class on the
synthetic binary-class datasets varying the percentage of minority instances
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(a) comparing by the precision

(b) comparing by the recall

(c) comparing by the F-measure

Figure 3.6: The experimental results with respect to the majority class on the
synthetic binary-class datasets varying the percentage of minority instances
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the majority class displaying in Figure 3.5 and Figure 3.6, respectively.

For the results corresponding to the minority class, their results are similar in

all performance measures, which ostensibly increase when the percentage of minority

instances increases. Nonetheless, MCE significantly outperforms SE when the number of

instances in the minority class is tiny. For example, the performance of SE is only about

0.2 when there are 5 % of minority instances, while MCE offers the performance up to

0.35. Then their values will approach the same value when a dataset is more balanced,

which are equal to 0.75 when the dataset is completely balanced. It is because SE tends

to focus on the class having a large number of instances, while MCE tries to make them

balanced before considering. Therefore, MCE is better than SE when there is a large

difference between the number of instances in each class. These results evidently confirm

that SE is not suitable to deal with the binary-class imbalanced problem, which is able

to be captured using MCE.

Differently, considering the results based on the majority class, all performance

measures gradually decrease when a dataset is more balanced. That is because of the

decrease in the percentage of majority instances. However, due to the effort to reduce

the bias toward the majority class of MCE, it gives a slightly worse result according to

the majority class compared to SE in the case of extreme imbalance. For example, the

performance of SE is about 0.95 when there are only 5 % of minority instances, while

MCE offers the performance around 0.9. Their values will approach to the same value

when a dataset is more balanced, which are equal to 0.75 when the dataset is completely

balanced.

3.2.2 Experiments on Real-world Datasets

To demonstrate the effectiveness of MCE on a general dataset, the decision trees

built based on MCE like MCDT and OMCT are evaluated with the experiments on real-

world datasets in this section. Their results are compared to those of seven other decision

trees. The first two models are the decision trees from two well-known algorithms, i.e.

CART [44] and C.45 [39]. Additionally, the decision tree built based on DCSM [45] is
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used as well. The others are three state-of-the-art models designed for a binary-class

imbalanced dataset consisting of the decision trees built based on AE [63, 64] and ME

[40], including with HDDT [70, 71]. Lastly, the oblique decision tree that is induced with

the most famous algorithm like OC1 [48] is also used in the comparison.

Datasets

For the datasets used in the experiments, they are collected from the UCI repository

[86] having a total of 23 datasets with the selected classes to be treated as the binary-class

imbalanced problems. Their attributes are all numeric, which are summarized in Table

3.1. They are sorted in the ascending order by the imbalanced ratio (I.R.), equivalent to

the ascending order of the percentage of instances in the majority class (% Maj.) and

the descending order of the percentage of instances in the minority class (% Min.). The

first two columns represent the index and the name of each dataset. For the third column

and the fourth column, they indicate the number of instances (# Inst.) and the number

of attributes (# Att.), respectively. Particularly, the classes determining as the majority

class (Maj. Cl.) and the minority class (Min. Cl.) are shown in the next two columns.

In order to evaluate the performance of each decision tree, the five-fold cross-validation is

employed to divide the dataset into the training set and the testing set, which is repeated

20 times. That is, there are up to one hundred experiments performed on each dataset.

Results

Accordingly, the average results of each decision tree are compared via the precision

(2.16), the recall (2.17), the F-measure (2.18), and the number of leaf nodes displaying in

four tables for each measure. In each table, a comparison of performance according to each

dataset is represented in each row. Furthermore, the rank of each method corresponding to

each dataset is shown in the parentheses, emphasizing the best rank in bold. Summarily,

the bottom row of each table represents the average rank of each method.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

57

No. Dataset # Inst. # Att. Maj. Cl. Min. Cl. % Maj. % Min. I.R.
1 OpticDigits 1108 64 “0” “8” 50 50 1
2 PenDigits 2110 16 “8” “5” 50 50 1
3 Vowel 180 10 “9” “0” 50 50 1
4 Ionosphere 351 34 “g” “b” 64.1 35.9 1.79
5 Pima 768 8 “0” “1” 65.1 34.9 1.87
6 Wine 178 13 The rest “3” 73.03 26.97 2.71
7 Haberman 306 3 “1” “2” 73.53 26.47 2.78
8 StatlogVehicle 846 18 The rest “bus” 74.23 25.77 2.88
9 Parkinsons 195 22 “1” “0” 75.38 24.62 3.06
10 StatlogShuttle 58000 9 “1” The rest 78.6 21.4 3.67
11 LibrasMovement 360 90 The rest “1”, “2”, “3” 80 20 4
12 StatlogImage 2310 19 The rest “5” 85.71 14.29 6
13 BreastTissue 106 9 The rest “fad” 85.85 14.15 6.07
14 NewThyroid 215 5 The rest “3” 86.05 13.95 6.17
15 Fertility 100 9 “N” “O” 88 12 7.33
16 Ecoli 336 7 The rest “imU” 89.58 10.42 8.6
17 StatlogLandsat 6435 36 The rest “4” 90.27 9.73 9.28
18 Glass 214 9 The rest “5” 93.93 6.07 15.46
19 PageBlocks 5473 10 The rest “2” 93.99 6.01 15.64
20 Winequality-red 1599 11 The rest “3”, “4” 96.06 3.94 24.38
21 Winequality-white 4898 11 The rest “3”, “4” 96.26 3.74 25.77
22 Letter 20000 16 The rest “H” 96.33 3.67 26.25
23 Yeast 1484 8 The rest “VAC” 97.98 2.02 48.47

Table 3.1: The characteristics of the experimental real-world binary-class datasets

In Table 3.2, the performance comparison according to the precision of each method

is shown. DCSM yields the lowest average rank at 4.13, which is not much different

from MCDT and OMCT. They yield the third-lowest average rank and the second-lowest

average rank at 4.3 and 4.22, respectively. There are up to 10 out of 23 datasets that

OMCT offers the highest or the second-highest precision, which is more than DCSM that

has only 9 datasets. For MCDT, it provides the highest precision in 3 datasets which are

not less than other methods except for DCSM and OMCT.

In Table 3.3, the performance comparison according to the recall of each method is

shown. OMCT yields the lowest average rank at 3.43, which is much different from CART

that yields the second-lowest average rank at 4.43. There are up to 12 out of 23 datasets

that OMCT offers the highest or the second-highest recall. For MCDT, it yields the

third-lowest average rank at 4.57 having 3 datasets that it offers the second-highest recall

which is equal to CART. However, there are 4 datasets that MCDT offers the highest

recall, while CART has not.
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In Table 3.4, the performance comparison according to the F-measure of each

method is shown. OMCT yields the lowest average rank at 3.78, which is much dif-

ferent from other methods. There are up to 11 out of 23 datasets that OMCT offers the

highest or the second-highest F-measure. For MCDT, it yields the second-lowest average

rank at 4.13 that is the best rank when considering only the axis-parallel decision trees.

There are 5 datasets that MCDT offers the highest F-measure which is equal to OMCT.

In Table 3.5, the tree size comparison according to the number of leaf nodes of each

method is shown. OMCT yields the lowest average rank at 1.57, which is much different

from other methods, especially for the axis-parallel decision trees. There are up to 15

out of 23 datasets that OMCT offers the smallest number of leaf nodes, while 6 out of

8 remaining datasets have the second-smallest size of the tree. Besides, another oblique

decision tree like OC1 yields the second-lowest average rank at 2.13, which is also much

different from the axis-parallel decision trees. For MCDT, it receives the average rank at

5.7, which is in the middle when compared to other axis-parallel decision trees.
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Discussions

Graphically, the bar chart representing the comparison of results by the average rank

corresponding to each measure is shown in Figure 3.7, in which a lower value indicates

a better rank. Moreover, the results of the Wilcoxon signed-rank test that compares the

performance of MCDT and OMCT with other decision trees are shown in Tables 3.6

and 3.7, respectively. The testing results including the statistical value and the p-value

for each comparison is shown in each row, in which the symbol checkmark denotes that

the proposed method is significantly better than another method with the (1 − α)100%

confidence level. In addition, the testing results are also indicated in Figure 3.7 using the

specific symbols for each confidence level.

The experimental results confirm that the conventional decision trees like CART

and C4.5 are not suitable to deal with the binary-class imbalanced problem, especially in

terms of precision. Their results are significantly less than MDCT with the 95% confidence

level the same as ME. It means that they predict a lot of majority instances to be the

minority class. For ME, this happens because the range of minority class is unnecessarily

wide due to the appearance of outliers, which does not happen in MCDT. On the other

hand, although DCSM shows the impressive results in terms of the precision, it provides

an unacceptable value of the recall. Likewise, the recall of AE is also unsatisfied that is

less than MDCT with a confidence level at 95%. It means that they focus on classifying

correct minority instances excessively causing the boundary of partitioning to overfit the

minority class. So, there are a small number of actual minority instances that are correctly

classified. Importantly, MCDT outperforms other axis-parallel decision trees in terms of

the F-measure, which is significantly better than AE and ME with the 95% confidence

level, due to their poor values of the recall and the precision, respectively.

For OMCT, it also significantly outperforms the conventional decision trees like

CART and DCSM in terms of the precision with the 95% and 99% confidence level,

respectively. Moreover, OMCT gives a better value of the recall than MCDT including

other methods. Its result is significantly superior to CART, DCSM, HDDT, and ME with
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the 95% confidence level, and up to 99% for AE and OC1. That is, the use of the oblique

hyperplane as the splitting measure is able to increase the percentage of actual minority

instances that are correctly classified. This happens because using all attributes together

to determine the boundary of the minority class can avoid the overfitting phenomenon

that appears when considering only one attribute. Thus, due to the impressive results

of OMCT in both terms of precision and recall, it exactly shows the improvement of the

F-measure comparing with all other methods, which is significantly better than CART,

C4.5, ME, and OC1 with the 95% confidence level, and up to 99% for AE. Importantly,

the results demonstrate that the sizes of oblique decision trees like OC1 and OMCT

are obviously smaller than that of axis-parallel decision trees. From the statistical test,

OMCT significantly contains a less number of leaf nodes than CART, C4.5, DCSM, AE,

HDDT, and ME with up to 99% confidence level. The reason is due to the flexibility

of using the oblique hyperplanes to deal with a dataset having various distributions. In

addition, the ability to determine the boundary of the minority class using the minority

condensation technique makes OMCT significantly small which is smaller than OC1 with

the 99% confidence level.

