DEVELOPMENT OF A NEUTRON DEVICE TO MEASURE STEAM QUALITY AT A HIGH PRESSURE

Ms. Bhurisa Thitakamol

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2003

ISBN 974-17-2276-1

Thesis Title:	Development of a Neutron Device to Measure Steam Quality
	at a High Pressure
By:	Ms. Bhurisa Thitakamol
Program:	Petrochemical Technology
Thesis Advisor:	Assoc. Prof. Thirasak Rirksomboon
	Prof. Frank R. Steward

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of requirements for the Degree of Master of Science.

K. Brinyahint. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

The Allo

(Assoc. Prof. Thirasak Rirksomboon)

Inon R. N. Stewand

(Prof. Frank R. Steward)

At

(Prof. Somchai Osuwan)

Promouth R.

(Asst Prof. Pramoch Rangsunvigit)

ABSTRACT

4471006063 : PETROCHEMICAL TECHNOLOGY PROGRAM
Ms. Bhurisa Thitakamol: Development of a Neutron Device to
Measure Steam Quality at a High Pressure.
Thesis Advisors: Prof. Frank R. Steward and Assoc. Prof. Thirasak
Rirksomboon, 93 pp. ISBN 974-17-2276-1
Keywords : Scatterometer/ Neutron scattering/ Fast neutron/ Steam quality

Steam quality, measured as the void fraction in a two-phase, steam-water flow in an autoclave, was investigated by the fast neutron scattering technique. This technique based on the slowing-down of neutrons, resulting from the thermalization of fast neutrons, is proportional to the number of hydrogen nuclei in the liquid. A Monte Carlo simulation demonstrated that linearity between void fraction and neutron count rate (detector response) could be achieved using the instrument geometry; viz. ²⁵²Cf as isotropic neutron source, helium detector and half-inch stainless steel pipe. Before the steam-water system was studied, a static experiment using Lucite rods and a nitrogen-water experiment in which nitrogen was bubbled through water in a plexiglas tube were performed to confirm the Monte Carlo result. A simplified calibration method was used to estimate the void fraction obtained from experiment; the estimated value varied linearly with the actual value of the void fraction. At high pressure and temperature, the density of water was found to be proportional to neutron count rate. The measurement of steam quality calculated from the parameters of the autoclave operation was detected by a neutron scatterometer. It was found that the neutron count rate decreased as steam quality increased as predicted.

iii

บทคัดย่อ

ภูริสา ดิฐกมล : การพัฒนาเครื่องมือนิวตรอนในการวัดสตีมควอลิตีในระบบความดันสูง (Development of a Neutron Device to Measure Steam Quality at a High Pressure) อ. ที่ปรึกษา ศ. แฟรงค์ อาร์ สจัวต (Prof. Frank R. Steward) และ รศ.ดร. ธีรศักดิ์ ฤกษ์สมบูรณ์ 93 หน้า ISBN 974-17-2276-1

