CHAPTER II

LITERATURE REVIEW

In 1929, Alexander Fleming discovered that the fungus *Penicillium notatum* produced and excreted a compound which inhibited the growth of *Staphylococcus* species. There was no further research on the finding until the lack of antibacterial drugs for wound treatment was pronounced during the World War II. Then, extensive studies of *Penicillium notatum* were conducted and led to the excellent drug penicillin for the infectious treatment. Subsequently, there were a number of research programs searching for other antibiotics from microorganisms (Samuelsson, 1992), the greatest source of antibiotics is bacteria in the order Actinomycetales, especially the genus *Streptomyces* (Okami and Hotta, 1988).

1. Characteristics of the genus Streptomyces

The genus *Streptomyces* belongs to the family Streptomycetaceae. Other genera in this family are *Intrasporangium*, *Sporichthya*, and *Streptoverticillium*. The genus *Streptomyces* is gram-positive bacteria commonly distributed and abundant in soil. The *Streptomyces* grow from spore and formed discrete and lichenoid, leathery or butyrous colonies. At first, colonies are relatively smooth surface but later become a weft of aerial mycelium that might appear floccose, granular, powdery or velvety. They produce a variety of pigments that cause the color of the vegetative and aerial mycelia. Colored diffusible pigments might also be produced. The cell wall peptidoglycan contain L-diaminopimelic acid (L-DAP) as a major component. They use a wide range of organic compounds as source of carbon for energy and growth. Many strains of *Streptomyces* produce one or more antibiotics (Cross, 1994).

Cultural characteristics on various culture media such as the color of the diffusible pigment, the vegetative, aerial mycelium and spores and the micromorphology of the sporulation structures are used as criteria to define the species of *Streptomyces*. Physiological and biochemical characteristics are also used to describe the strain and species of *Streptomyces*.

The *Streptomyces* strains are found in soil and aquatic habitats such as lake mud, river sediment and marine sediment. They also occur in estuarine environment such as sandy sediment, intertidal sediment and sediment samples collected from the estuarine environment at the mouth of stream (Goodfellow and William, 1983; Jensen, Dwight and Fenical, 1991).

One member of this genus, *Streptomyces hygroscopicus* is placed in Gray series (Shirling and Gottlieb, 1972) is an interesting species due to its ability to produce large numbers and various groups of antibiotics (Glasby, 1993). The strain TRA 9875-2 has morphological and cultural characteristics similar to those of the *Streptomyces hygroscopicus*.

In 1931, "Actinomyces hygroscopicus" formerly described as aerial mycelium became moist with dark shiny patches which, when touched with a needle, was found to be a moist and smeary spore mass (Jensen, 1931). The type culture was no longer extant according to Shirling and Gottlieb. In 1948, "Actinomyces hygroscopicus" was redefined as *Streptomyces hygroscopicus* (Jensen) Waksman and Henrici (Shirling and Gottlieb, 1972).

Streptomyces hygroscopicus and *Streptomyces platensis* (a culture which has the characteristic "moist black patches") were lumped by Tresner and Backus in 1956 on the basis of cultural and light microscope studies (Tresner and Backus, 1956). Newer techniques (especially electron microscopy) were used to inform that the species were indeed distinguishable and therefore validly special (Tresner, Backus and Hayes, 1967).

2. Review of ansamycins

2.1 Chemistry of ansamycins

The ansamycins or ansa-macrolides are a class of macrocyclic compounds. Their structure consist of an aromatic nucleus in which two non-adjacent positions are linked by a long aliphatic chain of up to twenty-four atoms (Latin: ansa = handle). The aromatic portion may be benzenoid, naphthalenic, or quinonoid. The

macrocycle in the ansamycin is closed by an amide linkage rather than an ester linkage (ansamycins were lactams). The ansa chain or bridge usually lie above the aromatic system (Thomson, 1987; Dewick, 1997).

The name, ansamycin, originally suggested by Prelog, is derived from the term "ansa compound" coined by Lutteringhaus in 1942. It is the structures of the ansamycins which have provided the name of these antibiotics (Rinehart, Jr. and Shield, 1976).

The chemical structures of ansamycins are classified into four groups based on their aromatic moiety as follows: - benzenoid group, naphthalenic group, quinonoid group and hydroquinoid group (Table 2.1).