Figure 3.7: The comparison of the experimental results on the real-world binary-class
datasets with respect to the average rank
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Performance Measures Decision Tree α Statistics p-value
0.1 0.05 0.01

Precision

CART ✓ ✓ - 78 0.034008
C4.5 ✓ ✓ - 80 0.038860

DCSM - - - 170 0.834793
AE - - - 104 0.150543

HDDT - - - 118 0.271495
ME ✓ ✓ - 54 0.049479

Recall

CART - - - 120 0.416433
C4.5 - - - 130 0.545234

DCSM - - - 102 0.213188
AE ✓ ✓ - 76 0.029659

HDDT - - - 121 0.302559
ME - - - 64.5 0.180184

F-measure

CART - - - 113 0.223516
C4.5 - - - 97 0.106196

DCSM - - - 125 0.346276
AE ✓ ✓ - 68 0.016625

HDDT - - - 109 0.188879
ME ✓ ✓ - 53 0.045498

Table 3.6: The statistical results based on the Wilcoxon signed-rank test comparing
MCDT against other decision trees
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Performance Measures Decision Tree α Statistics p-value
0.1 0.05 0.01

Precision

CART ✓ ✓ - 64 0.012202
C4.5 ✓ ✓ ✓ 53 0.004865

DCSM - - - 102 0.136772
AE - - - 100 0.123888

HDDT - - - 113 0.223516
ME - - - 101 0.130220

MCDT - - - 114 0.232708
OC1 - - - 91 0.124552

Recall

CART ✓ ✓ - 76.5 0.030698
C4.5 - - - 114.5 0.237369

DCSM ✓ ✓ - 79 0.036368
AE ✓ ✓ ✓ 33 0.000703

HDDT ✓ ✓ - 78 0.034008
ME ✓ ✓ - 78 0.034008

MCDT - - - 98 0.111879
OC1 ✓ ✓ ✓ 29 0.002275

F-measure

CART ✓ ✓ - 62 0.010402
C4.5 ✓ ✓ - 70 0.019310

DCSM - - - 102 0.136772
AE ✓ ✓ ✓ 45 0.002338

HDDT ✓ - - 84 0.050253
ME ✓ ✓ - 74 0.025794

MCDT - - - 103 0.143546
OC1 ✓ ✓ - 59 0.014210

The number of leaves

CART ✓ ✓ ✓ 0 0.000014
C4.5 ✓ ✓ ✓ 0 0.000014

DCSM ✓ ✓ ✓ 19.5 0.000156
AE ✓ ✓ ✓ 2 0.000018

HDDT ✓ ✓ ✓ 20 0.000166
ME ✓ ✓ ✓ 45 0.000030

MCDT ✓ ✓ ✓ 2 0.000018
OC1 ✓ ✓ ✓ 74 0.007114

Table 3.7: The statistical results based on the Wilcoxon signed-rank test comparing
OMCT against other decision trees



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

DECISION TREE INDUCTION FOR A

MULTI-CLASS IMBALANCED NUMERIC

DATASET

In this chapter, another splitting measure is introduced called the individually

weighted entropy (IWE). It adapts the concept of modifying the entropy components

according to a set of instance weights. Moreover, this chapter also presents two weighting

functions to deal with the multi-class imbalanced problem. They are called the class-

overlapping weighting function and the class-balancing weighting function, denoted by

α and µ, respectively. Then, IWE according to the set of instance weights obtained

from the composition of functions α and µ, which has been specifically named the class-

overlapping-balancing entropy (OBE), is used as the splitting condition in the recursive

partitioning algorithm to build the decision tree called the self-balancing decision tree

(SBDT).

The motivation of the methods presented in this chapter comes from the success

of using the minority condensation entropy (MCE) to build a decision tree for handling

the binary-class imbalanced numeric dataset. For each attribute, determining a subset of

instances based on the specific range of minority instance values to calculate the entropy

gives the impressive results. However, it cannot be directly applied to a multi-class

imbalanced dataset. The existence of the multi-minority classes and the multi-majority

classes creates a lot of overlapping class ranges. For example, in Figure 4.1, there are

three minority classes that their ranges cover different subsets of the majority instances,

which makes it difficult to split. On the one hand, discarding all instances outside the

range of one minority class causes a very small amount of instances in consideration. On

the other hand, using the ranges of all minority classes cause a coverage of all majority
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instances in the dataset. So, the concept of MCE that determines whether to discard

each majority instance or not, by comparing its value with the minority range, is not

appropriate for this situation.

Figure 4.1: The range of instance values from each class according to attribute Aj

For these reasons, an improvement of MCE is proposed in this chapter. Assigning

the continuous weighted value to each instance is introduced for a multi-class imbalanced

dataset, instead of assigning it either 0 or 1 similar to the mechanism of MCE. Nonetheless,

two important concepts of MCE are still used as based assumptions in determining the

weights as follows:

1. First, the weights are assigned according to the range of each class.

Initially, the instances detected as the outliers in their class by IQR rule are not

used in determining the class range, and their weights are all set to be 0. For other

instances, they are considered in which class ranges cover their positions, which

have two issues to discuss:

• The number of overlapping classes

An instance that is located at the position of overlapping of more classes

must have less weight than an instance from the same class that is located at
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Figure 4.2: The distribution of the sample dataset with respect to numeric attribute
Aj for assigning the weighted value to each instance from the red-circle class according

to that attribute

the position of overlapping of fewer classes. That is because it represents the

region of the class more clearly, not an area that is shared with many other

classes. For example, in Figure 4.2, instances A, B, C and D are located in

the overlapping ranges of three classes, two classes, two classes, and one class,

respectively. So, instance A must have the smallest weight, while instance D

must have the largest weight.

• The effect of the class size

The instance that is located at the position of overlapping of the bigger class

must have less weight than the instance from the same class that is located at

the position of overlapping of the smaller class. That is because it represents

the region of the class more clearly, not an area that is shared with other

classes having a lot of instances. For example, in Figure 4.2, instances B and

C are both located in the overlapping ranges of two classes. Explicitly, they

are in the range of the red-circle class which is their class. However, another

class that covers the position of instance B is the blue-triangle class having

eight instances, while another class that covers the position of instance C

is the green-square class having four instances. So, instance B must have a

smaller weight than instance C.
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2. Second, the total weight with respect to each class must be more balanced.

After assigning the weighted values to all instances based on their positions, a set of

instance weights with respect to the instances from each class is normalized. They

are made to have the same total weight equal to 1/p, where p is the number of all

classes, for balancing between the classes.

Then, the entropy computed according to that set of instance weights is employed

to build the decision tree for classifying multi-class imbalanced datasets, which is called

the self-balancing decision tree (SBDT).

4.1 Proposed Methodologies

In this section, the mathematical definitions corresponding to the proposed method-

ologies are formally introduced. It also includes related properties, examples, and the

pseudocode for each proposed algorithm.

4.1.1 Individually Weighted Entropy

Initially, the individually weighted entropy or IWE is presented as a new splitting

measure to support applying the set of instance weights discussed above. It adjusts the

components of calculating the Shannon’s entropy (SE). Originally, the components of SE

comprise the proportion of instances in each class ck denoted by Pk, as shown in (2.2). It

treats all instances equally, in which each one is counted as one. For MCE and ME, the

meaning of the components is not changed, it just modifies the set of instances used in

consideration. In this section, therefore, an adjusted definition of each class’s proportion

is presented to be consistent with the set of instance weights. The summation of the

weights corresponding to the instances in each class ck divided by the total weight is used

as the components of calculating the entropy, which is denoted by Γk.

IWE is defined according to a set of instance weights W = {(wi, yi) | i = 1, 2, ...,m}

by (4.1), in which each instance weight is in R × C. It is able to deal with dataset D

depending on the assignment of weighted value to each instance.
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IWE(W) = −
p∑

k=1

Γk(W) log2 Γk(W) (4.1)

where

• Γk(W) is the proportion of weights corresponding to class ck, i.e. Γk(W) =∑
(wi,yi)∈Wk

wi∑
(wi,yi)∈W

wi
.

• Wk is the set of instance weights corresponding to class ck, i.e. Wk = {(wi, yi) ∈

W | yi = ck for i = 1, 2, ...,m}.

The brief pseudocode to compute IWE with respect to a set of instance weights W

is displayed in Algorithm 4.1. For each class, the proportion of weights is computed to

be the components of calculating the entropy.

Algorithm 4.1: IWE(W)
Input: a set of instance weights W
Output: the individually weighted entropy according to W

1 •let iwe = 0
2 for each class ck do
3 •compute the proportion of weights corresponding to class ck:

Γk(W)
4 •iwe + = Γk(W) log2 Γk(W)

5 return iwe

4.1.2 Class-overlapping Weighting Function

In this section, the first proposed weighting function is presented in accordance

with the first assumption mentioned above, which is called the class-overlapping weighting

function denoted by α. It is defined with respect to the instance value s(x⃗i) ∈ s(D) by

(4.2) as follows:

α(s(x⃗i)) =

(
p∑

k=1

1(s(x⃗i) ∈ ϕ∗
k(s(D))) · log2(mk)

)−1

(4.2)

where 1(ω) is the indicator function, 1 if the condition ω is true, 0 otherwise.
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The weight corresponding to each instance is inversely proportional to the total

number of instances in all classes that their ranges without the outliers cover the instance’s

position, which has been scaled down by the logarithmic function to decrease the extreme

difference between each case.

For example, consider Figure 4.2, the calculation of the class-overlapping weight for

each instance in the red-circle class is demonstrated as follows:

• Instance A locates in the overlapping range of three classes: the red-circle class,

the pink-diamond class, and the blue-triangle class, which contain 4 instances, 4

instances, and 8 instances, respectively. Thus,

α(πj(A)) =
1

log2(4) + log2(4) + log2(8)
=

1

2 + 2 + 3
=

1

7
.

• Instance B locates in the overlapping range of two classes: the red-circle class and

the blue-triangle class, which contain 4 instances and 8 instances, respectively.

Thus,

α(πj(B)) =
1

log2(4) + log2(8)
=

1

2 + 3
=

1

5
.

• Instance C locates in the overlapping range of two classes: the red-circle class

and the green-square class, which contain 4 instances and 4 instances, respectively.

Thus,

α(πj(C)) =
1

log2(4) + log2(4)
=

1

2 + 2
=

1

4
.

• Instance D locates only in the range of one class: the red-circle class, which contains

4 instances. Thus,

α(πj(D)) =
1

log2(4)
=

1

2
.

That is, instance A receives the smallest weight, while instance D receives the largest

weight, corresponding to the first issue considered in the first assumption. Moreover,

instance B receives a smaller weight than instance C, corresponding to the second issue

considered in the first assumption.
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Theoretically, two properties corresponding to those issues of determining the weighted

values to the instances in D with respect to s(D) using the class-overlapping weighting

function are presented in Theorem 4.1 and Theorem 4.2 as follows:

Theorem 4.1. For a set of instance values s(D), let Ca ⊆ C and Cb ⊆ C be the sets

of classes that their ranges without the outliers cover the position of instance values

s(x⃗a) ∈ s(D) and s(x⃗b) ∈ s(D), respectively. If Ca ⊂ Cb, then α(s(x⃗a)) > α(s(x⃗b)).

Proof. Let Ma = {mk | ck ∈ Ca for k = 1, 2, ..., p} and Mb = {mk | ck ∈ Cb for k =

1, 2, ..., p} be the sets containing the number of instances from each class in Ca and Cb,

respectively. Since Ca ⊂ Cb, Ma is a subset of Mb, which Mb can be partitioned as

Mb = Ma ∪Mr where Mr = Mb ∖Ma. Hence,

∏
m∈Ma

m <
∏

m∈Ma

m+
∏

m∈Mr

m =
∏

m∈Mb

m

log2

( ∏
m∈Ma

m

)
< log2

( ∏
m∈Mb

m

)
∑

m∈Ma

log2m <
∑

m∈Mb

log2m( ∑
m∈Ma

log2m
)−1

>

( ∑
m∈Mb

log2m
)−1

α(s(x⃗a)) > α(s(x⃗b)).

Theorem 4.2. For a set of instance values s(D), let Ca ⊆ C and Cb ⊆ C be the sets

of classes that their ranges without the outliers cover the position of instance values

s(x⃗a) ∈ s(D) and s(x⃗b) ∈ s(D), respectively. If Ca ∖ Cb = {cka
} and Cb ∖ Ca = {ckb

}

s.t. mka
< mkb

, then α(s(x⃗a)) > α(s(x⃗b)).

Proof. Let Ma = {mk | ck ∈ Ca for k = 1, 2, ..., p} and Mb = {mk | ck ∈ Cb for k =

1, 2, ..., p} be the sets containing the number of instances from each class in Ca and Cb,

respectively. Since Ca ∖ Cb = {cka
}, so Ma ∖Mb = {mka

}, then Ma can be transformed
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as Ma = (Ma ∩Mb) ∪ {mka
}. Likewise, Mb = (Ma ∩Mb) ∪ {mkb

}. Hence,

mka
< mkb

mka
×

( ∏
m∈Ma∩Mb

m

)
< mkb

×

( ∏
m∈Ma∩Mb

m

)
∏

m∈(Ma∩Mb)∪{mka}

m <
∏

m∈(Ma∩Mb)∪{mkb
}

m

∏
m∈Ma

m <
∏

m∈Mb

m

log2

( ∏
m∈Ma

m

)
< log2

( ∏
m∈Mb

m

)
∑

m∈Ma

log2m <
∑

m∈Mb

log2m( ∑
m∈Ma

log2m
)−1

>

( ∑
m∈Mb

log2m
)−1

α(s(x⃗a)) > α(s(x⃗b)).

