บทที่ 4 ทฤษฎีการวิเคราะห์เชิงพลวัตของโครงสร้างติดตั้งมวลหน่วงปรับค่า

มวลหน่วงปรับค่า คือ ระบบย่อยที่ติดตั้งในโครงสร้างหลัก เพื่อเพิ่มความหน่วงให้โครง สร้างให้มีการสั่นไหวลดลง เนื่องจากมวลหน่วงปรับค่าจะสลายพลังงานของระบบโครงสร้าง ทำ ให้โครงสร้างหลักมีพลังงานลดน้อยลงจึงทำให้การสั่นไหวของโครงสร้างลดลง ซึ่งมวลหน่วงปรับ ค่าประกอบด้วย มวล สปริง และตัวหน่วง เมื่อติดตั้งมวลหน่วงปรับค่าเข้ากับโครงสร้างจะมีระดับ ขั้นความเสรีเพิ่มขึ้นอีกหนึ่งดีกรี โดยประสิทธิภาพของมวลหน่วงปรับค่าจะมีประสิทธิภาพในการ ลดการสั่นไหวของโครงสร้างขึ้นอยู่กับการเลือกค่าพารามิเตอร์ของมวลหน่วงปรับค่าที่เหมาะสม (Optimal)

4.1 โครงสร้างระดับขั้นความเสรีเดียวติดตั้งมวลหน่วงปรับค่า

รูปที่ 4.1 โครงสร้างระดับขั้นความเสรีเดียวติดตั้งมวลหน่วงปรับค่า

จากรูปที่ 4.1 สามารถเขียนสมการการกระจัดของระบบระดับขั้นความเสรีเดียวที่ติดตั้งมวลหน่วง ปรับค่าภายใต้แรงกระทำเป็นฮาร์โมนิค เขียนในรูปของเมตริกซ์ได้ดังนี้

$$\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \begin{bmatrix} \ddot{u}_1(t) \\ \ddot{u}_2(t) \end{bmatrix} + \begin{bmatrix} c_1 + c_2 & -c_2 \\ -c_2 & c_2 \end{bmatrix} \begin{bmatrix} \dot{u}_1(t) \\ \dot{u}_2(t) \end{bmatrix} + \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix} = \begin{bmatrix} P_0 \\ 0 \end{bmatrix} \sin \Omega t$$

$$(4.1)$$

หรือ

$$M\ddot{U} + C\dot{U} + KU = P$$

โดยที่

$$M = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix}$$
$$C = \begin{bmatrix} C_1 + C_2 & -C_2 \\ -C_2 & C_2 \end{bmatrix}$$
$$K = \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix}$$
$$U = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

m₁,m₂ คือมวลของโครงสร้างและของมวลหน่วงปรับค่า

- C1, C2 คือความหน่วงของของโครงสร้างและของมวลหน่วงปรับค่า
- k₁,k₂ คือสติฟเนสของโครงสร้างและของมวลหน่วงปรับค่า
- ี่ ⊔ี₁, ⊔ี₂ คือความเร่งของโครงสร้างและของมวลหน่วงปรับค่า
- ี่⊔ั₁,uํ₂ คือความเร็วของโครงสร้างและของมวลหน่วงปรับค่า
- u₁,u₂ คือการกระจัดของโครงสร้างและของมวลหน่วงปรับค่า
- F₀,Ω คือแอมปลิจูดและความถี่ของแรงที่กระทำต่อโครงสร้าง

การหาคำตอบสมการที่ (4.1) ที่สภาวะคงที่ (steady state) สมมุติให้คำตอบของสมการเป็น

$$U(t) = U_0 e^{i\alpha t} = \begin{bmatrix} u_{10} \\ u_{20} \end{bmatrix} e^{i\alpha t}$$
(4.2a)

