A STABILITY DIAGRAM FOR THE ONSET OF HDPE, MDPE AND LLDPE SHARKSKIN EXTRUDATES

1.0

Ms. Jeerawan Banyam

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma and Case Western Reserve University 1998

ISBN 974-638-479-1

Thesis Title	: A Stability Diagram for the Onset of HDPE and LLDPE
	Sharkskin Extrudates
Ву	: Ms. Jeerawan Banyam
Program	: Polymer Science
Thesis Advisors	: Prof. Ronald G. Larson
	Assoc. Prof. Anuvat Sirivat

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

Director of the College (Prof. Somchai Osuwan)

Thesis Committee

mal

(Prof. Ronald G. Larson)

Arount Series

(Assoc. Prof. Anuvat Sirivat)

R. Magnaphan

(Dr. Rathanawan Magaraphan)

ABSTRACT

962002 : POLYMER SCIENCE PROGRAM

KEY WORDS : Sharkskin Defect/ Flow Instability / Critical Wall Shear Stress/ Stability Diagram/ Unique Line

Jeerawan Banyam: A Stability Diagram for the Onset of HDPE, MDPE and LLDPE Sharkskin Extrudates. Thesis Advisors: Prof. Ronald G. Larson and Assoc. Prof. Anuvat Sirivat, 173 pp. ISBN 974-638-479-1

Sharkskin defect and flow instability of HDPE, MDPE, and LLDPE polymer melts were studies by capillary and parallel plates rheometers. The onset conditions of HDPE. MDPE, and LLDPE sharkskin were investigated in terms of molecular weight, melt temperature, and die geometry. The recoverable shear (S_R), obtained by normalizing the critical wall shear stress with the liquidlike entanglement storage modulus, was found to depend only on material type. Stability diagram of sharkskin defects can be constructed by using the normalized length scale ratio of the sharkskin wavelength (λ_s) and amplitude (ε_s) and the recoverable shear (S_R). There are two sharkskin boundaries depending on the material type: one unique line for HDPE, and one unique line for LLDPE and MDPE.

บทกัดย่อ

จราวรรณ บานแข้ม : การสร้างแผนภาพของเสถียรภาพการไหลสำหรับผิวหนังปลา ฉลาม (sharkskin) ของพอลีเอทิลีนชนิดความหนาแน่นเชิงเส้นสูง กลาง และ ต่ำ (A Stability Diagram for the Onset of HDPE, MDPE and LLDPE sharkskin Extrudates) อ.ที่ปรึกษา : Prof. Ronald G. Larson และ รศ. คร. อนุวัฒน์ ศิริวัฒน์ 173 หน้า ISBN 974-638-479-1

การสร้างแผนภาพของเสถียรภาพการใหลสำหรับผิวหนังปลาฉลาม (sharkskin) ของ พอลีเอทิลีนชนิดความหนาแน่นเชิงเส้นสูง, กลาง และ ต่ำ ของพลาสติกที่หลอมเหลวโดยเครื่อง Capillary and Parallellates Rheometer การเกิดผิว sharkskin ของพอลีเอทิลีนชนิดความหนาแน่น เชิงเส้นสูง กลาง และ ต่ำ ศึกษาในเทอมของ มวลโมเลกุล อุณหภูมิ และ ขนาดของไดล์ (die geometry)

เราจะสามารถสร้างแผนภาพของเสถียรภาพการไหลสำหรับผิวหนังปลาฉลาม (sharkskin) ได้โดยการปรับอัตราส่วนค่าความสูงครีบของผิว ($\lambda_{,}$) และความยาวระหว่างครีบของ ผิว (\mathcal{E}_{s}) sharkskin และ recoverable shear (S_{R}) โดยพบว่า แผนภาพของเสถียรภาพการไหลจะแบ่ง เป็นสองบริเวณ ขึ้นกับสารที่นำมาทดลองโดย เส้นหนึ่งจะเป็นของพอลีเอทิลีนชนิดความหนาแน่น เชิงเส้นสูง (HDPE) และอีกเส้นหนึ่งจะเป็นของพอลีเอทิลีนชนิดความหนาแน่นเซิงเส้นกลาง และ ต่ำ (MDPE and LLDPE)

ACKNOWLEDGMENTS

The author would like to gratefully acknowledge all professors who have taught her at the Petroleum and Petrochemical College, Chulalongkorn University, especially those in the Polymer Science Program.