Then, a set of class-overlapping weights received from a set of instance values s(D)

is determined by (4.3) as follows:

α(s(D)) = {(α(s(x⃗i)), yi) | (x⃗i, yi) ∈ D for i = 1, 2, ...,m} (4.3)

In addition, the pseudocode to obtain a set of class-overlapping weights with respect

to a set of instance values s(D) is displayed in Algorithm 4.2. The range of instance values

without the outliers corresponding to each class is computed for considering the instances

that their values locate there. Then, the weighted values of those instances are updated,

and then returning as their inverses.
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Algorithm 4.2: OverlappingWeight(D, s)
Input: dataset D, a function to obtain the instance values s
Output: a set of class-overlapping weights with respect to s(D)

1 •let wi = 0 for i = 1, 2, ...,m
2 for each class ck do
3 •generate the range of instance values without the outliers

corresponding to class ck: ϕ∗
k(s(D))

4 for each value s(x⃗i) do
5 if min(ϕ∗

k(s(D))) ≤ s(x⃗i) ≤ max(ϕ∗
k(s(D))) then

6 •wi + = log2(mk)

7 return {(1/wi, yi) | (x⃗i, yi) ∈ D for i = 1, ...,m}

4.1.3 Class-balancing Weighting Function

In this section, the second proposed weighting function is presented in accordance

with the second assumption mentioned above, which is called the class-balancing weight-

ing function denoted by µ. It is defined with respect to the instance weight (wi, yi) ∈ W

by (4.4) as follows:

µ(wi, yi) =
1

p
· wi∑
wl ∈ Wyi

wl

(4.4)

The weight corresponding to each instance is normalized by its class. The total

weight with respect to each class is balanced, which is set to 1/p to make the total weight

of a whole dataset having p distinct classes equals to 1. It is discussed in Theorem 4.3,

which corresponds to the second assumption.

Theorem 4.3. For a set of instance weights W, the summation of class-balancing weights

of W with respect to each class is equal to 1/p, where p is the number of all classes.

Proof. Let Wk ⊂ W be the set of instance weights corresponding to each class ck of size

mk. So, class-balancing weight for each (wi, yi) ∈ Wk is equal to 1

p
· wi∑
wl∈Wk

wl
. Hence,
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the summation of class-balancing weights with respect to class ck is equal to

∑
wi∈Wk

1

p
· wi∑
wl∈Wk

wl

 =

1

p
· 1∑
wl∈Wk

wl

 ·
∑

wi∈Wk

wi =
1

p
·

∑
wi∈Wk

wi∑
wl∈Wk

wl
=

1

p

For example, class-overlapping weights of the instances from the red-circle class in

Figure 4.2 obtained in the previous section will be normalized by their total weight, i.e.
1

7
+

1

5
+

1

4
+

1

2
= 1.09. Consequently, by using the class-balancing weighting function,

the weighted values that are normalized of instances A, B, C, and D are determined as
1

4
· 1

7× 1.09
= 0.0325, 1

4
· 1

5× 1.09
= 0.045, 1

4
· 1

4× 1.09
= 0.0575, and 1

4
· 1

2× 1.09
= 0.115,

respectively. So, their total weight is equal to 0.0325+0.045+0.0575+0.115 = 0.25 =
1

4
,

corresponding to the second assumption.

Then, a set of class-balancing weights received from a set of instance weights W is

determined by (4.5) as follows:

µ(W) = {(µ(wi, yi), yi) | (wi, yi) ∈ W for i = 1, 2, ...,m} (4.5)

In addition, the pseudocode to obtain a set of class-balancing weights with respect to

a set of instance weights W is displayed in Algorithm 4.3. The total weight corresponding

to each class is computed for normalizing the instances in that class.

Algorithm 4.3: BalancingWeight(W)
Input: a set of instance values W
Output: a set of class-balancing weights with respect to W

1 for each class ck do
2 •generate the set of instance weights corresponding to class ck: Wk

3 •let Σk be the summation of the weighted values in Wk

4 return {(wi/Σi, yi) | (wi, yi) ∈ W for i = 1, ...,m}
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4.1.4 Self-balancing Decision Tree

Then, in this section, a decision tree based on a single attribute is constructed from

the set of instance weights received from applying the composition of functions α and µ

to dataset D. It is called a set of class-overlapping-balancing weights, which is defined

according to each attribute Aj by (4.6) as follows:

OBWπj
(D) = µ(α(πj(D))) (4.6)

Thus, the individually weighted entropy corresponding to a set of class-overlapping-

balancing weights is also called the class-overlapping-balancing entropy (OBE) defined by

(4.7) as follows:

OBEπj
(D) = IWE

(
OBWπj

(D)
)

(4.7)

Since OBWπj
(D) contains a balanced proportion of instance weights corresponding

to each class, OBEπj
(D) always equals to one. In a recursive partitioning algorithm,

however, the class-overlapping-balancing entropy is applied to each subset of instance

weights for each partition after splitting shown in (4.8) and (4.9). In which the proportion

of each class varies according to the splitting condition.

OBEπj
(D(left)) = IWE

(
OBW (left)

πj
(D)

)
(4.8)

OBEπj
(D(right)) = IWE

(
OBW (right)

πj
(D)

)
(4.9)

So, a decision tree from the recursive partitioning algorithm using OBE as the

splitting measure is called the self-balancing decision tree or SBDT, and that algorithm is

also called the SBDT algorithm. Its pseudocode is displayed in Algorithm 4.4. For each
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attribute Aj , it starts by obtaining a set of class-overlapping weights. Then, the greedy

approach is applied to select the best condition for splitting dataset D based on the value

of OBE according to each candidate from πj(D).

Algorithm 4.4: SBDT(D)
Input: dataset D
Output: a decision tree

1 •create the root node of the tree
2 if all instances in D are in the same class then
3 return the leaf node with respect to that class
4 else

/* select the splitting condition */
5 for each attribute Aj do
6 •receive a set of class-overlapping weights with respect to πj(D)

via Algorithm 4.2: α(πj(D)) = OverlappingWeight(D, πj)
7 •receive a set of class-overlapping-balancing weights with respect

to πj(D) via Algorithm 4.3: OBWπj
(D) =

BalancingWeight(α(πj(D)))
8 •apply the greedy approach on πj(D) based on the individually

weighted entropy with respect to OBWπj
(D) via Algorithm 4.1

9 •update the best splitting condition
10 •obtain the best splitting condition

/* recursively partition the dataset */
11 •separate the dataset into 2 partitions corresponding to the

outcomes of the splitting condition: D = D(left) ∪ D(right)

12 •iterate for each partition: SBDT(D(left)) and SBDT(D(right))

4.2 Experiments and Results

In order to evaluate the performance of inducing a decision tree that uses OBE as

the splitting measure, two collections of experiments are conducted. The first collection

employs the synthetic datasets varying their imbalanced ratios, to show the effectiveness

of OBE over SE. For the second collection, the performance comparison in classifying the

real-world datasets from the UCI repository of SBDT with other methods is presented.

4.2.1 Experiments on Synthetic Datasets

In this section, an improvement of the Shannon’s entropy (SE) to classify minority
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instances in the multi-class imbalanced datasets dealing with numeric attributes using

the overlapping-balancing entropy (OBE) is demonstrated in the experiments on the

collections of synthetic datasets generated according to the following specifications:

• Each dataset contains 1000 instances consisting of 10 numeric attributes.

• Each instance is labeled as one of four determined classes as follows:

– The minority class (containing the instances not exceed 25%)

– The majority class (containing the instances not less than 25%)

– The third class (containing exactly 25% of all instances)

– The fourth class (containing exactly 25% of all instances)

• For each attribute, an overlapping range of each class is randomly defined. Then,

the uniform sampling is performed within that range.

• There are five groups of experiments varying the percentages of minority instances

from 5% to 25%.

• For each group, ten datasets are synthesized and then applying five-fold cross-

validation ten times to evaluate the performance of each method.

Accordingly, the average results of SE and OBE are compared via the precision

(2.16), the recall (2.17), and the F-measure (2.18) with respect to the minority class and

the majority class displaying in Figure 4.3 and Figure 4.4, respectively.

For the results corresponding to the minority class, their results are similar in

all performance measures, which ostensibly increase when the percentage of minority

instances increases. Nonetheless, OBE significantly outperforms SE when the number of

instances in the minority class is tiny. For example, the performance of SE is only about

0.05 when there are 5 % of minority instances, while OBE offers the performance up to

0.15. Then their values will approach to be equal when a dataset is more balanced. For

the case that the dataset is completely balanced, the performance of SE and OBE are
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(a) comparing by the precision

(b) comparing by the recall

(c) comparing by the F-measure

Figure 4.3: The experimental results with respect to the minority class on the
synthetic multi-class datasets varying the percentage of minority instances
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(a) comparing by the precision

(b) comparing by the recall

(c) comparing by the F-measure

Figure 4.4: The experimental results with respect to the majority class on the
synthetic multi-class datasets varying the percentage of minority instances
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almost the same at 0.35 due to the overlapping of each class range in each attribute. These

results evidently confirm that SE is not suitable to deal with the multi-class imbalanced

problem, which is able to be captured using OBE.

Differently, considering the results based on the majority class, all performance

measures gradually decrease when a dataset is more balanced. That is because of the

decrease in the percentage of majority instances. However, due to the effort to reduce

the bias toward the majority class of OBE, it gives a slightly worse result according to

the majority class compared to SE in the case of extreme imbalance. For example, the

performance of SE is about 0.7 when there are only 5 % of minority instances, while OBE

offers the performance around 0.65. Their values will approach to the same value when a

dataset is more balanced, which are equal to 0.5 when the dataset is completely balanced.

4.2.2 Experiments on Real-world Datasets

To demonstrate the effectiveness of OBE on general datasets, the decision tree built

based on OBE like SBDT is evaluated with the experiments on real-world datasets in this

section. Its results are compared to those of four other decision trees. The first two

models are the decision trees from the well-known algorithms, i.e. CART [44] and C.

