# USE OF COACERVATE PHASE TO EXTRACT THE AROMATIC SOLUTES FROM WASTEWATER BY USING A NONIONIC SURFACTANT

1218



Ms. Punjaporn Trakultamupatam

A Dissertation Submitted in Partial Fulfilment of the Requirements
for the Degree of Doctor of Philosophy

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2002
ISBN 974-17-1395-9

Thesis Title : Use of Coacervate Phase to Extract the Aromatic

Solutes from Wastewater by Using A Nonionic

Surfactant

By : Punjaporn Trakultamupatam

Program : Petrochemical Technology

Thesis Advisors : Prof. Somchai Osuwan

Prof. John F. Scamehorn

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

k. Bunyahiat.

College Director

(Assoc. Prof. Kunchana Bunyakiat)

**Thesis Committee:** 

K. Bunyahint

(Assoc. Prof. Kunchana Bunyakiat)

(Prof. Somchai Osuwan)

(Prof. John F. Scamehorn)

(Assoc. Prof. Sumaeth Chavadej)

(Prof. Edgar A. O' Rear)

(Dr. Boonyarach Kitiyanan)

#### **ABSTRACT**

4081002063: PETROCHEMICAL TECHNOLOGY PROGRAM

Punjaporn Trakultamupatam: Use of Coacervate Phase to Extract the Aromatic Solutes from Wastewater by Using A Nonionic Surfactant.

Thesis Advisors: Prof. Somchai Osuwan and Prof. John F.

Scamehorn, 108 pp. ISBN 974-17-1395-9

Keywords: cloud point/ extraction/ coacervate/ micellar-rich phase/ nonionic

surfactant/ phase separation/ rotating disc contactor

The cloud point extraction (CPE) of aromatic contaminants (benzene, toluene and ethylbenzene) from wastewater was studied as batch experiments in laboratory scale and continuous operation in a pilot scale, differential extractor. An environmentally friendly nonionic surfactant was utilized as a separating agent. When the temperature of the nonionic surfactant micellar solution is greater than its cloud point, the solution will separate into two aqueous phases known as the micellar-rich phase or coacervate phase, and the micellar-dilute phase. The organic solutes contained in the solution tend to solubilize into the micelles and mostly concentrate into the coacervate phase, leaving the dilute phase with a low concentration of solutes as the purified water. In batch experiments, several vials capped with septa containing nonionic surfactant, aromatic solute, and water with and without added electrolyte (NaCl) were placed in an isothermal water bath until equilibrium was reached. After phase separation occurred, the relative phase volumes of each phase were measured. The concentrations of nonionic surfactant and aromatic solute in the micellar-rich phase and the micellar-dilute phase were analyzed. The results showed that temperature, NaCl concentration and degree of alkylation of the aromatic solutes enhance the solute partition ratio, leading to a higher solute concentration in the micellar-rich phase. In continuous operation, a pilot scale, temperature controllable rotating disc contactor (RDC) was fabricated. The polluted water and nonionic surfactant solution were fed counter-currently to the column as feed and solvent, respectively. The phase separation occurred inside the column. The concentrations of nonionic surfactant and aromatic solute in the

coacervate stream and the micellar-dilute phase stream were analyzed. The concentration of solute in the coacervate phase increases as temperature, rotation speed of the rotor disc, NaCl concentration, wastewater/surfactant solution flowrate ratio and degree of alkylation of the aromatic solutes increase. The overall volumetric mass transfer coefficient and the number of transfer unit in the RDC increase with increasing temperature and rotation speed of the rotor disc. In pilot scale, multistage, continuous extractor, the toluene partition ratio and concentration of toluene in the coacervate phase are two times greater than that observed in a single stage, equilibrium batch experiment with the same initial condition.

## บทคัดย่อ

ปัญจพร ตระกูลถ้ำอุปถัมภ์: การแยกสกัดสารอะโรเมติกส์ออกจากน้ำเสียโดยอาศัยการ แยกวัฏภาคของสารลดแรงตึงผิวชนิดไม่มีประจุ (Use of Coacervate Phase to Extract the Aromatic Solutes from Wastewater by Using A Nonionic Surfactant) อ. ที่ปรึกษา: ศ. คร. สมชาย โอสุวรรณ และ ศ. คร. จอห์น สเกมีฮอร์น 108 หน้า ISBN 974-17-1395-9