She greatly appreciates the efforts of her research advisors, Professor Ronald G. Larson and Associate Professor Anuvat Sirivat for their constructive criticisms, suggestions and proof-reading of this manuscript. She would like to give sincere thanks to Dr. Rathanawan Magaraphan for being a thesis committee member.

The author would like to thank the Siam Chemical Trading Co., Ltd. and Thai Polyethylene Co., Ltd. for the raw materials of HDPE, LDPE, LLDPE, MDPE and PP and performing characterization measurements.

She wishes to express her thanks to all of her friends who have given her encouragements and also College staff for providing the use of research facilities.

Finally, she is deeply indebted to her presents for their love, understanding, encouragements, and for being a constant source of her inspiration.

TABLE OF CONTENTS

P.	A	G	E

Title Page	i
Abstract	iii
Acknowledgments	v
List of Tables	viii
List of Figures	ix

CHAPTER

Ι	INT	RODUCTION		
	1.1	Extrudates Distortion and Sharkskin Texture	2	
	1.2	Previous Studies	4	
	1.3	Research Objectives	8	
II	EXPERIMENTAL SECTION			
	2.1	Materials	10	
	2.2	Characterizations	10	
		2.2.1 Melt Flow Index (MFI : g/10 min)	11	
		2.2.2 Density (ρ : g/cm ³)	11	
		2.2.3 Weight Average Molecular Weight (M_W :	12	
		g/mol)		
	2.3	Capillary Rheometer	12	
		2.3.1 Instrument	12	
		2.3.2 Procedure	13	
		2.3.2 Calculations	13	

2.4	Parallel Plates Rheometer	15
	2.4.1 Instrument	15
	2.4.2 Procedure	15
	2.4.3 Normalizations	16
2.5	The Extrudates surface and Sharkskin Studies	19
	2.5.1 Zoom Stereo Microscopy	19
	2.5.2 Optical Microscopy	19
	2.5.3 Scanning Electron Microscopy (SEM)	21

III RESULTS AND DISCUSSION

CHAPTER PA		
	3.2.1 G' vs. ω and G" vs. ω	35
3.2	Rheological Characterizations	34
	3.1.3 Critical Values	31
	3.1.2 Surface Textures of L2009F	29
	3.1.1 Flow curves	24
3.1	Regime Identification of HDPE, LLDPE and MDPE	22

3.2.2 Master Curves of HDPE, LLDPE and MDPE373.2.3 Cox-Merz Rule of HDPE (H5690S) and
LLDPE (L2020F)433.3Effect of Mw on the sharkskin characteristic (λ_s/ϵ_s)
of HDPE and LLDPE483.4Effect of temperature on (λ_s/ϵ_s) of (HDPE) H5690S
and (LLDPE) L2020F55

СНАРТ	CHAPTER		PAGE
	3.5	Effect of Die Geometry on (λ_S/ϵ_S) of H5690S and	
		L2020F	59
	3.6	Stability Diagram of HDPE, LLDPE and MDPE	63
		3.6.1 λ_s/ϵ_s vs. S _R - Stability Diagram	63
IV	CO	CLUSIONS	65
	REI	FERENCES	66
	API	PENDICES	68
	CUI	RRICULUM VITAE	170