2.2 Sources of origins

Most of the ansamycins are obtained from bacteria but one of benzenoid group, the maytansinoids, occurs in higher plants. They are plant-derived ansamycins from *Maytenus* spp. The genus *Maytenus* belongs to the family Celastraceae (Kupchan *et al.*, 1972, 1974; Thomson, 1987; Dewick, 1997).

The maytansenoids group also occurs in bacteria, *Nocardia* sp., ansamitocins. The chemical structures of them are similar to maytansine and related maytansinoids obtained from higher plants (Higashide *et al.*, 1977).

The only ansamycin currently used therapeutically is rifampicin, a semisynthetic naphthalene-based macrocycle produced from rifamycin B (Dewick, 1997).

The sources of origin of the ansamycins are summarized in Table 2.1.

2.3 Biological activities of ansamycins

Ansamycins show many biological activities such as antibacterial activity, antifungal activity, antiprotozoa, antitumor activity, and herbicidal activity.

5

The ansamycins are notably active against gram-positive bacteria. Some broad-spectrum activity has been noted for certain rifamycin derivatives and some activity against gram-negative bacteria for streptovaricins (Rinehart, Jr., 1972).

The streptovaricins repress *Mycobacterium tuberculosis* and murine leprosy, and the rifamycins are reported to be clinically useful, especially in the treatment of tuberculosis (Rinehart, Jr., 1972).

One of the rifamycins, rifampicin, is marketed widely for treatment of tuberculosis and other infections caused by gram-positive organisms, while the other derivatives of rifamycins and streptovaricins are biological probes because of their binding to DNA-dependent RNA polymerase and their inhibition of reverse transcriptases (Rinehart, Jr. and Shield, 1976).

Geldanamycin differs from the other ansamycins in that its principal activity is against protozoa rather than against bacteria (Rinehart, Jr., 1972).

Maytansine and related compounds are powerful antitumor agents (Rinehart, Jr. and Shield, 1976).

The biological activities of ansamycins are summarized in Table 2.1.

 Table 2.1
 Sources and biological activities of ansamycins.

-

No.	Compounds	Types	Sources	Activities	References
1	Maytansine	Benzenoid	Higher plant Maytenus	Antileukemia	Kupchan et al.,
2	Maytanprine		buchananii		1972. 1974
3	Maytanbutine				
4	Maytanvaline				
5	Maysine				
6	Normaysine				
7	Maysenine				
8	Ansamicotin P1	Benzenoid	Nocardia sp. No. C-15003	Antitumor	Higashide et al.,
9	Ansamicotin P2				1977
10	Ansamicotin P3				
11	Ansamicotin P3'				
12	Ansamicotin P4				
13	Tolypomycin Y	Benzenoid	Streptomyces tolypophorus	Antibacterial	Kishi et al., 1969
14	Ansatrienin A	[14]-[16]	Streptomyces collinus	Antifungal	Damberg <i>et al.</i> ,
15	Ansatrienin A ₂	Quinonoid. [17]			1982
16	Ansatrienin A ₃	Hydroquinoid			Lazar et al., 1983
17	Ansatrienin B		÷		
]	····L	l		

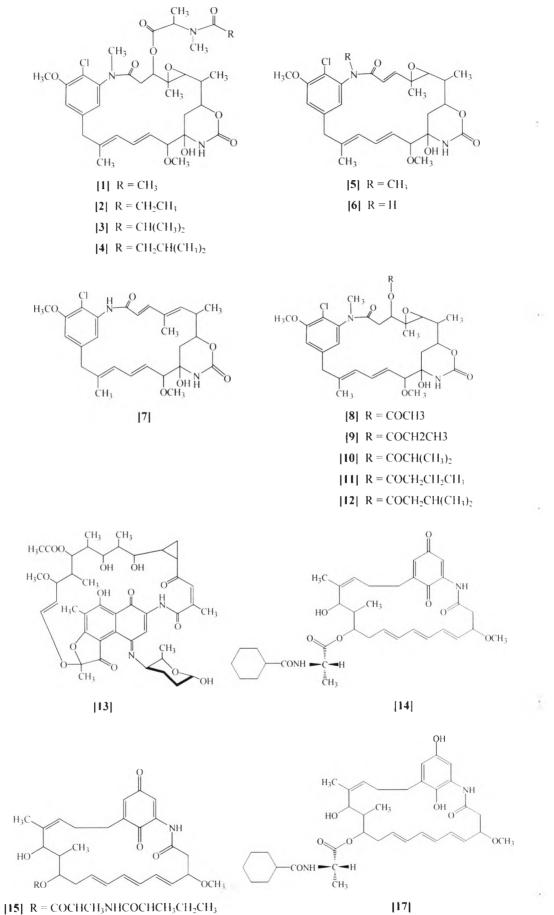
-

Table 2.1 (continued)