การสกัดแบบขุ่นถูกนำมาใช้เพื่อแยกสกัดสารประกอบอะโรเมติกส์ออกจากน้ำเสียโดย ศึกษาทั้งการสกัดแบบกะในหลอดทดลองและการสกัดแบบต่อเนื่องในเครื่องสกัดนำร่องแบบดิฟ สารที่ใช้ในการแยกคือสารลดแรงตึงผิวชนิดไม่มีประจุซึ่งเป็นสารที่ไม่ก่อให้เกิด เฟอร์เรนเชียล อันตรายต่อสิ่งแวคล้อม เมื่อสารละลายของสารลดแรงตึงผิวชนิด ไม่มีประจุมีอุณหภูมิสูงกว่าจุดขุ่น สารละลายจะแยกออกเป็นสองวัฏภาค ได้แก่ วัฏภาคที่มีใมเซลล์เป็นจำนวนมากหรือวัฏภาคโค แอคเซอร์เวท และวัฏภาคที่มีไมเซลล์เป็นจำนวนน้อย ตัวถูกละลายอินทรีย์ที่อยู่ในสารละลายจะ ละลายเข้าไปในไมเซลล์และมีความเข้มข้นสูงอยู่ในวัฏภาคโคแอคเซอร์เวท ทำให้วัฏภาคที่มีไม เซลล์เป็นจำนวนน้อยเปรียบเสมือนเป็นน้ำที่มีความบริสุทธิ์มากขึ้นเนื่องจากมีความเข้มข้นของตัว ถูกละลายต่ำ ในการทดลองแบบกะสารละลายที่ประกอบด้วยสารลดแรงตึงผิวชนิดไม่มีประจุ ตัว ถูกละลายอะโรเมติกส์ ทั้งที่มีการเติมเกลือและไม่มีการเติมเกลือถูกเตรียมในขวดเก็บตัวอย่างแล้ว ปิดด้วยฝาเซปตัมก่อนนำไปแช่ในอ่างควบคุมอุณหภูมิจนถึงสภาวะสมคุลจึงทำการวัดปริมาตร สัมพัทธ์ ความเข้มข้นของสารลดแรงตึงผิวและตัวถกละลายอะโรเมติกส์ในแต่ละวัฏภาค ผลการ ทคลองพบว่าอุณหภูมิ ความเข้มข้นของเกลือ และองศาการเติมหมู่อัลคิลของตัวถูกละลายอะโรเม ติกส์ช่วยเพิ่มสัดส่วนการละลายของตัวถูกละลายอะโรเมติกส์ในวัฏภาคโคแอคเซอร์เวท ส่งผลให้ ความเข้มข้นของตัวถูกละลายอะโรเมติกส์ในวัฏภาคโคแอคเซอร์เวทสูงขึ้น เครื่องสกัดแบบโรเท ติ้งคิสก์คอนแทคเตอร์ถูกสร้างขึ้นในขนาดนำร่องเพื่อใช้ในการทดลองแบบต่อเนื่อง ในหอสกัดนี้ น้ำเสียและสารละลายของสารลดแรงตึงผิวชนิดไม่มีประจถูกป้อนเข้าไปแบบสวนทางกันและ การ แยกวัฎภาคเกิดขึ้นภายในหอสกัด หลังจากนั้นทำการวิเคราะห์ความเข้มข้นของสารลดแรงตึงผิว และตัวถูกละลายอะโรเมติกส์ในแต่ละวัฏภาค ผลการทดลองพบว่าเมื่ออุณหภูมิ ความเร็วรอบการ อัตราส่วนอัตราการใหลของน้ำเสียต่อสารละลายของสารลดแรงตึงผิวและองสาการเติมหม่ อัลคิลของตัวถูกละลายอะโรเมติกส์เพิ่มขึ้น มีผลให้ความเข้มข้นของตัวถูกละลายในวัฏภาคโคแอค เซอร์เวทสูงขึ้น ค่าสัมประสิทธิ์รวมการถ่ายโอนมวล และจำนวนหน่วยการถ่ายโอนในเครื่องสกัด แบบโรเทติ้งคิสก์คอนแทคเตอร์สูงขึ้นเมื่อเพิ่มอุณหภูมิและความเร็วรอบของจานหมุน

นั้นยังพบว่าเมื่อทำการทดลองที่สภาวะเริ่มต้นแบบเดียวกัน ค่าสัดส่วนการละลายและความเข้มข้น ของโทลูอื่นในวัฏภาคโคแอคเซอร์เวทที่ได้จากการทดลองแบบต่อเนื่องในเครื่องสกัดแบบหลาย ขั้นตอนสูงกว่าค่าที่ได้จากการทดลองแบบกะขั้นตอนเดียวที่สภาวะสมคุลถึงสองเท่า

#### **ACKNOWLEDGEMENTS**

First and foremost, I would like to give my thankfulness to The Thailand Research Fund (TRF) under the Royal Golden Jubilee Ph.D. program for financial support. Moreover, the Basic Research Grant for Royal Golden Jubilee Ph.D. Program provides an extra funding.

