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ABSTRACT
Platinum supported on unidimensional, extra-large pore aluminophosphate VPI-5 
(Pt/VPI-5) was prepared by vapor phase impregnation method. The catalyst prepared 
was tested for the aromatization of «-octane at 500°c. The results show that the 
extra-large pore zeolite catalyst resulted in lower activity and total aromatics 
selectivity but it exhibited higher selectivity to c8-aromatics than the Pt/KL catalyst. 
XRD. SEM, TPD. and BET techniques were utilized to analyze the characteristics of 
the VPI-5 synthesized. After the reaction, nature and amount of coke formation were 
investigated by temperature programmed oxidation (TPO).

INTRODUCTION
It has been known for two decades that Pt-containing potassium form of L zeolite 
(Pt/KL) catalyst is highly active and selective for «-hexane aromatization. The 
important advantage is that Pt/KL, monofunctional catalyst, is free from acid support 
resulting in less undesired isomerization and cracking products. There have been 
many hypotheses for the unique property of Pt/KL. Tauster et al. [1] offered that 
over L zeolite, which is one-dimensional straight channel, «-hexane would 
preferentially adsorb onto the Pt cluster at a terminal carbon, which would favor ring 
closure to form benzene. Derouane and Vanderveken [2] reported that the space 
inside the L-zeolite was similar to that of a cyclic, six carbon species. Therefore, the 
aromatization is favorable inside the L-zeolite channel. Iglesia et al.[3] have shown 
that in the «-hexane aromatization reaction, the platinum that is well-dispersed inside 
the channels of the L zeolite is protected from bimolecular collision which leads to 
coke formation. However, we recently investigated the aromatization of «-octane 
over Pt/KL catalyst [4], The catalyst deactivated fastly by coke formation. Moreover, 
the reaction testing resulted in undesired hydrogenolysis of C8-aromatics. We further 
studied the aromatization of «-octane over other large pore zeolites i.e. BEA, MAZ, 
and FAU. The results showed that the Pt/KL still exhibits highest activity and 
selectivity than other zeolite catalysts. VPI-5 zeolite is an alternative catalyst support. 
It was discovered in 1989 by Mark Davis [5]. VPI-5 is aluminophosphate,
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unidimensional extra-large pore zeolite (12.7 A°). Later, the Pt/VPI-5 was prepared 
and studied for «-hexane aromatization by the dependent group [6, 7]. They found 
that the VPI-5 catalyst resulted in lower aromatization performance than that of 
Pt/KL catalysts. In this contribution, we have synthesized the VPI-5 zeolite and 
prepared Pt/VPI-5 for testing the aromatization of «-octane. A number ot 
characterization techniques, including XRD, BET, SEM, and TPD were utilized to 
investigate the characteristics of the VPI-5 support and Pt/VPI-5 catalyst. After the 
reaction, the coke formation was analyzed by temperature programmed oxidation.

EXPERIMENTAL
Synthesis o f Aluminophosphate VPI-5. The recipe for synthesis are psedo-boehmite 
(Catapal B, ca. 65% AI2O3, Lot# P10521, Condea Vista Co.), H3PO4 (ca. 85 wt. %, 
Aldrich), tetrabutylammoniumhydroxide (TBA-OH) solution (ca. 55-60% in water, 
Fluka), and distilled water. The amount of the recipes are based on IAI2O3: 2H3PO4: 
1 TBA-OH: 50 H2O molar ratio. The procedure of synthesis was reported elsewhere
[5], Briefly, pseudo-boehmite was dispersed in water and H3PO4 added. Then the 
mixture was stirred until homogeneous and aged for 2 h, without stirring. After that, 
TBA-OH was added to the mixture and stirred for 2 h. The mixture was then heated 
in a CEM MSP-1000 microwave oven with a Teflon vessel at 150°c for 20 h. The 
resultant was filtered, washed with distilled water, and dried at room temperature.

Analysis o f Synthesized VPI-5. the VPI-5 prepared was tested the XRD pattern 
using a Rigaku RINT D/MAX 2200H with Cu Kcc radiation. The physical 
morphology of the VPI-5 was inquired using a JEOL JSM-5200 scanning electron 
microscope. The measurement of surface area was performed by using nitrogen 
adsorption technique (BET) with a Quantachrome Autosorb-l. Prior to BET 
measurement, the sample was evacuated at room temperature for 30 min, and then 
the temperature was ramped to 300°c and held at this temperature for 5 h. XRD of 
the sample after the measurement, still, showed the majority of VPI-5. Temperature
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programmed desorption of ammonia was carried out using a Micromeritics 
AutoChem 2910.