No.	Compounds	Types	Sources	Activities	References
18	Mycotrienol I	[18] Quinoid, [19]	Streptomyces rishiriensis	Antileukemia,	Glasby, 1993
19	Mycotrienol II	Hydroquinoid		Antifungal	
20	Geldanamycin	Quinoid	Streptomyces hygroscopicus	[20] Antifungal.	DeBoer et al.,
21	17-O-demethylgelda-		var. geldanus	Antibacterial,	1970
	namycin			Antitumor and	Heisey and
				Herbicide	Putnam, 1986
22	Herbimycin A	[22]-[24] Quinoid.	S. hygroscopicus AM-3672	[22], [24], [25],	Omura <i>et al.</i> ,
23	Herbimycin B	[25]-[27]		[27] Cytotoxic,	1979
24	Herbimycin C	Hydroquinoid		Herbicide	Iwai et al., 1980
25	Dihydroherbimycin A				Lin et al., 1988
26	Dihydroherbimycin B				
27	Dihydroherbimycin C				
28	Macbecin I	[28] Quinoid, [29]	<i>Nocardia</i> sp.	Antitumor,	Muroi et al.,
29	Mecbecin II	Hydroquinoid		Antibacterial,	1980, 1981
				Antifungal.	Thomson, 1987
				Antiprotozoal	

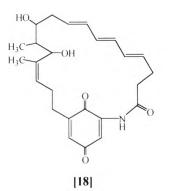
Table 2.1 (continued)

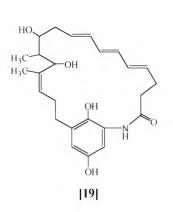
No.	Compounds	Types	Sources	Activities	References
30	Awamycin	Naphthalenic	Streptomyces sp. No. 80-217	Antitumor	Funayama <i>et al.</i> , 1985
31	Naphthoquinomycin A	Naphthalenic	[32]-[34] Streptomyces sp.	Fatty acid synthesis	Mukhopadhyay et
32	Naphthoquinomycin B		No. S-1998	inhibitor in	<i>al.</i> , 1985
33	Naphthoquinomycin C		[34] Streptomyces sp.	Escherichia coli	Mochizuki et al.,
	(Naphthomycin H)		Y-83,40369		1986
34	Naphthomycin A	Naphthalenic	S. diastatochromogenes and	Antifungal,	Keller-Schierlein
			Streptomyces sp. Y-83,40369	Antibacterial	<i>et al.</i> , 1983,1984
35	Naphthomycin B	Naphthalenic	S. galbus subsp. griscoporeus	Antifungal,	Keller-Schierlein
				Antibacterial	<i>et al.</i> , 1983
36	Naphthomycin C	Naphthalenic	S. diastatochromogenes	Antifungal.	Keller-Schierlein
			var. diastatochromogenes	Antibacterial	<i>et al.</i> , 1983
37	Diastovaricin I	Naphthalenic	S. diastatochromogenes	Effect on the induction	Nakamura <i>et al.</i> ,
38	Diastovaricin II		subsp. variabilicolor	of differentiation of	1986
				Friend cell	
39	Rifamycin B	Naphthalenic	S. mediterranei	Antibacterial against	Glasby, 1993
				gram negative bacteria	

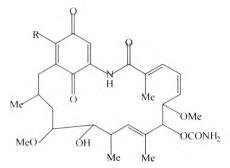

9

.

Table 2.1	(continued)
-----------	-------------


No.	Compounds	Types	Sources	Activities	Reference
40	Rifampicin	Naphthalenic	Semi-synthetic produced	Anti-TB,	Glasby, 1993
			from rifamycin B	Antibacterial	
41	Rifamycin O	Naphthalenic	S. mediterranei and	Antibacterial against	Glasby, 1993
			S. tolypophorus	gram negative bacteria	
42	Rifocin	Naphthalenic	S. mediterranei and	Therapeutically	Glasby, 1993
			Micromonospora chalcea	effective in the	
				treatment of	
				pneumococcal.	
				staphylococcal and	
				streptococcal infections	
43	Rifamycin W	Naphthalenic	Nocardia mediterrenei	Antibacterial against	Glasby, 1993
				gram positive bacteria	
44	Rifamycin X	Naphthalenic	S. mediterranei	Antibacterial against	Glasby, 1993
				gram positive bacteria	
45	Halomicin A	Naphthalenic	Micromonospora halophytica	Antibacterial against	Glasby, 1993
46	Halomicin B			gram positive bacteria	
47	Halomicin C				