โดยที่ค่า U10, U20 คือแอมปลิจูดของการสันของโครงสร้างและของมวลหน่วงปรับค่า

$$\dot{U}(t) = U_0 i \Omega e^{i \Omega t} = \begin{bmatrix} U_{10} \\ U_{20} \end{bmatrix} i \Omega e^{i \Omega t}$$
(4.2b)

$$\ddot{U}(t) = -U_0 \Omega^2 e^{i\Omega t} = -\begin{bmatrix} U_{10} \\ U_{20} \end{bmatrix} \Omega e^{i\Omega t}$$
(4.2c)

แทนค่า (4.2a) , (4.2b) และ (4.3c) ลงในสมการที่ (4.1) จะได้

$$\begin{bmatrix} -m_{1} & 0\\ 0 & -m_{2} \end{bmatrix} \Omega^{2} \begin{cases} u_{10}\\ u_{20} \end{cases} e^{i\Omega t} + \begin{bmatrix} C_{1} + C_{2} & -C_{2}\\ -C_{2} & C_{2} \end{bmatrix} \Omega \begin{cases} u_{10}\\ u_{20} \end{cases} e^{i\Omega t} + \begin{bmatrix} k_{1} + k_{2} & -k_{2}\\ -k_{2} & k_{2} \end{bmatrix} \begin{bmatrix} u_{10}\\ u_{20} \end{bmatrix} e^{i\Omega t} = \begin{bmatrix} P_{0}\\ 0 \end{bmatrix} e^{i\Omega t}$$

$$(4.3)$$

จะเห็นว่าเมตริกซ์ของเวกเตอร์ ทุกเทอมมีพจน์ e^{เวt} คูณอยู่ซึ่งสามารถตัดออกได้เป็น

$$\begin{bmatrix} (k_1 + k_2 - m_1 \Omega^2) + (c_1 + c_2)\Omega i & -k_2 - c_2 \Omega i \\ -k_2 - c_2 \Omega i & (k_2 - m_2 \Omega^2) + c_2 \Omega i \end{bmatrix} \begin{bmatrix} u_{10} \\ u_{20} \end{bmatrix} = \begin{bmatrix} P_0 \\ 0 \end{bmatrix}$$
(4.4)

หรือสามารถเขียนอยู่ในรูป

$$AX = B$$

คำตอบของสมการคือ X = A⁻¹B

$$A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} , A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} , \det A = ad - bc$$
(4.5)

เพราะฉะนั้นคำตอบของสมการ (4.4) คือ

$$\begin{cases} u_{1} \\ u_{2} \end{cases} = \frac{\begin{bmatrix} (k_{2} - m_{2}\Omega^{2}) + c_{2}\Omega i & k_{2} + c_{2}\Omega i \\ k_{2} + c_{2}\Omega i & (k_{1} + k_{2} - m_{1}\Omega^{2}) + (c_{1} + c_{2})\Omega i \end{bmatrix}}{\det(K - M\Omega^{2} + C\Omega i)} \begin{bmatrix} P_{0} \\ 0 \end{bmatrix}$$
(4.6)

โดยที่

$$det(K - M\Omega^{2} + C\Omega i) = m_{1}m_{2}\Omega^{4} - (c_{1}c_{2} - m_{2}(k_{1} + k_{2}) + m_{1}k_{2})\Omega^{2} + k_{1}k_{2}$$

เขียนได้เป็น

$$u_{1} = \frac{\left[(K_{2} - m_{2}\Omega^{2}) + C_{1}C_{2}\Omega i \right] P_{0}}{\det(K - M\Omega^{2} + C\Omega i)}$$
(4.7a)

$$u_{1} = \frac{[(K_{2} + C_{2}\Omega i]P_{0}]}{\det(K - M\Omega^{2} + C\Omega i)}$$
(4.7b)

แสดงแอมปลิจูดของการสันไหวของโครงสร้างและมวลหน่วงปรับค่าภายใต้แรงกระทำแบบฮาร์โม นิค