I would like to express my sincere thanks to Prof. Somehai Osuwan and Prof. John F. Scamehorn for giving me a privilege opportunity to work with them.

Prof. Somchai Osuwan always provides me a constant support, advice and encouragement throughout the course of my graduate work. His generosity and supports are aimed not only at my academia but also my personal way of life. His boundless enthusiasm has enabled me to attend a number of excellent international conferences, which allow me to open my vision both for future career and life experience. I also wish to thank for his consistent attentions on my research. His discernment and meaningful guidance and comments are invaluable.

I would like to express my gratitude to Prof. John F. Scamehorn for his creative and sharp advocacy. Without his insight knowledge, this research might not be accomplished. I also wish to thank for his willingness to train me to be a practicing researcher. His discussion and criticism are greatly useful. I am extremely grateful for his patience working on several papers. My writing skills are developed by his kind help. Moreover, I really appreciate his hospitality during my visits at The University of Oklahoma.

I would like to acknowledge Mr. Sanit Prinakorn for his countless assistance on my extractor. He is a really good technician. I have never met a person who practically knows how to adapt things effectively like him. He taught me a lot of hardware skills. I am sure that the extractor would not be successfully fabricated without his help.

I would like to give my thankfulness to Prof. Edgar A. O' Rear and Dr. Boonyarach Kitiyanan for being my thesis committee, PPC faculties for their guidance and support; PPC staffs for their contributions. Gratitude is also passed to my friends especially Mr. Siriphong Roatluechai, Ms. Apanee Luengnaruemitchai, Ms. Chalothorn Soponvuttikul and PPC students class' 97 for their sincere friendship, love and encouragement.

Last but not least, I would like to express my deep grateful to my parents, brother and sister. Without their love and understanding, I would not be able to achieve my goal. Thank you for supporting me in every way. I also wish to thank my supportive husband who has never given up encouraging me throughout my study.

## **TABLE OF CONTENTS**

|                       |                                                         | PAGE |
|-----------------------|---------------------------------------------------------|------|
| Title Page            |                                                         | i    |
| Abstract (in English) |                                                         | iii  |
| Abstract (in Thai)    |                                                         | v    |
| Acknowled             | gement                                                  | vii  |
| Table of Co           | ontents                                                 | ix   |
| List of Tab           | les                                                     | xii  |
| List of Figu          | ires                                                    | xiii |
| CHAPTEI               | ₹                                                       |      |
| I                     | INTRODUCTION                                            | 1    |
|                       | Background                                              | 2    |
|                       | Objectives                                              | 4    |
|                       | Preliminary Study on the CPE of Chlorinated Hydrocarbon | 5    |
| П                     | REMOVAL OF VOLATILE AROMATIC                            |      |
|                       | CONTAMINANTS FROM WASTEWATER                            |      |
|                       | BY CLOUD POINT EXTRACTION                               | 10   |
|                       | Abstract                                                | 11   |
|                       | Introduction                                            | 12   |
|                       | Background                                              | 13   |
|                       | Experimental                                            | 16   |
|                       | Results and Discussion                                  | 18   |
|                       | Acknowledgements                                        | 23   |
|                       | References                                              | 24   |
| III                   | SCALING UP CLOUD POINT EXTRACTION OF                    |      |
|                       | AROMATIC CONTAMINANTS FROM WASTEWATE                    | CR   |
|                       | IN A CONTINUOUS ROTATING DISC CONTACTOR                 | •    |