สตีมควอลิตีหรืออัตราส่วนที่ว่างของของไหลที่ประกอบด้วยไอน้ำและน้ำที่ไหลภายใน ท่อสามารถวัดได้โดยการใช้วิธีฟาสต์นิวตรอนสะเคทเทอร์ริ่ง หลักการของการวัดคืออนุภาค นิวตรอนจะสูญเสียพลังงานเมื่อชนกับอนุภาคของไฮโครเจนในน้ำ ดังนั้นจำนวนของอนุภาค นิวตรอนที่สูญเสียพลังงานนั้นเป็นสัคส่วนกับปริมาณของน้ำ การจำลองโดยใช้วิธีมอนติการ์โล แสดงให้เห็นว่ามีความสัมพันธ์เชิงเส้นระหว่างอัตราส่วนที่ว่างกับอัตราการนับของนิวตรอน (ค่า การตอบสนองของเครื่องตรวจวัดนิวตรอน) เมื่อระบบใช้แคลิฟอร์เนียม-252 เป็นแหล่งกำเนิด ้นิวตรอน เครื่องตรวจวัดนิวตรอนชนิดฮีเลียมและท่อสแตนเลสสตีลขนาดครึ่งนิ้ว ผลการทดลองที่ ้ได้จากการทคลองแบบสแตติกที่ใช้ลูไซท์ในการแทนที่ปริมาณน้ำในท่อและการทคลองของระบบ ในโตรเจนกับน้ำซึ่งในโตรเจนถูกทำให้เป็นฟองไหลเข้าในน้ำที่อยู่ในท่อพิซีกล๊าสยืนยันผลที่ได้ ้จากการจำลองโดยใช้วิธีมอนติคาร์โลก่อนที่จะทำหารทคลองในระบบที่ประกอบด้วยไอน้ำและน้ำ ้วิธีการสอบเทียบจะใช้ในการประมาณก่าอัตราส่วนที่ว่างที่ได้จากหารทดลองซึ่งพบว่าก่าที่ได้จาก การประมาณนั้นแปรผันอย่างเป็นเช้งเส้นกับค่าจริงของอัตราส่วนที่ว่าง สำหรับที่ความคันสูงและ อุณหภูมิสูง ความหนาแน่นของน้ำพบว่าเป็นสัคส่วนกับอัตราการนับของนิวตรอน ในการวัดค่า สตีมควอลิตีซึ่งคำนวณได้จากค่าพารามิเตอร์ที่มาจากการทำงานของออโตเคฟสามารถทำได้โดย การใช้อุปกรณ์นิวตรอนสะเคทเทอร์ริ่ง พบว่าอัตราการนับของนิวตรอนลดลงเมื่อสตีมควอลิตีลด ถง

ACKNOWLEDGEMENTS

First of all, I would like to express my graceful thank to Assoc Prof. Thirasak Rirksomboon for giving me this best opportunity to conduct my research in University of New Brunswick and provide the good guidance for the entire work. Especially, I also deeply appreciate Prof. Frank R. Steward who always assisted me during I stayed in Canada. And I am so appreciated Prof. Derek Lister, Chair in Nuclear Engineering, Department of Chemical Engineering, University of New Brunswick, who gave me beneficial advice. Moreover, my thanks are also extended to all graduate student of Department of Chemical Engineering, University of New Brunswick, who provides me many valuable suggestions and widened my knowledge about nuclear energy.

This thesis work could not be completed if I did not have assistance from Norman Arbeau and Willy Cook, who help me to set the experiment. And I sincerely thank all of the PPC staffs and also acknowledge to all PPC faculties.

My gratitude is also offered to the Petroleum and Petrochemical College in providing me the full scholarship and great chance. Moreover, I am also grateful for the partial scholarship and partial funding of the thesis work provided by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium).

Finally, I would like to extend my thanks to my lovely family, my friends in Thailand, who shared either happy or sorrow with me when we were together at PPC, my teacher at King Mongkut's University of Technology Ladkrabang for their encouragement and understanding and Mr. Teerawat Sanprasernparnich who always give me cheerfulness and taking care of me.

TABLE OF CONTENTS

	PAGE
Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgement	V
Table of Contents	vi
List of Tables	ix
List of Figures	xi
List of Symbols	xiii

CHAPTER

Ι	INTRODUCTION	1
П	LITERATURE SURVEY	6
	2.1 Steam Quality Measurement Techniques	6
	2.2 Neutron Techniques	7
	2.3 Concept of Fast Neutron Scattering Techniques	12
	2.4 Concept of Fast Neutron Transmission Techniques	13
	2.5 Components of Fast Neutron Techniques	14
	2.5.1 Fast Neutron Source	14
	2.5.2 Test Section	16
	2.5.3 Detector	17
	2.6 Thermodynamic Effects	19
	2.7 Monte Carlo Method	20
	2.7.1 MCNP	22
	2.7.2 MCNP Geometry	22
	2.7.3 MCNP Input File	23
	2.7.4 Estimation of MCNP Errors	23

