

REFERENCES

- Anderson, C., and Bard, A.J. (1997). Improved photocatalytic activity and characterization of mixed TiO₂/SiO₂ and TiO₂/Al₂O₃ materials. <u>J. Phys.</u> Chem. B, 101, 2611-2616.
- Anderson, C., and Bard, A.J. (1995). An improved photocatalyst of TiO₂/SiO₂ prepared by a sol-gel synthesis. <u>J. Phys. Chem. B</u>, 99, 9882-9885.
- Blazkova, A., Csolleova, I., and Brezova, V. (1998). Effect of light sources on the phenol degradation using Pt/TiO₂ photocatalysts immobilized on glass fibers. <u>Journal of Photochemistry and Photobiology A: Chemistry</u>, 113, 251-256.
- Brezova, V., Blazkova, A., Karpinsky, L., Groskova, J., Havlinova, B., Jorik, V., and Ceppan, M. (1997). Phenol decomposition using Mⁿ⁺/TiO₂ photocatalysts supported by the sol-gel technique on glass fibers. <u>Journal of</u> <u>Photochemistry and Photobiology A: Chemistry</u>, 109, 117-183.
- Chen, D., and Ray, A.K. (1999). Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO₂. <u>Applied Catalysis B: Environmental</u>, 23, 143-157.
- Cheng, S., Tsai, S.J., and Lee, Y.F. (1995). Photocatalytic decomposition of phenol over titanium oxide of various structures. <u>Catalysis Today</u>, 26, 87-96.
- Choi, W., and Hoffmann, M.R. (1995). Photoreductive mechanism of CCl₄ degradation on TiO₂ particles and effects of electron donors. <u>Environmental Science & Technology</u>, 29:6, 1646-1654.
- Chun, H., Yizhong, W., and Hongxiao, T. (2001). Preparation and characterization of surface bond-conjugated TiO₂/SiO₂ and photocatalysis for azo dyes. <u>Applied Catalysis B: Environmental</u>, 30, 277-285.
- De Lasa, H.I., Dogu, G., and Ravella, A. (Eds.). (1992). <u>Chemical Reactor</u> <u>Technology for Environmentally Safe Reactors and Product</u>. Dordrecht/Boston/London : Kluwer Academic Publishers, 577-608.
- Falconer, J.L., and Magrini-Bair, K. A. (1998). Photocatalytic and thermal catalytic oxidation of acetaldehyde on Pt/TiO₂. Journal of Catalysis, 179, 171-178.

- Gao, X., and Wachs, I.E. (1999). Titania-silica as catalysts: molecular structural characteristics and physico-chemical properties. <u>Catalysis Today</u>, 51, 233-254.
- Guillard, C., Disdier, J., Herrmann, J.M., Lehaut, C., Chopin, T., Malato, S., and Blanco, J. (1999). Comparison of various titania samples of industrial origin in the solar photocatalytic detoxification of water containing 4chlorophenol. <u>Catalysis Today</u>, 54, 217-228.
- Handcock, F.E. (1999). Catalytic strategies for industrial weter re-use. <u>Catalysis</u> <u>Today</u>, 53, 3-9.
- Herrmann, J.M. (1999). Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. <u>Catalysis Today</u>, 53, 115-129.
- Herrmann, J.M., Matos, J., Disdier, J., Guillard, C., Laine, J., Malato, S., and Blanco,
 J. (1999). Solar photocatalytic degradation of 4-chlorophenol using the synergistic effect between titania and activated carbon in aqueous suspension. <u>Catalysis Today</u>, 54, 255-265.
- Ilisz, I., and Dombi, A. (1999). Investigation of the photodecomposition of phenol in near UV irradiated aqueous TiO₂ suspensions II: Effects of charge trapping species on product distribution. <u>Applied Catalysis A: General</u>, 180, 35-45.
- Jung, K.Y., and Park, S.B. (1999). Anatase phase titania: preparation by embedding silica and photocatalytic activity for the decomposition of trichloroethylene. Journal of Photochemistry and Photobiology A: Chemistry, 127, 117-122.
- Jung, K.Y., and Park, S.B. (2000). Enhanced photoactivity of silica-embedded titania particles prepared by sol-gel process for the decomposition of trichloroethylene. <u>Applied Catalysis B: Environmental</u>, 25, 249-256.
- Litter, M.I. (1999). Heterogeneous photocatalysis transition metal ions in photocatalytic systems. <u>Applied Catalysis B: Environmental</u>, 13, 89-114.
- Morrison, R.T., and Boyd, R.N. (1992). <u>Organic chemistry</u>, 6th ed., New York: Prentice-Hall International, Inc.