| CHAPTER |                                                             | PAGE |
|---------|-------------------------------------------------------------|------|
|         | PART 1. EFFECT OF DISC ROTATION SPEED AND                   |      |
|         | WASTEWATER/SURFACTANT RATIO                                 | 33   |
|         | Abstract                                                    | 34   |
|         | Introduction                                                | 35   |
|         | Background                                                  | 37   |
|         | Experimental                                                | 40   |
|         | Results and Discussion                                      | 43   |
|         | Acknowledgements                                            | 48   |
|         | References                                                  | 49   |
| IV      | SCALING UP CLOUD POINT EXTRACTION OF                        |      |
|         | AROMATIC CONTAMINANTS FROM WASTEWATER                       | 2    |
|         | IN A CONTINUOUS ROTATING DISC CONTACTOR:                    |      |
|         | PART 2. EFFECT OF OPERATING TEMPERATURE                     |      |
|         | AND ADDED ELECTROLYTE                                       | 60   |
|         | Abstract                                                    | 61   |
|         | Introduction                                                | 62   |
|         | Background                                                  | 63   |
|         | Experimental                                                | 66   |
|         | Results and Discussion                                      | 69   |
|         | Acknowledgements                                            | 73   |
|         | References                                                  | 74   |
| V       | CONCLUSIONS AND RECOMMENDATIONS                             | 84   |
|         | REFERENCES                                                  | 87   |
|         | APPENDIX                                                    | 89   |
|         | Use of a Surfactant Coacervate Phase to Extract Chlorinated |      |
|         | Aliphatic Compounds from Water: Extraction of Chlorinated   |      |

| CHAPTER |                                                                   | PAGE |
|---------|-------------------------------------------------------------------|------|
|         | Ethanes and Quantitative Comparison to Solubilization in Micelles |      |
|         | CURRICULUM VITAE                                                  | 107  |

## **LIST OF TABLES**

| ΓAΒΙ | ABLE                                                                           |     |
|------|--------------------------------------------------------------------------------|-----|
|      | Chapter I                                                                      |     |
| 1    | Cloud points of 50 mM OP(EO) <sub>7</sub> system                               | 8   |
| 2    | Liquid-coacervate extraction data: initial [OP(EO) <sub>7</sub> ] = 50 mM,     |     |
|      | initial [solute] = 1.0 mM                                                      | 9   |
|      | Chapter II                                                                     |     |
| 1    | Cloud points of 70 mM OP(EO) <sub>7</sub> system                               | 28  |
|      | Appendix                                                                       |     |
| 1    | CMC of surfactants with no organic solutes                                     | 100 |
| 2    | Cloud points of 50 mM OP(EO) <sub>7</sub> system                               | 101 |
| 3    | Liquid-coacervate extraction data: initial [OP(EO) <sub>7</sub> ] = 50 mM,     |     |
|      | initial[solute] = 1.0 mM                                                       | 102 |
| 4    | Semiequilibrium dialysis data for micellar solubilization of 50 mM             |     |
|      | OP(EO) <sub>9</sub> and 1.0 mM organic solute initial retentate concentrations | 103 |
| 5    | Summary of partitioning and solubilization parameters for the solute           | 104 |

## **LIST OF FIGURES**

| FIGU | FIGURE                                                                   |    |
|------|--------------------------------------------------------------------------|----|
|      | Chapter I                                                                |    |
| l    | Schematic of liquid-coacervate extraction                                | 7  |
|      | 1                                                                        |    |
|      | Chapter II                                                               |    |
| 1    | Surfactant concentration in coacervate phase as a function of total      |    |
|      | surfactant concentration and temperature (system: 100 ppm benzene        |    |
|      | without added electrolyte)                                               | 29 |
| 2    | Fractional coacervate volume as a function of total surfactant           |    |
|      | concentration and temperature (system: 100 ppm benzene without           |    |
|      | added electrolyte)                                                       | 29 |
| 3    | Surfactant partition ratio as a function of total surfactant             |    |
|      | concentration and temperature (system: 100 ppm benzene without           |    |
|      | added electrolyte)                                                       | 30 |
| 4    | Benzene partition ratio as a function of total surfactant                |    |
|      | concentration and temperature (system: 100 ppm benzene without           |    |
|      | added electrolyte)                                                       | 30 |
| 5    | Percentage of benzene extracted in coacervate phase as a function        |    |
|      | of total surfactant concentration and temperature (system: 100 ppm       |    |
|      | benzene without added electrolyte)                                       | 31 |
| 6    | Benzene partition ratio and percentage of benzene extracted in           |    |
|      | coacervate phase as a function of NaCl concentration (system: 100        |    |
|      | ppm benzene, 70 mM surfactant, and 30 °C)                                | 31 |
| 7    | Partition ratio of several aromatic solutes as a function of temperature | e  |
|      | (system: 100 ppm aromatic solutes, 70 mM surfactant without added        |    |
|      | electrolyte)                                                             | 32 |
| Q    | Schematic of integrated process including a multistage cloud poin        | t  |