หากพิจาณาเฉพาะแอมปลิจูดการสั่นไหวของโครงสร้างเมื่อติดตั้งมวลหน่วงปรับค่า จาก สมการที่ 4.7a จะได้

$$\frac{U_{10}^{2}}{P_{0}^{2}} = \frac{\left[(k_{2} - m_{2}\Omega^{2})^{2} + (c_{2}\Omega)^{2} - (c_{2}\Omega)^{2} + (c_{2}\Omega)^{2}\right]^{2}}{\left[(k_{1} - m_{1}\Omega^{2})(k_{2} + m_{2}\Omega^{2}) - m_{2}k_{2}\Omega^{2}\right]^{2} + \left[k - (m_{1} + m_{2})\Omega^{2}\right]^{2}c_{2}\Omega^{2}}$$
(4.8)

ซึ่งแสดงผลการลดการสั่นไหว ได้ดังรูปที่ 4.2 ในกรณีที่ m₂ / m₁ เท่ากับ 0.05 ที่ค่าอัตรา ส่วนความหน่วงต่าง ๆ ที่อัตราส่วนความหน่วงเท่ากับ 10% มวลหน่วงปรับค่าลดการสั่นไหวของ โครงสร้างแต่ไม่สามารถลงเท่ากับ 0 แต่มีช่วงที่ลดการสั่นไหวกว้างขึ้น ซึ่งดีกว่ากรณีที่อัตราส่วน ความหน่วงเท่ากับ 0% ซึ่งลดการกระจัดเท่ากับ 0 กรณีที่ความถี่แรงกำทอนกับโครงสร้างแต่เมื่อ ความถี่แรงเปลี่ยนไปมวลถ่วงปรับค่าไม่ช่วยลดการสั่นไหวของโครงสร้าง

ภูปที่ 4.2 กราฟแสดงความสัมพันธ์ระหว่างตัวประกอบขยายและอัตราส่วนความถี่ของแรงกระทำ ต่อความถี่ของโครงสร้าง

4.2 การวิเคราะห์โครงสร้างหลายระดับขั้นความเสรีติดตั้งมวลหน่วงปรับค่า

ในการวิเคราะห์โครงสร้างจริงที่มีหลายจำนวนชั้น เป็นการไม่สะดวกและให้ผลที่คลาด เคลื่อนหากการวิเคราะห์โครงสร้างโดยต้องแปลงให้อยู่ในระดับขั้นความเสรีเดียว ในบทนี้จึง อธิบายขั้นตอนในการวิเคราะห์โครงสร้างหลายระดับความเสรี โดยอาศัยหลักการเช่นเดียวกับ การวิเคราะห์เชิงพลวัติในระบบโครงสร้างหลายระดับขั้นความเสรีเดียวดังได้อธิบายในหัวข้อ 4.1

ฐปที่ 4.3โครงสร้างหลายระดับขั้นความเสรีติดมวลหน่วงปรับค่า

จากภูปที่ 4.3 สมการการเคลื่อนที่ของโครงสร้างหลายระดับขั้นความเสรีติดมวลหน่วงปรับค่า รับ แรงแผ่นดินไหวสามารถเขียนได้ดังสมการที่ 4.9 ซึ่งแตกต่างจากสมการการเคลื่อนที่ของโครงสร้าง รับแรงแผ่นดินไหวที่ไม่ติดตั้งมวลหน่วงปรับค่าคือเมื่อติดมวลหน่วงปรับค่าที่ขั้นบนของโครงสร้าง สมการการเคลื่อนที่ของชั้นบนจะมีผลของแรงจากมวลหน่วงปรับค่าคือ [0,0,...,c_tż + k_tz]^T รวมกับแรงแผ่นดินไหว

$$m\ddot{u} + c\dot{u} + ku = -m_t \ell \ddot{u}_g(t) + [0, 0, ..., c_t \dot{z} + k_t z]^T$$
(4.9)

$$m_{t}\ddot{z} + c_{t}\dot{z} + k_{t}z = -m_{t}\ddot{u}_{n}(t) + (-m_{t}\ddot{u}_{g}(t))$$
(4.10)