- Phuaphromyod, P. (1999). <u>Photocatalytic degradation of isopropyl alcohol by using</u>
 <u>Pt/TiO</u>2. M.S. Thesis in Petrochemical Technology, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Piscopo, A., Robert, D., and Weber, J.V. (2001). Comparison between the reactivity of commercial and synthetic TiO₂ photocatalysts. <u>Journal of</u> <u>Photochemistry and Photobiology A: Chemistry</u>, 139, 253-256.
- Pozzo, R.L., Baltanas, M.A., and Cassano, A.C. (1997). Supported titanium oxide as photocatalyst in water decontamination: State of the art. <u>Catalysis</u> <u>Today</u>, 39, 219-231.
- Reutergardh, L.B. and Iangphasuk, M. (1997). Photocatalytic decolourization of reactive azo dye: A comparison between TiO₂ and CdS photocatalysis. <u>Chemosphere</u>, 35:3, 585-596.
- Robertson, P.K.J. (1996). Semiconductor photocatalysis: An environmentally acceptable alternative production technique and effluent treatment process. <u>J. Cleaner Prod.</u>, 4:3-4, 203-212.
- Stafford, U., Gray, K.A., and Kamat, P.V. (1997). Photocatalytic degradation of 4chlorophenol: The effects of varying TiO₂ concentration and light wavelength. <u>Journal of Catalysis</u>, 167, 25-32.
- Tharathonpisutthikul, R. (2000). <u>Photocatallytic degradation of 4-chlorophenol</u> <u>using Pt/TiO₂-SiO₂ prepared by the sol-gel method</u>. M.S. Thesis in Petrochemical Technology, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Theurich, J., Lindner, M., and Bahnemann, D.W. (1996). Photocatalytic degradation of 4-chlorophenol in aerated aqueous titanium dioxide suspensions: A kinetic and mechanistic study. <u>Langmuir</u>, 12, 6368-6376.
- Torimoto, T., Ito, S., Kuwabata, S., and Yoneyama, H. (1996). Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide. <u>Environmental Science & Technology</u>, 30:4, 1275-1281.
- Vorontsov, A.V., Stoyanova, I.V., Kozlov, D.V., Simagina, V.I., and Savinov, E.N. (2000). Kinetics of the photocatalytic oxidation of gaseous acetone over platinized titanium dioxide. <u>Journal of Catalysis</u>, 189, 360-369.

- Wang, C.C., and Ying, J. (1999). Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. <u>Chem. Mater</u>, 11, 3113-3120.
- Ward, D.A. and Ko, E.I. (1995). Preparing catalytic materials by the sol-gel method. <u>Ind. Eng. Chem. Res.</u>, 34, 421-433.
- Zhang, L., Kanki, T., Sano, N., and Toyoda, A. (2001, September). Decomposition process of aqueous phenol through intermediate pathways by TiO₂ photocatalyst. <u>6th World Congress of Chemical Engineering</u>, Melbourne, Australia.

.

APPENDICES

Appendix A

Standard TiO₂ XRD Patterns and Calculation of Crystalite Size of TiO₂ Catalysts

A.1 XRD patterns of TiO₂ reference

66

A.2 Calculated crystallite size

X-ray diffraction patterns were used for the crystallite size (d) estimation. The crystallite sizes of the catalysts can be determined from the broadening of the anatase main peak by Debye-Scherrer equation:

$$d = k\lambda / b\cos\theta \tag{3.1}$$

where

λ	=	the wave length (nm)
k	=	the Debye-Scherrer constant (assume equal to 1.0)
b	=	the full width at half maximum (FWHM) of the
		broadened peak
θ	=	the Bragg angle of the reflection (deg.)
d	=	the crystallite size (nm)

Catalyst	FWHM (deg.)	b	2θ (deg.)	cosθ	d (nm)
TiO ₂ (Degussa P25)	0.376	0.0066	25.38	0.9755	24
TiO ₂ (sol-gel-1)	0.706	0.0123	25.30	0.9757	13
TiO ₂ (sol-gel-2)	0.800	0.0139	25.34	0.9756	11
1.0% Pt/TiO ₂	0.353	0.0062	25.34	0.9756	26
0.2% Ag/TiO ₂	0.965	0.0168	25.46	0.9754	9
0.5% Ag/TiO ₂	0.847	0.0148	25.46	0.9754	11
1.0% Ag/TiO ₂	0.612	0.0106	25.36	0.9756	15
1.5% Ag/TiO ₂	0.918	0.0160	25.38	0.9755	10