45 [39]. Additionally, the decision tree built based on DCSM [45] is used as well. The

other is the state-of-the-art decision tree designed for a multi-class imbalanced dataset

like MC-HDDT [81].
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Datasets

For the datasets used in the experiments, they are collected from the UCI repos-

itory [86] having a total of 23 datasets that their attributes are all numeric, which are

summarized in Table 4.1. They are sorted in the ascending order by the imbalanced ratio

(I.R.), corresponding to the percentage of instances in each class (% Cl.). The first two

columns represent the index and the name of each dataset. For the next three columns,

they indicate the number of instances (# Inst.), the number of attributes (# Att.), and

the number of classes (# Cl.), respectively. In order to evaluate the performance of

each decision tree, the five-fold cross-validation is employed to divide the dataset into the

training set and the testing set, which is repeated 20 times. That is, there are up to one

hundred experiments performed on each dataset.
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No. Dataset # Inst. # Att. # Cl. % Cl. I.R.
1 LibrasMovement 360 90 15 6.67 / 6.67 / 6.67 / 6.67 /

6.67 / 6.67 / 6.67 / 6.67 /
6.67 / 6.67 / 6.67 / 6.67 /

6.67 / 6.67 / 6.67

1

2 StatlogImage 2310 19 7 14.29 / 14.29 / 14.29 / 14.29
/ 14.29 / 14.29 / 14.29

1

3 Vowel 990 10 11 9.09 / 9.09 / 9.09 / 9.09 /
9.09 / 9.09 / 9.09 / 9.09 /

9.09 / 9.09 / 9.09

1

4 OpticDigits 5620 64 10 10.18 / 10.16 / 10.11 /
10.07 / 10.0 / 9.93 / 9.93 /

9.91 / 9.86 / 9.86

1.03

5 PenDigits 10992 16 10 10.41 / 10.41 / 10.4 / 10.4 /
10.39 / 9.61 / 9.6 / 9.6 / 9.6

/ 9.6

1.08

6 StatlogVehicle 846 18 4 25.77 / 25.65 / 25.06 / 23.52 1.1
7 Letter 20000 16 26 4.07 / 4.03 / 4.01 / 3.98 /

3.96 / 3.94 / 3.94 / 3.93 /
3.92 / 3.92 / 3.88 / 3.86 /
3.84 / 3.83 / 3.82 / 3.8 /
3.79 / 3.78 / 3.76 / 3.76 /
3.74 / 3.74 / 3.7 / 3.68 /

3.67 / 3.67

1.11

8 Wine 178 13 3 39.89 / 33.15 / 26.97 1.48
9 BreastTissue 106 9 6 20.75 / 19.81 / 16.98 /

15.09 / 14.15 / 13.21
1.57

10 Ionosphere 351 34 2 64.1 / 35.9 1.79
11 Pima 768 8 2 65.1 / 34.9 1.87
12 StatlogLandsat 6435 36 6 23.82 / 23.43 / 21.1 / 10.99

/ 10.92 / 9.73
2.45

13 Haberman 306 3 2 73.53 / 26.47 2.78
14 Parkinsons 195 22 2 75.38 / 24.62 3.06
15 NewThyroid 215 5 3 69.77 / 16.28 / 13.95 5
16 Fertility 100 9 2 88.0 / 12.0 7.33
17 Glass 214 9 6 35.51 / 32.71 / 13.55 / 7.94

/ 6.07 / 4.21
8.44

18 Ecoli 332 7 6 43.07 / 23.19 / 15.66 /
10.54 / 6.02 / 1.51

28.6

19 Winequality-red 1599 11 6 42.59 / 39.9 / 12.45 / 3.31 /
1.13 / 0.63

68.1

20 Yeast 1484 8 10 31.2 / 28.91 / 16.44 / 10.98
/ 3.44 / 2.96 / 2.36 / 2.02 /

1.35 / 0.34

92.6

21 PageBlocks 5473 10 5 89.77 / 6.01 / 2.1 / 1.61 /
0.51

175.46

22 Winequality-white 4898 11 7 44.88 / 29.75 / 17.97 / 3.57
/ 3.33 / 0.41 / 0.1

439.6

23 StatlogShuttle 58000 9 7 78.6 / 15.35 / 5.63 / 0.29 /
0.09 / 0.02 / 0.02

4558.6

Table 4.1: The characteristics of the experimental real-world multi-class datasets
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Results

Accordingly, the average results of each decision tree are compared via the macro-

precision (2.22), the macro-recall (2.23), the macro-F-measure (2.24), and the accuracy

(2.25) displaying in four tables for each measure. In each table, a comparison of perfor-

mance for each dataset is represented in each row. Furthermore, the rank of each method

corresponding to each dataset is shown in parentheses, emphasizing the best rank in bold.

Summarily, the bottom row of each table represents the average rank of each method.

In Table 4.2, the performance comparison according to the macro-precision of each

method is shown. SBDT yields the lowest average rank at 2, which is much different from

other methods. There are up to 15 out of 23 datasets that SBDT offers the highest or the

second-highest macro-precision. For MC-HDDT, it yields the third-lowest average rank

at 3, which is worse than DCSM having the average rank at 2.83.

In Table 4.3, the performance comparison according to the macro-recall of each

method is shown. SBDT yields the lowest average rank at 1.65, which is much different

from other methods. There are up to 12 out of 23 datasets that SBDT offers the highest

macro-recall, while 7 out of 11 remaining datasets have the second-best performance. For

the others, they receive a similar average rank that is all equal to or greater than 3.

In Table 4.4, the performance comparison according to the macro-F-measure of each

method is shown. SBDT yields the lowest average rank at 1.74, which is much different

from other methods. There are up to 12 out of 23 datasets that SBDT offers the highest

macro-F-measure, while 5 out of 11 remaining datasets have the second-best performance.

For MC-HDDT, it yields the third-lowest average rank at 3.09, which is worse than DCSM

having the average rank at 2.87.

In Table 4.5, the performance comparison according to the accuracy of each method

is shown. SBDT yields the lowest average rank at 2.04, which is much different from other

methods. There are up to 15 out of 23 datasets that SBDT offers the highest or the second-

highest accuracy. For MC-HDDT, it yields the second-lowest average rank at 2.91, which

is close to DCSM and CART having the average rank at 3.04 and 3.13, respectively.
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No. Dataset Decision Tree
CART C.45 DCSM MC-HDDT SBDT

1 LibrasMovement 0.7266 (1) 0.6562 (5) 0.6825 (3) 0.6713 (4) 0.7058 (2)
2 StatlogImage 0.9628 (4) 0.9620 (5) 0.9655 (2) 0.9674 (1) 0.9653 (3)
3 Vowel 0.8047 (2) 0.7687 (5) 0.8022 (3) 0.7987 (4) 0.8102 (1)
4 OpticDigits 0.8982 (3) 0.8868 (5) 0.9016 (2) 0.8881 (4) 0.9065 (1)
5 PenDigits 0.9611 (4) 0.9617 (3) 0.9623 (2) 0.9608 (5) 0.9655 (1)
6 StatlogVehicle 0.6972 (5) 0.7052 (4) 0.7242 (3) 0.7331 (1) 0.7281 (2)
7 Letter 0.8699 (2) 0.8602 (4) 0.8651 (3) 0.8408 (5) 0.8742 (1)
8 Wine 0.9107 (5) 0.9317 (3) 0.9250 (4) 0.9484 (1) 0.9379 (2)
9 BreastTissue 0.6589 (4) 0.6856 (1) 0.6674 (3) 0.6551 (5) 0.6779 (2)
10 Ionosphere 0.8846 (5) 0.9374 (1) 0.8882 (4) 0.8930 (2) 0.8912 (3)
11 Pima 0.6571 (5) 0.6710 (3) 0.6609 (4) 0.6763 (2) 0.6783 (1)
12 StatlogLandsat 0.8305 (2) 0.8093 (5) 0.8340 (1) 0.8302 (3) 0.8297 (4)
13 Haberman 0.5550 (4) 0.5650 (2) 0.5675 (1) 0.5550 (5) 0.5609 (3)
14 Parkinsons 0.8299 (2) 0.7658 (5) 0.7983 (4) 0.8186 (3) 0.8361 (1)
15 NewThyroid 0.9191 (4) 0.9158 (5) 0.9327 (2) 0.9277 (3) 0.9455 (1)
16 Fertility 0.5161 (4) 0.5197 (3) 0.5593 (1) 0.5159 (5) 0.5572 (2)
17 Glass 0.6655 (4) 0.6432 (5) 0.6892 (3) 0.7194 (2) 0.7197 (1)
18 Ecoli 0.7421 (5) 0.7894 (1) 0.7546 (4) 0.7891 (2) 0.7840 (3)
19 Winequality-red 0.3749 (1) 0.3414 (5) 0.3547 (3) 0.3539 (4) 0.3672 (2)
20 Yeast 0.4053 (4) 0.4506 (2) 0.3878 (5) 0.4654 (1) 0.4336 (3)
21 PageBlocks 0.8047 (4) 0.7908 (5) 0.8304 (1) 0.8295 (2) 0.8246 (3)
22 Winequality-white 0.3649 (5) 0.3678 (4) 0.3750 (2) 0.3710 (3) 0.3848 (1)
23 StatlogShuttle 0.9896 (1) 0.9714 (4) 0.9692 (5) 0.9826 (2) 0.9723 (3)

average rank 3.48 3.7 2.83 3 2

Table 4.2: The experimental results on the real-world multi-class datasets comparing
by the macro-precision
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No. Dataset Decision Tree
CART C.45 DCSM MC-HDDT SBDT

1 LibrasMovement 0.6990 (1) 0.6407 (4) 0.6532 (3) 0.6375 (5) 0.6877 (2)
2 StatlogImage 0.9619 (4) 0.9616 (5) 0.9649 (2) 0.9666 (1) 0.9647 (3)
3 Vowel 0.7975 (2) 0.7619 (5) 0.7932 (3) 0.7896 (4) 0.8013 (1)
4 OpticDigits 0.8973 (3) 0.8861 (5) 0.9010 (2) 0.8874 (4) 0.9055 (1)
5 PenDigits 0.9607 (4) 0.9615 (3) 0.9622 (2) 0.9604 (5) 0.9654 (1)
6 StatlogVehicle 0.6999 (5) 0.7002 (4) 0.7250 (3) 0.7340 (1) 0.7280 (2)
7 Letter 0.8689 (2) 0.8592 (4) 0.8639 (3) 0.8395 (5) 0.8729 (1)
8 Wine 0.9077 (5) 0.9305 (3) 0.9216 (4) 0.9466 (1) 0.9348 (2)
9 BreastTissue 0.6276 (5) 0.6606 (2) 0.6550 (3) 0.6346 (4) 0.6696 (1)
10 Ionosphere 0.8820 (2) 0.9374 (1) 0.8768 (5) 0.8804 (4) 0.8810 (3)
11 Pima 0.6574 (5) 0.6704 (3) 0.6579 (4) 0.6724 (2) 0.6751 (1)
12 StatlogLandsat 0.8299 (3) 0.8108 (5) 0.8306 (1) 0.8289 (4) 0.8300 (2)
13 Haberman 0.5530 (4) 0.5586 (3) 0.5634 (1) 0.5508 (5) 0.5607 (2)
14 Parkinsons 0.8248 (1) 0.7688 (5) 0.7886 (4) 0.8175 (3) 0.8241 (2)
15 NewThyroid 0.9008 (5) 0.9158 (2) 0.9090 (3) 0.9024 (4) 0.9194 (1)
16 Fertility 0.5431 (4) 0.5502 (3) 0.5903 (2) 0.5404 (5) 0.6069 (1)
17 Glass 0.6579 (5) 0.6671 (3) 0.6581 (4) 0.6890 (2) 0.6936 (1)
18 Ecoli 0.7236 (5) 0.7830 (1) 0.7319 (4) 0.7803 (2) 0.7665 (3)
19 Winequality-red 0.3660 (1) 0.3417 (5) 0.3550 (3) 0.3454 (4) 0.3605 (2)
20 Yeast 0.3948 (4) 0.4516 (2) 0.3882 (5) 0.4780 (1) 0.4368 (3)
21 PageBlocks 0.8095 (4) 0.8008 (5) 0.8186 (3) 0.8233 (2) 0.8256 (1)
22 Winequality-white 0.3675 (5) 0.3750 (2) 0.3720 (3) 0.3704 (4) 0.3943 (1)
23 StatlogShuttle 0.9652 (4) 0.9672 (3) 0.9787 (2) 0.9652 (5) 0.9913 (1)

average rank 3.61 3.39 3 3.35 1.65

Table 4.3: The experimental results on the real-world multi-class datasets comparing
by the macro-recall