Catalyst Preparation. Prior to loading metal, the VPI-5 was calcined in air flow 
(lOOml/min.gzeoi) at 600°c for 20 h. The Pt/VPI-5 was prepared by physically mixing 
weighed platinum (II) acetylacetonate (Alfa Aesar) and dry support under nitrogen 
atmosphere. The mixture was then loaded into the reactor tube under a He flow of 2 
cnr’/min. The mixture was slowly ramped to 40°c and held there for 3 h, and 
ramped again to 60°c and held again for 1 h. After that, further ramped to 100°c, at 
which temperature the mixture was held for 1 h to sublime the Pt(AcAc)2. After 
sublimation, the mixture was ramped to 130°c and held for 15 min to ensure that the 
entire precursor was sublimed. The reactor was cooled to room temperature. After 
that, it was ramped to 350°c in flow of air for 2 h and calcined at that temperature to 
decompose the Pt precursor. Finally, the Pt/VPI-5 was stored in a desiccator.

Catalytic Activity Measurement: The catalytic activity studies were conducted at 
atmospheric pressure in a 0.5-inch glass tube with an internal K-type thermocouple 
for temperature measurement. The reactor was a single-pass, continuous-flow type, 
with a catalyst bed of 0.20 g. Prior to reaction, the temperature was slowly ramped 
in flowing H2 at 100 cm3/min.g for 2 h up to 500°c and in situ reduced at that 
temperature for 1 h. «-Octane was added by injection from a syringe pump. In all 
experiments, the hydrogen to «-octane molar ratios was kept at 6:1. The products 
were analyzed in a Shimadzu GC-17A equipped with a capillary HP-PLOT/AI2O3 

"ร,' deactivated column, using a temperature program to obtain optimal product 
separation.

T e m p e r a t u r e  P r o g r a m m e d  O x i d a t i o n  ( T P O ) : Temperature programmed oxidation
was employed to analyze the amount and characteristics of the coke deposits on
spent catalysts. TPO of the spent catalysts was performed in a continuous flow of
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2% 0 2/He while the temperature was linearly increased at a heating rate of 12°c/min. 
Before conducting the TPO on a 0.03 g sample placed in a V” quartz fixed-bed 
reactor, the spent catalyst was dried at 110°c overnight and weighed. The catalyst 
was then flushed by 2% 0 2 in He for 30 min before the temperature ramp was 
started. The C 02 produced by the oxidation of coke species was further converted to 
methane by 15%Ni/Al203 catalyst in the presence of hydrogen at 400°c. The 
methane obtained was analyzed online by a FID detector. The amount of coke was 
calibrated by using 100 pi pulses of pure C 02.

RESULTS AND DISCUSSION
Characterization o f VP I-5 and Pt/VPI-5: the synthesized VP1-5 was tested by XRD 
technique. The XRD pattern obtained is shown in Fig. 1. The pattern showed that the 
zeolite prepared contains majority phase of VPI-5 zeolite. There is only small peak 
of AIPO4-5 (20 = 7.48°) observed. SEM images of VPI-5 support are shown in Fig. 
2. Morphologies of the VPI-5 were needle-like, needle-like aggregate into bundles, 
and needle-like aggregate into spherurites as shown in Fig. 2a, b, and c respectively. 
The sizes and morphologies obtained are parallel to results from a previous study [8]. 
BET surface area of the VPI-5 is 242 m2/g. TPD of adsorbed ammonia on VPI-5 
compared to KL and Si02 is shown in Fig. 3. The result indicates that the VPI-5 
exhibited higher acidity than Si02 and KL.
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Fig. 2. SEM images of different morphologies of synthesized VPI-5 (a) needle-like,
(b) needle-like aggregate into bundles, and (c) needle-like aggregate into spherurites.
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T e m p e r a t u r e ,  ๐c

Fig. 3. TPD profiles of ammonia adsorbed on catalyst supports (a) Si02, (b) KL, and 
(c) VPI-5. The supports were exposed to a flow of 1 0 %NH3/He at 100°c for 30 min 
and purged by He for 30 min.

After preparation of Pt/VPI-5, the resultant catalyst was re-analyzed by X-ray 
diffratometer. The XRD patterns of Pt/VPI-5 and bare VPI-5 are illustrated in Fig. 4a 
and b. It was found that the structure of VPI-5 support was significantly changed to 
AIPO4-8 . AIPO4 -8  zeolite is structurally similar to VPI-5 but the pore size of AIPO4- 
8 (8.7 A°) is smaller than that of VPI-5 (12.7 A°). It was noted in previous studies [8 , 
9] that VPI-5 zeolite is thermally unstable, as remove water around 100°c, and 
atmospheric pressure transforms VPI-5 into AIPO4-8 . However, in an earlier report 
[10], the author offered that VPI-5 rapidly heated to at least 550°c can withstand 
exposure to steam at the elevated temperature with a little loss of structural integrity. 
In this work, even though we treated the VPI-5 zeolite as mentioned in the earlier 
report [10], the VPI-5 still exhibited significant change to AIPO4-8 . After the 
Pt/VPI-5 was tested for n-octane aromatization at 500°c for 20 h, the XRD pattern of 
spent Pt/VPI-5 was collected again. It was found that the structure of the spent 
Pt/VPI-5 was not much changed from the structure of fresh Pt/VPI-5 catalyst (as 
illustrated in Fig. 4b and c).
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Fig. 4. XRD patterns of (a) synthesized VPI-5, (b) Pt/VPI-5, and (c) spent Pt/VPI-5, 
after reaction at 500°c for 20 h. (Asterisks are due to AIPO4 -8  pattern.)