โดยที่

$$\mathbf{m} = \begin{bmatrix} \mathbf{m}_{1} & 0 & \cdots & 0 & 0 \\ 0 & \mathbf{m}_{2} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & 0 & 0 \\ 0 & 0 & 0 & \mathbf{m}_{n-1} & 0 \\ 0 & 0 & 0 & 0 & \mathbf{m}_{n} \end{bmatrix}$$

$$\mathbf{k} = \begin{bmatrix} \mathbf{k}_{1} & -\mathbf{k}_{1} & \cdots & 0 & 0 \\ -\mathbf{k}_{1} & \mathbf{k}_{2} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & -\mathbf{k}_{n-2} & 0 \\ 0 & 0 & -\mathbf{k}_{n-2} & \mathbf{k}_{n-1} & -\mathbf{k}_{n-1} \\ 0 & 0 & 0 & -\mathbf{k}_{n-1} & \mathbf{k}_{n} \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} \mathbf{C}_{1} & -\mathbf{C}_{1} & \cdots & \mathbf{0} & \mathbf{0} \\ -\mathbf{C}_{1} & \mathbf{C}_{2} & \cdots & \mathbf{0} & \mathbf{0} \\ \vdots & \vdots & \ddots & -\mathbf{C}_{n-2} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & -\mathbf{C}_{n-2} & \mathbf{C}_{n-1} & -\mathbf{C}_{n-1} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & -\mathbf{C}_{n-1} & \mathbf{C}_{n} \end{bmatrix}$$

$$\ell = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}_{n \times 1}$$

$$\mathbf{U} = \begin{bmatrix} \mathbf{U}_{1} \\ \mathbf{U}_{2} \\ \vdots \\ \mathbf{U}_{n-1} \\ \mathbf{U}_{n} \end{bmatrix}$$

z คือการกระจัดของมวลหน่วงปรับค่าเทียบกับขั้นที่ n ของโครงสร้าง

4.3 การหาการตอบสนองของโครงสร้างหลายระดับขั้นความเสรีติดตั้งมวลหน่วงปรับค่า

การหาคำตอบของสมการการเคลื่อนที่ของโครงสร้างหลายระดับขั้นความเสรี สามารถ กระทำโดยการแปลงโครงสร้างหลายระดับขั้นความเสรีให้อยู่ในแต่ละโหมดก่อนที่จะวิเคราะห์หา การตอบสนอง

จากสมการที่ 4.9 แปลงพิกัดทั่วไป (Generalized Coordinates) ให้อยู่ในพิกัดโหมด (Modal Coordinates) จะได้

$$m\phi \ddot{y}(t) + c\phi \dot{y}(t) + k\phi \dot{y}(t) = p(t) + f(t)$$
 (4.11)

โดยที่

แล้วคูณด้านหน้าสมการที่ 4.11 ด้วย $\phi_{\mathtt{n}}^{\intercal}$

$$M_n \ddot{y}(t) + C_n \dot{y}(t) + K_n y(t) = P_n(t) + F(t)$$
 (4.12)

โดยที่

$$M_{n} = \phi_{n}^{T} m \phi_{n}$$
$$K_{n} = \phi_{n}^{T} k \phi_{n}$$
$$C_{n} = \phi_{n}^{T} c \phi_{n}$$

ซึ่งรูปแบบการสั่นไหวจะทำการปรับขนาดให้ค่ารูปแบบการสั่นไหวขั้นที่ n จะมีค่า 1 เทอมขวามือ ของสมการ 4.11 ได้เป็น

$$P_n = C_t \dot{z} + k_t z$$

$$F(t) = -\phi^{\mathsf{T}} m \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}_{n \times 1} \ddot{u}_{g}(t)$$