Appendix B

Experimental Data from Photocatalytic Degradation of 4-Chlorophenol

Time (min)	Concentra	ation (mM)	Remainir	ng fraction
	HQ	HHQ	HQ	TOC
0	0.4642	0	1	1
30	0.2163	0.0045	0.47	0.68
60	0.1839	0.0232	0.40	0.59
90	0.1528	0.0559	0.33	0.56
120	0.1244	0.0782	0.27	0.54
150	0.0854	0.0755	0.18	0.51
180	0.0656	0.0793	0.14	0.49
210	0.0488	0.0716	0.11	0.47
270	0.0280	0.0754	0.06	0.44
300	0.0253	0.0594	0.05	0.40
360	0.0123	0.0584	0.03	0.36

B.1 Photocatalytic degradation of HQ

Time (min)	(Concentration (mM	1)	Remaining fraction	
	4-CP	HQ	ННQ	4-CP	TOC
0	0.4741	0.0000	0.0000	1.00	1.00
30	0.1438	0.1337	0.1254	0.30	0.78
60	0.0542	0.2049	0.1744	0.11	0.72
90	0.0211	0.1872	0.1742	0.04	0.72
120	0.0000	0.1885	0.2149	0.00	0.71
150	0.0000	0.1725	0.2503	0.00	0.70
180	0.0000	0.1580	0.2484	0.00	0.69
210	0.0000	0.1531	0.2459	0.00	0.70
240	0.0000	0.1270	0.2351	0.00	0.66
270	0.0000	0.1207	0.2083	0.00	0.65
300	0.0000	0.1072	0.2047	0.00	0.65
330	0.0000	0.0940	0.1842	0.00	0.63
360	0.0000	0.0805	0.1836	0.00	0.62

B.2 Photocatalytic degradation of 4-CP without catalyst

B.2.1 With oxygen aeration

B.2.2 With nitrogen aeration

Time (min)		Concentra	Remaining fraction			
	4-CP	HQ	ННQ	BQ	4-CP	TOC
0	0.4935	0.0000	0.0000	0.0000	1.00	1.00
30	0.1954	0.1610	0.1584	0.0597	0.40	0.81
60	0.1305	0.2195	0.1991	0.1208	0.26	0.81
90	0.0787	0.2329	0.2189	0.1344	0.16	0.82
120	0.0132	0.2496	0.2457	0.1431	0.03	0.79
150		0.2546	0.2550	0.1329		0.81
180		0.2641	0.2717	0.1268		0.75
210		0.2168	0.2715	0.1211		0.76
240		0.2172	0.2709	0.1159		0.77
270		0.2149	0.2712	0.1103		0.74
300		0.2129	0.2815	0.1041		0.76
330		0.2085	0.2945	0.0975		0.75
360		0.2047	0.3050	0.0740		0.76

Time (min)	(Concentration (mM	Remaining fraction		
	4-CP	HQ	ННQ	4-CP	TOC
0	0.4569	0.000	0.000	1.00	1.00
30	0.3514	0.0381	0.0152	0.77	0.89
60	0.2259	0.0410	0.228	0.49	0.63
90	0.1648	0.0484	0.0340	0.36	0.54
120	0.0990	0.0461	0.0523	0.22	0.43
150	0.0697	0.0407	0.0547	0.15	0.36
180	0.0546	0.0404	0.0471	0.12	0.31
210	0.0245	0.0234	0.0449	0.05	0.20
240	0.0247	0.0258	0.0321	0.05	0.18
270	0.0216	0.0178	0.0246	0.05	0.14
300	0.0165	0.0123	0.0233	0.04	0.11
330	0.0108	0.0077	0.0212	0.02	0.09
360	0.0.0056	0.0058	0.0197	0.01	0.07

B.3 Photocatalytic degradation of 4-CP with TiO₂ (Degussa P25)

B.3.1 With oxygen aeration

B.3.2 With nitrogen aeration

Time (min)	(Concentration (mN	Remaining fraction		
	4-CP	HQ	ННQ	4-CP	TOC
0	0.4506	0.0000	0.0000	1.00	1.00
30	0.3436	0.0226	0.0000	0.76	0.81
60	0.2846	0.0353	0.0000	0.63	0.71
90	0.2385	0.0454	0.0000	0.53	0.63
120	0.2205	0.0485	0.0025	0.49	0.60
150	0.1949	0.0536	0.0037	0.43	0.56
180	0.1785	0.0563	0.0046	0.40	0.53
210	0.1633	0.0613	0.0039	0.36	0.51
240	0.1377	0.0642	0.0039	0.31	0.46
270	0.1339	0.0677	0.0037	0.30	0.46
300	0.1219	0.0695	0.0045	0.27	0.43
330	0.1142	0.0703	0.0048	0.25	0.42
360	0.1101	0.0703	0.0049	0.24	0.42

