้ ปัจจัยที่ส่งผลต่อองค์ประกอบระเหยง่ายและกรคไขมันในน้ำนมโคที่ผลิตในประเทศไทย

นายพรเทพ นามพันธ์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาเคมี ภาควิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2548 ISBN 974-17-5211-3 ลิขสิทธ์ของจุฬาลงกรณ์มหาวิทยาลัย

FACTORS CONTRIBUTING TO VOLATILE COMPONENTS AND FATTY ACIDS IN COW MILK PRODUCED IN THAILAND

Mr. Porntep Namphant

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Chemistry

Department of Chemistry

Faculty of Science

Chulalongkorn University

Academic Year 2005

ISBN 974-17-5211-3

Thesis Title	Factors contributing to volatile components and fatty acids
	in cow milk produced in Thailand
Ву	Mr. Porntep Namphant
Field of study	Chemistry
Thesis Advisor	Assistant Professor Natchanun Leepipatpiboon, Dr.,rer.nat
Thesis Co-advisor	Pakorn Varanusupakul, Ph.D.
Accepted by the Fulfillment of the Requirement	
	Jamile Mens
	Dean of the Faculty of Science
(Profe	essor Piamsak Menasveta, Ph.D.)
	Chairman essor Sophon Roengeumran, Ph.D.)
	thanum Leepipatpiboon, Dr., rer.nat)
Pak	m Varanusupakul, Ph.D.)
	ciate Professor Sirirat Rengpipat, Ph.D.)
 (M. I	

พรเทพ นามพันธ์: ปัจจัยที่ส่งผลต่อองค์ประกอบที่ระเหยง่ายและกรคไขมันในน้ำนมโคที่ ผลิตในประเทศไทย (FACTORS CONTRIBUTING TO VOLATILE COMPONENTS AND FATTY ACIDS IN COW MILK PRODUCED IN THAILAND) อาจารย์ที่ปรึกษา: ผศ.คร. ณัฐชนัญ ลีพิพัฒน์ไพบูลย์, อาจารย์ที่ปรึกษาร่วม: คร. ปกรณ์ วรานุศุภากุล 151 หน้า. ISBN 974-17-5211-3

งานวิจัยนี้ศึกษาปัจจัยที่ส่งผลต่อองค์ประกอบที่ระเหยง่ายและกรคไขมันในน้ำนมโคที่ผลิต ทำการวิเคราะห์องค์ประกอบที่ระเหยง่ายในน้ำนมโคโดยใช้ ในประเทศไทย microextraction (SPME) ในการสกัดองค์ประกอบที่ระเหยง่าย โดยมีสภาวะดังนี้ ชนิดของตัวดูดซับ Carboxen/Polydimethylsiloxane ปริมาณตัวอย่าง 10 มิลลิลิตร เวลาที่ใช้ในการสกัด 20 นาที อุณหภูมิที่ใช้ในการสกัด 45 องศาเซลเซียส และทำการวิเคราะห์ด้วยเทคนิค Gas Chromatography และ Flame Ionization Detector เป็นเครื่องตรวจวัด และวิเคราะห์กรคไขมันในน้ำนมโคที่ผลิตใน ประเทศไทยโดยใช้เทคนิค Gas Chromatography และ Mass Spectrometer Detector เป็นเครื่อง ตรวจวัด พบว่า จำนวนครั้งในการตั้งท้อง ระยะการให้น้ำนม และอาหารที่ใช้ในการเลี้ยงโคนมเป็น ปัจจัยหลักที่ส่งผลต่อปริมาณขององค์ประกอบที่ระเหยง่ายและกรคไขมันในน้ำนมโค โดยปริมาณ ขององค์ประกอบที่ระเหยง่ายพบว่าเพิ่มมากขึ้น เมื่อจำนวนครั้งในการตั้งท้องของแม่โดเพิ่มขึ้น ระยะการให้น้ำนมเพิ่มมากขึ้น และอาหารที่ใช้ในการเลี้ยงโคนมคือข้าวโพคหมัก ส่วนปริมาณของ กรดไขมันพบว่าเพิ่มขึ้น เมื่อจำนวนครั้งในการตั้งท้องของแม่โคเพิ่มขึ้น ระยะการให้น้ำนมเพิ่มมาก ขึ้น และอาหารที่ใช้ในการเลี้ยงโคนมคือหญ้าสดและหญ้าแห้ง ส่วนปัจจัยในด้านสภาพแวคล้อมใน ฟาร์ม โคนมพบว่า ไม่เป็นปัจจัยหลักต่อการเปลี่ยนแปลงของปริมาณองค์ประกอบระเหยง่ายและ กรดไขมันน้ำนมโค