เมื่อแปลงโครงสร้างหลายระดับขึ้นความเสรีในแต่ละโหมด สมการการเคลื่อนที่ของมวลหน่วงปรับ ค่าสมการที่ 4.10 แรงเนื่องจากการสั่นไหวของขั้นบนของโครงสร้างจะแปลงให้อยู่ในรูปพิกัด โหมดจะได้

$$m_t \ddot{z} + c_t \dot{z} + k_t z = -m_t \sum_{i=1}^n \phi_{in} \ddot{y}_n(t) - m_t \ddot{u}_g(t)$$
 (4.13)

โดยที่ ϕ_{in} คือรูปร่างการสั่นไหวโหมดที่ i ขั้นที่ n

ในการหาการตอบสนองจะจัดสมการการเคลื่อนที่ของโครงสร้างและของมวลหน่วงปรับค่าเข้า ด้วยกัน ได้ดังนี้

$$M_{TMD} \ddot{y}_{TMD}(t) + C_{TMD} \dot{y}_{TMD}(t) + K_{TMD} y_{TMD}(t) = F_{TMD}(t)$$

$$(4.14)$$

โดยที่

$$M_{TMD} = \begin{bmatrix} M_{1} & 0 & \cdots & 0 & 0 & 0 \\ 0 & M_{2} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & 0 & 0 & 0 \\ 0 & 0 & 0 & M_{n-1} & 0 & 0 \\ 0 & 0 & 0 & 0 & M_{n} & 0 \\ m_{t}\phi_{1n} & m_{t}\phi_{2n} & \cdots & m_{t}\phi_{n-1n} & m_{t}\phi_{nn} & m_{t} \end{bmatrix}$$
$$\begin{bmatrix} C_{1} & 0 & \cdots & 0 & 0 & -C_{t} \\ 0 & C_{2} & \cdots & 0 & 0 & -C_{t} \\ \vdots & \vdots & \vdots & 0 & 0 & 0 \end{bmatrix}$$

$$C_{TMD} = \begin{vmatrix} \vdots & \vdots & \ddots & 0 & 0 & -C_t \\ 0 & 0 & 0 & C_{n-1} & 0 & -C_t \\ 0 & 0 & 0 & 0 & C_n & -C_t \\ 0 & 0 & \cdots & 0 & 0 & C_t \end{vmatrix}$$

$$K_{TMD} = \begin{bmatrix} K_1 & 0 & \cdots & 0 & 0 & -k_t \\ 0 & K_2 & \cdots & 0 & 0 & -k_t \\ \vdots & \vdots & \ddots & 0 & 0 & -k_t \\ 0 & 0 & 0 & K_{n-1} & 0 & -k_t \\ 0 & 0 & 0 & 0 & K_n & -k_t \\ 0 & 0 & \cdots & 0 & 0 & k_t \end{bmatrix}$$

และ

$$F_{TMD}(t) = \begin{bmatrix} -\phi_{1}^{T} m \ell \ddot{u}_{g} \\ -\phi_{2}^{T} m \ell \ddot{u}_{g} \\ \vdots \\ -\phi_{n-1}^{T} m \ell \ddot{u}_{g} \\ -\phi_{n}^{T} m \ell \ddot{u}_{g} \end{bmatrix}$$
$$\ddot{y}_{TMD}(t) = \begin{bmatrix} \ddot{y}_{1}(t) \\ \ddot{y}_{2}(t) \\ \vdots \\ \ddot{y}_{n-1}(t) \\ \ddot{y}_{n}(t) \\ \ddot{z}(t) \end{bmatrix}$$
$$\dot{y}_{TMD}(t) = \begin{bmatrix} \dot{y}_{1}(t) \\ \ddot{y}_{2}(t) \\ \vdots \\ \ddot{y}_{n-1}(t) \\ \dot{y}_{n}(t) \\ \vdots \\ \dot{y}_{n-1}(t) \\ \dot{y}_{n}(t) \\ \dot{z}(t) \end{bmatrix}$$
$$y_{TMD}(t) = \begin{bmatrix} y_{1}(t) \\ y_{2}(t) \\ \vdots \\ y_{n-1}(t) \\ \dot{y}_{n}(t) \\ \dot{z}(t) \end{bmatrix}$$