Catalytic Activity Measurement: The «-octane conversion and total aromatics 
selectivity at 500°c on Pt/VPI-5, compared to Pt/KL and Pt/SiC>2 are shown in Fig 5a 
and b as a function of time on stream. Pt/VPI-5 exhibited slow drop of activity from 
38% to 15% within first 8 h while the Pt/KL showed very high activity (70%) at the 
initial time then rapid drop to 25% in the same period. The Pt/KL also exhibited 
highest selectivity to aromatic among the catalysts tested. The activity of Pt/VPI-5 is 
comparable to that of Pt/SiC>2 but the total aromatics selectivity of Pt/VPI-5 is clearly 
higher.
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Time on stream, h Time on stream, h
Fig. 5. (a) «-Octane conversion and (b) Total aromatics selectivity (mole basis) vs. 
time on stream over Pt/SiCb, Pt/KL, and Pt/VPI-5 catalysts. Reaction conditions: 
500°c, FL/«-C6  (or n-C8 ) molar ratio 6:1,WHSV 5 h’1.

The product distributions at 10 h on stream are listed in Table 1. Like Pt/Si0 2 , 
Pt/VPI-5 resulted in more C8 -aromatics and less hydrogenolysis products than Pt/KL 
catalyst. This can be explained that the pore of VPI-5 (with partial AIPO4-8 ) are big 
enough to avoid the plugging of zeolite channel by coke formation. As ascribed 
previously [4], the pore plugging enhanced the secondary hydrogenolysis of C8 - 
aromatics formed. Another possibility is that the Pt clusters are not stabilized in the 
zeolite channel of VPI-5 and they migrate outside the zeolite. Therefore, the 
reactions took place over platinum outside the channel, similar to that of Pt/SiCb.
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TABLE 1
Product distribution of rt-octane aromatization on Pt/SiC>2, Pt/KL, and Pt/VPI-5 
catalysts, after 10 h on stream. Reaction conditions; 500°c, PL: «-C8 ratio 6:1,

WHSV 5 hr1
Pt/Si02 Pt/KL Pt/VPI-5

Conversion 16.8 37.7 15.0
Product selectivity, wt.%
C1-C5 7.1 29.4 16.0
C6 enes 4.3 1 .2 4.6
C7enes 34.8 0 . 6 6 .8

C8 enes 5.4 1.9 1 0 . 6

Benzene 0.0 27.7 0.5
Toluene 0.9 28.2 25.9
EB 21.5 6.5 16.2
m-, p-Xylenes 1.5 1.4 2.7
O-Xylene 23.8 3.0 16.0
Total Aromatics 47.8 6 6 . 8 61.3
Total C8 -aromatics 46.9 10.9 34.9
Total Olefins 44.5 3.7 2 2 . 0

Characterization o f Spent Catalysts: After tested for n-octane aromatization, the 
spent Pt/VPI-5, Pt/KL, and Pt/SiC>2 were analyzed by temperature programmed 
oxidation technique to study the nature and amount of coke formed during the 
reaction. The TPO profiles are illustrated in Fig. 6 . The results show that the profile 
of coke deposited on Pt/Si02 catalyst appeared mainly at 200-300°C whereas the 
profiles of coke from zeolite catalysts were shifted to higher temperature, ranging 
from 200-600°C. Pt/KL exhibited more pronounce of peak at 500°c. As mentioned 
earlier [11, 12], the peak at low temperature (200-300°C) is due to the oxidation of 
coke which is accelerated by platinum clusters. On the other hand, the profile at high
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temperature is possible due to the plugging of zeolite pores, which would retard the 
platinum-catalyzed oxidation. Pt/VPI-5 exhibited less coke formation than Pt/KL 
catalyst. It is because on the extra-large pore zeolite, the pore plugging by coke could 
not be formed.

Fig. 6. TPO profiles of coke deposits on (a) Pt/SiC>2, (b) Pt/KL, and (c) Pt/VPI-5, 
after reaction at 500°c for 10 h on stream. The calculated amount of coke is included 
in each curve.

CONCLUSIONS
After procedure of loading platinum, VPI-5 is mostly transformed to AIPO4-8 . The 
aromatization of /7-octane on the catalyst resulted in lower coke formation, higher 
selectivity to C8 -aromatics than Pt/KL catalyst. However, Pt/KL still show higher 
activity and total aromatics selectivity than the Pt/VPI-5 catalyst.
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