ภาควิชาคีมีเคมี	ลายมือชื่อนิสิตพรเทพ นามพันบ
สาขาวิชาคมีคมี	ลายมือชื่ออาจารย์ที่ปรึกษา กังณ์ กรมมา
ปีการศึกษา2548	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

457 24037 23: MAJOR CHEMISTRY

KEY WORD: VOLATILE COMPONENTS/FATTY ACIDS/MILK

MR. PORNTEP NAMPHANT: FACTORS CONTRIBUTING TO VOLATILE COMPONENTS AND FATTY ACIDS IN COW MILK PRODUCED IN THAILAND.

THESIS ADVISOR: ASST. PROF. NATCHANUN LEEPIPATPIBOON, Ph.D., THESIS CO-ADVISOR: PAKORN VARANUSUPAKUL, Ph.D., 151 pp. ISBN 974-17-5211-3.

This research, factors contributing to volatile components and fatty acids in cow milk produced in Thailand were studied. Volatile components were extracted from 10 mL milk sample by solid phase microextraction (SPME) using a carboxen/polydimethylsiloxane (CAR/PDMS) fiber at 45 °C for 20 min, and then quantitatively analyzed by Gas Chromatography with Flame Ionization Detector (GC-FID). The qualitative and quantitative analysis of fatty acids were analyzed by Gas Chromatography with Mass Spectrometer Detector (GC-MSD). We observed that the lactation number, lactation stage and feedstuff were the major factors contributing to the amounts of volatile components and fatty acids in cow milk. The amounts of volatile components increased at increasing lactation number, long lactation stage and corn silage as feedstuff. The amount of fatty acids increased at increasing lactation number, long lactation stage and grass-hay as feedstuff. Farm environment was not found to be a major factor contributing to the amount of volatile components and fatty acids in cow milk.

Department	Chemistry	Student's signaturePointepNamphant
T' 11 C . 1		Advisor's signature. Nachanur Zeepipalpiboon
Field of study	Chemistry	Advisor's signature.
Academic year	2005	Co-advisor's signature Pokous Vormusupokee

ACKNOWLEDGEMENTS

I wish to express my deepest gratitude to my advisor, Assistant professor Natchanun Leepipatpiboon, Dr.rer.nat for her discerning suggestion, encouragement and assistance. In addition, I wish to thank my co-advisor, Dr. Pakorn Varanusupakul, for his helpful and assistance. Special thanks are extended to the thesis committee for their invaluable comments.

I would like to express my appreciation to the Department of Chemistry, Faculty of Sciences, Chulalongkorn University for providing research instruments.

I am greatly indebted to the staffs of the Milking Center at The Royal Chidlada Project, Mr. Teerapong Panaspitukchon from Banbung Dairy Cooperation, for providing milk samples used in this research.

Furthermore, I would like to specially thank all members of the Chromatography and Separation Research Group for their helpfulness and useful suggestions.

Finally, I am eternally grateful to my beloved parents and my entire dearest family members for their encouragement and understanding throughout the course of my study.

CONTENTS

		PAGE
ABSTRACT	(IN THAI)	iv
ABSTRACT	(IN ENGLISH)	v
ACKNOWLE	EDGEMENTS	vi
CONTENTS.		vii
LIST OF TAI	BLES	ix
LIST OF FIG	URES	xi
CHAPTER I	: INTRODUCTION	1
1.1	Problem Definition	1
1.2	Literature Review	3
1.3	Purpose of the Study	12
CHAPTER I	II: THEORY	14
2.1	Milk Composition	14
2.2	Variability	26
2.3	The Flavor of Milk	29
2.4	Sample Preparation	36
CHAPTER	III: EXPERIMENTAL	45
3.1	Instrument and Equipment	45
3.2	Chemical Reagents	. 46
3.3	Preparation of Standard Solutions	48
3.4	Solid Phase Microextraction Optimization	49
3.5	The Study of Response Factor	52
3.6	The Study of Calibration Curve of Mixed Standard of Fatty	
	acids Methyl Ester (FAMEs) C ₄ -C ₂₄ Solution	53
3.7	Organoleptic Test	. 54
3.8	Quantitative Analysis of the Volatile Component in Milk	
	Produced in Thailand	55
3.9	The Quantitation Analysis of Fatty Acids in Milk Produced	
	in Thailand	55
3.10	Milk Samples	57
3.11	Statistic Analysis	64