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

88

No. Dataset Decision Tree
CART C.45 DCSM MC-HDDT SBDT

1 LibrasMovement 0.6940 (1) 0.6303 (5) 0.6458 (3) 0.6322 (4) 0.6784 (2)
2 StatlogImage 0.9619 (4) 0.9615 (5) 0.9649 (2) 0.9666 (1) 0.9647 (3)
3 Vowel 0.7967 (2) 0.7596 (5) 0.7930 (3) 0.7891 (4) 0.8000 (1)
4 OpticDigits 0.8973 (3) 0.8860 (5) 0.9009 (2) 0.8873 (4) 0.9056 (1)
5 PenDigits 0.9608 (4) 0.9615 (3) 0.9621 (2) 0.9605 (5) 0.9653 (1)
6 StatlogVehicle 0.6965 (5) 0.7011 (4) 0.7231 (3) 0.7316 (1) 0.7268 (2)
7 Letter 0.8690 (2) 0.8593 (4) 0.8640 (3) 0.8396 (5) 0.8731 (1)
8 Wine 0.9058 (5) 0.9267 (3) 0.9197 (4) 0.9448 (1) 0.9319 (2)
9 BreastTissue 0.6181 (5) 0.6487 (2) 0.6406 (3) 0.6210 (4) 0.6581 (1)
10 Ionosphere 0.8825 (4) 0.9366 (1) 0.8809 (5) 0.8846 (2) 0.8842 (3)
11 Pima 0.6561 (5) 0.6691 (3) 0.6585 (4) 0.6737 (2) 0.6758 (1)
12 StatlogLandsat 0.8299 (2) 0.8097 (5) 0.8320 (1) 0.8292 (4) 0.8295 (3)
13 Haberman 0.5527 (4) 0.5586 (3) 0.5630 (1) 0.5503 (5) 0.5588 (2)
14 Parkinsons 0.8238 (2) 0.7630 (5) 0.7884 (4) 0.8127 (3) 0.8243 (1)
15 NewThyroid 0.9033 (5) 0.9103 (3) 0.9149 (2) 0.9086 (4) 0.9266 (1)
16 Fertility 0.5198 (5) 0.5241 (3) 0.5628 (2) 0.5224 (4) 0.5668 (1)
17 Glass 0.6430 (4) 0.6407 (5) 0.6492 (3) 0.6782 (2) 0.6866 (1)
18 Ecoli 0.7207 (5) 0.7687 (1) 0.7245 (4) 0.7663 (2) 0.7623 (3)
19 Winequality-red 0.3639 (1) 0.3376 (5) 0.3516 (3) 0.3437 (4) 0.3592 (2)
20 Yeast 0.3945 (4) 0.4425 (2) 0.3843 (5) 0.4644 (1) 0.4287 (3)
21 PageBlocks 0.8029 (4) 0.7911 (5) 0.8198 (2) 0.8202 (1) 0.8189 (3)
22 Winequality-white 0.3652 (5) 0.3699 (3) 0.3724 (2) 0.3695 (4) 0.3868 (1)
23 StatlogShuttle 0.9721 (2) 0.9633 (5) 0.9691 (3) 0.9675 (4) 0.9800 (1)

average rank 3.61 3.7 2.87 3.09 1.74

Table 4.4: The experimental results on the real-world multi-class datasets comparing
by the macro-F-measure
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No. Dataset Decision Tree
CART C.45 DCSM MC-HDDT SBDT

1 LibrasMovement 0.6990 (1) 0.6407 (4) 0.6532 (3) 0.6375 (5) 0.6877 (2)
2 StatlogImage 0.9619 (4) 0.9616 (5) 0.9649 (2) 0.9666 (1) 0.9647 (3)
3 Vowel 0.7975 (2) 0.7619 (5) 0.7932 (3) 0.7896 (4) 0.8013 (1)
4 OpticDigits 0.8972 (3) 0.8860 (5) 0.9008 (2) 0.8874 (4) 0.9054 (1)
5 PenDigits 0.9607 (4) 0.9614 (3) 0.9622 (2) 0.9605 (5) 0.9653 (1)
6 StatlogVehicle 0.6978 (5) 0.6985 (4) 0.7228 (3) 0.7319 (1) 0.7261 (2)
7 Letter 0.8692 (2) 0.8595 (4) 0.8642 (3) 0.8398 (5) 0.8732 (1)
8 Wine 0.9047 (5) 0.9270 (3) 0.9186 (4) 0.9439 (1) 0.9312 (2)
9 BreastTissue 0.6441 (5) 0.6727 (2) 0.6676 (3) 0.6473 (4) 0.6790 (1)
10 Ionosphere 0.8924 (4) 0.9416 (1) 0.8917 (5) 0.8953 (2) 0.8945 (3)
11 Pima 0.6868 (5) 0.6992 (3) 0.6917 (4) 0.7067 (2) 0.7080 (1)
12 StatlogLandsat 0.8539 (2) 0.8361 (5) 0.8566 (1) 0.8532 (3) 0.8529 (4)
13 Haberman 0.6495 (5) 0.6586 (2) 0.6667 (1) 0.6510 (4) 0.6536 (3)
14 Parkinsons 0.8717 (1) 0.8229 (5) 0.8454 (4) 0.8602 (3) 0.8709 (2)
15 NewThyroid 0.9279 (5) 0.9314 (4) 0.9384 (2) 0.9337 (3) 0.9477 (1)
16 Fertility 0.7837 (5) 0.7962 (4) 0.8036 (2) 0.7986 (3) 0.8059 (1)
17 Glass 0.7014 (1) 0.6743 (5) 0.6745 (4) 0.6807 (3) 0.6923 (2)
18 Ecoli 0.8132 (2) 0.8147 (1) 0.7987 (5) 0.8052 (3) 0.8049 (4)
19 Winequality-red 0.6154 (1) 0.5936 (5) 0.6116 (2) 0.6083 (4) 0.6104 (3)
20 Yeast 0.5115 (1) 0.4921 (4) 0.4866 (5) 0.4945 (2) 0.4934 (3)
21 PageBlocks 0.9612 (4) 0.9599 (5) 0.9637 (2) 0.9644 (1) 0.9634 (3)
22 Winequality-white 0.6020 (2) 0.6001 (5) 0.6007 (4) 0.6016 (3) 0.6061 (1)
23 StatlogShuttle 0.9998 (3) 0.9997 (5) 0.9998 (4) 0.9999 (1) 0.9999 (2)

average rank 3.13 3.87 3.04 2.91 2.04

Table 4.5: The experimental results on the real-world multi-class datasets comparing
by the accuracy
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Discussions

Graphically, the bar chart representing the comparison of results by the average rank

corresponding to each measure is shown in Figure 4.5, in which a lower value indicates

a better rank. Moreover, the results of the Wilcoxon signed-rank test that compares the

performance of SBDT with other decision trees are shown in Table 4.6. The testing results

including the statistical value and the p-value for each comparison is shown in each row,

in which the symbol checkmark denotes that the proposed method is significantly better

than another method with the (1 − α)100% confidence level. In addition, the testing

results are also indicated in Figure 4.5 using the specific symbols for each confidence

level.

Similarly to the binary-class case, the conventional decision trees like CART and

C4.5 are also not suitable to deal with the multi-class imbalanced problem. They show

the worst performances in both terms of the macro-precision and the macro-recall, which

make an unacceptable value of the macro-F-measure as well. These happen because there

are a lot of incorrect classified instances in each class. Especially, the same number of

misclassified instances related to the smaller class will have more effect than the larger

class, due to their ratio of classified instances. So, the decision tree algorithms that are

designed without considering the class imbalanced problem will give the poor results in

terms of those performance measures. Nonetheless, DCSM gave the good performance,

although it was not proposed to deal with the class imbalanced problem directly. This

happens because of the mechanism of DCSM that considers the number of distinct classes

in each partition after splitting. It still gives importance to all classes regardless of how

small they are. Therefore, its performance in classifying a class imbalanced dataset is

impressive, which is better than the decision tree presented for handling the multi-class

imbalanced problem like MC-HDDT. Although it obviously outperforms CART and C4.5,

MC-HDDT provides disappointing results, especially in terms of macro-recall. Applying

the one-versus-all (OVA) approach in the process of selecting the splitting condition at

each internal node causes excessive focus on any class. So, there is the overfitting phe-

nomenon in MC-HDDT, which does not happen to SBDT. Assigning the class-balancing
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weight to the instances in each class causes all classes to be considered equally, not fo-

cusing too much on any specific class. It is able to avoid the overfitting problem. Thus,

SBDT gives a significantly higher value of the macro-recall than all other methods with

a confidence level up to 99%. Moreover, applying the class-overlapping weight causes a

larger weighted value for an instance located in the position that represents its class more

clearly. Then, each class’s region is defined not to overlap in the other class regions. Thus,

SBDT gives a significantly higher value of the macro-precision than MC-HDDT with a

confidence level at 95%, and up to 99% for the others. Consequently, SBDT exactly shows

the significant improvement of the macro-F-measure comparing to all methods with up

to 99% confidence level. In terms of accuracy, finally, SBDT also gives the best result su-

perior to other methods, which is significantly better than C4.5, DCSM, and MC-HDDT

with up to 99% confidence level, and 95% for CART. That is, despite considering the

percentage of all instances that are correctly classified regardless of their class, SBDT

also outperforms the others.

Figure 4.5: The comparison of the experimental results on the real-world multi-class
datasets with respect to the average rank
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Performance Measures Decision Tree α Statistics p-value
0.1 0.05 0.01

Precision

CART ✓ ✓ ✓ 36 0.000960
C4.5 ✓ ✓ ✓ 48 0.003097

DCSM ✓ ✓ ✓ 29 0.000458
MC-HDDT ✓ ✓ - 76 0.029666

Recall

CART ✓ ✓ ✓ 24 0.000263
C4.5 ✓ ✓ ✓ 41 0.001588

DCSM ✓ ✓ ✓ 6 0.000030
MC-HDDT ✓ ✓ ✓ 57 0.006877

F-measure

CART ✓ ✓ ✓ 21 0.000186
C4.5 ✓ ✓ ✓ 36 0.000960

DCSM ✓ ✓ ✓ 14 0.000081
MC-HDDT ✓ ✓ ✓ 56 0.006315

Accuracy

CART ✓ ✓ - 79 0.036368
C4.5 ✓ ✓ ✓ 41 0.001588

DCSM ✓ ✓ ✓ 37 0.001063
MC-HDDT ✓ ✓ ✓ 60 0.008837

Table 4.6: The statistical results based on the Wilcoxon signed-rank test comparing
SBDT against other decision trees



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

DECISION TREE INDUCTION FOR A

MULTI-CLASS IMBALANCED DATASET

In this chapter, another weighting function is introduced to deal with a multi-class

imbalanced dataset consisting of categorical attributes. It is called the class-intermingle

weighting function, denoted by β. Then, IWE according to the set of instance weights

obtained from the composition of functions β and µ, which has been specifically named

the class-intermingle-balancing entropy (IBE), is used as the splitting condition in the

recursive partitioning algorithm to build the generalization of SBDT called the generalized

self-balancing decision tree (GSBT).

The motivation of the methods presented in this chapter comes from the success of

using the class-overlapping-balancing entropy (OBE) to build the self-balancing decision

tree (SBDT) for handling the multi-class imbalanced numeric dataset. For each attribute,

assigning weights based on the overlapping of the instance values in each class gives the

impressive results. However, it can only be done with numeric attributes. For categorical

attributes, there is no well-defined range. Thus, it cannot define the region that the

values of each class are overlapping. That is, the previously proposed methods, which

consider the range of each class, lose the basic property of the decision tree to deal with

the datasets consisting of categorical attributes.

For these reasons, an improvement of the class-overlapping weighting function (α)

is proposed in this chapter. The difference between the series of classes that mix in

each attribute value is used for assigning the weighted value to each instance, instead of

using the overlapping of class ranges that cannot apply to the categorical attribute. The

equivalent concept similar to that of function α can still be employed in determining the

weights in this situation. Initially, the instances that their values are different from the
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others in the same class are specified as the outliers, and their weights are all set to be 0.