จากสมการ (4.14) สามารถหาการตอบสนองของโครงสร้างหลายระดับขั้นความเสรีติดมวลหน่วง ปรับค่าได้ ซึ่งโปรแกรมวิเคราะห์โครงสร้างเชิงพลวัตที่ทำการพัฒนาจะหาการตอบสนองโครงสร้าง ติดมวลหน่วงปรับค่าที่ช่วงเวลาต่างๆโดยวิธีสถานะปริภูมิเวกเตอร์ดังที่อธิบายในหัวช้อ 3.2.3

4.4 พารามิเตอร์ของมวลหน่วงปรับค่าในการออกแบบอาคาร

ในการออกแบบอาคารที่ติดตั้งมวลหน่วงปรับค่า เมื่อทราบค่าความถี่ธรรมชาติของ อาคาร อัตราส่วนความหน่วงของอาคาร (ω_s, ξ_s) และค่าการกระจัดและความเร่งสูงสุดที่ยอม ให้ จะสามารถประมาณค่าพารามิเตอร์ที่เหมาะสมของมวลหน่วงปรับค่าได้ โดยมีผู้ศึกษา หลายวิธีเพื่อหาค่าพารามิเตอร์ของมวลหน่วงปรับค่าที่ดีทำให้มวลหน่วงปรับค่ามีประสิทธิภาพลด การสั้นไหวของโครงสร้างลงมากที่สุดภายใต้แรงพลวัตต่างๆที่กระทำต่อโครงสร้าง

Den Hartog (1956) ได้ค่าพารามิเตอร์ของมวลหน่วงปรับค่าที่เหมาะสมที่ทำให้การ กระจัดของโครงสร้างน้อยที่สุดแสดงดังนี้

$$\alpha_{\text{opt}} = \frac{1}{1+\mu} \tag{4.15}$$

โดยที่

 $lpha_{
m opt}$ คือ อัตราส่วนความถี่ของมวลหน่วงปรับค่าต่อความถี่ของโครงสร้าง μ คือ อัตราส่วนมวลของมวลหน่วงปรับค่าต่อมวลของโครงสร้าง

และ

$$\zeta_{\text{opt}} = \sqrt{\frac{3\mu}{8(1+\mu)}} \tag{4.16}$$

โดยที่

Excitation			Optimized Absorber Parameter		
Case	Туре	Applied to	$lpha_{ ext{opt}}$	${\mathcal E}_{opt}$	
1	Force	Structure	$\frac{1}{1+\mu}$	$\sqrt{\frac{3\mu}{8(1+\mu)}}$	
	P ₀ e ^{løt}				
2	Acceleration X _g e ^{l∞t}	Structure	$\frac{1}{1+\mu}$	$\sqrt{\frac{3\mu}{8(1+\mu)}}$	

Warberton (1982) เสนอค่าพารามิเตอร์ของมวลหน่วงปรับค่า ที่เหมาะสมภายใต้แรง พลวัตแบบต่างที่กระทำต่อโครงสร้าง ดังแสดงตารางที่ 4.1

ตารางที่ 4.1 ค่าพารามิเตอร์ที่เหมาะสมของมวลหน่วงปรับค่า

โดยค่า

 $lpha_{
m opt}$ คือ อัตราส่วนความถี่ของมวลหน่วงปรับค่าต่อความถี่ของโครงสร้าง

ξ_{oot} คือ อัตราส่วนความหน่วงของมวลหน่วงปรับค่า

μ คือ อัตราส่วนมวลของมวลหน่วงปรับค่าต่อมวลของโครงสร้าง

4.5 ตัวอย่างมวลหน่วงปรับค่าติดตั้งในอาคารจริง

จากผลการวิจัยในอดีตที่ยืนยันประสิทธิภาพของมวลหน่วงปรับค่าที่สามารถลด การสันไหวของโครงสร้างได้ดี จึงมีการนำมวลหน่วงปรับค่าติดตั้งในโครงสร้างที่มีปัญหาการสัน ไหว ดังตัวอย่างอาคารที่มีปัญหาการสันไหวของโครงสร้างในหลายประเทศ