]	PAGE
СНАРТЕ	R IV: RESULTS AND DISCUSSION	65
4.1	Optimization of Headspace-Solid Phase Microextraction	65
(H	S- SPME) Conditions	65
4.2	The Result of Response Factors	70
4.3	The Result of Calibration Curves	70
4.4	The Result of Organoleptic Test	71
4.5	The Result and Discussion of Determination of the Volatile	
	Component in Milk Produced in Thailand	72
4.6	The Result of % Fat in Cow's Milk	81
4.3	The Result of %w/w FFA/FAT in Milk Produce in	
	Thailand	82
CHAPTE	CR V: CONCLUSION	89
REFERE	NCES	92
APPEND	ICES	95
VITA		151

LIST OF TABLES

TABI	LES	PAGE
1.1	Consumer's demand of drinking milk in Thailand, 1999-2005	2
2.1	Approximate composition of milk	14
2.2	Fatty acid composition of milk	17
2.3	Protein distribution in skimmed milk	18
2.4	Essential amino acid profiles of milk proteins	20
2.5	Minerals in milk	22
2.6	Flavor threshold values of compounds contributing to (off)-flavors	
	in milk and milk product	30
3.1	Purity and %weight of each standard in mix standard	47
3.2	The gas chromatographic conditions for analysis of volatile	
	components	50
3.3	The concentrations (mg/L) of some FAME in vary concentration	
of	mixed standard FAMEs	54
3.4	The gas chromatographic conditions for analysis of FAMEs	54
3.5	Weight of milk fat and volume of reagent	56
3.6	Some characteristics of dairy cows used in the study of lactation	
	number contributing to volatile component in cow's milk	59
3.7	Some characteristics of dairy cows used in the study of feedstuff	
	contributing to volatile component in cow's milk	60
3.8	Some characteristics of 11 dairy cows used in the study of farm	
	environment contributing to volatile component in cow's milk	61
3.9	Some characteristics of dairy cows used in the study of lactation	
	number contributing to milk fatty acid composition	62
3.10	Some characteristics of 7 dairy cows used in the study of feedstuff	
	contributing to milk fatty acid composition	63
3.11	Some characteristics of 7 dairy cows used in the study of farm	
	environment contributing to milk fatty acid composition	63
4.1	Response factors of individual volatile compounds	70

TABLES		PAGE
4.2	The linear equations and correlation coefficients of calibration	
	curve	71
4.3	Results of Organoleptic test for milk	72
4.4	P-values and the concentrations (ppm) of volatile component in	
	cow's milk from various lactation numbers	73
4.5	P-values and the concentrations (ppm) of volatile component in	
	cow's milk from various lactation stages	75
4.6	The concentrations (ppm) and P-values of volatile component in	
	cow's milk from various feedstuffs	77
4.7	The concentrations (ppm) and P-values of volatile component in	
	cow's milk from various farm environments	79
4.8	Result of factors contributing to % fat in cow's milk produced in	
	Thailand	81
4.9	P-values and % w/w FFA/FAT in cow's milk from various	
	lactation numbers	83
4.10	P-values and % w/w FFA/FAT in cow's milk from various	
	lactation stages	84
4.11	P-values and % w/w FFA/FAT in cow's milk from various	
	feedstuffs	85
4.12	P-values and % w/w FFA/FAT in cow's milk from various farm	
	environments	87

LIST OF FIGURES

FIGU	FIGURES	
2.1	The structure of lactose	21
2.2	Likens-Nikerson simultaneous distillation extraction apparatus	37
2.3	Instrument of purge and trap	40
2.4	Instrument of classical headspace sampling	42
2.5	Solid phase microextraction procedure	43
4.1	Extraction profile obtained with different fibers for 7 target	
	analytes	65
4.2	Influence of sample volume on the HS-SPME	66
4.3	Effect of temperature on ketone compounds	67
4.4	Effect of temperature on short-chain fatty acid compounds	68
4.5	Extraction curve for the ketone compounds	69
4.6	Extraction curves for the short-chain fatty acid compounds	69
4.7	Influence of lactation number on volatile components in cow's	
	milk	74
4.8	Effect of lactation stage to volatile components in cow's milk	76
4.9	Effect of feedstuff to volatile components in cow's milk	78
4.10	Influence of farm environment on volatile components in milk	80
4.11	Influence of lactation number on fatty acids in cow's milk	83
4.12	Effect of lactation stage to fatty acids in cow's milk	85
4.13	Effect of feedstuff to fatty acids in cow's milk	86
4.14	Influence of farm environment on fatty acids in milk	87