For other instances, the weights are assigned based on the assumption according to the

class of instances, which have two issues to discuss:

Figure 5.1: The distribution of the sample dataset with respect to categorical
attribute Aj having 4 different values for assigning the weighted value to each instance

from the red-circle class according to that attribute

• The number of distinct classes sharing a specific value

An instance that its categorical value shares among instances from a large number

of classes should be assigned smaller weight than the one that its value shares

among lesser classes. For example, in Figure 5.1, there are instances at the possible

values of the categorical attribute as A(1)
j sharing among three classes, A(2)

j sharing

among two classes, A(3)
j sharing among two classes, and A

(4)
j sharing no class, while

instances from the red-circle class are instances R1, R2, R3 and R4, distributed

evenly. So, instance R1 must have the smallest weight, while instance R4 must

have the largest weight.
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• The class size effect

An instance that its categorical value shares with another instance from a larger

class size should be assigned a smaller weight than the one that its categorical

value shares with another instance from a lesser class size. For example, in Figure

5.1, there are instances from two classes of instance R2 at A
(2)
j and instance R3

at A
(3)
j . Explicitly, these values have only a single instance from the red-circle

class. However, another class that mixes with instance R2 is the blue-triangle

class having 8 instances in the whole blue-triangle class, while another class that

mixes with instance R3 is the green-square class having 4 instances in the whole

green-square class. So, instance R2 must have a smaller weight than instance R3.

In addition, a set of weights corresponding to instances from each class is normal-

ized. They are made to have the same total weights using the class-balancing weighting

function µ (4.4) for balancing between classes. Then, the entropy computed according to

that set of instance weights is employed to build the decision tree for classifying multi-class

imbalanced datasets consisting of categorical attributes, which is called the generalized

self-balancing decision tree (GSBT).

5.1 Proposed Methodologies

In this section, the mathematical definitions corresponding to the proposed method-

ologies are formally introduced. It also includes related properties, examples, and the

pseudocode for each proposed algorithm.

5.1.1 Class-intermingle Weighting Function

Initially, the third proposed weighting function is presented in accordance with

the assumption mentioned above, which is called the class-intermingle weighting function

denoted by β. For any set of instance categorical values t(D) = {t(x⃗i) ∈ dom(t) | (x⃗i, yi) ∈

D for i = 1, 2, ...,m}, where dom(t) = {τ (l) | l = 1, 2, ..., q} is the domain of t having q

distinct values, the class-intermingle weighting function is defined with respect to instance

value t(x⃗i) ∈ t(D) by (5.1) as follows:
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β(t(x⃗i)) =

(
p∑

k=1

1(|t(t(x⃗i))(Dk)| ≥ η) · log2(mk)

)−1

(5.1)

where

• 1(ω) is the indicator function, 1 if the condition ω is true, 0 otherwise

• t(l)(Dk) is the set of instance categorical values with respect to class ck that their

values are all τ (l), i.e. t(l)(Dk) = {t(x⃗i) ∈ t(Dk) | (x⃗i, yi) ∈ Dk and t(x⃗i) =

τ (l) for i = 1, 2, ...,m}

• η is the outlier parameter indicating the minimum number of instances in each class

that there are required for each value, which is set to be 1 as default.

The weight corresponding to each instance is inversely proportional to the total

number of instances in all classes containing at least η instances that their values are the

same as the instance considered, which has been scaled down by the logarithmic function.

Consider the example in Figure 5.1, the calculation of the class-intermingle weight

for each instance in the red-circle class is demonstrated as follows:

• There are instances from three classes having the same value as instance R1: the

red-circle class, the pink-diamond class, and the blue-triangle class, which contain

4 total instances, 4 total instances, and 8 total instances, respectively. Thus,

β(πj(R1)) =
1

log2(4) + log2(4) + log2(8)
=

1

2 + 2 + 3
=

1

7
.

• There are instances from two classes having the same value as instance R2: the

red-circle class and the blue-triangle class, which contain 4 total instances and 8

total instances, respectively. Thus,

β(πj(R2)) =
1

log2(4) + log2(8)
=

1

2 + 3
=

1

5
.
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• There are instances from two classes having the same value as instance R3: the

red-circle class and the green-square class, which contain 4 total instances and 4

total instances, respectively. Thus,

β(πj(R3)) =
1

log2(4) + log2(4)
=

1

2 + 2
=

1

4
.

• There are only instances from one class having the same value as instance R4: the

red-circle class, which contains 4 total instances. Thus,

β(πj(R4)) =
1

log2(4)
=

1

2
.

That is, instance R1 receives the smallest weight, while instance R4 receives the

largest weight, corresponding to the first issue considered in the assumption. Moreover,

instance R2 receives a smaller weight than instance R3, corresponding to the second issue

considered in the assumption.

Theoretically, two properties corresponding to those issues of determining the weighted

values to the instances in D with respect to t(D) using the class-intermingle weighting

function are presented in Theorem 5.1 and Theorem 5.2 as follows:

Theorem 5.1. For a set of instance categorical values t(D), let Ca ⊆ C and Cb ⊆

C be the sets of classes having a greater number of instances than a specific outlier

parameter, which their values are the same as instance values t(x⃗a) ∈ t(D) and t(x⃗b) ∈

t(D), respectively. If Ca ⊂ Cb, then β(t(x⃗a)) > β(t(x⃗b)).

Proof. Let Ma = {mk | ck ∈ Ca for k = 1, 2, ..., p} and Mb = {mk | ck ∈ Cb for k =

1, 2, ..., p} be the sets containing the number of instances from each class in Ca and Cb,

respectively. Since Ca ⊂ Cb, Ma is a subset of Mb, which Mb can be partitioned as
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Mb = Ma ∪Mr where Mr = Mb ∖Ma. Hence,

∏
m∈Ma

m <
∏

m∈Ma

m+
∏

m∈Mr

m =
∏

m∈Mb

m

log2

( ∏
m∈Ma

m

)
< log2

( ∏
m∈Mb

m

)
∑

m∈Ma

log2m <
∑

m∈Mb

log2m( ∑
m∈Ma

log2m
)−1

>

( ∑
m∈Mb

log2m
)−1

β(t(x⃗a)) > β(t(x⃗b)).

Theorem 5.2. For a set of instance categorical values t(D), let Ca ⊆ C and Cb ⊆

C be the sets of classes having a greater number of instances than a specific outlier

parameter, which their values are the same as instance values t(x⃗a) ∈ t(D) and t(x⃗b) ∈

t(D), respectively. If Ca ∖ Cb = {cka
} and Cb ∖ Ca = {ckb

} s.t. mka
< mkb

, then

β(t(x⃗a)) > β(t(x⃗b)).

Proof. Let Ma = {mk | ck ∈ Ca for k = 1, 2, ..., p} and Mb = {mk | ck ∈ Cb for k =

1, 2, ..., p} be the sets containing the number of instances from each class in Ca and Cb,

respectively. Since Ca ∖ Cb = {cka
}, so Ma ∖Mb = {mka

}, then Ma can be transformed

as Ma = (Ma ∩Mb) ∪ {mka
}. Likewise, Mb = (Ma ∩Mb) ∪ {mkb

}. Hence,



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

99

mka
< mkb

mka
×

( ∏
m∈Ma∩Mb

m

)
< mkb

×

( ∏
m∈Ma∩Mb

m

)
∏

m∈(Ma∩Mb)∪{mka}

m <
∏

m∈(Ma∩Mb)∪{mkb
}

m

∏
m∈Ma

m <
∏

m∈Mb

m

log2

( ∏
m∈Ma

m

)
< log2

( ∏
m∈Mb

m

)
∑

m∈Ma

log2m <
∑

m∈Mb

log2m( ∑
m∈Ma

log2m
)−1

>

( ∑
m∈Mb

log2m
)−1

β(t(x⃗a)) > β(t(x⃗b)).

Then, a set of class-intermingle weights received from a set of instance categorical

values t(D) is determined by (5.2) as follows:

β(t(D)) = {(β(t(x⃗i)), yi) | (x⃗i, yi) ∈ D for i = 1, 2, ...,m} (5.2)

In addition, the pseudocode to obtain a set of class-intermingle weights with respect

to a set of instance categorical values t(D) is displayed in Algorithm 5.1. For each value

τ (l), the number of instances in each class having value τ (l) is counted. If it is not less

than the outlier parameter, the weight corresponding to τ (l) is updated. For each instance,

therefore, the inverse of the weight corresponding to its value is assigned.
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Algorithm 5.1: IntermingleWeight(D, t, η)
Input: dataset D, a function to obtain the instance categorical values t,

an outlier parameter η
Output: a set of class-intermingle weights with respect to t(D)

1 •let w(l) = 0 for l = 1, 2, ..., q

2 for each value τ (l) do
3 for each class ck do
4 •generate the set of instance categorical values with respect to

class ck that their values are all τ (l): t(l)(Dk)
5 if |t(l)(Dk)| ≥ η then
6 •w(l) + = log2(mk)

7 for each value t(x⃗i) do
8 •wi = w(t(x⃗i))

9 return {(1/wi, yi) | (x⃗i, yi) ∈ D for i = 1, ...,m}

5.1.2 Generalized Self-balancing Decision Tree

In this section, a decision tree based on a single attribute, which is a generalization

of SBDT, is presented to deal with a categorical attribute by considering the set of instance

weights from applying the composition of functions β and µ to dataset D. It is called a

set of class-intermingle-balancing weights, which is defined according to each categorical

attribute Aj by (5.3) as follows:

IBWπj
(D) = µ(β(πj(D))) (5.3)

Thus, the individually weighted entropy corresponding to a set of class-intermingle-

balancing weights is also called the class-intermingle-balancing entropy (IBE) defined by

(5.4) as follows:

IBEπj
(D) = IWE

(
IBWπj

(D)
)

(5.4)
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Since IBWπj
(D) contains a balanced proportion of instance weights corresponding

to each class, IBEπj
(D) always equals to one. In a recursive partitioning algorithm,

however, the class-intermingle-balancing entropy is applied to each subset of instance

weights for each partition after splitting shown in (5.5). In which the proportion of each

class varies according to the splitting condition.

IBEπj
(D(l)) = IWE

(
IBW (l)

πj
(D)

)
(5.5)

So, a decision tree from the recursive partitioning algorithm using both OBE and

IBE as the splitting measures is called the generalized self-balancing decision tree or

GSBT, and that algorithm is also called the GSBT algorithm. Its pseudocode is displayed

in Algorithm 5.2. For each attribute Aj , it starts by obtaining either a set of class-

overlapping weights or a set of class-intermingle weights depending on the attribute’s

type. Then, the greedy approach is applied to select the best condition for splitting

dataset D based on the value of OBE/IBE according to each candidate from πj(D).

5.2 Experiments and Results

In order to evaluate the performance of inducing a decision tree that uses IBE as

the splitting measure, two collections of experiments are conducted. The first collection

employs the synthetic datasets varying their imbalanced ratios, to show the effectiveness

of IBE over SE. For the second collection, the performance comparison in classifying the

real-world datasets from the UCI repository of GSBT with other methods is presented.

5.2.1 Experiments on Synthetic Datasets

In this section, an improvement of the Shannon’s entropy (SE) to classify minority

instances in the multi-class imbalanced datasets dealing with categorical attributes using

the class-intermingle-balancing entropy (IBE) is demonstrated in the experiments on the
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Algorithm 5.2: GSBT(D, η)
Input: dataset D, an outlier parameter η
Output: a decision tree

1 •create the root node of the tree
2 if all instances in D are in the same class then
3 return the leaf node with respect to that class
4 else

/* select the splitting condition */
5 for each attribute Aj do
6 if Aj is numeric attribute then
7 •receive a set of class-overlapping weights with respect to

πj(D) via Algorithm 4.2: W = OverlappingWeight(D, πj)
8 else
9 •receive a set of class-intermingle weights with respect to

πj(D) via Algorithm 5.1: W = IntermingleWeight(D, πj, η)
10 •balance a set of weights via Algorithm 4.3: BW =

BalancingWeight(W )
11 •apply the greedy approach on πj(D) based on the individually

weighted entropy with respect to BW via Algorithm 4.1
12 •update the best splitting condition
13 •obtain the best splitting condition

/* recursively partition the dataset */
14 •separate the dataset into q partitions corresponding to the

outcomes of the splitting condition: D = D(1) ∪ D(2) ∪ ... ∪ D(q)

15 •iterate for each partition: GSBT(D(l), η) for l = 1, 2, ..., q

collections of synthetic datasets generated according to the following specifications:

• Each dataset contains 1000 instances consisting of 10 categorical attributes with 4

distinct values for each.