Time (min)	C	Concentration (mN	Remaining fraction		
	4-CP	HQ	нно	4-CP	TOC
0	0.4315	0.0000	0.0000	1.00	1.00
30	0.1326	0.1442	0.0530	0.31	0.76
60	0.0404	0.1782	0.0783	0.09	0.69
90	0.0068	0.1483	0.0906	0.02	0.57
120	0.0000	0.1476	0.1009		0.58
150	0.0000	0.1264	0.1037		0.53
180	0.0000	0.1024	0.0962		0.46
210	0.0000	0.0785	0.0886		0.39
240	0.0000	0.0617	0.0825		0.33
270	0.0000	0.0382	0.0.0689		0.25
300	0.0000	0.0222	0.0552		0.18
330	0.0000	0.0130	0.0419		0.13
360	0.0000	0.0152	0.0293		0.10

B.4 Photocatalytic degradation of 4-CP with TiO_2 (sol-gel-1)

B.4.1 With oxygen aeration

B.4.2 With nitrogen aeration

Time (min)		Concentra	Remaining fraction			
)	4-CP	HQ	ННQ	BQ	4-CP	TOC
0	0.4787	0.0000	0.0000	0.0000	1.00	1.00
30	0.1876	0.0589	0.0000	0.0449	0.39	0.61
60	0.1084	0.0766	0.0015	0.0725	0.23	0.57
90	0.0647	0.0821	0.0036	0.0305	0.14	0.55
120	0.0386	0.0806	0.0034	0.0371	0.08	0.53
150	0.0263	0.0901	0.0036	0.0398	0.05	0.51
180	0.0164	0.0926	0.0031	0.0409	0.03	0.51
210	0.0085	0.0949	0.0052	0.0419	0.02	0.47
240		0.1005	0.0058	0.0398		0.46
270		0.1049	0.0048	0.0444		0.45
300		0.1084	0.0053	0.0712		0.44
330		0.1091	0.0051	0.0720		0.41
360		0.1180	0.0048	0.0717		0.41

Time (min)	C	Concentration (mN	Remaining fraction		
	4-CP	HQ	нно	4-CP	TOC
0	0.4626	0.000	0.000	1.00	1.00
30	0.0643	0.1876	0.0633	0.14	0.68
60	0.0418	0.1573	0.0729	0.09	0.59
90	0.0000	0.1730	0.1313	0.00	0.66
120		0.1451	0.1334		0.60
150		0.1075	0.1243		0.48
180		0.0947	0.1273		0.50
210		0.0882	0.1100		0.43
240		0.0690	0.1084		0.38
270		0.0231	0.0823		0.23
300		0.0091	0.0622		0.15
330		0.0097	0.0575		0.15
360		0.0000	0.0455		0.10

B.5 Photocatalytic degradation of 4-CP with TiO_2 (sol-gel-2) under the presence of dissolved oxygen

Time (min)	C	oncentration (mM	1)	Remaining fraction	
	4-CP	HQ	ННQ	4-CP	TOC
0	0.4555	0.0000	0.0000	1.00	1.00
30	0.1892	0.0647	0.0708	0.42	0.71
60	0.0916	0.0697	0.1193	0.20	0.62
90	0.0479	0.0611	0.1599	0.11	0.59
120	0.0313	0.0752	0.1453	0.01	0.55
150	0.0184	0.0590	0.1283	0.04	0.45
180		0.0489	0.1220	0.00	0.38
210		0.0361	0.1212		0.35
240		0.0244	0.1185		0.31
270		0.0164	0.1137		0.29
300		0.0103	0.1044		0.25
330		0.0000	0.0914		0.20
360		0.0000	0.0902		0.20