Centrepoint Tower, Sydney, Australia เป็นโครงสร้างแรกที่มีการติดตั้งมวลหน่วง ปรับค่า อาคารมีปัญหาการสั่นไหวเนื่องจากแรงลม ได้แก้ปัญหาการสั่นไหวของอาคารด้วยการติด ตั้งมวลหน่วงปรับค่า ใช้มวลเป็นถังน้ำหนัก 40 ตัน และ ตัวหน่วงเป็นโช๊คอัพดังแสดงรูปที่ 4.4 ลด การสั่นไหวเนื่องจากแรงลม ผลจากติดตั้งมวลหน่วงปรับค่าทำให้ค่าความเร่งของโครงสร้างลดลง ประมาณ 40-50 เปอร์เซ็นต์

รูปที่ 4.4 อาคาร Centrepoint และมวลหน่วงปรับค่า (10)

ตึก Citicorp Center, NewYork ตัวอาคารสูง 960 ฟุต มีมวลประมาณ 60,000 ตัน มี ความถี่ธรรมชาติ 0.61 เฮอร์ซ พบว่าอาคารมีปัญหาสั่นไหวเนื่องจากความถี่กำทอนกับแรงลมที่ กระทำ ค่าพารามิเตอร์และรูปร่างของมวลหน่วงปรับค่าแสดงดังตารางที่ 4.2 และรูปที่ 4.5 หลัง จากการติดตั้งมวลหน่วงปรับค่า พบว่าความเร่งการสั่นไหวของโครงสร้างลดลงถึง 50 เปอร์เซ็นต์

		Citycorp Center
Typical floor size	(ft)	160 x 160
Floor area	(sqft)	25,600
Building height	(ft)	920
Building modal weight	(tons)	20,000
Building period 1st mode	(sec)	6.25
Design wind storm	(years)	30
Mass block weight	(tons)	373
Mass block size	(ft)	30 x 30 x8
Mass block material	(type)	concrete

ตารางที่ 4.2 ข้อมูลของโครงสร้างและมวลหน่วงปรับค่า (10)

รูปที่ 4.5มวลหน่วงปรับค่าติดตั้งที่ Citycorp Center ,New York

และในประเทศญี่ปุ่นได้มีการติดตั้งมวลหน่วงปรับค่าเป็นอาคารแรกที่อาคาร Chiba Port Tower , Tokyo Bay อาคารเป็นโครงสร้างเหล็กสูง 125 เมตร มวลหน่วงปรับค่าและค่าพารา มิเตอร์แสดงดังรูปที่ 4.6 และตารางที่ 4.3 พบว่าหลังมีการติดตั้งมวลหน่วงปรับค่าสามารถลด ความเร่งการสั่นไหวได้ประมาณ 40-50 เปอร์เซ็นต์

		X - direction	Y - direction
Structure	1 st mode effective weight (ton)	1200	1200
	Period		
	1 st mode (sec)	2.25	2.7
	2 nd mode (sec)	0.51	57
	Damping ratio (%)	0.005	0.005
TMD	Weight (tons)	10	15.4
	Period (sec)	2.24	2.72
	Spring constant (tons/cm)	0.08	0.084
	Friction force (tons)	0.045	0.045
	Damping ratio (%)	0.15	0.15

ตารางที่ 4.3 ข้อมูลของโครงสร้างและมวลหน่วงปรับค่า (10)

รูปที่ 4.6 มวลหน่วงปรับค่าติดตั้งที่อาคาร Chiba Port (10)