• Each instance is labeled as one of four determined classes as follows:

– The minority class (containing the instances not exceed 25%)

– The majority class (containing the instances not less than 25%)

– The third class (containing exactly 25% of all instances)

– The fourth class (containing exactly 25% of all instances)

• For each attribute, two out of four values are randomly selected for each class.
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(a) comparing by the precision

(b) comparing by the recall

(c) comparing by the F-measure

Figure 5.2: The experimental results with respect to the minority class on the
synthetic multi-class datasets dealing with categorical attributes varying the

percentage of minority instances
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(a) comparing by the precision

(b) comparing by the recall

(c) comparing by the F-measure

Figure 5.3: The experimental results with respect to the majority class on the
synthetic multi-class datasets dealing with categorical attributes varying the

percentage of minority instances
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Then, the discrete uniform sampling is performed on these values.

• There are five groups of experiments varying the percentages of minority instances

from 5% to 25%.

• For each group, ten datasets are synthesized and then applying five-fold cross-

validation ten times to evaluate the performance of each method.

Accordingly, the average results of SE and IBE are compared via the precision

(2.16), the recall (2.17), and the F-measure (2.18) with respect to the minority class and

the majority class displaying in Figure 5.2 and Figure 5.3, respectively.

For the results corresponding to the minority class, their results are similar in

all performance measures, which ostensibly increase when the percentage of minority

instances increases. Nonetheless, IBE significantly outperforms SE when the number of

instances in the minority class is tiny. For example, the performance of SE is only about

0.05 when there are 5 % of minority instances, while IBE offers the performance up to 0.15.

Then their values will approach to be equal when a dataset is more balanced. For the case

that the dataset is completely balanced, the performance of SE and IBE are almost the

same at 0.5 due to the sharing of attribute values for each class in each attribute. These

results evidently confirm that SE is not suitable to deal with the multi-class imbalanced

problem having categorical attributes, which is able to be captured using IBE.

Differently, considering the results based on the majority class, all performance

measures gradually decrease when a dataset is more balanced. That is because of the

decrease in the percentage of majority instances. However, due to the effort to reduce

the bias toward the majority class of IBE, it gives a slightly worse result according to

the majority class compared to SE in the case of extreme imbalance. For example, the

performance of SE is about 0.95 when there are only 5 % of minority instances, while IBE

offers the performance around 0.85. Their values will approach to the same value when a

dataset is more balanced, which are equal to 0.5 when the dataset is balanced.
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5.2.2 Experiments on Real-world Datasets

To demonstrate the effectiveness of IBE on general datasets, the decision tree built

based on IBE like GSBT is evaluated on real-world datasets in this section. Its results

are compared to those of four other decision trees. The first two models are the decision

trees from two well-known algorithms, i.e. CART [44] and C.45 [39]. Additionally, the

decision tree built based on DCSM [45] is used as well. The other is the state-of-the-art

decision tree designed for a multi-class imbalanced dataset like MC-HDDT [81].

Datasets

For the datasets used in the experiments, they are collected from the UCI repository

[86] having a total of 14 datasets, which are summarized in Table 5.1. They are sorted

in the ascending order by the imbalanced ratio (I.R.), corresponding to the percentage

of instances in each class (% Cl.). The first two columns represent the index and the

name of each dataset. The next four columns indicate the number of instances (# Inst.),

the number of categorical attributes (# CatAtt.), the number of numeric attributes (#

NumAtt.), and the number of classes (# Cl.), respectively. In order to evaluate the

performance of each decision tree, the five-fold cross-validation is employed to divide the

dataset into the training set and the testing set, which is repeated 20 times. That is,

there are up to one hundred experiments performed on each dataset.
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No. Dataset # Inst. # CatAtt. # NumAtt. # Cl. % Cl. I.R.
1 TAEvaluation 151 4 1 3 34.44 / 33.11 / 32.45 1.06
2 Chess(KRvsKP) 3196 36 0 2 52.22 / 47.78 1.09
3 HeartDisease 270 8 5 2 55.56 / 44.44 1.25
4 Lymphography 142 18 0 2 57.04 / 42.96 1.33
5 Hayes-roth 132 4 0 3 38.64 / 38.64 / 22.73 1.7
6 Tic-tac-toe 958 9 0 2 65.34 / 34.66 1.89
7 Contraceptive 1473 8 1 3 42.7 / 34.69 / 22.61 1.89
8 GermanCredit 1000 13 7 2 70.0 / 30.0 2.33
9 Balance-scale 625 4 0 3 46.08 / 46.08 / 7.84 5.88
10 Zoo 97 16 0 6 42.27 / 20.62 / 13.4 /

10.31 / 8.25 / 5.15
8.2

11 Nursery 12958 8 0 4 33.34 / 32.92 / 31.21 /
2.53

13.17

12 CarEvaluation 1728 6 0 4 70.02 / 22.22 / 3.99 /
3.76

18.62

13 Abalone 4168 1 7 21 16.53 / 15.21 / 13.63 /
11.68 / 9.38 / 6.41 /

6.21 / 4.87 / 3.02 / 2.76
/ 2.47 / 1.61 / 1.39 /

1.37 / 1.01 / 0.77 / 0.62
/ 0.36 / 0.34 / 0.22 /

0.14

114.83

14 Chess(KRvsK) 28056 6 0 18 16.23 / 14.95 / 12.82 /
10.17 / 9.97 / 7.72 /

7.08 / 6.1 / 5.11 / 2.43
/ 2.11 / 1.68 / 1.39 /

0.88 / 0.71 / 0.29 / 0.28
/ 0.1

168.63

Table 5.1: The characteristics of the experimental real-world multi-class datasets
consisting of both categorical attributes and numeric attributes

Results

Accordingly, the average results of each decision tree are compared via the macro-

precision (2.22), the macro-recall (2.23), the macro-F-measure (2.24), and the accuracy

(2.25) displaying in four tables for each measure. In each table, a comparison of perfor-

mance according to each dataset is represented in each row. Furthermore, the rank of

each method corresponding to each dataset is shown in the parentheses, emphasizing the

best rank in bold. Summarily, the bottom row of each table represents the average rank

of each method.
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In Table 5.2, the performance comparison according to the macro-precision of each

method is shown. GSBT yields the lowest average rank at 2.57, in which there are up to

7 out of 14 datasets that GSBT offers the highest or the second-highest macro-precision.

For CART, C4.5, and MC-HDDT, they have the same average rank at 2.71, while DCSM

yields the worst average rank at 3.21.

In Table 5.3, the performance comparison according to the macro-recall of each

method is shown. GSBT yields the lowest average rank at 2.14, which is much different

from other methods. There are up to 8 out of 14 datasets that GSBT obtains the highest

macro-recall. For CART, C4.5, and MC-HDDT, they receive a similar average rank that

is much lower than DCSM.

In Table 5.4, the performance comparison according to the macro-F-measure of each

method is shown. GSBT yields the lowest average rank at 2.29, in which there are up to

7 out of 14 datasets that GSBT offers the highest macro-F-measure. For CART, C4.5,

and MC-HDDT, they receive a similar average rank that is much lower than DCSM.

In Table 5.5, the performance comparison according to the accuracy of each method

is shown. Both GSBT and C4.5 yield the lowest average rank at 2.57, which is close to

CART and MC-HDDT having the same average rank at 2.71. However, there are up to 6

datasets that GSBT offers the highest accuracy, which is more than other methods. For

DCSM, it yields the worst average rank at 3.29.
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No. Dataset Decision Tree
CART C.45 DCSM MC-HDDT GSBT

1 TAEvaluation 0.5866 (3) 0.5866 (3) 0.5866 (3) 0.5996 (2) 0.6234 (1)
2 Chess(KRvsKP) 0.9940 (3) 0.9951 (2) 0.9928 (5) 0.9952 (1) 0.9934 (4)
3 HeartDisease 0.5852 (3) 0.5852 (3) 0.5852 (3) 0.7444 (2) 0.7710 (1)
4 Lymphography 0.7831 (4) 0.8062 (2) 0.8098 (1) 0.7768 (5) 0.7860 (3)
5 Hayes-roth 0.7704 (3) 0.7646 (4) 0.7721 (2) 0.7812 (1) 0.7645 (5)
6 Tic-tac-toe 0.8392 (3) 0.8327 (5) 0.8353 (4) 0.8530 (2) 0.8642 (1)
7 Contraceptive 0.4409 (3) 0.4424 (1) 0.4389 (4) 0.4388 (5) 0.4422 (2)
8 GermanCredit 0.4944 (2) 0.4944 (2) 0.4944 (2) 0.4944 (2) 0.6258 (1)
9 Balance-scale 0.4777 (1) 0.4749 (4) 0.4705 (5) 0.4754 (3) 0.4770 (2)
10 Zoo 0.9209 (2) 0.9225 (1) 0.9002 (4) 0.8812 (5) 0.9097 (3)
11 Nursery 0.9564 (5) 0.9584 (1) 0.9573 (2) 0.9570 (3) 0.9564 (4)
12 CarEvaluation 0.8387 (2) 0.8323 (3) 0.7952 (4) 0.8538 (1) 0.7918 (5)
13 Abalone 0.0972 (2) 0.0972 (2) 0.0972 (2) 0.0963 (5) 0.1175 (1)
14 Chess(KRvsK) 0.5753 (2) 0.4936 (5) 0.4965 (4) 0.6357 (1) 0.5626 (3)

average rank 2.71 2.71 3.21 2.71 2.57

Table 5.2: The experimental results on the real-world multi-class datasets dealing
with both categorical attributes and numeric attributes comparing by the

macro-precision

No. Dataset Decision Tree
CART C.45 DCSM MC-HDDT GSBT

1 TAEvaluation 0.5823 (3) 0.5823 (3) 0.5823 (3) 0.5970 (2) 0.6188 (1)
2 Chess(KRvsKP) 0.9938 (3) 0.9949 (2) 0.9925 (5) 0.9951 (1) 0.9931 (4)
3 HeartDisease 0.5642 (3) 0.5642 (3) 0.5642 (3) 0.7285 (2) 0.7533 (1)
4 Lymphography 0.7698 (4) 0.7979 (2) 0.8006 (1) 0.7605 (5) 0.7727 (3)
5 Hayes-roth 0.6725 (3) 0.6635 (5) 0.6859 (2) 0.7132 (1) 0.6715 (4)
6 Tic-tac-toe 0.8384 (3) 0.8320 (5) 0.8336 (4) 0.8496 (2) 0.8615 (1)
7 Contraceptive 0.4409 (3) 0.4422 (2) 0.4394 (4) 0.4386 (5) 0.4434 (1)
8 GermanCredit 0.4989 (2) 0.4989 (2) 0.4989 (2) 0.4989 (2) 0.6155 (1)
9 Balance-scale 0.4736 (2) 0.4781 (1) 0.4699 (5) 0.4716 (4) 0.4727 (3)
10 Zoo 0.9167 (2) 0.9167 (2) 0.8979 (5) 0.9083 (4) 0.9250 (1)
11 Nursery 0.9556 (5) 0.9565 (2) 0.9559 (3) 0.9557 (4) 0.9565 (1)
12 CarEvaluation 0.8423 (2) 0.8241 (3) 0.8195 (4) 0.8634 (1) 0.7870 (5)
13 Abalone 0.0745 (2) 0.0745 (2) 0.0745 (2) 0.0741 (5) 0.1128 (1)
14 Chess(KRvsK) 0.5386 (2) 0.4802 (4) 0.4731 (5) 0.5975 (1) 0.5280 (3)

average rank 2.79 2.71 3.43 2.79 2.14

Table 5.3: The experimental results on the real-world multi-class datasets dealing
with both categorical attributes and numeric attributes comparing by the macro-recall
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No. Dataset Decision Tree
CART C.45 DCSM MC-HDDT GSBT