| FIGURE |                                                                   | PAGE |
|--------|-------------------------------------------------------------------|------|
|        | extractor and vacuum stripper                                     | 32   |
|        | Chapter III                                                       |      |
| 1      | A schematic diagram of the cloud point extraction unit            | 53   |
| 2      | Phenol concentration in dilute phase stream as a function of      |      |
|        | Operating time (system: 500 ppm phenol, 300 mM surfactant         |      |
|        | solution, 150 rpm agitator speed, and 40 °C)                      | 53   |
| 3      | Surfactant concentration in coacervate stream (c) and dilute      |      |
|        | phase stream (d) as a function of agitator speed (system: 100 ppm |      |
|        | toluene, 300 mM surfactant solution, 6.9/1 wastewater/surfactant  |      |
|        | solution flowrate ratio, and 40 °C)                               | 54   |
| 4      | Toluene concentration in coacervate stream (c) and dilute         |      |
|        | phase stream (d) as a function of agitator speed (system: 100 ppm |      |
|        | toluene, 300 mM surfactant solution, 6.9/1 wastewater/surfactant  |      |
|        | solution flowrate ratio, and 40 °C)                               | 54   |
| 5      | Surfactant and toluene partition ratio as a function of agitator  |      |
|        | speed (system: 100 ppm toluene, 300 mM surfactant solution,       |      |
|        | 6.9/1 wastewater/surfactant solution flowrate ratio, and 40 °C)   | 55   |
| 6      | Fraction of total surfactant present and fraction of toluene      |      |
|        | extracted in coacervate stream as a function of agitator speed    |      |
|        | (system: 100 ppm toluene, 300 mM surfactant solution,             |      |
|        | 6.9/1 wastewater/surfactant solution flowrate ratio, and 40 °C)   | 55   |
| 7      | Surfactant concentration in coacervate stream (c) and dilute      |      |
|        | phase stream (d) as a function of wastewater/surfactant solution  |      |
|        | flowrate ratio (system: 100 ppm toluene, 300 mM surfactant        |      |
|        | solution, 150 rpm agitator speed, and 40 °C)                      | 56   |
| 8      | Toluene concentration in coacervate stream (c) and dilute         |      |
|        | phase stream (d) as a function of wastewater/surfactant solution  |      |
|        | flowrate ratio (system: 100 ppm toluene, 300 mM surfactant        |      |

| FIGUE | RE                                                                    | PAGE |
|-------|-----------------------------------------------------------------------|------|
|       | solution, 150 rpm agitator speed, and 40 °C)                          | 56   |
| 9     | Surfactant and toluene partition ratio as a function of               |      |
|       | wastewater/surfactant solution flowrate ratio (system: 100 ppm        |      |
|       | toluene, 300 mM surfactant solution, 150 rpm agitator speed,          |      |
|       | and 40 °C)                                                            | 57   |
| 10    | Fraction of total surfactant present and fraction of toluene          |      |
|       | extracted in coacervate stream as a function of wastewater/surfactant |      |
|       | solution flowrate ratio (system: 100 ppm toluene, 300 Mm              |      |
|       | surfactant solution, 150 rpm agitator speed, and 40 °C)               | 57   |
| 11    | Comparison of surfactant and solute partition ratio and fraction      |      |
|       | of solute extracted in coacervate stream between toluene and          |      |
|       | ethylbenzene (system: 100 ppm solute, 300 mM surfactant               |      |
|       | solution, 6.9/1 wastewater/surfactant solution flowrate ratio,        |      |
|       | 150 rpm agitator speed, and 40 °C)                                    | 58   |
| 12    | Number of transfer unit (NTU) and height of transfer unit             |      |
|       | (HTU) as a function of agitator speed (system: 100 ppm                |      |
|       | toluene, 300 mM surfactant solution, 6.9/1 wastewater/surfactant      |      |
|       | solution flowrate ratio, and 40 °C)                                   | 58   |
| 13    | Overall volumetric mass transfer coefficient (Ka) as a function       |      |
|       | of agitator speed (system: 100 ppm toluene, 300 mM surfactant         |      |
|       | solution, 6.9/1 wastewater/surfactant solution flowrate ratio, and    |      |
|       | 40 °C)                                                                | 59   |
| 14    | Comparison of surfactant and toluene concentration in coacervate      |      |
|       | stream (c) and partition ratio between a single stage equilibrium     |      |
|       | batch and continuous operation (system: batch; 3.75 wt %              |      |
|       | surfactant, 100 ppm toluene, and 40 °C. continuous; 2.03 wt %         |      |
|       | surfactant, 100 ppm toluene, 6.9/1 wastewater/surfactant flowrate     |      |
|       | ratio, 150 rpm agitator speed, and 40 °C)                             | 59   |