LIST OF TABLES

TABLE		PAGE
2.1	Physical properties of LLDPE, MDPE and HDPE	11
2.2	Characteristics of the three dies	12
3.1	Molecular weight of HDPE, LDPE, LLDPE, MDPE and	
	PP studies	22
3.2	The critical wall shear stress $(\tau_{w,c})$ and strain rates $(\gamma \cdot_a)$ of	
	LLDPE, MDPE and HDPE's at the onsets of flow regimes	31
3.3	The critical wall shear stress $(\tau_{w,c})$ and strain rates $(\gamma \cdot_a)$ of	
	HDPE (H5690S) and LLDPE (L2020F) at the onset of	
	sharkskin regimes function of melt temperature	32
3.4	The critical wall shear stress $(\tau_{w,c})$ and strain rates $(\gamma \cdot_a)$ of	
	HDPE (H5690S) and LLDPE (L2020F) at the onset of	
	sharkskin regimes function of die geometry	33
3.5	$G^{0}N$ of LLDPE, MDPE and HDPE melts at 190 °C	41
3.6	Go_{N} of LLDPE (L2020F) and HDPE (H5690S) melts as	
	functions of the melt temperature.	42
3.7	Skin parameter and normalization of sharkskin defect of	
	HDPE (N3260, H5690S and R1760) and LLDPE (L2009F,	
	L2020F) and MDPE (M3204RU) at 190 °C, die no. 614	50
3.8	Skin parameter and normalization of sharkskin defect of	
	HDPE (H5690S) and LLDPE (L2020F) at various	
	temperatures die no. 614	55

TABLE

PAGE

3.9 Skin parameter and normalization of sharkskin defect of
59 LLDPE (L2020F) and HDPE (H5690S) at various
diameters used

LIST OF FIGURES

FIGURE

PAGE

1.1	Capillary Rheometer (Instron 3213)	13
3.1	Flow curves at 190 °C: a) LLDPE (L2009F); b) LLDPE	
	(L2020F); c) MDPE (M3204RU); d) HDPE (N3260); e)	
	HDPE (H5690S); f) HDPE (R1760)	25
3.2	Skin textures of L2009F at 190 °C: a) smooth; b)	
	sharkskin; c) slip-stick; d) melt fracture	29
3.3	G vs. ω of LLDPE (L2009F) at 190 °C: a) G' vs. ω ; b)	
	G" vs. ω	36
3.4	Master curves at 190 °C: a) LLDPE (L2009F); b)	
	LLDPE (L2020F); c) MDPE (M3204RU); d) HDPE	
	(N3260); e) HDPE (H5690S); f) HDPE (R1760)	38
3.5	Cox-Merz rule at 190 °C: a) HDPE (H5690S); b) LLDPE	
	(L2020F)	44
3.6	LLDPE (L2020F) at 190 °C: a) η^*_0 vs. ω ; b) η'_0 vs. ω	46
3.7	Sharkskin textures of HDPE (N3260, H5690S, R1760)	
	and LLDPE (L2009F, L2020F), MDPE (M3204RU) at	
	190 °C	48
3.8	Sharkskin surface of HDPE (N3260) from SEM (200 \times	
	magnification) and the measured wavelength (λ_S) and	
	amplitude ($\varepsilon_{\rm S}$) at 190 °C	49
3.9	HDPE (N3260, H5690S, R1760) and LLDPE (L2009F,	
	L2020F) and MDPE (M3204RU) at 190 190 °C: a) λ_s vs.	
	M_W ; b) ϵ_S vs. M_W ; c) λ_S / ϵ_S vs. M_W	51

FIGURE

2 10	Stability diagram batwan Sp. us.) /a of UDDE	
5.10	Stability diagram between SR vs. $\lambda_{\rm S}/\epsilon_{\rm S}$ of HDPE	
	(H5690S) and LLDPE (L2020F) at 190 °C	53
3.11	HDPE (H5690S) various temperatures (160 °C - 200	
	^o C); a) λ_s vs. temperature; b) ϵ_s vs. temperature; c) λ_s / ϵ_s	
	vs. temperature	56
3.12	Stability diagram of HDPE (H5690S) various	
	temperatures (210 °C - 150 °C) and LLDPE (L2020F)	
	various temperatures (200 °C - 160 °C)	58
3.13	HDPE (H5690S) various dies (214, 614 and 1860) and	
	LLDPE (L2020F) various dies (214, 614 and 1860): a) $\lambda_{\rm S}$	
	vs. l_c/d_c ; b) ϵ_s vs. vs. l_c/d_c ; c) λ_s / ϵ_s vs. l_c/d_c	60
3.14	Stability diagram of HDPE (H5690S) various dies (214,	
	614 and 1860) and LLDPE (L2020F) various dies (214,	
	614 and 1860)	62
3.15	Stability diagram of HDPE, LLDPE and MDPE various	
	materials, melt temperature and die geometry	64