Ш	SIMULATION AND EXPERIMENTS	25
	3.1 Monte Carlo Simulation	25
	3.1.1 Scatterometer Geometry Setups	25
	3.1.2 MCNP4C Simulation Procedures	26
	3.2 Static Air-Lucite Experiment	28
	3.2.1 Test Section	29
	3.2.2 Neutron Source	29
	3.2.3 Detector	30
	3.2.4 Electronics	30
	3.2.5 Calibration Method	32
	3.2.6 Static Air-Lucite Experimental Procedures	33
	3.3 Dynamic Nitrogen-Water Experiment	33
	3.3.1 Experimental Arrangement	33
	3.3.2 Calibration Method	35
	3.3.3 Electronics	35
	3.3.4 Dynamic Nitrogen-Water Experimental Procedures	37
	3.4 Dynamic Steam-Water Experiment	38
	3.4.1 Experimental Loop	38
	3.4.2 Study of Temperature Effect	39
	3.4.3 Steam Quality Measurements	40
IV	RESULTS AND DISCUSSION	42
	4.1 Monte Carlo Simulation	42
	4.2 Static Air-Lucite Experiment	43
	4.3 Dynamic Nitrogen-Water Experiment	45
	4.3.1 Fast Neutron Scattering Technique	45
	4.3.2 Fast Neutron Transmission Technique	47
	4.4 Dynamic Steam-Water Experiment	48
	4.4.1 Study of Temperature Effects	49
	4.4.2 Steam Quality Measurements	50

APPENDICES 60		
Appendix A : Example of Input and Output File for MCNP4C 60		
A.1 Input File of Zero Void Fraction for Case 1 (the pipe is		
on x-axis, the neutron source is on z-axis and the detector		
is on y-axis)	60	
A.2 Output File of Zero Void Fraction for Case 1 (the pipe is		
on x-axis, the neutron source is on z-axis and the detector		
is on y-axis)	61	
Appendix B: Error Analysis	64	
B.1 Introduction	64	
B.2 Void Fraction Measurement	65	
Appendix C: Data of MCNP4C Simulation Results	66	
Appendix D: Data of Static Air-Lucite Experimental Results 6		
Appendix E: Data of Dynamic Nitrogen-Water Experimental		
Results	71	
E.1 Fast Neutron Scattering Technique	71	
E.2 Fast Neutron Transmission Technique	80	
Appendix F: Data of Dynamic Steam-Water Experimental Results	82	
F.1 Study of Temperature Effects	82	
F.2 Steam Quality Measurements	83	
Appendix G: Steam Quality Calculation	89	

CURRICURUM VITAE

57

LIST OF TABLES

TABLE

2.1	Summary of existing fast neutron techniques for diagnosing	
	two-phase flow parameters	9
2.2	Summary of commercial isotropic sources	14
3.1	System arrangements of three different scatterometer geometries	26
3.2	MCNP surface cards	27
4.1	Estimated Lucite fraction calculated from the mean of neutron	
	count rate for various Lucite fraction	44
4.2	Count rate for 10 seconds at different density values	49
4.3	Dynamic steam-water experiment for different saturated conditions	51
4.4	Comparison of slopes of repeatable data series at three	
	different temperatures	52
C1	Simulation results for case 1: the pipe is on x-axis, the neutron	
	source is on z-axis and the detector is on y-axis	66
C2	Simulation results for case 2: the pipe is on y-axis, the neutron	
	source is on x-axis and the detector is on z-axis	67
C3	Simulation results for case 3: the pipe is on z-axis, the neutron	
	source is on y-axis and the detector is on x-axis	68
D1	Neutron count rate for 2 minutes of the test section at different Lucite	
	fraction	69
E1.1	Neutron count rate at different nitrogen flow rates for 50 seconds	71
E1.2	Neutron count rate at different nitrogen flow rates for 50 seconds	74
E1.3	Neutron count rate at different nitrogen flow rates for 50 seconds	77
E2	Neutron count rate at different nitrogen flow rates for 50 seconds	80
F1	Neutron count rates at various temperature and pressure 5 MPa	
	for 10 seconds	82
F2.1	Neutron count rates at 150°C for 10 seconds for series1	83
F2.2	Neutron count rates at 150°C for 10 seconds for series2	84
F2.3	Neutron count rates at 200°C for 10 seconds for series1	85