| PAGE |
|------|
|      |

| Cha | pter | IV |
|-----|------|----|
|-----|------|----|

| 1 | A schematic diagram of the cloud point extraction unit                 | 78 |
|---|------------------------------------------------------------------------|----|
| 2 | Surfactant concentration in coacervate stream (c) and dilute           |    |
|   | phase stream (d) as a function of temperature (system: 100 ppm         |    |
|   | toluene, 300 mM surfactant solution, 6.9/1 wastewater/surfactant       |    |
|   | solution flowrate ratio, and 150 rpm agitator speed)                   | 78 |
| 3 | Toluene concentration in coacervate stream (c) and dilute              |    |
|   | phase stream (d) as a function of temperature (system: 100 ppm         |    |
|   | toluene, 300 mM surfactant solution, 6.9/1 wastewater/surfactant       |    |
|   | solution flowrate ratio, and 150 rpm agitator speed)                   | 79 |
| 4 | Surfactant and toluene partition ratio as a function of temperature    |    |
|   | (system: 100 ppm toluene, 300 mM surfactant solution,                  |    |
|   | 6.9/1 wastewater/surfactant solution flowrate ratio, and 150 rpm       |    |
|   | agitator speed)                                                        | 79 |
| 5 | Fraction of total surfactant present and fraction of toluene extracted |    |
|   | in coacervate stream as a function of temperature (system: 100 ppm     |    |
|   | toluene, 300 mM surfactant solution, 6.9/1 wastewater/surfactant       |    |
|   | solution flowrate ratio, and 150 rpm agitation speed)                  | 80 |
| 6 | Surfactant concentration in coacervate stream (c) and dilute           |    |
|   | phase stream (d) as a function of NaCl concentration (system: 100 ppn  | 1  |
|   | toluene, 300 mM surfactant solution, 6.9/1 wastewater/surfactant       |    |
|   | solution flowrate ratio, 150 rpm agitator speed, and 40 °C)            | 80 |
| 7 | Toluene concentration in coacervate stream (c) and dilute              |    |
|   | phase stream (d) as a function of NaCl concentration (system: 100 ppm  | 1  |
|   | toluene, 300 mM surfactant solution, 6.9/1 wastewater/surfactant       |    |
|   | solution flowrate ratio, 150 rpm agitator speed, and 40 °C)            | 81 |
| 8 | Surfactant and toluene partition ratio as a function of NaCl           |    |
|   | concentration (system: 100 ppm toluene, 300 mM surfactant solution,    |    |
|   | 6.9/1 wastewater/surfactant solution flowrate ratio, 150 rpm agitator  |    |

| FI | GUI | RE                                                                     | PAGE  |
|----|-----|------------------------------------------------------------------------|-------|
|    |     | speed, and 40 °C)                                                      | 81    |
|    | 9   | Fraction of total surfactant present and fraction of toluene extracted |       |
|    |     | in coacervate stream as a function of NaCl concentration (system:      |       |
|    |     | 100 ppm toluene, 300 mM surfactant solution, 6.9/1 wastewater/surfa    | ctant |
|    |     | solution flowrate ratio, 150 rpm agitation speed, and 40 °C)           | 82    |
|    | 10  | Number of transfer unit (NTU) and height of transfer unit (HTU)        |       |
|    |     | as a function of temperature (system: 100 ppm toluene, 300 mM          |       |
|    |     | surfactant solution, 6.9/1 wastewater/surfactant solution flowrate     |       |
|    |     | ratio, 150 rpm agitator speed, and 40 °C)                              | 82    |
|    | 11  | Overall volumetric mass transfer coefficient (Ka) as a function of     |       |
|    |     | temperature (system: 100 ppm toluene, 300 mM surfactant solution,      |       |
|    |     | 6.9/1 wastewater/surfactant solution flowrate ratio, 150 rpm agitator  |       |
|    |     | speed, and 40 °C)                                                      | 83    |
|    |     | Appendix                                                               |       |
|    | 1   | Schematic of semi-equilibrium dialysis                                 | 105   |
|    | 2   | Schematic of liquid-coacervate extraction                              | 106   |
|    |     |                                                                        |       |