B.6 Photocatalytic degradation of 4-CP with 1% Pt/TiO₂

B.6.1 With oxygen aeration

B.6.2 With nitrogen aeration

Time (min)		Concentratio	Remaining fraction			
	4-CP	HQ	HHQ	BQ	4-CP	TOC
0	0.4299	0.0000	0.0000	0.0000	1.00	1.00
30	0.2078	0.0651	0.0000	0.0177	0.48	0.44
60	0.1911	0.0530	0.0019	0.0189	0.44	0.62
90	0.0686	0.0735	0.0012	0.0210	0.16	0.38
120	0.0423	0.0788	0.0020	0.0213	0.10	0.34
150	0.0261	0.0811	0.0019	0.0244	0.06	0.31
180	0.0187	0.0829	0.0015	0.0259	0.04	0.30
210	0.0106	0.0888	0.0017	0.0206	0.02	0.28
240	0.0101	0.0884	0.0019	0.0221	0.02	0.29
270	0.0000	0.0854	0.0025	0.0240	0.00	0.26
300		0.0868	0.0023	0.0260	0.00	0.27
330		0.0867	0.0030	0.0271	0.00	0.27
360		0.0868	0.0023	0.0260	0.00	0.27

B.7 Photocatalytic degradation of 4-CP with Ag/TiO_2 under the presence of

dissolved oxygen

Time (min)	Concentration (mM)			Remaining fraction	
	4-CP	HQ	ННQ	4-CP	TOC
0	0.4333	0.0000	0.0000	1.00	1.00
30	0.1557	0.1384	0.0617	0.36	0.82
60	0.0627	0.1790	0.0746	0.14	0.73
90	0.0318	0.1823	0.0817	0.07	0.68
120	0.0000	0.1437	0.0899	0.00	0.54
150		0.1245	0.0920		0.50
180		0.1044	0.1020		0.48
210		0.0894	0.1042		0.45
240		0.0967	0.0936		0.44
270		0.0824	0.0944		0.41
300		0.0696	0.0914	·	0.37
330		0.0519	0.0888		0.32
360		0.0183	0.0795		0.23

B.7.1 With 0.2% Ag/TiO₂

B.7.2 With 0.5% Ag/TiO2

Time (min)	Concentration (mM)			Remaining fraction	
	4-CP	HQ	ННQ	4-CP	TOC
0	0.4634	0.0000	0.0000	1.00	1.00
30	0.1449	0.1717	0.0482	0.31	0.79
60	0.0456	0.2002	0.0860	0.10	0.72
90	0.0000	0.1876	0.1008	0.00	0.62
120		0.1537	0.1163		0.58
150		0.1301	0.1414		0.59
180		0.0988	0.1486		0.53
210		0.0694	0.1400		0.45
240		0 0421	0.0955		0.30
270		0.0196	0.0757		0.21
300		0.0000	0.0532		0.11
330			0.0360		0.08
360			0.0180		0.04

Time (min)	Concentration (mM)			Remaining fraction	
	4-CP	HQ	HHQ	4-CP	TOC
0	0.4687	0.0000	0.0000	1.00	1.00
30	0.1533	0.1724	0.0991	0.33	0.91
60	0.1215	0.1290	0.0736	0.26	0.69
90	0.0000	0.1708	0.12611	0.00	0.63
120		0.1629	0.1340		0.63
150		0.1425	0.1394		0.60
180		0.11005	0.1219		0.47
210		0.0913	0.1265		0.46
240		0.0717	0.1098		0.39
270		0.0575	0.1021		0.34
300		0.0523	0.0969		0.32
330		0.0331	0.0913		0.27
360		0.0280	0.0855		0.24

B.7.3 With 1.0% Ag/TiO2

B.7.4 With 1.5% Ag/TiO2

Time (min)	Concentration (mM)			Remaining fraction	
	4-CP	HQ	ННQ	4-CP	TOC
0	0.4023	0.0000	0.0000	1.00	1.00
30	0.1250	0.1145	0.0652	0.31	0.76
60	0.0343	0.1380	0.1130	0.09	0.71
90	0.0129	0.1337	0.1300	0.03	0.69
120	0.0000	0.1370	0.1438	0.00	0.70
150		0.1171	0.1462		0.65
180		0.1032	0.1392		0.60
210		0.0838	0.1305		0.53
240		0.0663	0.1217		0.47
270		0.0457	0.1065		0.38
300		0.0440	0.1071		0.38
330		0.0213	0.0907		0.28
360		0.0159	0.0872		0.26

CURRICULUM VITAE

Name:		Ms. Mantana Moonsiri
Date of Birth	•	November 19 th , 1977
Nationality:		Thai
University Ec	lucation:	
	1996-2000	Bachelor Degree of Engineering in Chemical
		Engineering, Faculty of Engineering, King Mongkut's
		Institute of Technology Ladkrabang, Bangkok,
		Thailand
Research:	2000	Preliminary Study on Catalytic Pyrolysis and Degradation with Ethanol of PET
Experience:		
	1999	Student Trainee, Alliance Refining Co., Ltd., Map Ta Phut Industrial Estate, Rayong

x