PAGE

F2.4	Neutron count rates at 200°C for 10 seconds for series2	86
F2.5	Neutron count rates at 250°C for 10 seconds for series1	87
F2.6	Neutron count rates at 250°C for 10 seconds for series2	88

LIST OF FIGURES

FIGURES

2.1	Schematic of neutron technique device	8
2.2	Filter concept	16
2.3	History of neutron incident on a slab	21
3.1	Scatterometer geometry setup for case 1	26
3.2	Static air-Lucite experimental arrangement	28
3.3	Diagram of electronic instrument used for the static air-Lucite	
	experiment	32
3.4	Top view of the dynamic nitrogen-water experimental arrangement	34
3.5	Diagram of the dynamic nitrogen-water experiment	35
3.6	Diagram of electronic instrument used for the dynamic	
	nitrogen-water experiment	36
3.7	Flow diagram of the dynamic steam-water experimental loop	39
3.8	Diagram of the autoclave for steam quality calculations	40
4.1	Comparison of the correlation between void fraction and	
	the scattered neutron flux for steam-water mixture at 260°C	
	for three different system geometries using the Monte Carlo method	42
4.2	Correlation between neutron count rate and actual Lucite fraction at	
	atmospheric conditions	44
4.3	Correlation between Lucite fraction based on neutron count rate	
	and actual Lucite fraction in the static air-Lucite experiment	45
4.4	Comparison of the correlations between neutron count rate and	
	the void fraction at atmospheric conditions for different bubble sizes	46
4.5	Comparison of the correlations between void fraction based on	
	neutron count rate and void fraction at atmospheric conditions for	
	different bubble sizes	46
4.6	Correlation between neutron count rate and void fraction for the	
	fast neutron transmission technique at atmospheric conditions	48
4.7	Correlation between neutron count rate and density of compressed	

	water at a pressure of 5 MPa and different temperatures	50
4.8	Comparison of the correlations between neutron count rate and	
	steam quality for three different temperatures	51
4.9	Two series of repeatable data at 150°C	53
4.10	Two series of repeatable data at 200°C	53
4.11	Two series of repeatable data at 250°C	54
G1	System for thermodynamic calculation	89

LIST OF SYMBOLS

N(1)	Detector count rate corresponding to the test section containing vapor
	or full of liquid

- N(0) Detector count rate corresponding to the test section containing water or full of vapor
- N(ε) Detector count rate corresponding to the test section containing steam-water mixture
- N(ρ) Detector count rate corresponding to the test section with actual liquid fraction

steam-water mixture

- R(1) Neutron count rate corresponding to a full-of-water test section
- $R(\rho)$ Neutron count rate corresponding to an empty test section
- R(ρ) Neutron count rate corresponding to a known Lucite fraction test section
- ε Estimated void fraction
- E_{th} Thermal energy of the neutron
- T Temperature of the medium
- k Boltzmann's constant
- N Number of radioactive nuclei
- E Neutron energy (eV)
- T Constant value of 1.3 MeV
- ρ Density of mixture (g/cm³)
- ρ_l Density of liquid phase (g/cm³)
- ρ_{g} Density of vapor phase (g/cm³)
- α Void fraction
- $\hat{\rho}$ Lucite fraction or estimated liquid fraction
- m Mass flow rate (g/s)
- u Velocity of saturated water (m/s)
- g Gravitational force (m/s^2)

- Q Heat added in the system (J/s)
- W_s Shaft work (J/s)
- x Steam quality
- Δh Enthalpy change of saturated water before and after passing though the autoclave (J/g)
- h_1 Enthalpy of saturated water at the entrance of autoclave (J/g)
- h₂ Enthalpy of saturated water at the exit of autoclave (J/g)
- h_f Enthalpy of saturated water at saturated temperature (J/g)
- h_g Enthalpy of saturated vapor at saturated temperature (J/g)