1 TAEvaluation 0.5788 (3) 0.5788 (3) 0.5788 (3) 0.5931 (2) 0.6100 (1)
2 Chess(KRvsKP) 0.9939 (3) 0.9950 (2) 0.9926 (5) 0.9951 (1) 0.9933 (4)
3 HeartDisease 0.5486 (3) 0.5486 (3) 0.5486 (3) 0.7287 (2) 0.7540 (1)
4 Lymphography 0.7688 (4) 0.7952 (2) 0.7989 (1) 0.7596 (5) 0.7695 (3)
5 Hayes-roth 0.6900 (3) 0.6816 (5) 0.7019 (2) 0.7275 (1) 0.6864 (4)
6 Tic-tac-toe 0.8384 (3) 0.8320 (5) 0.8340 (4) 0.8509 (2) 0.8623 (1)
7 Contraceptive 0.4394 (3) 0.4407 (2) 0.4375 (5) 0.4377 (4) 0.4418 (1)
8 GermanCredit 0.4340 (2) 0.4340 (2) 0.4340 (2) 0.4340 (2) 0.6190 (1)
9 Balance-scale 0.4735 (2) 0.4744 (1) 0.4678 (5) 0.4710 (4) 0.4727 (3)
10 Zoo 0.9073 (3) 0.9089 (2) 0.8889 (5) 0.8892 (4) 0.9106 (1)
11 Nursery 0.9557 (5) 0.9572 (1) 0.9563 (2) 0.9561 (4) 0.9561 (3)
12 CarEvaluation 0.8366 (2) 0.8240 (3) 0.8039 (4) 0.8545 (1) 0.7861 (5)
13 Abalone 0.0761 (2) 0.0761 (2) 0.0761 (2) 0.0755 (5) 0.1082 (1)
14 Chess(KRvsK) 0.5505 (2) 0.4806 (4) 0.4781 (5) 0.6107 (1) 0.5380 (3)

average rank 2.86 2.64 3.43 2.71 2.29

Table 5.4: The experimental results on the real-world multi-class datasets dealing
with both categorical attributes and numeric attributes comparing by the

macro-F-measure

No. Dataset Decision Tree
CART C.45 DCSM MC-HDDT GSBT

1 TAEvaluation 0.5833 (3) 0.5833 (3) 0.5833 (3) 0.5982 (2) 0.6194 (1)
2 Chess(KRvsKP) 0.9939 (3) 0.9950 (2) 0.9926 (5) 0.9951 (1) 0.9933 (4)
3 HeartDisease 0.5898 (3) 0.5898 (3) 0.5898 (3) 0.7380 (2) 0.7630 (1)
4 Lymphography 0.7763 (3) 0.8008 (2) 0.8044 (1) 0.7674 (5) 0.7761 (4)
5 Hayes-roth 0.6933 (4) 0.6857 (5) 0.7047 (2) 0.7221 (1) 0.6952 (3)
6 Tic-tac-toe 0.8537 (3) 0.8479 (5) 0.8498 (4) 0.8656 (2) 0.8758 (1)
7 Contraceptive 0.4673 (2) 0.4674 (1) 0.4659 (3) 0.4632 (5) 0.4642 (4)
8 GermanCredit 0.6858 (2) 0.6858 (2) 0.6858 (2) 0.6858 (2) 0.6928 (1)
9 Balance-scale 0.6548 (2) 0.6609 (1) 0.6496 (5) 0.6519 (4) 0.6535 (3)
10 Zoo 0.9462 (3) 0.9462 (3) 0.9356 (5) 0.9663 (2) 0.9683 (1)
11 Nursery 0.9847 (4) 0.9852 (1) 0.9850 (2) 0.9846 (5) 0.9850 (3)
12 CarEvaluation 0.9348 (2) 0.9326 (3) 0.8947 (5) 0.9391 (1) 0.9200 (4)
13 Abalone 0.1564 (2) 0.1564 (2) 0.1564 (2) 0.1555 (5) 0.1980 (1)
14 Chess(KRvsK) 0.5760 (2) 0.5325 (3) 0.5283 (4) 0.5991 (1) 0.5104 (5)

average rank 2.71 2.57 3.29 2.71 2.57

Table 5.5: The experimental results on the real-world multi-class datasets dealing
with both categorical attributes and numeric attributes comparing by the accuracy
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Discussions

Graphically, the bar chart representing the result comparison by the average rank

corresponding to each measure is shown in Figure 5.4, in which a lower value indicates

a better rank. Moreover, the results of the Wilcoxon signed-rank test that compares the

performance of GSBT with other decision trees are shown in Table 5.6. The testing results

including the statistical value and the p-value for each comparison is shown in each row,

in which the symbol checkmark denotes that the proposed method is significantly better

than another method with the (1 − α)100% confidence level. In addition, the testing

results are also indicated in Figure 5.4 using the specific symbols for each confidence

level.

For a dataset consisting of both numeric attributes and categorical attributes, the

conventional decision trees like CART and C4.5 obtain satisfying results in terms of the

macro-precision, which are similar to MC-HDDT and not much less than GSBT. For

DCSM, however, it gives the low macro-precision different from the others, which is

significantly less than GSBT with the 95% confidence level. This happens because there

are a lot of partitions when splitting a dataset by categorical attributes, so there are

not many instances in each partition. Nevertheless, DCSM still focuses on the number of

distinct classes in those partitions, regardless of the tiny number of instances in each class.

Therefore, it gives too much importance to an attribute value having a very small number

of instances from the considered class, which does not happen in GSBT. Applying the

class-intermingle weight causes a larger weighted value for an instance that its attribute

value has more instances from its class. Then, the significance of each attribute value

according to each class is properly determined, which does not focus on unnecessary values

that may be more related to other classes. In terms of the macro-recall, GSBT ostensibly

outperforms all other methods, which is significantly better than C4.5 and DCSM with

the 95% confidence level. It is due to the assignment of the class-balancing weight to the

instances in each class. It causes all classes to be considered equally, not focusing too

much on any specific class, which is able to avoid the overfitting problem. Consequently,

from the results of both the macro-precision and the macro-recall, GSBT exactly gives
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the improvement of the macro-F-measure comparing against all other methods, which is

superior to DCSM with the 95% confidence level. Finally, GSBT also provides the best

accuracy, which is equal to C4.5 and not much different from CART and MC-HDDT.

While DCSM still gives unacceptable results for this performance measure as well. C4.5

gets impressive results on the dataset consisting of categorical attributes because it is

originally designed to deal with a dataset consisting of an attribute with a lot of values,

which can be done by normalizing the information gain using the split information.

Figure 5.4: The comparison of the real-world multi-class datasets consisting of both
categorical attributes and numeric attributes with respect to the average rank
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Performance Measures Decision Tree α Statistics p-value
0.1 0.05 0.01

Precision

CART - - - 38 0.181343
C4.5 - - - 34 0.122747

DCSM ✓ ✓ - 21 0.023995
MC-HDDT - - - 36 0.150145

Recall

CART ✓ - - 28 0.062021
C4.5 ✓ ✓ - 24 0.036797

DCSM ✓ ✓ - 22 0.027766
MC-HDDT - - - 39 0.198363

F-measure

CART - - - 33 0.110449
C4.5 ✓ - - 27 0.054711

DCSM ✓ ✓ - 21 0.023995
MC-HDDT - - - 39 0.198363

Accuracy

CART - - - 35 0.135974
C4.5 - - - 36 0.150145

DCSM ✓ - - 27 0.054711
MC-HDDT - - - 39 0.198363

Table 5.6: The statistical results based on the Wilcoxon signed-rank test comparing
GSBT against other decision trees



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER VI

CONCLUSIONS AND FUTURE WORKS

All proposed methodologies, including their motivations and evaluations, are sum-

marized in this chapter. Besides, the directions to expand this research in the future are

also revealed.

6.1 Conclusions

Due to the occurrence of the class imbalanced problem that significantly affects

the classification performance, numerous techniques have been continuously introduced

to deal with this problem. In this dissertation, therefore, the enhancement of building a

classification model based on the recursive partitioning algorithm is proposed to handle

the classification problem regardless of the class imbalanced situation. The concept of

modified entropy components used in the existing method like the minority entropy (ME)

is improved and applied as the basis of the proposed methodologies. They are divided

into three works according to their purposes, which is consistently extending the previous

methods.

For the first methodology, it presents decision tree induction for a binary-class im-

balanced dataset dealing with numeric attributes. The improvement of ME is proposed

by fine-tuning the minority range via the outlier detection. Then, the set of instances ly-

ing into the range of minority class that ignores the outliers is used to be the components

for calculating the entropy, in which the received value is called the minority condensa-

tion entropy (MCE). It is used as the splitting measure to build both axis-parallel deci-

sion tree and oblique decision tree, which are named the minority condensation decision

tree (MCDT) and the oblique minority condensation decision tree (OMCT), respectively.

From the experiments on synthetic datasets, MCE shows the ostensible improvement of

the performance to classify an imbalanced dataset comparing with the original entropy.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

115

Moreover, when evaluated with the real-world datasets, MCDT gives the best results in

terms of F-measure comparing with other axis-parallel decision trees, which is significantly

better than ME. For OMCT, it presents the impressive results that notably superior to

other decision trees in all performance measures, especially for the recall. Furthermore, it

also significantly provides the smallest size of the tree due to the use of oblique hyperplane

as the splitting condition.

For the second methodology, it presents decision tree induction for a multi-class

imbalanced dataset dealing with numeric attributes. The components to calculate the

entropy is adjusted, in which the summation of the weights corresponding to the in-

stances in each class is used instead of the proportion of instances in each class. The

entropy computed based on these components is called the individually weighted entropy

(IWE). It can be applied in various ways depending on the assignment of weighted value

to each instance. So, there are two weighting functions are introduced in this method-

ology consisting of the class-overlapping weighting function (α) and the class-balancing

weighting function (µ). The first one is presented for assigning the weighted value to each

instance according to the overlapping range of each class at its position. While the second

one is responsible for balancing the total weight corresponding to each class. Then, IWE

that is computed with respect to the set of instance weights received from the compo-

sition of function α and µ is called the class-overlapping-balancing entropy (OBE). It is

used as the splitting measure to build the self-balancing decision tree (SBDT). From the

experiments on synthetic datasets, OBE shows the ostensible improvement of the perfor-

mance to classify an imbalanced dataset comparing with the original entropy. Moreover,

when evaluated with the real-world datasets, SBDT significantly outperforms other de-

cision trees in all performance measures, i.e. the macro-precision, the macro-recall, the

macro-F-measure, and the accuracy.

For the third methodology, it presents decision tree induction for a multi-class

imbalanced dataset dealing with numeric and categorical attributes. The concept of

class-overlapping weight is extended to deal with a categorical attribute via the class-

intermingle weighting function (β). It is presented for assigning the weighted value to
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each instance according to the mixture of different classes in its value. Then, IWE that

is computed with respect to the set of instance weights received from the composition of

function β and µ is called the class-intermingle-balancing entropy (IBE). Both OBE and

IBE are therefore used as the splitting measures, depending on the type of each attribute,

to build the generalized self-balancing decision tree (GSBT). From the experiments on

synthetic datasets, IBE shows the ostensible improvement of the performance to classify

an imbalanced dataset comparing with the original entropy. Moreover, when evaluated

with the real-world datasets, GSBT offers better results than other decision trees in all

terms of performance measures, especially for the macro-recall.

6.2 Future Works

Although each proposed methodology is highly successful in handling the class im-

balanced problem, there is considerable room for future work in the line of this research.

Firstly, other weighting functions with respect to IWE may be introduced to enhance the

performance of the decision tree in classifying a dataset facing the class imbalanced sit-

uation including other issues. Secondly, the performance of each decision tree presented

in this dissertation is able to be improved with the ensemble learning method, in which

multiple decision trees are combined as a random forest classifier. Lastly, the concept of

assigning weighted values to the instances in a dataset can be embedded in other classifi-

cation models, such as SVM and deep learning, to help them deal with class imbalanced

issue.
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