No.	Compounds	Types	Sources	Activities	References
48	Protostreptovaricin I	Naphthalenic	S. spectabils	Inhibit Rauscher	Deshmukh et al.,
49	Protostreptovaricin II			leukemia virus	1976
50	Protostreptovaricin III			RNA-dependent	Glasby, 1993
51	Protostreptovaricin IV			DNA polymerase	
52	Protostreptovaricin V				
53	Streptovaricin A	Naphthalenic	S. spectabilis	Inhibit the	Rinehart Jr. et al.,
54	Streptovaricin B			incorperation of	1971
55	Streptovaricin C			nucleosides into	
56	Streptovaricin D			HeLa cells	
57	Streptovaricin E				
58	Streptovaricin F				
59	Streptovaricin G				



[16] $R = COCHCH_3NHCOCH_2CH(CH_3)_2$

12

[20] R = OCH₃[21] R = H

QН

óн

R1

Н

Me

OCH₃ OCH₃

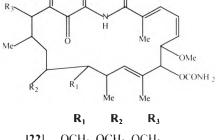
OH

 \mathbf{R}_1

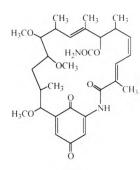
OH

Me

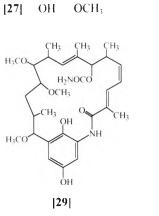
Me R₂ OMe OCONH₂

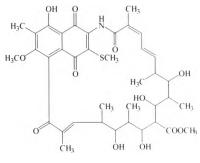

MeO

Me-


 R_2

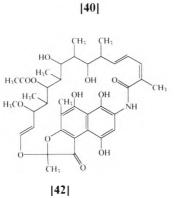
[25]

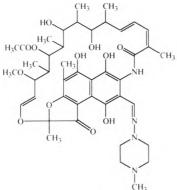

[26]

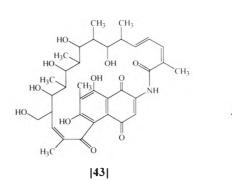


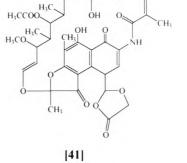
[22] OCH₃ OCH₃ OCH₃
[23] OH OCH₃ H
[24] OH OCH₃ OCH₃

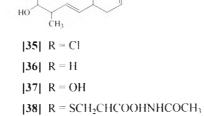
[28]




|30|


.


2



СН3 СН3

HO

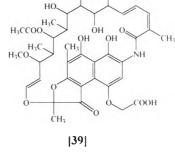
H₃C

ŌН

H₃C

0

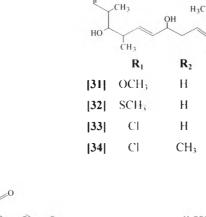
Н


CH3

CH₃

H₃C.

НО


0

CH3 CH3

OH

CH₃O

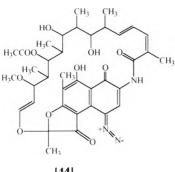
ОН

H₃C

HO

C

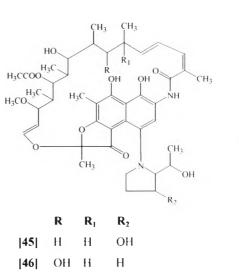
H

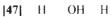

R₁

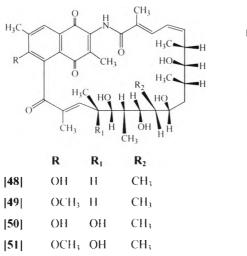
CH₃

-0

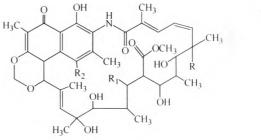
÷

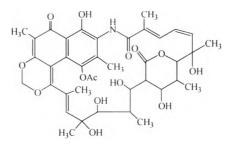





OH

[52]


Н



Н

R \mathbf{R}_1 \mathbf{R}_2 OCOCH₃ OCOCH₃ [53] OH OCOCH₃ OCOCH₃ [54] Н [55] Н ОH OCOCH₃ |56| Н Н $OCOCH_3$ |57| OH0 OCOCH₃ [59] OH ОH OCOCH₃

[58]

.

.